
Int J Digit Libr (2012) 12:89–103
DOI 10.1007/s00799-012-0090-3

A spatial hypertext-based, personal digital library for capturing
and organizing musical moments

David Bainbridge · Brook J. Novak ·
Sally Jo Cunningham

Published online: 14 April 2012
© Springer-Verlag 2012

Abstract We describe the design, development, and evalu-
ation of a personal digital music library application designed
to assist musicians in capturing, developing, and managing
their musical ideas over time. The target user group is musi-
cians who primarily use audio and text for composition and
arrangement, rather than with formal music notation. The
software design was guided by a formative user study which
suggested five requirements for the software to support: cap-
turing, overdubbing, developing, archiving, and organizing.
This led to a spatial hypermedia approach forming the basis
for the developed application. Furthermore, the underlying
spatial data-model was exploited to give raw audio com-
positions a hierarchical structure, and—to aid musicians in
retrieving previous ideas—a search facility was provided to
support both query by humming and text-based queries. A
user evaluation of the implemented environment indicated
that the target musicians would find the hypermedia envi-
ronment useful for capturing and managing their moments
of musical creativity. More specifically, they would make
use of the query by humming facility and the hierarchical
track organization, but not the overdubbing facility as imple-
mented.

Electronic supplementary material The online version of this
article (doi:10.1007/s00799-012-0090-3) contains supplementary
material, which is available to authorized users.

D. Bainbridge (B) · B. J. Novak · S. J. Cunningham
Department of Computer Science, University of Waikato,
Hamilton, New Zealand
e-mail: davidb@cs.waikato.ac.nz

B. J. Novak
e-mail: bjn8@cs.waikato.ac.nz

S. J. Cunningham
e-mail: sallyjo@cs.waikato.ac.nz

Keywords Music composition · User-centered design ·
Spatial hypermedia · Personal digital music library

1 Introduction

Musicians come up with ideas for songs in many settings. The
heavy metal band Deep Purple got their inspiration for Smoke
On The Water when the Montreux Casino was accidentally
burnt down from a flare gun fired off inside the premises
during a Frank Zappa and The Mothers of Invention con-
cert. The band saw the smoke from the fire spreading across
Lake Geneva from the relative safety of their hotel room,
which in effect inspired the lyrics of their work-in-progress
[30]. Inspiration for The Bee Gees’ Jive Talkin’ came from
the “chunka-chunka-chunka” sound of a car rolling over a
bridge crossing Biscayne Bay near Miami.1

These examples illustrate that many musical ideas are
spontaneous and can occur in any setting.

In this article, we describe Apollo, a software envi-
ronment designed to help composers/performers of popular
music:

Capture musical ideas in a convenient form, as and where
they occur;
Enhance and embellish the idea; and
Organize the ideas over time into an archive.

Based on the results of a diary study, a spatial hyperme-
dia paradigm [2,18] was selected as the framework within
which to develop the software environment. Looking ahead,
Figs. 2 and 3 show two snapshots of the developed proto-
type, with its interface and functionality explained in more

1 Refer to www.songfacts.com/detail.php?id=1793/ for more details.

123

http://dx.doi.org/10.1007/s00799-012-0090-3
www.songfacts.com/detail.php?id=1793/


90 D. Bainbridge et al.

detail in Sect. 4. In brief, it provides a hierarchically struc-
tured set of freeform canvases for creating and manipulating
musical ideas (both text and audio recording), augmented
with support for searching the hierarchy with either melodic
or text-based queries. Time for musical objects on the canvas
is represented horizontally, left to right.

The target users are musicians who use music compo-
sition software designed for non-professional use, such as
Apple’s GarageBand. The aim of the project was to estab-
lish whether the spatial hypermedia form of interaction could
enrich a user’s experience over conventional support for com-
position.

The work presented here builds upon and expands the
details provided in [5], and is structured as follows. First,
we present the results of a diary study designed to estab-
lish how, when, and where musical ideas occur for the target
group of users, and what their computer needs are as the
ideas are developed over time (Sect. 2). This led to the deci-
sion to explore how suitable a spatial hypermedia approach
was to support musicians in this activity, and in particular,
determine if this approach has any benefits over conventional
style tracking editing applications.

In Sect. 3, we review related work, including both com-
mercial and research systems that aid composition. This is
followed by details of the software design (Sect. 4). To see
whether musicians might prefer this new environment, we
describe a formative user study that required participants to
complete a range of musical activities using GarageBand and,
task-for-task, using the new spatially hierarchical environ-
ment (Sect. 5). We conclude with a summary of our findings.

2 Diary study

A qualitative diary study was performed to arrive at a deeper
understanding of when, where, and in what settings musical
ideas occur. Diary studies are particularly well suited to the
exploration of “little experiences of everyday life” [28], those
events that occur too infrequently and/or spontaneously to
be difficult to reproduce in a formal laboratory-setting—and
certainly the lightening strike of musical inspiration fits into
this description, as exemplified in the introduction.

In a diary study, participants literally keep a record (con-
ventionally, in a paper diary) of occurrences of the expe-
rience under study. These records are then shared with
the researcher, usually at the end of the diary period, and
usually in a de-briefing session that allows the partici-
pant to explore the events with the researcher. The pri-
mary advantage of the diary technique is that the diary—
when filled in conscientiously by the participant—provides
a more faithful description of the activity than one which
may be obtained by retrospective methods such as post-hoc
interviews [7].

An initial study with three subjects over three days was
undertaken as a pilot, before scaling up to a longer-term diary
study lasting two weeks with six participants. During this
time, participants recorded their ideas in a paper notebook
and/or audio recorder (an MP3-player-based dictaphone or
mobile phone). Participants were free to choose the form of
recording device they were most comfortable with.

The notebook was specifically designed for the experi-
ment. Comfortably fitting in a back pocket, it came with a
colored design on the front and hard-backing—this care of
attention to detail and quality was done in accordance with
established HCI practice, to send the participants the message
that the study was of importance. Inside the notebook was
a mixture of blank “ideas” pages and printed blank staves,
with the former in more evidence.

Participants were instructed to take the diary and voice
recorder with them everywhere they went for the duration of
the study. Whenever an idea came to them, they had to record
it using the notebook and/or the voice recorder straightaway.

The initial trial had used only blank ideas pages, so as
not to bias the participant into thinking music notation was
required; however, in a post-pilot study debriefing, one sub-
ject noted that instead of having to draw their own, “it would
have been good if the ideas’ pages had printed staves.” The
notebook design was adjusted accordingly.

All the participants could play at least two instruments, all
had band experience, and most were studying or had studied
a music-related degree. All of the participants had experi-
ence with computers, all used Internet-based and music edit-
ing software and the majority used office-suites. Participants
spent between 10–28 h a week using a computer, averaging
15.25 h.

The source data (pre- and post-questionnaires, notebooks,
and recordings) were analyzed along with interviews with
each subject. Background questions were posed to establish
their musical background: e.g., “what instruments can you
play, and which do you specialize in?” and “do you usually
write your own music?” Others probed the issue of capturing
musical ideas: e.g., “do you usually record musical ideas,”
“if yes, in what form does a musical idea generally come to
you?” and “would you consider the notepad and recorder a
good way for recording idea? (why/why not).”

A total of 60 ideas were captured during the study period:
31 on the dictaphones, and 29 in the notebooks (Tables 1, 2).
One participant explicitly linked four paper and audio diary
entries—the dictaphone recording a guitar performance of

Table 1 Summary of audio diary entries

No. of entries Min. length Max. length Average

Audio diary 31 6 s 469 s 70 s

123



Personal digital library application 91

Table 2 Summary of written diary entries

No. of
entries

Lyrics Chords Written
notation

Comments

Written
diary

29 19 entries 13 entries 8 entries 9 entries

an idea, and the corresponding notebook entries consisting
of written chords. The average time of an audio recording was
70 s, excluding two outliers that lasted over 5 min (Table 1).
All but one of the ideas recorded by the dictaphone involved
a guitar (for playing the chords).

Figure 1 presents a sample of a written diary entry. Note
that the participant apparently expresses meaning through
spatial placement and symbols (in this case, an underline,
a box, and an asterisk). As discussed in Sect. 5, idiosyn-
cratic note-taking styles are common in other domains [16];
this diary study provides evidence that styles for scribing
musical ideas are similarly personal and free-form. Written
diary entries included a range of types of music information:

• lyrics: lyric entries ranged from fragments (e.g., “I’m a
contradiction”) to extensive entries (the longest was two
diary pages, completely filled).

• chords: these entries were brief chord progressions.
• written notation: melodies were scribed most frequently

not only in conventional music notation, but also in guitar
tablature or a personal notation.

• notes and comments: text comments can set a mood (“a
jazzy feeling chord progression”), serve as a reminder of

the circumstances evoking the idea (“Have just got back
from Christchurch & have seen 2 Jazz bands play!”), and
so forth. Some of the comments are comprehensible only
to the author (e.g., “– appealing – misleading”).

Generally the participants felt that a dictaphone and notebook
were sufficient for capturing their ideas, with two caveats:

• Several participants noted the dictaphone lacked the abil-
ity to overdub—to make a new recording that supple-
ments a previous recording.

• Two participants noted the lack of support for capturing
the source of the idea’s inspiration—such as could be
done through image or video capture—making it diffi-
cult to recall the thoughts behind what they were trying
to express when they later came back to it.

Thirty-six of the 60 audio and paper diary entries included an
indication of the participant’s physical location when musical
inspiration struck. Thirty-two of those ideas came to the sub-
jects when at home, although it is noted here that this may be
because subjects occasionally forgot to bring the notebook
with them when they were out and about. This was revealed
(obliquely) by one participant commenting on the fact that
“using my mobile phone was really good because I always
had it on me, as opposed to having to remember to bring an
extra device/notebook with me wherever I went.” One thing
the interviews did establish is that, no matter where the inspi-
ration originally struck, the ideas were further developed at
home using a desktop machine or laptop using track-based
music production software.

Fig. 1 Example entry from
the diary study

123



92 D. Bainbridge et al.

Furthermore, the interviews highlighted that

• For capturing ideas “in the wild,” there are already many
solutions widely available for handheld devices, such as
the “LG Real Groovy” mobile phone, which comes pre-
loaded with a suite of music recording applications such
as a MIDI keyboard, score editor, and an audio recorder.
Even richer graphical applications are becoming avail-
able for the iPhone.

• Ideas can consist of multiple pieces of information, such
as raw audio, text, and images combined. Therefore, sup-
port for directly associating, or grouping different types
of media together is needed.

• New ideas strike before previous ideas can be fully real-
ized—and one musical idea can sometimes itself spark
another.

Based on the first observation, it was decided to concen-
trate software development in this project on support for
working with musical ideas once they are transferred to the
musician’s home computer. The second observation under-
lined the importance of supporting musicians in engaging
in their natural idea scripting behavior, rather than forc-
ing a rigid format for information entry. The final obser-
vation illustrated that a musician can have many potential
compositions on the go at any one time, and that these
musical ideas typically occur (initially) in fragments, which
are then combined, and/or shared across different emerg-
ing compositions—perhaps where only one version will
emerge as the definitive work. These qualities suggested
that a digital library approach to organizing and managing
all of these pieces would work well, rather than assuming
that a song is a single entity that can be developed in iso-
lation. The nature of the different media forms involved
suggested support for multimedia an important capability,
where the ability to freely associate different elements to
an idea refined the capability required to that of spatial
hypermedia.

Our vision, then, is to support a bricolage style of music
composition: creation characterized by combining, modify-
ing, recombining, “fiddling with,” extending, and mashing up
smaller fragments of material [26]. The user is supported in
jotting down these small fragments (musical ideas), quickly
and easily shifting and re-arranging them, and in building up
more or less complete music pieces. In the implementation,
we emphasize speed of interaction, support for browsing and
searching over a user’s developing fragment collection, and
above all an informal interaction design that accommodates
idiosyncratic forms of composition—all fundamental to the
bricolage style.

We conceive the resulting system, named Apollo after
the Greek god of music, as a personal digital library in which

• documents (musical ideas) can be provided in a variety of
forms—audio, text snippets, images, and so forth. Docu-
ments can be modified, combined, or deleted by the user
at any time.

• metadata (used primarily to support searching) is auto-
matically extracted from the documents. Users include
descriptions and annotations as a personal aid to the com-
position process, rather than as a requirement for efficient
document processing.

• text searching is supported over text snippets entered by
the user, and “query by humming” search [4] is provided
for audio.

• documents are organized for browsing through spatial hy-
permedia. The user is free to arrange and re-arrange the
documents in the space in any way that s/he feels will aid
the composition process.

In other words, our aim became to combine spatial hyper-
media and digital libraries’ capabilities into an interactive
environment suitable for a musician to capture their musical
idea.

3 Related work

“The human mind . . . operates by association. With one
item in its grasp, it snaps instantly to the next that is sug-
gested by the association of thoughts, in accordance with
some intricate web of trails carried by the cells of the brain”
[8]. This concept, put forward by Vannevar Bush in 1945, is
widely considered to be the origins of the field of hypertext
[6]. The term itself was coined by Nelson 20 years later in
1965 [27].

Today the term is used loosely, as there are many accepted
definitions of what a hypertext system is. One commonly
accepted definition is “windows on a screen are associ-
ated with objects in a database, and links are provided
between these objects, both visually and in the database”
[9]. Hypermedia—the form we are interested in for this pro-
ject—is a generalization of hypertext, and in particular, we
refer to the form used here as spatial hypermedia to empha-
size the freeform layout capability that is at the center of the
design.

We based our implementation of Apollo on Expedi-
tee, a modern Java redevelopment of the venerable KMS
(Knowledge Management System) [2]. KMS was developed
in the early 1980s as a hypertext system to support collabora-
tive creation and communication of information. Expeditee,
like its ancestor KMS, is a full-fledged spatial hypermedia
system—it permits nearly any sort of “knowledge artifact”
(text, images, software, presentations, documents, etc.) to
be embedded in a 2D frame. The frames are connected by
links, and the user can at any time switch between frames.

123



Personal digital library application 93

A scripting language is included in Expeditee; new function-
ality can be dynamically embedded in frames and dynami-
cally executed. We expand upon this description in the next
section, where we give an overview of the implemented per-
sonal music digital library environment.

There are existing software applications aimed at sup-
porting music composition and exploration of musical ideas.
In this section, we consider two such commercial systems
(GarageBand and Sibelius) and four systems originating in
the music research community (OpenMusic, CyberBand,
QSketcher, and Musink).

The fundamental difference between Apollo and these
six systems does not simply lie in its mix of features—in
fact, there is considerable similarity in the basic music crea-
tion functions in all these seven systems. Where a key differ-
ence does emerge is in how Apollo adopts a generally less
structured and prescriptive approach to recording and devel-
oping musical inspirations. This approach was inspired by
the comments of a participant in the formative design diary
study (Sect. 2), who described the development of musical
ideas as “like little pieces of artwork.”

As we explored this statement, an analogy emerged: with a
painter and their notebook, many ideas are quickly sketched
out, so why not look to achieve the equivalent experience
for a musician? A notebook allows the painter to quickly
transfer ideas to the page so the painter’s thought processes
are not lost. The sketches are rough, but conveyed in suffi-
cient detail so that the artist can envisage exactly how the
polished picture will look, even if they come back to it years
afterward. The artist’s sketches may not be what they want
first time round—they might augment a sketch later, anno-
tate it, or flip the page to take a different perspective. And,
of course, a visual artist rarely works exclusively on a single
piece; the sketchbook contains many ideas that might evolve
into different finished works—or that might be abandoned,
yet remain in the sketchbook. Apollo is intended to serve
as a musician’s equivalent to a visual artist’s sketchbook.

We first contrast Apollo with GarageBand. This is a
popular commercial track editing software package. Its data
model is for representing one song at a time, and is com-
posed of multiple tracks, laid out vertically as a sequential
list. The horizontal axis represents the time-line of the song.
The time-line can be scaled to get either a closer view of the
audio or an overview of the tracks. The system supports a
mix of MIDI and raw audio.

GarageBand aims to allow the user to produce full quality
audio songs, at or approaching professional level. The anal-
ogy of the painter and sketchbook does not fit well with its
data model because users are forced to work with a list struc-
ture rather than a blank canvas—the users must lay out the
musical ideas sequentially, rather than being able to “play”
by moving music snippets about freely. Further, the musical
ideas must be entered with an attention to fine details of

performance that is not appropriate to the capturing of
nascent musical ideas.

Sibelius is another popular commercial product. Its pri-
mary intended use is for creating and editing musical scores;
audio input is not directly supported, but realistic audio can
be generated from a score. The process of transferring a musi-
cal idea from a musician’s mind to Sibelius, then, involves
recording it in formal music notation—a relatively laborious
task for many amateur musicians, and virtually impossible
for musicians who play by ear. The written scores cannot pre-
serve tone information, which could be a significant aspect
of an idea.

The artist’s sketchbook allows the artist to annotate draw-
ings, paste in photos and other images, jot down feelings and
impressions, and so forth—the process of creating a paint-
ing can involve recording text and images that themselves
do not necessarily appear in the finished work, but that are
important to the artist in remembering and exploring an idea.
GarageBand and Sibelius have limited facilities to allow the
musician to jot down extra-musical material. Neither allows
free-text notes or images to be added to the musical idea.
Sibelius allows lyrics to be added to a song (GarageBand
does not), but the lyrics are expected to be in final form—
Sibelius is ill suited for working through multiple drafts of
lyric fragments.

Another distinguishing characteristic of the artist’s sketch-
book is that it can contain ideas for many different pieces,
and the artist can easily move between the records of differ-
ent ideas/distinct artworks. GarageBand has no explicit link
between its music files; each song has a separate workspace
unrelated to others by that composer. Sibelius has an “Ideas
Hub” feature which can be used to tag, store, and retrieve
musical ideas (i.e., lyric text and melodies in written musical
notation). The process of capturing an idea requires the users
to first scribe the ideas in written notation, chord sequences
and/or lyric text; then to bring up the Ideas Hub window; and
then to drag and drop the idea into the window. A power-
user can speed up the process by selecting an idea’s data and
typing a control key sequence. This model streamlines the
capturing of the creative moments of a musician: the inte-
grated archiving system does not require the users to deal
with files (as is the case with GarageBand), and the users
do not have to think about naming or organizing their ideas
until a later time either (and again, GarageBand forces the
user to think at this level from the first glimmerings of a
musical idea). However, the Sibelius archiving system only
stores written notations or lyric text. Further, users must fill
out a form-like dialog to tag their ideas for them to be search-
able. To find an idea, the user performs a keyword search to
view the best matching ideas in the Ideas Hub window—
a far cry from casually flipping through a sketchbook. As
a whole, the idea archiving model here is very rigid: users
must follow a specific sequence of steps to transfer their ideas

123



94 D. Bainbridge et al.

from the mind into their idea collection and then to organize
them. With this model, musicians cannot organize their ideas
idiosyncratically or spontaneously.

The Ideas Hub has one advantage over the paper sketch-
book: once an idea is tagged, the musician can use Sibelius’s
search engine to locate it and to view related (i.e., similarly
tagged) ideas. In practice, however, this feature is likely to be
of limited use, as the system cannot search lyrics directly and
the one- or two-word user-supplied tags are highly impover-
ished surrogates for complex musical thoughts.

We turn now to four non-commercial systems—
OpenMusic, CyberBand, QSketcher, and Musink—devel-
oped in the research community. This is not intended as an
exhaustive exploration of the software contributions of the
computer music research world, but rather is an overview of
the directions that this research has taken.

CyberBand [29], like Apollo and GarageBand, is aimed
at the amateur musician who might, or might not, be comfort-
able with formal musical notation. Users can work with either
a formal score sheet or audio “blocks” of music. The system
provides a catalog of “riffs” that can be used as building
blocks for new music, and the user can add new riffs/blocks
to the catalog—so that the catalog is the storage point
for musical ideas under development, or ideas that can be
re-used for different songs. These musical ideas are limited
to playable music segments, however, as CyberBand does
not support text or image annotations.

OpenMusic [3] is a music composition program imple-
mented as an object-oriented, visual programming language
based on CommonLisp. While the system includes a conven-
tional music editor, the full power of OpenMusic is realized
by using a visual programming editor to connect together
(“patch”, in the OpenMusic terminology) library or user-pro-
vided modules. Full utilization of the system thus demands
the ability to work with formal music notation and to pro-
gram. While the user may develop personal libraries of
re-usable music components, viewed in terms of the sketch-
book capability sought in this work these libraries share many
of the shortcomings of Sibelius’s Ideas Hub as a mechanism:
the process for recording ideas is time-consuming and not
straightforward (involving coding the idea as a “1patch”),
and there is limited support for searching and browsing the
set of ideas.

MusInk [25] and QSketcher [1] explicitly address aspects
of sketching as an aid to the composition process. MusInk
seeks to address the disjunct between the rich set of idiosyn-
cratic annotations that composers make to musical scores,
and the rigid score notation imposed by computer-sup-
ported composition software. Specifically, MusInk provides
a bridge between paper composition and OpenMusic; using
a digital pen and Anoto technology, the user can make paper
annotations that are reflected back into the OpenMusic dig-
ital representation of a musical piece. While MusInk does

allow greater freedom than OpenMusic in defining personal
gestures/annotations, this capability comes at the cost of hav-
ing to formally add semantic definitions to gestures (sup-
ported by a Gesture Browser) so that the annotations can
be recognized by OpenMusic. This is a powerful and flex-
ible mechanism, but again requires expertise in both pro-
gramming and use of formal music notation—and so is not
intended to be a lightweight mechanism for capturing musical
ideas.

QSketcher is the closest in spirit to Apollo of the sys-
tems discussed here. Intended as a tool for scoring films,
the emphasis is on removing barriers to inputting ideas, no
matter how fragmentary or in whatever form the user wishes
to represent it (“as graphical sketches or scribbles, textual
annotations, music played on a keyboard, and so on” [1]).
The Idea Space for QSketcher is a close analog to the music
sketchbook idea, as a lightweight mechanism for recording
musical inspiration in the “natural” form for that idea, for that
user. In comparing QSketcher to the needs of users targeted
in this project, despite its name, the QSketcher interface is
more rigid and complex than what is sought for the sketch-
pad capability. It is also highly tailored to the domain of film
production.

The role of the time-line in Apollo is worthy of more
detailed consideration. Its primary purpose is as an aid to the
user in coordinating several tracks in a single frame, and a
time-line is local to that point in the hierarchy. The user has
direct control of playback (visualized by progression across
the time-line). Its main uses are for overdubbing and to sup-
port visualization of tracks.

This temporal management differs from that in other spa-
tial hypermedia systems incorporating time (e.g., HyperCafe
[23]), in which the user may have little or no control over the
expression of time-based media embedded in the hyperspa-
tial system, and in which the time-line equivalent may extend
over several locales. Indeed, Apollo’s representation of time
is much simpler than that found in full-fledged temporal hy-
permedia systems, which are based around a master time-line
(sometimes referred to as a score or script). The time-line sup-
ports temporal ordering in the user’s movements between dif-
ferent document components (for example, frames/pages) or
between portions of the same document component. A com-
ponent itself can be time based (e.g., a video or audio clip),
with the hyperlink potentially including only a portion of the
component [14]. More complex temporal relationships such
as synchronous display of multiple time-based components
are also possible [15]. These complex temporal facilities are
useful in supporting such diverse activities as maintaining
edit histories [15], hypervideo development [23], and hyper-
media narratives [23]. Given Apollo’s tight focus on sup-
porting music creation, these more general temporal facilities
appear extraneous to the task, and so are not included in the
Apollo architecture.

123



Personal digital library application 95

4 Implementation

Figure 2 shows a snapshot of the implemented personal music
digital library environment. As much as possible, it was
developed within the existing capabilities of Expeditee, uti-
lizing its dynamic capabilities (such as agents and actions)
associated with media elements, accompanied with a pre-
populated set of frames. In this way, Apollo is like applying
a skin for Expeditee, in the same way the look and feel of a
media player can be changed by applying a skin.

As the time of implementation, Expeditee itself was a
work in progress, and so inevitably some software devel-
opment was done on the core Expeditee system also. We
return to this point later in this section, when we discuss the
innovation of light-weight and heavy-weight widgets and the
resulting change needed in the canvas repainting algorithm.

The scenario depicted in Fig. 2 is a musician develop-
ing their own arrangement of the Michael Jackson hit, Billie
Jean. It could equally be a tune of their own composition. In
the example they have laid in two guitar tracks (upper half of
the frame), overdubbed some special effects (just below the
mid-line), and entered the lyrics to the chorus as text (at the
bottom). A time-line runs along the bottom for controlling
when the audio tracks are played.

Drawing upon the capability provided by Expeditee, in
its rawest form, the implemented system consists of a large

blank canvas (a frame) upon which objects (text, scalable
vector graphics, and images) can be placed—wherever the
mouse cursor is at the time. For this work, the set of basic
media types supported was extended to include audio (see
Sect. 4.1 below).

A layering mechanism is provided to allow objects to
overlap. Any object can be hyperlinked to a new blank
frame, thereby creating a hierarchy of frames. Clicking on
the hyperlinked object takes the user to the new frame. When
at the new frame, clicking on “white-space” (an empty area
of the frame) takes the user back. An object can also (and/or)
have an action associated with it, triggering a particular
response when clicked upon. No explicit saving is needed;
this happens automatically when the user transitions from
one frame to another. Indeed, the user is never prompted for
a filename to use: content is accessed through browsing the
hyperlink structure or through searching over the contents of
a set of frames.

Leveraging from its generic hypermedia data-model,
Apollo is primed to launch with an initial frame set
that provides, for the musician, built-in online help and
functionality for playing and recording audio as well as
searching. This functionality is evident in Fig. 2 along
the top and right-hand side of the interface. It is imple-
mented as an overlay, and so is persistent from frame to
frame.

Fig. 2 Overview of Apollo

123



96 D. Bainbridge et al.

Fig. 3 An example sub-frame in Apollo

External files, such as images and audio, can be dragged
and dropped on the frame, and turn into objects on the frame
at that point. This is how the two audio tracks were laid in,
with the x-axis to a frame used to represent time in seconds.
Text is simply typed in.

Live audio recording is achieved by placing a suitable icon
in the overlay (the often seen centered red circle used to sig-
nify a record button was used) and an action associated with
it. When clicked, the result is for a recording widget to appear
attached to the mouse cursor that the musician then moves to
the location they want to use it. After making the recording,
the widget turns into a visualization of the audio recording.

Unlike our most common experience of hypertext and
hypermedia—the World Wide Web, there is no distinction
between viewing information and editing it. Any object dis-
played on the frame can (at any point in time) be manipulated,
for instance, changing its content or position, or possibly
deleting it—and this applies to the primed “decorations” on
the overlay around the edge. Don’t like the provided button
in a given place? . . . then click to the overlay frame and move
it! Even the overlay functionality can be adjusted, and new
functionality introduced through new buttons.

Sections of text can be highlighted by dragging the mouse
cursor over them. A full complement of cut, copy, and paste
is supported. Furthermore, an analogous set of operations is
available for audio. Sections of the audio can be ranged out
and cut from the track, or copied and spliced into another
track, or used to start a new track. The set of short overdub
audio tracks (located just above and to the left of the chorus
text in Fig. 2) are examples of this, where the initial recording

of an aspirated sound effect of “chick-aah” has been copied
and then replicated a four further times.

Moving objects around includes taking them to another
frame. Returning to the example in Fig. 2, the musician has
chosen to group the overdubbed special effects (guitar solo)
positioned to the right as a separate frame. In this case, an
overview of this sub-frame appears in the parent frame, show-
ing itself being composed of two audio tracks. Clicking on
this overview takes the musician to the relevant sub-frame
(Fig. 3). Recall that clicking in white-space will bring them
back to the parent frame. In the case of text, a hyperlink to a
child frame is indicated by a small circle drawn to the left of
the text. Figure 3 also shows they have used the scalable vec-
tor graphics capability to annotate the frame (e.g., “rethink
this section”).

Creating frames and sub-frames is a natural process, and
when used over a period of time, the hierarchical structure
quickly grows. Indeed Fig. 2, for example, is not the top-
level frame (as first implied in our description above), but is
part of a larger example consisting of 140 frames (exclud-
ing in-built help frames) generated over a series of days. To
help quickly locate frames, search facilities for both text and
audio queries are provided, again implemented utilizing the
existing capabilities of the spatial hypermedia environment.

On initiating a text query, the result is a new (system-
generated) frame appearing with the search results displayed
in a linear list. Each item is encoded as a text object that dis-
plays the title of, and is hyperlinked to, the matching frame.
Query by humming is accomplished the same way; only the
recording widget is used to input the query before the search

123



Personal digital library application 97

is initiated. Conversion of raw audio to symbolic form, and
the subsequent symbolic matching is based on the algorithm
presented in [4]. The system-generated frame of results is
linked to the existing hierarchy. Thus, not only it is a form of
query history provided, but also (like any other frame) it can
have its objects manipulated, moved, and annotated—and of
course is included in the search space for subsequent queries.

4.1 Light-weight and heavy-weight interactive widgets

For this task, the provided set of media types supported by
Expeditee was extended to include audio. This in turn led
to the development of the afore-mentioned light-weight and
heavy-weight interactive “widgets.” In essence, they are a
way of marrying (typically) small pre-packaged Java Swing
components with Expeditee’s native methods for interacting
with lines, rectangles, text, and other scalable vector graph-
ics. Inspired by the approach pioneered by Unix, they form
building blocks that can be combined on the canvas in Expe-
ditee to implement more complex entities. Their usefulness
goes beyond support for audio in Expeditee, but discussion
of this is outside the scope of this article.

To seamlessly embed Swing components in Expeditee,
there were many issues to resolve. Central to the approach
taken was the decision to splice, at the programming level,
the base widget class (essentially a JComponent) with Expe-
ditee’s fundamental classes for representing dots and lines,
which in turn are used for representing rectangles and poly-
gon shapes in general. This not only simplified the task—
since it allowed it to be accomplished through an extension
rather than a re-implementation—but it also brought usabil-
ity benefits because users would not have to learn a new set
of actions and contexts for a new item.

Figure 4 shows one such example of a widget implemented
using the new technique: a metronome. The widget is shown
in “enclosed mode” as the cursor was inside the bounds of
the widget when the snapshot was taken, just as occurs for a

Fig. 4 A light-weight interactive widget used in Apollo with an
annotation

rectangular object drawn in Expeditee. The same visual indi-
cations are inherited: going inside the rectangular area results
in displaying four filled red rectangles at the corners of the
widget. The same actions are inherited too: when the mid-
dle button is clicked, all the items within the widget bounds
(e.g., the arrow and the “@Using 4 bpm is good for this
song!” item) would be picked up. Clicking in a corner allows
the object to be resized, and so on.

There were many cases that had to be dealt with specially
for interactive widgets. For example, disconnecting borders
(made up of dots and lines) is an entirely valid operation for
a rectangle, but in the context of a widget, this would leave
the object in an unstable state; consequently, this action was
disallowed. To allow annotations to be placed over a widget,
the layering algorithm was refactored. The overall render-
ing algorithm for a frame was also upgraded from the exist-
ing, simplistic approach that would redraw the entire frame
any time an item was changed, to one that tracked “dam-
aged areas” and only redrew those when needed. Finally,
widgets needed to be persistent: the information present
within a widget as a result of interacting with it needed to be
retained, and so a mechanism was introduced that allowed
the designer of a widget to declare which data fields were
needed to keep state. This information is then used (by the
software) to determine which data needed to be written to
disk.

As noted by Akscyn et al., responsiveness to user inter-
action is an important requirement in a spatial hypertext
environment [2]. Through user studies, they observed that
although the average time a user spends at a frame will usu-
ally be many seconds, this is typically in the form of pauses
followed by rapid bursts of interaction, including navigation
to other frames. In the context of this project, the loading
of audio tracks (if implemented naively) ran contrary to this
requirement. Consequently in Apollo, this type of object is
loaded asynchronously. An example of this can be seen in
Fig. 2 where the second of the two main guitar tracks is still
loading. Despite this, all the objects on the frame are live,
and can be interacted with, including hyperlinks, to move to
a new frame.

The feature added to Expeditee that provides this function-
ality was called heavy-weight widgets. Its implementation is
built on top of the light-weight widgets, principally extend-
ing it with a globally shared manager, running in its own
thread, which handles the loading and saving of large data
files. At its core is a queue of files to load and save, tagged
with which frame each operation is associated with. Over
time, based on the user’s operations, the manager can mod-
ify the queue to optimize performance. For example, in the
case where a user clicks to a frame with some audio tracks
(causing these tracks to be put in the queue for loading) but
then (with barely a pause) clicks on to a subframe, then these
files can be deleted from the queue. Even if one of the files is

123



98 D. Bainbridge et al.

partway through being loaded in, the manager has the ability
to abort the operation.

4.2 Idea retrieval

As a musician’s ideas collection grows, it becomes more dif-
ficult for them to locate specific ideas, especially in a large
hypertext space environment [21]. It is important for a musi-
cian to recover an idea so they can develop it further, or use it
for a source of further inspiration. Expeditee already had an
in-built agent for providing full text searching. A text search
suffices for remembering textual information about an idea,
for example a lyric or a name of a song. However, it may
not be always the case that a musician can remember textual
information: they may only remember a certain snippet of
sound, for example a melody line. To help musicians locate
their ideas from a melody, a melody search agent was devel-
oped for Apollo.

To search for an idea from a melody, users can press the
search button on the melody search widget shown in Fig.5a
(which is ever present on the overlay to Apollo). When a
user presses the query button the widget begins recording
audio, where a user sings/hums a melody line. When a user
is finished recording their melody and is ready to commence
the search, they press the “go” button, as shown in Fig. 5b.

At this point, the melody search agent begins, and the
current frame changes to a search results frame—this is Ex-
peditee’s convention that is used for all search agents. When a
search completes, a list of results are displayed, ranked from
best matched to worst. Each result is linked to the frame for
which the matching tracks reside. Figure 6 displays example
results from a melody search; the results are explicitly num-
bered to clearly convey the rankings. Each result contains
the frame-name of the matching track audio widget’s parent,
along with the track’s actual name.

To provide the melody-matching capability, the Mel-
dex melody-matching algorithm [4] was repurposed to fit
the spatial hypermedia environment. Figure 7 presents the
logic behind integrating the melody search algorithm into
Apollo. The search takes a query (sung/hummed by a user)

Fig. 5 Using melody search: a Initiating the audio recording; b Initi-
ating the melody match

Fig. 6 The result of a music search

Frame files in frameset

Parse frame

Sample track widgets

Extract widget metadata

Should index
track?

symbolic form
available?

cache file of
Is up to date

Load audio from file

Pitch track audio
into symbolic form

enough notes?
Is there

to cache file
Dump symbolic form Perform dynamic

algorithm

Read symbolic form
from cache file

threshold?
Is score within Results

...

...

YES

YES

NO

NO

NO

NO

Next trackSave result

YES

YES

failed

Output score

Compare with 
symbolic form

of query

Fig. 7 Melody searching algorithm in Apollo

and uses a monophonic pitch tracking algorithm to create a
symbolic form of the audio (i.e., musical notes and rests).
Next it searches all track widgets in the user’s frameset. For
each track widget, it compares their symbolic representa-
tions using a (minimum edit distance) dynamic program-
ming algorithm. The dynamic algorithm calculates a “score”
which describes how well the two melodies match. The score

123



Personal digital library application 99

together with the track’s metadata are recorded in a results
collection. Caching the symbolic representations was used to
help speed up the process for future searches. Once the pro-
cess is finished (in Fig. 7), the results collection is sorted by
score (from best matched to worse) and displayed, as shown
in Fig. 6.

With melody matching only being monophonic-to-mono-
phonic, tracks containing polyphonic audio and percussive—
for example, drums or distorted guitars—are potentially
problematic. To compensate for this, a feature was imple-
mented that allowed the user to mark audio tracks that were
to be excluded from the search. This is accomplished by
pressing CTRL+I, resulting in a visual “ignored” indicator
in the top right of a track widget. This feature proved to be
particularly adaptable, although admittedly placing a higher
level of onus on the user. For instance, if a user wants their
ideas to be indexed for melody searching but all the record-
ings are polyphonic tracks, then they could choose to sing
a motif to represent each melody line. The relevant motif
could reside in the frame that captures the idea (with mute
selected so it does not play with the rest of the tune), or in a
separate frame which links to the idea frame to save space.
When the user conducts a melody query it searches across
the monophonic motifs, but when a song is played back the
full polyphonic version is heard.

5 User evaluation

Centered around this implementation, the answers to four
key questions were sought:

1. Would a musician prefer to capture musical moments in
Apollo or conventional track editing systems?

2. Would a musician prefer a hypermedia environment or a
file system for archiving and organizing musical ideas?

3. How much more usable and natural would musicians find
the hierarchical model for laying out tracks in compari-
son with the conventional model?

4. Would a musician prefer searching for their ideas within
a hypermedia environment or using a file system’s search
facilities?

The evaluation study was split into three real-world sce-
narios. For each scenario, the participant would play the role
of the musician, and would complete the same tasks in both
Apollo and GarageBand. As part of the role-playing, par-
ticipants were asked to imagine that they usually would use
Apollo/GarageBand for completing such tasks. The tasks
were broken down into a series of guided steps. Each partic-
ipant was de-briefed after each scenario.

A total of 11 participants took part in the study, all of whom
usually wrote and/or recorded their musical ideas. User eval-

uation testing of a prototype of the level developed here is
generally conducted with a relatively small number of par-
ticipants (in the range of 5 to 10), as this study size has been
found in practice to be sufficient to identify a design’s most
significant problems [20]. When this number is exceeded,
the cost of expanding the study begins to exceed the potential
benefits.

All participants in this study had been, or (at the time of the
evaluation) were involved with, performing in a band. Eight
of the participants were either using, or had used, Garage-
Band before. On average, participants spent approximately
20 h per week using a computer; of those hours, an average
of 5.6 h was spent using track editing-related software.

5.1 Scenario one: capturing ideas

The following scenario was described to the participants:
“You have been practicing some songs that you have to per-
form in a week’s time. All of a sudden you get an idea for
a song: a simple melody. Simple, but precious. You decide
to quickly record/scribe your idea before it is lost.” All par-
ticipants found this a realistic scenario. In this scenario, par-
ticipants attempted to capture and enrich their ideas using
both systems. The intention of this scenario was to help them
answer the first question posed: would a musician prefer to
capture musical moments using a hypermedia environment?

Expressiveness. All but one of the participants preferred
Apollo’s environment for capturing musical ideas. The
common reason given for preferring Apollo was that it was
quicker to get ideas out, mainly because Apollo stored text
with the audio recordings as opposed to having to use sep-
arate applications for the audio and text (e.g., GarageBand
plus Notepad). Several participants explicitly noted that they
found it annoying to have to use a different program for stor-
ing lyrics when using GarageBand, and then to have to man-
ually manage the association between the audio and lyric
files. This multi-step, multi-application process for accom-
plishing a common task is “confusing” [Participant 5] and
“stink” [Participant 4], and significantly disrupts the compo-
sition process.

Two participants spontaneously picked up on aspects of
the sketchbook interface metaphor (Sect. 3) for Apollo’s
design: “it’s like drawing on paper” [Participant 10]; “I liken
it to canvas, you’re not restricted” [Participant 10]. The direct
manipulation, minimalist interface arising from the sketch-
book approach encourages exploration and play, possibly
leading to greater engagement with a given musical idea:
“it gives an opportunity to play around with ideas” [Partici-
pant 2]; “it’s real easy to keep changing and tweaking . . . it
seems more drafty” [Participant 7].

For mixing media together, some example usages pro-
posed by participants were for associating lyrics, notes for
memory cues, or chord/progression information with audio.

123



100 D. Bainbridge et al.

All but one participant (who was unsure) thought that vec-
tor graphics were useful for annotating/highlighting parts
of an audio track. Participant 6 was particularly enthusi-
astic about the potential to individualize the composition
process, supported by Apollo’s annotation facilities; when
asked whether the ability to add lines, text, and boxes any-
where within a frame might be useful, he enthusiastically
responded, “Heck yeah, because in GarageBand you can’t
personalise it a lot.” Music composition is a highly individ-
ual process, and one design goal of Apollo was to support
composers in their preferred approaches to composition.

Studies of “active reading” annotation behavior with text
documents underscore the importance of providing flexible,
non-prescriptive, multi-option annotation tools; annotation
tools that impose structure or restrict forms are counter-pro-
ductive in that they interrupt the flow of the task [17]. Annota-
tion styles are idiosyncratic, freeform, and mutable [16,11].
Comments from participants bear out these findings from
annotation studies over text documents, ranging from antic-
ipating limited use of the annotation facilities (e.g., “text,
for notes and lyrics—not sure about arrows/vector graphics”
[Participant 8]) to enthusiasm for the entire set (“underlining
would be good, and arrows, lines, and boxes over work that
needs reworking [Participant 3]).

Time-line in Apollo. Seven of the participants agreed that
the audio placement in Apollo should have vertical lines for
auto-snapping tracks to beats. In general, they thought that
the time-line should represent a time signature instead of
seconds or minutes. The consensus from these participants
was that the audio track placement was too imprecise, espe-
cially for participants who were casual users of conventional
track editing systems. This point highlights a potential point
of conflict between the design goals for Apollo: support-
ing both the initial “sketching” of an idea and the further
development of that idea. While inexact track placement is
appropriate for casually jotting down a sudden inspiration,
at some point in the composition process, the musician must
be able to accurately manipulate the tracks.

Auto-resize of the time-line was viewed uniformly posi-
tively. The effect is relatively subtle, and five participants had
not noticed it until it was pointed out in the de-briefing—evi-
dence that its interpretation is straightforward and intuitive.
Two of the participants felt that auto-resize would be helpful
in “viewing the ‘big picture”’ [Participant 1] and useful to
“put things into perspective” [Participant 9].

5.2 Scenario two: organizing partially developed ideas

In the second scenario, the following description was given
to the participants: “You have been working on a backing
track for a song for some time now, and you have just come
up with some ideas to complete your work in progress.” Ten
participants found this to be a realistic scenario, and one

did not think they would have enough ideas to bother with
organization. Analysis of pre- and post-interviews of this
scenario was undertaken, seeking to answer the second and
third questions, focusing on the aspects of organizing their
musical ideas and the hierarchical model for tracks, respec-
tively.

Before the participants started their work on the tasks,
the spatial hypermedia concept was explained to them, and
a demonstration of the software given. In relation to Ques-
tion 2, all participants but one found the frames and links con-
cept both easy to understand and useful for moving around
ideas. They generally liked the freedom that Apollo gives
from having to think about files or folders. One participant
liked how Apollo only used a single window, keeping the
interface uncluttered: they described the environment as, “it
avoids dealing with windows, it’s like opening doors rather
than windows” [Participant 10].

However, many of the participants mentioned that they
would probably find Apollo more difficult to use as they
added more links to their frame-sets (“yep, I understand
it . . .but then again you wouldn’t want to make too many
links” [Participant 7]). A natural response is to adopt the strat-
egy of visually and spatially clumping related work together
(“easy to get lost in it . . . I like to see all the information
in one go, as much as possible” [Participant 11]; “I like to
keep snippets all in one view” [Participant 6]). These com-
ments evoke the “lost in hyperspace” problem experienced
by users of complex hypermedia systems [24]. One partici-
pant specifically noted that he “did not like the spatial feel
in Apollo” [Participant 5] These problems are not entirely
unanticipated; the searching capability had been included
precisely to counter such issues (and is evaluated below).
And, of course, the Apollo user is interacting with a set
of personally created linkages in a personal document col-
lection—and so is not likely to experience the more extreme
disorientation experienced in a novel, unfamiliar hypermedia
system [24].

In relation to Question 3, three participants did not explic-
itly say whether they found the linked tracks useful or not.
Three other participants liked the linked tracks: they found
the concept of focusing on a single track at a time to be useful,
particularly as an encouragement to explore and play through
ease in “grouping ideas and playing around with them”
[Participant 3]. Five participants did not like the concept.
They felt the whole process of having to use links was
“tricky” [Participant 5], involving “a whole lot of thinking”
[Participant 5] to manage the frame real estate as it is filled in.
Link management was seen as being “like a big puzzle” [Par-
ticipant 11], requiring mental attention that distracted from
the task of music composition. Furthermore, these five partic-
ipants generally preferred to see as many tracks as possible
in a single view, favoring vertical scroll-bars over linking
because audio tracks were more easily accessible.

123



Personal digital library application 101

Three participants thought that using linked tracks for
sample re-use (“stamping” out copies of the sample on the
frame) was valuable. They commented that it was quicker
to try out new effects with Apollo than with GarageBand,
which forces the user to manually duplicate and position a
sample to try out new sounds.

5.3 Scenario three: retrieving ideas

For the final scenario, the following description was given
to the participants: “You recall an idea that you previously
worked on a couple of months back, but you cannot remem-
ber where you stored it. You want to find it to extend it a
little further, or use it for further inspiration.” Nine of the
participants found this scenario realistic. Two said that they
would usually remember the names of their ideas.

To complete the scenario, participants were asked to locate
existing ideas in three different ways: browsing, text search-
ing, and (for Apollo only) melody searching. Given the
time constraints of the evaluation, previously prepared set of
frames was used as a surrogate for what a user might have pro-
duced over a longer period of time. This form of evaluation is
known to have its limitations, as the user lacks the familiarity
they would otherwise have, had they been their own files. To
help offset this, this task was intentionally scheduled as the
last of the three scenarios, giving the subjects some lead time
to build a better understanding of the provided resource.

Browsing. Six participants preferred browsing in
Apollo’s environment rather than using the file system. They
preferred Apollo because it was quicker to check whether a
link was pointing to the idea they were trying to locate; this
contrasts with having to wait on loading a GarageBand file
before they could verify if the file was the one that they were
looking for.

Another common reason for their preference was that they
could find an idea in many ways—for example, by mood
or by genre—but only if they kept their idea set “organised
properly” [Participant 6]. That, of course, is the catch; it can
be difficult to motivate oneself to put effort into organiz-
ing and adding text tags to musical ideas when the payoff
for this immediate effort is ease of browsing and searching
in the distant future. Procrastination over making the effort
to “organise properly” is common with personal file struc-
tures [19], personal photo collections [22,12], and personal
music collections [10]; it is likely that Apollo’s users would
encounter the same difficulties in motivation in maintaining
their musical ideas.

Photo collection management software can finesse the
problem of user reluctance to invest time in metadata cre-
ation by automatically augmenting photos with context data
(for example, with GPS location data and timestamps) [13].
One advantage of a file-based search system, such as that sup-
ported with GarageBand, is that the user has access to system

cues such as filename, filesize, and date of last access. Crea-
tion and recent access history dates are particularly appropri-
ate for locating a music idea, given their potential for remind-
ing the user of the context of personal events and activities
that sparked the idea; the equivalent facility could be easily
added to Apollo.

Searching by text. Three of the participants thought both
systems were equally as good for performing text searches
against their ideas collection. Seven of the participants pre-
ferred using the file system for text searches, primarily
because Spotlight search (provided as standard on MacOS X)
was more accessible and interactive: Spotlight continuously
searches as keywords are entered. We note that the partici-
pants’ preferences were based mainly on usability aspects,
which was not the focus of the study. However, two more
substantive points were made in favor of searching text in
Apollo: participants found it faster to check the results in
Apollo rather than having to wait for files to load to verify
whether they were the correct match; and because none of
the participants used a narrowed file search, they noted that
Apollo was superior in that only their idea collection would
be indexed (by default) as opposed to having to wade through
a list of irrelevant files found elsewhere on the system.

During the third scenario, the participants commented on
how they would find it easy to become lost among the frames
and links. However, it transpired they were unaware of the
“home” link (a link on the Apollo overlay which directs to
the user’s home frame). Making this more prominent, in a
revised version of the interface, would be easy to achieve.

Searching by melody. Nine of the participants found the
melody search to be useful. One key advantage of query-
by-humming is that the user does not have to context switch
between melody and text when constructing a query—the
query and the information needed are both in the same format
(audio). The process of conventional text search or brows-
ing for a musical idea distracts from the idea itself: “by the
time you find an idea doing it the manual [text-based search or
browse] way, the inspired idea (to go with it) would have been
lost” [Participant 2]. These participants personally related to
the scenario, mentioning that it is a common problem.

Most of the participants found the idea within the top 10
search results (the stronger vocalists found a match in one or
two clicks). One participant was not sure whether they would
use it. The remaining participant [Participant 9] believed
that it would be their “last resort” when wanting to locate
an idea—not because of any shortcoming in the support for
creating a melodic query, but because this participant expe-
rienced difficulty in interpreting the melodic search output
(“every other method was easier to look around the results
listing than the melody search shows”). In working through
Scenario 2, Participant 9 recorded several queries before find-
ing a match, even though the correct match was always listed
within the top 5–8 search results returned for their queries.

123



102 D. Bainbridge et al.

The problem is related to the text search usability deficiencies
noted above, rather than representing a fundamental issue
with the melodic search function itself.

Two participants noted that the melody search would be
particularly useful because they tended to label their ideas as
something “random named/abstract named” [Participant 7]
and/or “generic”. Again, creating descriptive metadata is a
task that is often postponed or avoided altogether, even after
repeated frustrating experiences when trying to re-locate an
item: “I get an idea, I save it as something generic (“my idea
#3”) then I don’t know which idea is which because they
have all the same names” [Participant 2]. Two participants
believed that if they scanned through a listing of all their
ideas (viewing the names of their ideas), they would recall
the name of the idea they would be looking for.

6 Conclusion and future work

Collectively, the findings on the four posed questions for the
evaluation study indicate that hypermedia systems are a suit-
able environment for musicians in managing their musical
moments. The work touched on new ground with the con-
cept of hierarchically structuring audio tracks that form a
complete song. The user group was divided over whether
they saw this ability as useful. For subjects who preferred
the flat 1D list of tracks, it is worth noting that this is a sub-
set of the hierarchy approach. It would be quite instinctive,
therefore, for users who preferred to organize their tracks
this way, to do so within Apollo. An additional possibility
to explore in this area would be to experiment with a tree-
view of audio tracks (expanding and collapsing nodes in the
tree when clicked upon).

Most of the participants mentioned how valuable they
would find the ability to have text tracks for lyrics, so that
the text lines up with the audio. This throws open a window
worth pursuing for discovering the different ways to merge
the time dimension with text for viewing and authoring.

In general, musicians found the melody search useful
for locating existing ideas. The text search result informa-
tion displayed by Apollo was found to be of inferior qual-
ity to that provided by the in-built text search provided by
MacOS X, Spotlight. This would be straightforward to rec-
tify. Evaluation work also highlighted the need for Apollo to
(optionally) support a snap-to-grid feature for adding objects
on the time-line, and that the time-line should be represented
more abstractly as a time signature, rather than in seconds.
This has been implemented, but as of now, not tested through
additional evaluation.

Finally, efforts in keeping Apollo’s responsiveness quick
turned out to be extremely worthwhile. It became a key reason
as to why the musicians preferred a hypermedia environment
over a file system for locating their musical ideas, whether

it be browsing an organized structure or browsing a list of
search results. This contrasted sharply with the file-system
equivalent, where musicians found the navigation process in
a file system too slow for keeping their inspiration moments
fresh—having to wait on load times while opening and clos-
ing applications to verify a match.

References

1. Abrams, S., Bellofatto, R., Fuhrer, R., Oppenheim, D., Wright,
J., Boulanger, R., Leonard, N., Mash, D., Rendish, M., Smith,
J.: QSketcher: an environment for composing music for film. In:
Proceedings of the 4th Conference on Creativity and Cognition,
pp. 157–164, Loughborough, UK (2002)

2. Akscyn, R.M., McCracken, D.L., Yoder, E.A.: KMS: a distrib-
uted hypermedia system for managing knowledge in organiza-
tions. Commun. ACM 31(7), 820–835 (1988)

3. Assayag, G., Rueda, C., Laurson, M., Agon, C., Delerue, O.: Com-
puter-assisted composition at IRCAM: From PatchWork to Open-
Music. Comput. Music J. 23(3), 59–72 (1999)

4. Bainbridge, D., Nevill-Manning, C., Witten, I., Smith, L., McNab,
R.: Towards a digital library of popular music. In: Proc. of the 4th
ACM Conference on Digital Libraries, pp. 161–169. ACM, New
York (1999)

5. Bainbridge, D., Novak, B.J., Cunningham, S.: A user-centered
design of a personal digital library for music exploration. In: (sub-
mitted to) Joint ACM/IEEE Conference on Digital Libraries, p. 10
(2010)

6. Bardini, T.: Bridging the gulfs: from hypertext to cyberspace.
J. Comput.-Mediat. Commun. 3(2) (1997)

7. Bolger, N., Davis, A., Rafaeli, E.: Diary methods: capturing life as
it is lived. Ann. Rev. Psychol. 54, 579–616 (2003)

8. Bush, V.: As we may think. Interactions 3(2), 3546 (1996) Reprint
from original 1945 article

9. Conklin, J.: Hypertext: an introduction and survey. Computer
20(9), 17–41 (1987)

10. Cunningham, S., Jones, M., Jones, S.: Organizing digital music for
use: an examination of personal music collections. In: Proceedings
of the International Symposium on Music Information Retrieval,
pp. 447–454, Barcelona, October (2004)

11. Cunningham S., Knowles C.: Annotations in an academic dig-
ital library: the case of conference note-taking and annotation.
In: Proceedings of ICADL, pp. 62–71 (2005)

12. Cunningham, S., Masoodian, M.: Metadata and organizational
structures in personal photograph digital libraries. In: Proceedings
of the Asian Conference on Digital Libraries, p. 458467. Hanoi
(2007)

13. Frohlich, D., Kuchinsky, A., Pering, C., Don, A., Ariss, S.: Require-
ments for photoware. In: Proc. CSCW, p. 166175 (2002)

14. Hardman, L., van Ossenbruggen, J., Mullender, K.S., Rutledge, L.,
Bulterman, D.C.A.: Do you have the time? composition and linking
in time-based hypermedia. In: HYPERTEXT ’99: Proceedings of
the tenth ACM Conference on Hypertext and hypermedia: Return-
ing to Our Diverse Roots, pp. 189–196. ACM, New York (1999)

15. Hsieh, H., Shipman, F.: Activity links: supporting communication
and reflection about action. In: HYPERTEXT ’05: Proceedings of
the Sixteenth ACM Conference on Hypertext and Hypermedia, pp.
161–170. ACM, New York (2005)

16. Marshall C.: Annotation: from paper books to the digital library.
In: Proceedings of the Second ACM International Conference on
Digital Libraries, pp. 131–140. Philadelphia, Pennsylvania, USA,
July (1997)

123



Personal digital library application 103

17. Marshall, C.C., Brush, A.J.B.: Exploring the relationship between
personal and public annotations. In: Proceedings of the 4th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 349–
357. Tucson, AZ, USA (2004)

18. Marshall, C.C., Shipman, F.M.: Spatial hypertext: designing for
change. Commun. ACM 38, 88–97 (1995)

19. Nardi, B.: A Small Matter of Programming : Perspectives on End
User Programming. MIT Press, Cambridge (1993)

20. Nielsen, J.: Why you only need to test with 5 users. Alertbox (2000)
www.useit.com/alertbox/20000319.html.

21. Rivlin, E., Botafogo, R., Shneiderman, B.: Navigating in hyper-
space: designing a structure-based toolbox. Commun. ACM 37(2),
87–96 (1994)

22. Rodden, K., Wood, K.: How do people manage their digital pho-
tographs? In: Proceedings of CHI, pp. 409–416 (2003)

23. Sawhney, N., Balcom, D., Smith, I.: Authoring and navigating
video in space and time. IEEE Multime’d. 4, 30–39 (1997)

24. Theng, Y., Thimbleby, H., Jones, M.: Lost in hyperspace: psy-
chological problem or bad design? In: APCHI 96, pp. 387–396.
Singapore (2006)

25. Tsandilas, T., Letondal, C., Mackay, W.: Musink: composing music
through augmented drawing. In: Proceedings of the 27th Interna-
tional Conference on Human Factors in Computing Systems, pp.
819–828. Boston, USA (2009)

26. Turkle, S., Papers, S.: Epistemological pluralism: styles and
voices within the computer culture. Signs: J. Women Cult.
Soc. 16(1), 128–157 (1990)

27. Wardrip-Fruin, N.: What hypertext is. In Proceedings of the 15th
ACM conference on Hypertext and Hypermedia, pp. 126–127.
ACM, New York (2004)

28. Wheeler, L., Reis, H.: Self-recording of everyday life events; ori-
gins, types, and uses. J. Pers. 59(3), 339–354 (1991)

29. Wright, J., Jameson, D., Oppenheim, D., Pazel, D., Fuhrer, R.: Cy-
berBand: A hands-on music composition program. In: Proceedings
of the ICMC, pp. 383–386. Thessaloniki (1997)

30. Zappa, F., Occhiogrosso, P.: Real Frank Zappa Book. Touch-
stone, New York (1989)

123

www.useit.com/alertbox/20000319.html


Copyright of International Journal on Digital Libraries is the property of Springer Science & Business Media

B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.




