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Current chaotic encryption systems in the literature do not fulfill security and performance demands
for real-time multimedia communications. To satisfy these demands, we propose a generalized
symmetric cryptosystem based on N independently iterated chaotic maps �N-map array� periodi-
cally perturbed with a three-level perturbation scheme and a double feedback �global and local� to
increase the system’s robustness to attacks. The first- and second-level perturbations make crypto-
system extremely sensitive to changes in the plaintext data since the system’s output itself �cipher-
text global feedback� is used in the perturbation process. Third-level perturbation is a system reset,
in which the system-key and chaotic maps are replaced for totally new values. An analysis of the
proposed scheme regarding its vulnerability to attacks, statistical properties, and implementation
performance is presented. To the best of our knowledge we provide a secure cryptosystem with one
of the highest levels of performance for real-time multimedia communications. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2903758�

A digital chaotic encryption system consists of a digital
chaotic system (nonlinear dynamic equation or map),
which takes an input message known as plaintext and
produces an independent masked output message known
as ciphertext. Digital chaotic systems have many of the
good properties required in cryptography; the most
prominent are sensitivity to parameters, sensitivity to ini-
tial conditions and unpredictable trajectories. The first
two properties are related to diffusion, and the last one to
confusion in the cryptographic nomenclature. Confusion
is intended to make the relationship between ciphertext
and plaintext statistically independent, while diffusion is
intended to spread out the influence of a single plaintext
digit over many ciphertext digits to hide the statistical
structure of the plaintext. General purpose (data or com-
pression independent) chaotic encryption schemes iterate
a single one-dimensional chaotic map; in this work we
propose a generalized encryption system based on N one-
dimensional coupled (interdependent) chaotic maps along
with three levels of perturbation (in order to change the
trajectory of the chaotic system) that increase signifi-
cantly the system security with respect to previous
schemes. Additionally, our system software implementa-
tion is fast enough to deal with current multimedia com-
munication demands (real-time audio and video
transmission).

I. INTRODUCTION

Due to recent developments in the field of multimedia
communications, applications such as Voice over IP �VoIP�,
videoconferencing, e-learning, and digital TV/HDTV are
part of our everyday life. We are immersed in a world-wide
network where people do business on line, have access to
news, bank accounts, etc., at the shield of their office or
home. These digital commodities have some inherent risks;
communication networks �wired/wireless� are vulnerable to

attacks violating the user right of privacy. Building secure
multimedia communications demands new challenges diffi-
cult to handle by currently adopted encryption schemes
�DES, RSA, AES, and IDEA�.1,2 It requires the processing of
huge amounts of information at speeds going from kilobits/
sec �Kbs� to the order of megabits/sec �Mbs�; in particular
those applications involving real-time audio and video trans-
mission.

Digital chaotic dynamical systems �DCS� have been pro-
posed in the late 1980s as a viable alternative for secure data
communications.3 DCS have many of the good properties
required in cryptography; the most prominent are sensitivity
to parameters, sensitivity to initial conditions, and unpredict-
able trajectories.4–6 The first two properties are related to
diffusion, and the last one to confusion in the cryptographic
nomenclature.7 Even though a lot of research has been pub-
lished in the literature, some schemes are weak or have al-
ready been broken.8–19 DCS are still in search to position as
a strong competitor to current standard cryptosystems re-
garding to security.

Contrary to its continuous counterpart where the cycling
length �number of states� can be infinite, digital chaotic en-
cryption systems are represented by a finite-state machine
with 2L states �chaotic degradation�, where L is the bit pre-
cision of the machine. This means that DCS are short cycled,
with largest theoretical cycle length CL=2L.20 In practice,
CL�2L for almost every chaotic trajectory,21 with a maxi-
mal length of O�2�L�, where 0���1. Along with the cycle-
length reduction, a DCS may experience a degraded distri-
bution and correlation, and a reduced control parameter
interval, making the system vulnerable to attacks. Current
research focuses on improving the security of chaotic crypto-
systems by two main approaches: perturbance-based
schemes �to increase the chaotic cycle length� and network-
based chaotic maps �to increase the number of parameters in
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the system�. Perturbation-based schemes transform stable
chaotic cycles into nonstable ones by perturbing its trajec-
tory. Sang et al.23 proved that periodic perturbations increase
the cycle length of chaotic systems by ���2L−1��2L, where
� is a positive integer and � is the perturbation period. They
obtained a lower bound of ��2L−1��2L, which improves
considerably the maximum cycle length with respect to the
unperturbed case �O�2�L��. Ideally, perturbation magnitudes
should be obtained by a uniform pseudorandom number gen-
erator �PRNG� to improve the dynamical properties of digital
chaotic systems.20,22,23 Network of chaotic maps or coupled
map lattices �CMLs� consider an array of chaotic maps gov-
erned by a coupling transformation over some defined neigh-
borhood in the array.24 New states represent the weighted
interaction between each individual map �local term� and the
coupling transformation �linear/nonlinear interaction term�.
When the weight of the coupling is weak, the system can be
regarded as a local map perturbed by contributions from
other sites, thus maintaining its main individual properties.
On the other hand, when the weight of the coupling is large,
the system reaches an asymptotic collective behavior charac-
terized by intermittent periodic chaotic cycles �cycling
chaos�. Dellnitz25 found that, when an individual map is ac-
tive �having chaotic behavior� the rest of the system elements
remains quiescent. This process is repeated forever for each
element of the system. Palacios and Juárez26 applied cycling
chaos theory to improve Baptista’s encryption scheme
security.10 Wang et al.27 combined a CML with bit-reverse
operation applicable to symmetric cryptosystem and pseudo-
random number generators.

In order to change the system dynamics more effectively
under a drastic chaotic degradation or an attack, we propose
a novel block-based symmetric-key encryption system based
on multiple chaotic maps. Multiple chaotic maps and higher
dimensional chaotic maps are considered as the future trend
for secure chaotic encryption systems.1,31,33 Our method con-
siders an N-array of chaotic maps with an intermittent three-
level perturbation scheme. In our system �contrary to CML�
every single map is independently iterated and perturbed to
encrypt a portion of the input data. Interdependency is cre-
ated by adding a global and local feedback during the en-
cryption process, so that the new ciphertext depends on the
history of previous ciphertext values in the current iteration
�global feedback� and the history of previous ciphertext val-
ues in the same map �local feedback�. We additionally propa-
gate this interdependency into the array of chaotic maps by
perturbing each element with the most recent global cipher-
text output rather than with a predefined data-independent
distribution function.27 This represents the first level of the
hierarchical perturbation. The second-level perturbation is
more drastic in the sense that it completely changes the sys-
tem map variables �not the map parameters�. These two per-
turbations are necessary to immediately change the dynamics
of the system when it becomes trapped in a fixed point or
short length periodic window. Third-level perturbation, on
the other hand, represents a whole system perturbation,
where the original system-key is updated and postprocessed
using a CML system. Our goal is to develop a fast, simple,
and secure encryption system independent of the compres-

sion scheme for current real-time multimedia demands.
The paper is organized as follows. In the next section we

describe the proposed scheme. In Sec. III, experimental re-
sults and security of the proposed systems are analyzed.
Conclusions are presented in Sec. IV.

II. CHAOTIC ENCRYPTION SCHEME

An important step in any digital chaotic encryption is the
selection of the map. Chaotic maps have different behavior
regarding complexity, chaotic properties �cycle length, cha-
otic interval, periodic windows, etc.�, sensitivity to initial
conditions and reaction to trajectory perturbations, etc., that
influence the structure or behavior of the chaotic encryption
system. In fact, some systems have been broken for not con-
sidering the weaknesses of the chosen chaotic map �see Refs.
21 and 32�. As a complement to our main goals discussed in
Sec. I �security and efficiency�, it is desirable to provide
some independency between the cryptosystem and the cha-
otic map under consideration. This independency means that,
a full knowledge of the selected chaotic map is not needed to
fulfill the security and efficiency requirements of a good
cryptosystem.

For their mathematical simplicity there are two options:
logistic map and tent map. The logistic map is represented by

Xn = �Xn−1�1 − Xn−1�, � � �1,4�, X � �0,1� . �1�

It involves a single variable �X� and a single control param-
eter ��� representing two multiplications and one addition
per iteration. This simplicity has several disadvantages:

�a� Reduced chaotic interval: As � increases from 1 to 4,
the map experiences a period doubling to chaos. In
particular for ��3.5699 �known as accumulation
point� it presents a chaotic behavior, however there are
many periodic windows �with all kinds of periods� that
appear abruptly. A very well-known and prominent
period-3 window appears at �=1+�8=3.8284. Fixed
points �f�X�=X� are also present at X=0 and X
= ��−1� /�, which define a regular pattern in the logis-
tic map.24

�b� Digital chaotic degradation: It affects all computerized
chaotic maps by reducing their cycle lengths.

The tent map �also called piecewise linear� represented
by Xn=� min�Xn−1 ,1−Xn−1�, has better chaotic behavior than
the logistic map. It has only one fixed point at X=0 for ��1,
and chaotic behavior for nearly all values of X with
1���2, without periodic windows. The tent map is of
course affected by the digital degradation as well, which in-
cludes a reduced chaotic interval, short-cycle length, de-
graded distribution and correlation.21 Despite of the tent map
advantages, our selection for this work is the logistic map
because of its challenging chaotic properties for a secure
cryptosystem �fixed points, periodic windows, degraded dis-
tribution, etc.�. Our scheme should be robust enough to deal
with logistic map digital degradations.

To overcome the reduced chaotic interval, the digital
degradation, and to increase the security of the cryptosystem
we propose an N-array of logistic maps along with a pertur-
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bation and feedback scheme to drive every cycling chaotic
signal away from its original trajectory. Our aim is to de-
velop a cryptosystem with the following properties:
�a� sensitive to initial conditions �system-key and plaintext�;
�b� robust to opponents attack; and �c� fast software imple-
mentation for real-time multimedia communications. The
overall system is described as follows �Fig. 1�.

A. Chaotic system generation

The proposed scheme is symmetric, therefore the initial
system-key �K� of size B bits, for B�128 and multiple of

n=32 �bits to cipher per chaotic map� is shared between
cipher and decipher. Any suitable key establishment/
distribution protocol �public-key or authenticated protocol�
in the literature can be used for the key exchange, the only
restriction is that every session requires a new and indepen-
dent system-key.

The encryption system uses K to compute the array of
chaotic maps and a system Seed for a pseudo-random num-
ber generator �PRNG�. A PRNG is used to generate all ran-
dom variables supporting the N-map system, such as current
number of active maps, initial global and local feedbacks,
and system perturbation frequencies. Any good PRNG can
be used in the scheme.

The value of Seed is calculated as follows:

Seed = Kn�1� � ¯ � Kn�B/n� , �2�

where Kn�i� is the ith n-bit element of K �considered as an
array of B /n elements� and � is the exclusive-OR �XOR� op-
erator. n can also be 64 bits if 64-bit arithmetic is available
�this is why we use n instead of directly using 32�.

The N-array of chaotic maps for N=B /n is defined as
�see Fig. 2�

Xi,0 = Kn/2�2i − 1�/2n/2,

�i = 3.68 +
�Kn/2�2i�/2n/2 + Kn/2�2i�/10hn/2 + �a � b�/2n/4�

10

�0.3187�
MAX

, i = 1,2, . . . ,N , �3�

where Xi,0 and �i are the ith map initial variable and param-
eter respectively, with 0.2	Xi,0	0.8 �except Xi,0�0.5� and
3.68	�i	3.9987 for �i�� j and i� j, hn/2 is the number of
digits in the largest decimal number represented by n /2 bits,
a � b term is the XOR between the half-most and half-least
significant bits of Kn/2�2i�, respectively, yielding an n /4-bit
outcome, and MAX is the maximum value of �Kn/2�2i� /2n/2

+Kn/2�2i� /10hn/2 + �a � b� /2n/4� /10, which happens to be
when K�2i�=2n/2−1. The valid interval for � is set between
the merge point of the two main bifurcation bands found in
the interval 3.0���3.68 and �strictly speaking� the highest
real number less than 4.0 represented by the precision of the
corresponding machine �we selected 3.9987 as the upper
limit�. To increase the sensitivity of the system to a magni-
tude change in the system-key, Xi,0 is iterated an

RT=PRNG�Seed� random number of times over the couple
chaotic system:

Xi,j = �1 − ����iXi,j−1�1 − Xi,j−1�� + �H�X1,j−1, . . . ,XN,j−1� ,

�4�

H�X1,j−1, . . . ,XN,j−1� =
1

N
�
i=1

N

Xi,j−1,

where j is the current map state iteration and H is the cou-
pling function with coupling parameter �. H takes the aver-
age of previous iteration map variables over all maps. Equa-
tion �4� guarantees that a one-bit change in K, will affect all
maps variables and therefore the system’s output �cipher-
text�. The output of Eq. �4� after RT iterations becomes the
initial state for each map in the encryption process; that is,

FIG. 1. Flow diagram of the encryption/decryption system scheme.

FIG. 2. System-key �K� partition �n /2� for the creation of maps variables
�Xi,0� and corresponding parameters ��i�.
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Xi,0, 1	 i	N. The same process can be performed for the
corresponding map parameters if needed.

B. Cipher/decipher scheme

The N-map array is used as an N circular list of
ciphers, but only a subset defined by a cipher window
Wm,k= ���i−1�mod N�+1 	k	 i	k+m−1
, for m
= �PRNG�Seed�mod N�+4 and k� �1,2 , . . . ,N
 is considered
in the encryption process at a time �Fig. 3�. k represents the
minimum index of Wm,k at a given time and 1	m	N is the
size of the window. For simplicity, the elements of Wm,k are
renamed by W�i�, for 1	 i	m and some N. W�i� represents
the ith element of Wm,k; i.e., if W3,5= �5,1 ,2
 and N=5, then
W�1�=5, W�2�=1, W�3�=2.

Let j and l represent the system state �iteration�
and plaintext-ciphertext absolute indexes, respectively
�l= �j−1�m+ i�. For a fixed state j, the m ciphers in Wm,k are
defined by the following equation:

Cl = CW�i�,j

= ��Pl + XW�i�,j� �mod 2n� � XW�i�,j�

� ��XW��i+1�mod m�,j� + XW��i+2�mod m�,j� �mod 2n�

� ��CW�i−1�,j + CW�i�,j−1�mod 2n� ,

�5�
1 	 i 	 m, l = �j − 1�m + i ,

where Pl is the lth plaintext input, XW�i�,j� is the corresponding
integer representation of XW�i�,j using n bits, CW�i−1�,j �=Cl−1�
is the previous ciphertext output �i−1� in current iteration
�jth�, and CW�i�,j−1 is the previous ciphertext output of the
same ith map, but from the j−1 iteration. CW�i−1�,j and
CW�i�,j−1 represent the global and local feedback, respec-
tively. The initial global feedback CW�i−1�,j for the jth itera-
tion takes in the last ciphertext output of the previous itera-
tion �CW�m�,j−1� to spread the system changes on to future
ciphertexts and current m logistic map variables �see next
subsection�. A total of mn bits are encrypted per iteration
state j �n encrypted bits per map�. Wm,k is periodically ro-
tated one map at a time by setting k=k+1 �see Fig. 3�; when
�N−k+1��m, the cipher index wraps around taking the cor-
responding first, second, up to the m− �N−k+1� initial maps

�when k=N the current cipher window is Wm,N

= �N ,1 ,2 , . . . ,m−1
�.
To increase the encryption system security, and as an

optional step, the ciphertext output Cl=CW�i�.j can be masked
using two maps’ variables:

Cl
M = �Cl + XT��mod 2n, XT� = XW�i�,j� � XW��i+1�mod m�,j� . �6�

Therefore, the decipher cannot use Cl
M directly to find its

corresponding plaintext data; it needs to know XT�.
The corresponding decryption system can be written as

Cl = �Cl
M − XT��mod 2n,

Pl = �Cl � XW�i�,j� � ��CW�i−1�,j + CW�i�,j−1�mod 2n�

� ��XW��i+1�mod m�,j� + XW��i+2�mod m�,j�mod 2n�

− XW�i�,j� �mod 2n, �7�

1 	 i 	 m, l = �j − 1�m + i .

Initial global and local feedbacks are calculated by

global = C0,0 = PRNG�Seed�;

for i = 1, . . . ,N , �8�

locali = Ci,0 = PRNG�Seed� .

C. Three-level perturbation scheme

Under external perturbations �plaintext or system-key at-
tacks�, the global feedback in Eq. �5� will drive the original
system trajectory into a different chaotic state. There are two
problems though, the transition change is slow and the cha-
otic system �N-array� does not participate in the trajectory
change �chaotic parameters and variables stay unchanged�. In
order to speed up the system reaction time under external
perturbations, a three-level periodic perturbation scheme is
proposed. The first two perturbation levels are related to the
system variables and the third one is related to the system-
key. In the first perturbation level, the trajectory of every
map is slightly modified to increase its cycle length;22,23 in
the second perturbation level the current system variable is
randomly changed, creating a totally new trajectory for the
system; and, in the third perturbation level the system-key
value is renewed using current system map variables. Third-
level perturbation represents a reset operation, since the en-
tire encryption/decryption system parameters are completely
modified.

The first-level perturbation for the ith logistic map is
expressed as

XPW�i�,j−1 = XW�i�,j−1 +
�l=1

n/8CW�m�,j−1�l�

10h8
, 1 	 i 	 m , �9�

where CW�m�,j−1�l� is the lth byte of the global feedback at the
state j−1, and h8 is the number of digits in the largest deci-
mal number represented by 8 bits. We postprocess XPW�i�,j−1

so that its first digit after the decimal point remains the same
as in XW�i�,j−1; therefore, abs�XPW�i�,j−1−XW�i�,j−1��10−1 �the

FIG. 3. Representation of the N-array chaotic system and active encryption
window �Wm,k� at different periods of times.
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perturbation signal must be smaller than the chaotic signal to
keep the good statistical properties of chaos dynamics�. Note
that every single change detected by the global feedback is
passed on to the array of chaotic maps. In the case of a
differential attack, Eq. �9� exacerbates every single plaintext
change by disturbing not only future ciphertext outputs
through global and local feedback, but also the map variables
in the current cipher window. The combined effects �feed-
back and perturbation� generate different trajectories for any
pair of plaintexts when iterated by the system. An additional
benefit of involving CW�m�,j in the perturbation process, is
that in the long run it has uniform distribution �see Sec. III�,
an important requirement for perturbation schemes.23

Only one chaotic map may be enough if the chaotic sig-
nal reaction to Eq. �9� were instantaneous. Unfortunately, it
takes a certain number of iterations �depending on the per-
turbation magnitude� for a chaotic map to diverge from its
original signal trajectory. This reaction time may be danger-
ous under a differential or plaintext attack if only one map is
used in the encryption process �attacker may find out current
map’s parameters�. To avoid this problem in one-dimensional
chaotic encryption systems, Pareek et al.6 iterated the logistic
map a random number of times. This solution affected con-
siderably the system execution time and did not solve the
security problem since the scheme was broken by Ref. 32.
The use of m different chaotic maps producing m ciphertext
values increases the number of variables to solve for the
attacker during the reaction time without affecting the sys-
tem’s performance. Since we are not considering all possible
chaotic flaws in the logistic map, in the low probable case
where the first-level perturbation magnitude is very small for
the entire m-array of chaotic maps �increasing the chaotic
reaction time� or when the m-array is in a short cycle state,
then a second-level perturbation comes in to play to compli-
cate things up for the attacker by resetting the system map
variables. This is the same as resetting the maps’ variables
maintaining the same parameters.

The second-level perturbation adds CW�m�,j−1 to each
map variable and cross-iterate the outcome throughout the
maps. For the W�i�th map in state j−1, the new perturbed
system variable XPW�i�,j−1 is obtained by

For i = 1,m ,


 = �CW�m�,k + XW�i�,j−1� − floor�CW�m�,k + XW�i�,j−1� ,

For l = 1,m , �10�


 = 
�W�l��1 − 
� ,

XPW�i�,j−1 = 
 .

That is, new system variables are influenced by all maps in
Wm,k and their corresponding local feedback. For the next
iteration, XW�i�,j−1=XPW�i�,j−1.

Since we are working with very long multimedia se-
quences �from minutes to hours� and not checking for either
bad chaotic points �periodic window, fixed points, etc.� or
perturbation frequency values, the system may face low cha-

otic variation due to the low perturbation frequencies and/or
small perturbation magnitudes in the first and second pertur-
bation levels. To avoid this kind of vulnerability, the third-
level perturbation enters in action by replacing the system-
key using current map variables:

K = K � concatenate�X1,j,. . .,� XN,j� � . �11�

Immediately, the system �under a differential attack� turns
into a chaotic behavior and the system becomes protected.
By using current map variables in the new K, it is assured
that any single change in the past be spread out into future
ciphertext generations. The new system-key goes through the
same process as in the original one �see Eq. �2��, including
chaotic parameter and variable restrictions.

The perturbation cycles represented by PTl, 1	 l	3,
are selected randomly to increase the system-key space
in the case of brute force attack �the opponent tries every
possible system-key combination until the right one is
found�. We define the perturbation cycles as follows:
PT1= �PRNG�Seed�mod 10�+15, PT2=n1PT1, and
PT3=n2PT2, for n1= �PRNG�Seed�mod 64�+2 and
n2= �PRNG�Seed�mod 128�+3. Less frequent perturbations
have greater impact on the system’s parameters. The value of
PT1 is related to the sensitivity of the logistic map to a mag-
nitude change of 1 /28 in the initial condition. For
B=128 bits, the minimum magnitude change of two system
variables is �10−3, which requires about 10–15 map itera-
tions for their trajectories to diverge chaotically.6 This result
is important for the cipher in order to produce different tra-
jectories when input values differ in the least significant bits.

III. SECURITY ANALYSIS
AND EXPERIMENTAL RESULTS

Our proposed scheme has been applied to audio and
video files �Table I� with different statistical properties �see
original histograms in Fig. 4�. For the experiment we use the
following setting; B=384 bits, n=32, generating a 12-map
array of logistic maps �N=384 /32�, initial feedback �global
and local� is selected randomly, RT=20, PT1=25 iterations,
PT2=n1PT1, and PT3=n2PT2, for n1=n2=3. All random
numbers involved in the scheme are computed using the
PRNG in Ref. 28.

A. Security analysis

As previously mentioned, a good cryptosystem must
have the following properties:29–31

TABLE I. Sample files used in the encryption process

File type
Size

�Kbytes�

Audio �.wav� 91.8
Movie �pres-clinton-final-days.mov� 16 281.6
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• Sensitivity to system-key: for two keys �or plaintexts� with
the slightest difference, no distinguishable difference be-
tween the corresponding ciphertext can be found by any
known statistical analysis.

• Sensitivity to plaintext: flipping one bit in the plaintext
should create a completely different ciphertext.

• Statistical independency: cipher text should be statistically
undistinguishable from the output of a truly random func-
tion, and should be statistically the same for all keys.

We will address the security of our scheme following these
three properties �not in the same order�, without considering
the masking step in Eq. �6�.

Figure 4 shows the histograms of plaintext and corre-
sponding ciperhtext of data files described in Table I. For
each plaintext we use two randomly chosen keys to prove the
statistical independency of the scheme. In both cases the ci-
phertext histogram is uniform and independent of the plain-
text histogram and system-key. As an average, 99.6% of the
total bytes and 50% of the total bits were changed during the
encryption process, fulfilling a basic requirement for secure
cryptosystems. The scheme response to a slight change in the
system-key �flipping the least significant bit� is shown in
Fig. 5. Because of the de-correlation process between the
system-key and maps variables and parameters �Eq. �3�� the
ciphertext output diverges since the first iteration.

Let us now analyze the effect in the difference �in the
least significant bit� of a pair of plaintexts on the ciphertext
output sequence without perturbation �this is known as dif-
ferential attack�. Figure 6 shows that the scheme using only
global and local feedback scheme needs approximately 22
iterations for the sequences to diverge chaotically. Applying
our perturbation scheme from iteration 5, the sequences take

FIG. 5. Sensitivity to system-key changes. Plaintext �circled continuous
line� encrypted with two slightly different system-keys �least significant bit
changed�.

FIG. 6. Sensitivity to plaintext changes without perturbation scheme. Ci-
phertexts of a pair of chosen plaintexts with the least significant bit changed.

FIG. 7. Same as in Fig. 6 with initial perturbation at fifth cipher iteration
�vertical dotted line�

FIG. 4. Histogram of plaintext �left column� and corresponding ciphertext for two different system-keys �center and right columns�. Plaintext corresponds to
data shown in Table I: �a� audio file and �b� movie file.
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different trajectories immediately, influencing future cipher-
texts output values �Fig. 7�. Since perturbation modifies map
variables, the rest of the cipher trajectory is completely dif-
ferent and uncorrelated from the unperturbed case. In order
to estimate the long term statistical independence of the gen-
erated ciphertext, we calculated the correlation coefficient for
two different cases: �a� between plaintext and corresponding
ciphertext �Table II� and �b� between two different cipher-
texts �Table III�. In case �b�, we analyzed two additional
cases: �i� the system-keys differ in the least significant bit
and �ii� the plaintext sequences for the corresponding cipher-
texts differ in the least significant bit of the first byte �Table
III�. The correlation coefficient was calculated considering
the entire sample files in Table I for different ciphertext data
sizes 8, 16, and 32 bits. As can be seen in Tables II and III,
the correlation coefficient is practically zero in all cases.

If the opponent chooses brute force attack, it will need to
search for at least 2B key possibilities in our current setting,
where B�128 bits. Additionally, it will need to search for
four more random numbers with 5-bit representation each,
RT, PT1, n1, and n2, one more �m—the size of the Wm,k� with
an 8-bit representation, and N+1 n-bit variables representing
the local and global feedback.

Finally, a C-language implementation of the proposed
cryptosystem �Table IV� shows that our scheme is fast
enough to support real-time multimedia communications.

IV. CONCLUSIONS

We have proposed a simple and robust symmetric block-
cipher cryptosystem based on an N-array of chaotic logistic
maps with local and global feedback and a three-level per-
turbation scheme. We have shown the perfect statistical prop-
erties of the system, as well as its sensitivity to initial con-
ditions �using coupled chaotic maps�. Our system is scalable,
that is the number of maps and system-key size can be modi-
fied to add security to the system �making impossible brute

force attacks�. Finally, a software implementation of the sys-
tem shows excellent performance to fulfill current multime-
dia application demands, such as real-time audio and video
communications.
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