
IIE Transactions (2010) 42, 881–896
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2010.491501

Transient analysis of queues for peer-based multimedia
content delivery

YOUNG MYOUNG KO and NATARAJAN GAUTAM∗

Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
E-mail: gautam@tamu.edu

Received May 2009 and accepted March 2010

Consider a firm that sells online multimedia content. In order to manage costs and quality of service, this firm maintains a peer
network that allows new users to download files from their peers who have previously downloaded the required files. The scenario can
be modeled as a queueing system where the number of servers varies over time. Analytical models are developed that are based on
fluid and diffusion approximations and allow analysis of transient system performance. The same approximations are used to analyze
the steady-state behavior of this network. It is shown that the existing fluid and diffusion approximations are inaccurate for transient
analysis. To address this shortcoming, a novel Gaussian-based adjustment is proposed and it significantly improves the accuracy of
the approximations. Furthermore, the models used in this research can be extended seamlessly to the case of time-varying system
parameters (e.g., arrival rates and service rates). Several numerical examples are provided that show how the proposed adjusted
models work for the analysis of transient phenomena.
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1. Introduction

The online multimedia market is growing at an unprece-
dented rate. This growth creates increasing demand for net-
work resources (e.g., bandwidth, servers, storage, etc.) and
forces a service provider, which we will call a company for
the remainder of this article, to provide enough resources
to produce an adequate Quality of Service (QoS) for its
customers. Currently, the market is limited to music files
which do not impose a significant overhead for the compa-
nies even though they require many more resources than
simple Web pages. The market, however, is now moving to
video content (e.g., movies, dramas, online lectures, user-
created content, etc.) that is 10 to 100 times larger than mu-
sic files. This implies that the volume of multimedia content
is increasing significantly as the market grows. In addition
to the increase in volume, the demand for multimedia con-
tent tends to fluctuate according to their popularity; when
popular content is created, a burst of traffic may be cre-
ated by the demand. Therefore, under these circumstances,
maintaining enough resources to serve multimedia content
with a satisfactory QoS level becomes a major problem that
companies must solve.
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To address this problem, a peer-to-peer (P2P) architec-
ture can be a viable alternative for a company in that it
allows the company to “outsource” resources to peers in-
stead of purchasing all the required resources itself. In other
words, the company could redirect customer requests to
peers who have downloaded those files in the past. The P2P
architecture has already been shown to be stable and scal-
able in many previous research studies, such as Ge et al.
(2003), Qiu and Srikant (2004), and Yang and De Veciana
(2004). Furthermore, P2P applications have become some
of the most dominant applications in terms of network
traffic, and P2P traffic volume is continuously increasing
(Fraleigh et al., 2003; Gummadi et al., 2003). Despite these
benefits (stability and scalability) and the popularity of
the P2P architecture, it has not yet been broadly adapted
to commercial companies, since it is regarded as a source
of illegal content distribution, a perception driven by cur-
rent free P2P software (e.g., eDonkey, Bittorent, etc.), and
thus the company cannot control the distribution of its
product. If the content distribution could be brought un-
der the control of companies, then they could not only
distribute network bandwidth but also reduce the num-
ber of servers with a satisfactory service level, by adopting
P2P architecture. In fact, a few companies such as Pando
(http://www.pando.com) are operating P2P networks for
content distribution. Furthermore, even companies such as
Akamai that provide more established content distribution
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networks by locating caching servers also seem to be
interested in P2P architectures (for example, Akamai
purchased a P2P content distribution system called
“Redswoosh” in 2007).

Having described the merits of peer-based networks we
now describe a major drawback that can arise before the
peer network is mature. When new content (e.g., a movie)
comes out, only the company’s servers have the content. If
not enough service capacity is prepared and the demand
is large, then the company could suffer from a large queue
of customers. Since new content continues to be created,
the company would encounter this problem whenever new
content is provided. Therefore, it is important to study the
behavior of a peer network during a transient period, espe-
cially for companies that utilize a P2P architecture. That is
the objective of this article.

For peer networks, most research focuses on model-
ing and performance analysis of steady-state behavior (Ge
et al., 2003; Clévenot and Nain, 2004; Qiu and Srikant,
2004) or optimal peer search and selection (Adler et al.,
2005) of a peer network itself. The literature typically deals
with peer networks in a completely decentralized fashion,
such as in Bittorent; they do not consider peer networks op-
erated by commercial companies. However, our system is a
hybrid scheme with a centralized dispatcher much like Nap-
ster. In addition, other research studies have not focused
on transient behavior of peer networks, which is crucial for
commercial companies as mentioned before. Therefore, this
research is different from that in the literature, in that we
are focusing on the performance analysis of peer network
transient behavior, rather than steady-state behavior.

For the transient analysis, we adopt methods derived
from fluid and diffusion approximations. Fluid and
diffusion approximations of Markov processes based on
so-called strong approximations have been established
by Kurtz (1978) and are summarized in Ethier and
Kurtz (1986). Mandelbaum et al. (1998) applied strong
approximations to time-varying-rate cases and establish
the framework to analyze Markovian queueing networks
(also see Mandelbaum et al. (2002) and Massey (2002)).
In addition, they extend the results in Kurtz (1978) to
apply the strong approximations to non-differentiable rate
functions of the system state by defining a new derivative
called a scalable Lipschitz derivative. The theorems used
in the strong approximation are functional extensions
of the well known “Strong Law of Large Numbers” and
“Central Limit Theorem.” In fact, there are several ways
other than strong approximations to obtain limit processes
in different limiting schemes. Methodologies to obtain
limit processes are well summarized in Billingsley (1998)
and Whitt (2002). Recently, these methods have been used
for transient analysis and control of online rental systems
such as Netflix (Bassamboo et al., 2009; Bassamboo and
Randhawa, 2009). By their nature, methodologies utilizing
limit processes are appropriate for modeling large-scale
systems. As a result, they have gained popularity for the

analysis and design of call-center-like systems (Whitt,
2004, 2006). Specifically, Hampshire et al. (2009) utilized
strong approximation to solve a call center design problem
under a time-varying environment.

Strong approximations have been used in the context
of peer networks (Qiu and Srikant, 2004) to analyze
steady-state behavior. They show weak convergence to
the Ornstein–Uhlenbeck (OU) process in steady-state. As
mentioned before, however, their research does not focus
on the transient analysis of a peer network in which the
network is evolving and shows dynamic behaviors. As
described in the previous paragraph, our approach in
this research is based on the results in Kurtz (1978). Our
model, however, has non-differentiable rate functions of
the system state. Although the results of Mandelbaum et al.
(1998) provide rigorous mathematical models to deal with
these non-differentiable rate functions, their model cannot
be applied to our scenario because it involves difficulties
in computing the covariance matrix entries. For example,
one of the differential equations to obtain the variance
of the number of customers in a multi-server queueing
system with abandonments and retrials in Mandelbaum
et al. (1998) is of the form:

d
dt
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]

= 2
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1 (t)>nt
+ µ1
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On the right-hand side of Equation (1), the term
Cov[Q(1)

1 (t), Q(1)
1 (t)−] (or Cov[Q(1)

1 (t), Q(1)
1 (t)+]) makes it

impossible to solve the differential equation unless we know
the functional relationship between Cov[Q(1)

1 (t), Q(1)
1 (t)]

and Cov[Q(1)
1 (t), Q(1)

1 (t)−] (or Cov[Q(1)
1 (t), Q(1)

1 (t)+]). Thus,
in this article, we provide a new way to: (i) cope with the
inaccuracy of existing approximations and (ii) achieve
computational feasibility.

The rest of the article is organized as follows. In Section
2, we explain the system we are considering and establish
mathematical models in detail. In Section 3, we analyze our
system with fluid and diffusion approximations based on
the results of Kurtz (1978) and Mandelbaum et al. (2002).
We call these standard fluid and diffusion models in the rest
of the article to distinguish them from our adjusted models.
It turns out that both fluid and diffusion approximations
work well in steady-state conditions. We, however, show
significant inaccuracy in both fluid and diffusion approxi-
mations during a transient period. In Section 4, we explain
our new adjustment approach and show the improved ap-
proximations. In order to validate our adjusted model and
to see the effects of parameters, several numerical examples
are provided in Section 5. We also show, through numerical
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experiments, that our adjusted model gives precise results
under time-varying rate functions. In Section 6, we pro-
vide concluding remarks and suggest extensions for future
research.

2. Problem description

In this section, we explain the system we consider and the
mathematical model. Based on the mathematical model,
we subsequently define our problem and objective.

2.1. System description

We consider an online entertainment company that sells
digital media content via the World Wide Web. The com-
pany’s servers store the media content and customers access
and purchase this content via the company’s Web site. The
company operates a peer network consisting of peers who
have purchased from the content company and are given
authorization to pass this content on to new customers. The
company manages a single queue for waiting customers
and allocates a customer at the head of the queue to a peer
when the peer becomes available. Figure 1 is a simplified
illustration of our target system. When new content is cre-
ated, the company prepares an initial service capacity (in
terms of number of servers) to serve that content. Initially,
arriving customers download the content from the com-
pany’s servers. All these customers become new peers as
soon as they complete the download of the content and
can then share the content with customers arriving in the
future. Peers can move between an active peer pool and an
inactive peer pool as they turn their computers on and off.
Only peers in the active peer pool can serve new customers.
Peers can also leave the peer network after serving a random
amount of time. If a peer leaves or moves to the inactive
pool while serving a customer, that customer is either allo-
cated to an available peer in the active peer pool or is sent
back to the queue. The peer network grows when a new

Fig. 1. System illustration.

peer joins and shrinks when a peer leaves. Throughout this
article, we assume that customers arrive to the system with
average rate λ per unit time, the mean service rate for each
customer is µ per unit time, the on and off times of each
peer are 1/θ and 1/γ time units on average, respectively.
When a peer leaves the active peer pool, he/she leaves the
system with probability p and moves to the inactive peer
pool with probability 1 − p. Note that time-varying rates is
a straightforward extension that we show later in this arti-
cle. We assume for mathematical tractability that the service
units initially prepared by the company act like peers.

Note that we use the term content instead of file or chunk
to indicate multimedia data. In fact, many P2P software
programs divide a file into several chunks for the sake of
transmission efficiency. The objective of this article, how-
ever, is not to analyze a specific P2P software but to pro-
vide a methodology to model a class of queues having P2P
architecture. Therefore, the content can be a file in one
application and can be a chunk in another application.

2.2. Mathematical model

Let X(t) = (x(t), y(t), z(t))T denote the state of the system
at time t where x(t) is the number of customers in the sys-
tem, i.e., those who are waiting in the queue or are down-
loading the content, y(t) is the number of peers in the active
peer pool and z(t) is the number of peers in the inactive peer
pool. We assume that all times (i.e., inter-arrival time, ser-
vice time, on time, and off time) follow exponential distri-
butions with parameters λ, µ, θ , and γ , respectively. Figure
2 shows an abstract system model. We can think of peers
in the active peer pool as working servers and peers in the
inactive peer pool as servers on vacation. Note that waiting
customers are located in a single queue, which is managed
by the company. Therefore, this process can be character-
ized as an M/M/y(t)-type queue with server vacations in
which the number of servers changes over time. Here, we use
a Markovian assumption; i.e., Poisson arrival and exponen-
tial service time. This assumption has been used and verified
in Qiu and Srikant (2004) and Yang and De Veciana (2004)
by comparing real trace data from a BitTorrent network.

2.3. Objective

Figure 3 illustrates a typical evolution of peer networks.
From Fig. 3, we can define three stages based on the

Fig. 2. Simplified system model.
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Fig. 3. Typical evolution of peer networks on average.

number of customers and peers. At the beginning of stage
1 (i.e., t = 0), the company prepares its initial service
capacity, and customers begin to arrive. All service capacity
becomes full in a short time if the arrival rate is high. In
this stage, the queue remains empty (as all customers are
at servers). Stage 2 begins when the queue is about to be
formed. Due to high arrival rates, the number of customers
in the queue increases for some time. However, since the
number of peers also increases rapidly, the number of
peers catches up with the number of customers (i.e., the
queue becomes empty again) and stage 2 ends. In stage
3, the number of peers is greater than the number of
customers and some peers remain idle. Once the peer
network is in stage 3, we can say that the peer network is
mature or stable. From the company’s perspective, stage 2
is the most important stage, since queue length could grow
extensively during stage 2, potentially causing significant
delay to the customers and breaking the QoS conditions.
In that light, the objective of this research is to accurately
characterize the dynamics of the system (the number of
customers and peers) by establishing an analytical model
for the transient period especially focusing on stage 1 and
stage 2 rather than stage 3. Therefore, we are interested in
the time interval [0, t2] provided that t1 and t2 are the end
time points of stages 1 and 2, respectively. Understandably,
because of the stochastic aspect of the system, there is
some ambiguity in the definition of t1 and t2, which we will
clarify in Section 3.

3. Fluid and diffusion approximations

In this section, we extend fluid and diffusion approxima-
tions using the method provided by Kurtz (1978) and Man-
delbaum et al. (2002) for our problem. After developing
the results, we will show the inadequacy of these approx-
imations. Fluid and diffusion approximations are used in
several previous studies (Mandelbaum et al., 1998; Man-
delbaum et al., 2002; Qiu and Srikant, 2004; Whitt, 2004,
2006). The first step of this approach is to define a sequence

of stochastic processes and to obtain the fluid model by
taking the limit of the sequence. A fluid model takes the
role of the expected value for each time point. The second
step is to obtain a diffusion model by taking the limit to
the centered process multiplied by some adequate scaling
factor. In Markovian networks, this centered process con-
verges to a Gaussian process under certain conditions that
are described later.

Consider X(t) = (x(t), y(t), z(t))T as defined in Section
2.2. Assume that there is no customer and the company
prepares C service units at time t = 0; i.e., X(0) = (0, C, 0)T.
Then, for our model, the sample path can be constructed
using the following equation:

X(t) =

⎛
⎜⎝

x(t)
y(t)
z(t)

⎞
⎟⎠

=
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⎝ 0
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⎞
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(∫ t

0
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1
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−1
1

⎞
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)
+
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0
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)
, (2)

where A1(·), A2(·), A3(·), A4(·), and A5(·) are independent
Poisson processes corresponding to customer arrival, ser-
vice, peer up, peer leaving, and peer down, respectively. To
apply fluid and diffusion approximations to Equation (2),
consider a sequence of stochastic processes {Xn(t)}n≥1 so
that Xn(t) is the solution to the following equation:
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Note that n is a scaling factor so that we obtain the fluid
approximation model by letting n → ∞ for {Xn(t)}. That
is described in the following theorem.

Theorem 1. (Deterministic fluid model.) Let X̄(t) denote
the deterministic fluid model corresponding to Xn(t) that
satisfies:

X̄(t) =

⎛
⎜⎝

x̄(t)
ȳ(t)
z̄(t)

⎞
⎟⎠

=
⎛
⎝ 0

C
0

⎞
⎠ +

∫ t

0

⎡
⎣
⎛
⎝1

0
0

⎞
⎠ λ +

⎛
⎝−1

1
0

⎞
⎠µ min(x̄(s), ȳ(s))

+
⎛
⎝ 0

−1
1

⎞
⎠ pθ ȳ(s) +

⎛
⎝ 0

−1
0

⎞
⎠ (1 − p)θ ȳ(s)

+
⎛
⎝ 0

1
−1

⎞
⎠ γ z̄(s)

⎤
⎦ ds. (4)

Then, limn→∞ Xn(t) = X̄(t) a.s.

Proof. Let X = (x, y, z)T and define f1(X) = λ, f2(X) =
µ min(x, y), f3(X) = θpy, f4(X) = θ(1 − p)y, and f5(X) =
γ z. Then, Equation (3) can be written as

Xn(t) =
⎛
⎝ 0

C
0

⎞
⎠ +

5∑
i=1

1
n

li Ai

(
n
∫ t

0
fi (Xn(s))ds

)
,
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0
0

⎞
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1
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⎞
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1
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⎛
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0

⎞
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⎛
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1
−1

⎞
⎠ .

Then, it is easy to verify that the fi (·)s are Lipschitz
and there exist εi s such that | fi (X)| ≤ εi (1 + |X|). Since∑ |li |2εi < ∞, by Theorem 2.1 and 2.2 in Kurtz (1978),
limn→∞ Xn(t) = X̄(t) a.s. �

Before moving to the diffusion approximation model, we
investigate the graph of the fluid model over time since the
fluid model is closely related to the diffusion model, which
will be explained in Theorem 2. The fluid model is deter-
ministic and typically its graph is similar to Fig. 3. In the
original process (i.e., X(t)), the end time of stage 2 (denoted
by t2) is random and hard to obtain from any stopping time
of stochastic process since defining the stopping time itself
is ambiguous. For example, it is not possible to define the
first or second time when the number of peers exceeds the
number of customers as a stopping time since the number
of peers and customers can meet several times around the
end time of stage 1 (denoted by t1). Therefore, without hurt-
ing our objective significantly, we define t1 and t2 via fluid

approximation results:

t1 = inf{t : x̄(t) = ȳ(t), t ≥ 0},
t2 = inf{t : x̄(t) = ȳ(t), t > t1}.

Notice t1 and t2, depicted in Fig. 3, for further clarifica-
tion. The switching times t1 and t2 can be obtained directly
by solving Equation (4). Defining t1 and t2 using the fluid
model is reasonable since the queue is empty at t2 on aver-
age.

Now we move our attention to the diffusion model. For
the diffusion model, we apply central limit theorem by
defining the scaled centered process.

Theorem 2. (Diffusion approximation.) Let Dn(t) be the
scaled centered process; i.e., Dn(t) = √

n
(
Xn(t) − X̄(t)

)
and

assume measure zero at t1 and t2. Then, we can define the
diffusion approximation model as

D(t) = (d1(t), d2(t), d3(t))T = lim
n→∞

√
n(Xn(t) − X̄(t)).

Define the matrices K1, K2, and L(t) as follows:

K1 =
⎛
⎝−µ 0 0

µ −θ γ

0 pθ −γ

⎞
⎠ ,

K2 =
⎛
⎝0 −µ 0

0 µ − θ γ

0 pθ −γ

⎞
⎠ ,

and

L(t) =

⎛
⎜⎜⎜⎝

√
λ −√

µ min(x̄(t), ȳ(t)) 0 0 0

0
√

µ min(x̄(t), ȳ(t)) −√
pθ ȳ(t) −√

(1 − p)θ ȳ(t)
√

γ z̄(t)

0 0
√

pθ ȳ(t) 0 −√
γ z̄(t)

⎞
⎟⎟⎟⎠ .

Then, D(t) is the solution of the following integral equation:
for 0 ≤ t < t1:

D(t) =
∫ t

0
L(s)

⎛
⎜⎜⎜⎜⎜⎝

dB1(s)
dB2(s)
dB3(s)
dB4(s)
dB5(s)

⎞
⎟⎟⎟⎟⎟⎠ +

∫ t

0
K1 · D(s)ds, (5)

for t1 ≤ t < t2:

D(t) =

⎛
⎜⎝

d1(t1)
d2(t1)
d3(t1)

⎞
⎟⎠+

∫ t

t1
L(s)

⎛
⎜⎜⎜⎜⎜⎝

dB1(s)
dB2(s)
dB3(s)
dB4(s)
dB5(s)

⎞
⎟⎟⎟⎟⎟⎠

+
∫ t

t1
K2 · D(s)ds, (6)
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and for t ≥ t2:

D(t) =

⎛
⎜⎝

d1(t2)
d2(t2)
d3(t2)

⎞
⎟⎠ +

∫ t

t2
L(s)

⎛
⎜⎜⎜⎜⎜⎜⎝

dB1(s)
dB2(s)
dB3(s)
dB4(s)
dB5(s)

⎞
⎟⎟⎟⎟⎟⎟⎠

+
∫ t

0
K1 · D(s)ds, (7)

where B1(t), B2(t), B3(t), B4(t), and B5(t) are independent
standard Brownian motions.

Proof. With the same definition of X, li and fi (·) as in the
proof of Theorem 1, define F(X) as follows:

F(X) =
5∑

i=1

li fi (X).

Then, by Kurtz (1978), the centered process D(t) satisfies
the following integral equation:

D(t) =
5∑

i=1

li

∫ t

0

√
fi (X̄(s))d B(s) +

∫ t

0
∂ F(X̄(s)) · D(s)ds,

where ∂ F(X̄(t)) is the gradient of F(X̄(t)). For 0 ≤ t < t1,
Equation (5) is straightforward. However, according to
Kurtz (1978), the drift matrix of Equation (5) and Equa-
tion (6) requires differentiability at any time point. In our
model, we fail to satisfy differentiability at times t1 and t2.
We can resolve this problem by assuming measure zero at
t1 and t2 similar to what Mandelbaum et al. (2002) consid-
ers. Then, we can obtain Equation (6) for t1 ≤ t < t2 and
Equation (7) for t ≥ t2. �

Note that the diffusion model in Equations (5), (6), and
(7) turns out to be a Gaussian process and is closely related
to the fluid model (X̄(t)). Depending on the fluid model,
the diffusion model changes its behavior at time points t1
and t2.

Theorem 2 indicates that the diffusion model is a lin-
ear model. Therefore, we could obtain the expectation and
covariance matrix of D(t) in the following way.

Theorem 3. (Expectation and covariance matrix.) Let m(t)
denote E[D(t)] and �(t) denote Cov[D(t), D(t)]. Then, with
the same definition of K1, K2, and L(t) as in Theorem 2,
m(t) is the solution to the following differential equation: for
0 ≤ t < t1 or t ≥ t2:

d
dt

m(t) = K1 · m(t), (8)

and for t1 ≤ t < t2:
d
dt

m(t) = K2 · m(t). (9)

Moreover, �(t) is the unique symmetric semi-positive definite
solution to the following differential equation:

for 0 ≤ t < t1 or t ≥ t2:
d
dt

�(t) = K1 · �(t) + �(t) · KT
1 + L(t) · L(t)T, (10)

and for t1 ≤ t < t2.
d
dt

�(t) = K2 · �(t) + �(t) · KT
2 + L(t) · L(t)T. (11)

Proof. For 0 ≤ t < t1, we know that E[D(0)] = 0 < ∞
since D(0) = 0. Then, by Theorem 8.2.6 in Arnold (1992),
m(t) and �(t) satisfy Equation (8) and Equation (10). From
Equation (8), we also have E[D(t1)] < ∞. Therefore, we
can also apply Theorem 8.2.6 in Arnold (1992) and ob-
tain Equations (9) and (11). Since E[D(t2)] < ∞, we obtain
Equations (8) and (10) for t ≥ t2. �

Summarizing, we established the fluid and diffusion
models. We found that the diffusion model is a Gaussian
process and that the mean vector and covariance matrix can
be obtained by solving the ordinary differential equations
from (8) to (11). Once we build the fluid and diffusion mod-
els, we need to define the approximation for our original
process. Based on the definition of D(t), we use X̄(t) + D(t)
as an approximation of X(t) (i.e., X(t) ≈ X̄(t) + D(t)).
By Theorem 3, we obtain E[D(t)] = m(t) = 0 for all t ≥
0 since m(0) = E[D(0)] = E[limn→∞

√
n(Xn(0) − X̄(0))] =

E[limn→∞
√

n(x0 − x0)] = 0. Therefore,

E[X(t)] ≈ E[X̄(t)] + E[D(t)] = X̄(t) + 0,

and
Cov[X(t), X(t)] ≈ Cov[D(t), D(t)].

Figure 4 shows the fluid and diffusion approximation
results compared with the simulation results when λ = 200,
µ = 1, θ = 0.1, γ = 0.3, p = 0.8, and the initial service
units is 15 (C = 15). Note that Fig. 4(a) is for X̄(t) and
Fig. 4(b) for �(t). The simulation result is obtained by
averaging 5000 simulation runs. We see that the fluid and
diffusion models are close to the simulation results when
t is small. We, however, notice that the fluid and diffusion
models show big differences, especially in covariance
matrix entries around t2. We find two significant problems
in the fluid and diffusion models from Fig. 4. Let t′

2 denote
the switching time between stages 2 and 3 in the simulation
result. Then, the following points can be made.

1. The fluid model shows some error near the time t′
2. From

the experiments with different parameters, we see that
the fluid model always underestimates the switching time
between stages 2 and 3; i.e., t2 < t′

2. This implies that at
time t2, the average number of customers is greater than
the average number of active peers in the simulation
results.

2. Sharp spikes are always observed in the diffusion model
at time t2. Moreover, our diffusion model shows a sig-
nificant difference from the simulation result around t2.
These spikes come from the sudden change of the drift
matrix from K2 and K1 at time t2 in Theorem 2 and this
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Fig. 4. Standard fluid and diffusion approximations: (a) mean number of customers and peers and (b) covariance matrix entries.

switching is caused by the non-differentiability of the
min(x̄(t), ȳ(t)) in the fluid model.

Remark 1. These problems also occur at time t1. The pro-
cess, however, starts with deterministic initial values and
the time t1 is close to the time zero. Thus, the effect of these
problems is insignificant.

To resolve these two problems, we propose a Gaussian-
based adjustment for the fluid and diffusion models and
will explain it in the next section.

However, before moving to the next section, we provide
the steady-state behavior of the diffusion model since fluid
and diffusion approximations work well in steady-state.
From Theorems 1 and 2, we notice that min(x̄(t), ȳ(t)) =
x̄(t) for t > t2 and this implies that the non-differentiability
of min(x̄(t), ȳ(t)) disappears as t → ∞. Qiu and Srikant
(2004) use fluid and diffusion approximations for a similar
scenario and mention that their process converges to the
OU process in steady-state. Since they do not provide the
proof for this convergence, we provide the proof (for our
scenario) to show that the diffusion model for our original
process is also an OU process in steady-state.

Theorem 4. (Steady-state behavior.) Let D(∞) be the scaled
centered process D(t) defined in Theorem 2 when t → ∞.
Then, for 0 ≤ p < 1, D(∞) is a three-dimensional OU pro-
cess with the drift matrix given by

K =
⎛
⎝−µ 0 0

µ −θ γ

0 pθ −γ,

⎞
⎠ ,

and the diffusion coefficient matrix given by

L =

⎛
⎜⎝

√
λ −√

λ 0 0 0

0
√

λ −√
λp/(1 − p) −√

λ
√

λp/(1 − p)

0 0
√

λp/(1 − p) 0 −√
λp/(1 − p)

⎞
⎟⎠ .

Proof. When t > t2, the drift matrix is given by K. By solv-
ing differential equations in Equation (4) for t > t2 and
taking t → ∞, we obtain:

lim
t→∞ x̄(t) = λ

µ
, (12)

lim
t→∞ ȳ(t) = λ

(1 − p)θ
, (13)

lim
t→∞ z̄(t) = λp

(1 − p)γ
. (14)

Then, by Theorem 2 and Equations (12) to (14), we have:

L =

⎛
⎜⎜⎝

√
λ −√

λ 0 0 0

0
√

λ −√
λp/(1 − p) −√

λ
√

λp/(1 − p)

0 0
√

λp/(1 − p) 0 −√
λp/(1 − p)

⎞
⎟⎟⎠ .

�
Remark 2. Notice that the steady-state number of cus-
tomers, active peers and inactive peers via Equations (12) to
(14) are respectively λ/µ, λ/((1 − p)θ) and λp/((1 − p)γ ).
The simulations also converge to the same values.

4. Adjusting the fluid and diffusion models

In the previous section, we saw that spikes in the diffu-
sion model are caused by the non-differentiability of the
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“min” function in the fluid model. In addition to non-
differentiability, notice that the “min” function causes error
in the fluid model itself. From the following simple lemma,
we can explain the error in the fluid model.

Lemma 1. Let X and Y be random variables such that E[X ] <

∞ and E[Y] < ∞. Then,

E[min(X, Y)] ≤ min(E(X), E(Y)).

Recall that when solving Equation (4) in Theorem 1, we
actually solve the following differential equations:

d
dt

x̄(t) = λ − µ min(x̄(t), ȳ(t)), (15)

d
dt

ȳ(t) = µ min(x̄(t), ȳ(t)) − θ ȳ(t) + γ z̄(t), (16)

d
dt

z̄(t) = pθ ȳ(t) − γ z̄(t).

In Section 3, for any time point t, we regard E[X(t)]
as X̄(t) (i.e., min(x̄(t), ȳ(t)) = min(E[x(t)], E[y(t)])).
We, however, observe E[min(x(t), y(t))] rather than
min(E[x(t)], E[y(t)]) in simulations and from Lemma 1, we
have E[min(x(t), y(t))] ≤ min(E[x(t)], E[y(t)]) ∀t ∈ [0, ∞).
Therefore, we can verify that the increasing rate of x̄(t) is
less than the increasing rate of E[x(t)] in simulations, and
the increasing rate of ȳ(t) is greater than the increasing rate
of E[y(t)] in simulations from Equations (15) and (16).
This implies that the fluid model should underestimate the
switching time between stages 2 and 3 and shows the error
compared with the simulation results. To fix this problem,
we use the following theorem.

Theorem 5. Let X(t) be the stochastic process satisfying the
following equation:

X(t) = x0 +
∑

l

lAl

(∫ t

0
fl(X(s))ds

)
, (17)

where l ∈ Zd, x0 = X(0) which is constant, as described in
Section 3, the Al are independent Poisson processes, and
fl are non-negative and satisfy the conditions defined in
Kurtz (1978). Then, E[X(t)] is the solution to the follow-
ing equation:

E[X(t)] = x0 +
∑

l

l
∫ t

0
E[ fl(X(s))]ds. (18)

Proof. Take expectation on both sides of Equation (17).
Then,

E
[
X(t)

] = E

[
x0 +

∑
l

lAl

(∫ t

0
fl(X(s))ds

)]

= x0 +
∑

l

lE

[
Al

(∫ t

0
fl
(
X(s))ds

)]

= x0 +
∑

l

lE
[ ∫ t

0
fl(X(s))ds

]

due to Poisson process’s expected value

= x0 +
∑

l

l
∫ t

0
E
[

fl
(
X(s)

)]
ds

by the conditions in Kurtz (1978) and Fubini theorem.

�
Corollary 1. If the fl(X) are constant or a linear combination
of the components of X, then,

E[X(t)] = X̄(t),

where X(t) is the solution to Equation (17) and X̄(t) is the
deterministic fluid model from Theorem 1.

Proof. Using the linearity of expectation, the Equation (18)
is the same as that for the fluid model. �
Remark 3. In many situations, the fl are constant or linear
combinations of components of X. In these cases, Theorem
5 and Corollary 1 imply that standard fluid model would be
a good approximation for the expected value of the system
state.

If we use the solution of Equation (18) as a fluid approx-
imation model instead of the solution of Equation (4) in
Theorem 1, we expect to obtain more accurate results. How-
ever, to solve Equation (18), we encounter a fundamental
problem. To obtain E[min(x(t), y(t))], we need to know
the joint distribution of x(t) and y(t) for any time point t.
Unfortunately, there is no explicit way to obtain the joint
distribution of them and hence we need to assume it in a
reasonable way. Recall that in Section 3, we saw that X(t)
is approximated by the Gaussian process, and mean and
variance were obtained from X̄(t) and D(t), respectively.
In addition, from previous research studies such as Man-
delbaum and Pats (1998) and Mandelbaum et al. (2002),
we notice that empirical densities of original processes are
well matched with Gaussian density in several applications,
even if the rate functions are non-differentiable. Therefore,
it could be reasonable to use a Gaussian density function
to calculate E[min(x(t), y(t))]. Then, we can rewrite Equa-
tion (18) as a differential equation form to fit our model as
follows:

dx̄(t)
dt

= λ − µ{q(t)x̄(t) + (1 − q(t))ȳ(t) − σ 2(t)φ(0, x̄(t)

− ȳ(t), σ (t))}, (19)
dȳ(t)

dt
= µ

{
q(t)x̄(t) + (1 − q(t))ȳ(t) − σ 2(t)φ

(
0, x̄(t)

− ȳ(t), σ (t)
)} − θ ȳ(t) + γ z̄(t), (20)

dz̄(t)
dt

= pθ ȳ(t) − γ z̄(t), (21)

where q(t) = P(x(t) − y(t) ≤ 0), σ 2(t) is the variance of
x(t) − y(t) and φ(a, b, c) is the value at a of the proba-
bility density function of the Gaussian distribution with
mean b and standard deviation c. Note that, since for
any t, (x(t), y(t)) follows bivariate normal distribution,
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Fig. 5. Adjusted fluid and diffusion approximations with adjustment: (a) mean number of customers and peers and (b) covariance
matrix entries.

x(t) − y(t) is also a normal random variable, and mean
and variance can be obtained from the mean and covari-
ance matrix of x(t) and y(t) obtained from the diffusion
model.

Remark 4. For distinguishing purposes, we call the fluid
and diffusion models in Section 3 the standard fluid and
diffusion models, and the fluid and diffusion models in this
section the adjusted fluid and diffusion models.

As mentioned in Section 3, sharp spikes in covariance
matrix entries are caused by the sudden change of the drift

matrix such as the change:

⎛
⎝0 −µ 0

0 µ − θ γ

0 pθ −γ

⎞
⎠ →

⎛
⎝−µ 0 0

µ −θ γ

0 pθ −γ

⎞
⎠ .

If we use the adjusted fluid model obtained from Equa-
tions (19) to (21), we can eliminate the non-differentiability
of the rate functions and obtain a new drift matrix K(t) and
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Fig. 6. Comparison of mean numbers of customers and peers for (a) standard and (b) adjusted models in Example 1.
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Fig. 7. Comparison of covariance matrices for (a) standard and (b) adjusted models in Example 1.

a diffusion coefficient matrix L(t) as follows:

K(t)=

⎛
⎜⎝

−µ × q(t) −µ × (1 − q(t)) 0

µ × q(t) µ × (1 − q(t)) − θ γ

0 pθ −γ

⎞
⎟⎠ ,

L(t)=

⎛
⎜⎜⎝

√
λ −√

µα(t) 0 0 0

0
√

µα(t) −√
pθ ȳ(t) −√

(1 − p)θ ȳ(t)
√

γ z̄(t)

0 0
√

pθ ȳ(t) 0 −√
γ z̄(t)

⎞
⎟⎟⎠,

where α(t)=q(t)x̄(t)+(1−q(t))ȳ(t)−σ 2(t)φ(0, x̄(t)−ȳ(t),
σ (t)).

From the definition of q(t), it is a Gaussian distribu-
tion function and is differentiable with respect to x̄(t) and

ȳ(t). Hence both q(t) and α(t) are differentiable with re-
spect to x̄(t) and ȳ(t), and we get rid of the differentiabil-
ity issue in K(t) and L(t). With the newly obtained K(t)
and L(t), we have an additional differential equation from
Theorem 3.

d
dt

�(t) = K(t) · �(t) + �(t) · KT(t) + L(t) · L(t)T,

(22)

where �(t) is the covariance matrix defined in Theorem 3.
By solving the system of ordinary differential Equations

(19) to (22), we can obtain the adjusted fluid and diffusion
models.
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Fig. 8. Comparison of mean numbers of customers and peers for (a) standard and (b) adjusted models in Example 2.
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Fig. 9. Comparison of covariance matrices for (a) standard and (b) adjusted models in Example 2.

Figure 5 shows the results from the adjusted fluid and
diffusion models with same parameters as in Fig. 4. From
Fig. 5, we see that the fluid model is almost the same as the
simulation results. For the covariance matrix entries, the
sharp spikes disappear and the accuracy is also improved.
In fact, the accuracy of the covariance matrix entries is
not always significantly improved for all t > 0, but they are
quite accurate before t2. The fluid model, however, shows
great accuracy regardless of the values of parameters.

Remark 5. We consider the constant rates for arrival, ser-
vice, peer up and peer down times. However, the fluid and
diffusion models can be extended to time-varying rates by

substituting λ, µ, θ , and γ with λ(t), µ(t), θ(t), and γ (t)
since Theorems 1 to 3 do not require λ, µ, θ , and γ to be
constant functions of t. Furthermore, in Markovian queue-
ing systems, most of the non-differentiabilities of the rate
functions are from the use of “min” function. Therefore, we
can apply this Gaussian-based adjustment to more general
Markovian applications.

5. Numerical results

In this section, we provide numerical examples to ver-
ify our results obtained in Sections 3 and 4. We report
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Fig. 10. Estimation of (a) t2 and (b) E(x(t2)) as a function of λ.



892 Ko and Gautam

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.7

1.8

1.9

2

2.1

2.2

Estimation of t
2
 according to p

Probability

t 2

simulation
adjusted fluid model
standard fluid model

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

Probability

E
xp

ec
te

d 
nu

m
be

r

Estimation of E(x(t
2
))=E(y(t

2
)), E(z(t

2
)) according to probability of residing

simulation customers
adjusted fluid customers
standard fluid customers
simulation inactive peers
adjusted fluid inactive peers
standard fluid inactive peers

(b)

Fig. 11. Estimation of (a) t2 and (b) E[X(t2)] and E[z(t2)] as a function of p.

numerical experiments to compare the adjusted fluid and
diffusion models (described in Section 4) with the stan-
dard fluid and diffusion models (described in Section 3) in
Section 5.1. In addition to this, we provide some numeri-
cal experiments when the rate functions vary over time in
Section 5.2.

5.1. Comparison between the standard and adjusted models

Table 1 summarizes the key characteristics of the standard
and adjusted models so as to highlight the differences be-
tween the two models. We provide two examples to demon-
strate that the adjusted model outperforms the standard

model on [0, t2]. The parameters we use in the examples are
summarized in Table 2. We have a criterion to determine
parameter values for our problem. In order for a company
to take advantage of peer-based networks, the following
conditions should be met.

1. Customer arrival rates should be fairly large. If not, there
is no need to outsource network traffic.

2. The service rate of each peer is much smaller than the
customer arrival rate. If not, only a few peers are needed
to cover the traffic, and thus outsourcing traffic does not
make sense. We assume a large peer network (more than
100 peers).
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Fig. 12. Mean number of customers and peers with time-varying arrival rate: (a) standard model and (b) adjusted model.
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Table 1. Comparison between standard and adjusted models

Standard model Adjusted model

Rate functions fi (·, ·) E[ fi (·, ·)]
Fluid model Obtained

independently
Obtained

simultaneously
Diffusion model Obtained using fluid

model
Obtained

simultaneously
Assumption Measure zero at

non-differentiable
points

Gaussian density

Limitation Inaccuracy in both
fluid and diffusion
models around t2

Inaccuracy in
diffusion model
after t2

3. Each peer stays a relatively long time to serve other
customers; i.e., each peer serves more than three to five
customers. If not, managing content delivery becomes
hard, and it reduces the benefit of outsourcing.

Parameter values were selected arbitrarily based on the
above conditions. We conducted 5000 simulation runs for
each example and compared the simulation results with the
results of the standard and adjusted models to see the accu-
racy of each model. Figures 6 and 7 illustrate the compar-
ison of mean numbers and covariance matrix entries with
the setting of Example 1. Figures 8 and 9 show the results
for Example 2. In both examples, the standard models show
inaccuracy in estimating both expected values and covari-
ance matrix entries. As mentioned in Section 3, we see that
the standard models always underestimate t2. For covari-
ance matrix entries, the standard models show more than
100% errors at t = t2 in both examples. In contrast, the ad-
justed models estimate t2 reasonably well, especially as the

Table 2. Parameters used in the two examples

Examples λ µ θ γ p C

Example 1 100 1 0.2 0.5 0.7 10
Example 2 400 1 0.1 0.2 0.9 25

arrival rate becomes higher, which is desirable for real ap-
plications. Although the adjusted models show some errors
in covariance matrix entries, the errors are less than 25% in
Example 1 and less than 5% in Example 2. Therefore, from
these two examples, we can verify that the adjusted models
are more suitable for a transient analysis than the standard
models. We obtained similar results for all the numerical
experiments we performed.

Now, we move to the effects of parameters λ and p. Al-
though the other parameters are also important, the arrival
rate (λ) and the probability of residing in the system (p),
i.e., going to inactive queue, are more interesting due to the
following reasons.

1. The arrival rate implies the demand for the content.
When operating a peer network, preparing for a burst in
the demand is crucial. Therefore, it is important to see
when to reach stage 3 and how many peers (customers
also) reside in the system at the end of stage 2, according
to the arrival rates.

2. The probability of residing in the system determines the
current and potential service capacity. If p = 0, there
are no peers in the inactive peer pool. In this case,
service capacity depends solely on the number of peers in
the active peer pool. If p = 1, no peer leaves the system
and the current and potential service capacity continues
to increase.
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Fig. 13. Covariance matrix entries with time-varying arrival rate: (a) standard model and (b) adjusted model.
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Fig. 14. Mean number of customers and peers with time-varying arrival rate: (a) standard model and (b) adjusted model.

Figures 10 and 11 show the changes of t2 and E[X(t2)]
over λ and p, respectively. As seen in Fig. 10, t2 and E[X(t2)]
increase according to λ. This implies that if a content is
popular, more time and peers are required to enter stage 3.
For the effect of residing probability p, we can see that t2
and E[x(t2)](= E[y(t2)]) decrease according to p, whereas
E[z(t2)] increases. This implies that increasing the potential
service capacity (i.e., number of inactive peers) accelerates
the rate of increase in the number of peers which enables our
system to reach stage 3 earlier. In addition to these obser-
vations, we see that the adjusted fluid model provides more
accurate t2 and E[X(t2)] than the standard fluid model.

5.2. Time-varying rate functions

In Remark 5, we mentioned that fluid and diffusion approx-
imations can be extended to time-varying rate functions;
i.e., the arrival rate is λ(t), the service rate is µ(t), and the
peer up and peer down times are 1/θ(t) and 1/γ (t) on av-
erage, respectively. In this section, we show two numerical
examples in which the arrival rate changes over time (µ,
θ , and γ are held constant over time only for illustration
purposes).

Figures 12 and 13 show the mean and covariance ma-
trix entries of the number of customers and peers with
the arrival rate alternating between 100 and 25 every
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Fig. 15. Covariance matrix entries with time-varying arrival rate: (a) standard model and (b) adjusted model.
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two time units. We apply both the standard and adjusted
models and compare them with simulation results. As seen
in Fig. 12, the adjusted model gives quite accurate results
in all ranges of time intervals, whereas the standard model
shows some error around t ∈ [2.5, 5] and gives accurate
results after t > 6. For the standard fluid model, note that
min(x̄(t), ȳ(t)) changes the value from ȳ(t) to x̄(t) near t = 3
and after that it remains in x̄(t). Therefore, we can explain
this phenomenon using Theorem 4 and Lemma 1, similar
to the case of constant rate functions. For the covariance
matrix entries, both the standard and adjusted models show
shapes similar to the case of constant rates functions. Al-
though the adjusted diffusion model also shows errors, we
can see that the accuracy is significantly improved com-
pared with the standard model, especially before t2 (recall
the definition of t2 in Section 3). In this example, we use
a piecewise constant arrival rate function. Vertical dotted
lines indicate the times when the arrival rate changes. Note
that the change in arrival rate immediately forms the peak
point of the mean number of customers, whereas it imposes
some delay for the mean number of active peers to reach
its peak point. In the second example, we consider heavier
traffic and more frequent changes in arrival rates; the ar-
rival rate is alternating between 300 and 150 in each time
unit. As shown in Figs 14 and 15, we observe results similar
to the first example. The standard fluid model shows inac-
curacy around t ∈ [3.7, 6] whereas the adjusted fluid model
provides an excellent estimation. The adjusted diffusion
model is almost exact for t < t2 but shows inaccuracy after
t2 just like the first example. From the examples, we can
state that our adjusted fluid and diffusion models can be
used successfully in the time interval we are interested in,
i.e., 0 ≤ t ≤ t2.

6. Conclusions

In this paper, we analyze the transient behavior of a peer
network that could possibly be operated by a commercial
company. We initially utilize standard fluid and diffusion
approximations to build a model for peer networks. Using
them, we show that the diffusion model turns out to be a
three-dimensional OU process in steady-state. For the tran-
sient analysis, we focus on stages 1 and 2 (refer to Fig. 3)
when the peer network is not mature and the number of
customers exceeds the number of peers such that the com-
pany is able to satisfy the QoS level; after t2, when stage
3 begins, the number of customers becomes less than the
number of active peers on average, that is, the queue is
empty. We, however, observe that standard fluid and diffu-
sion approximations are highly inaccurate around t2 which
is the result of the non-differentiability of “min” function.
To resolve this problem, we apply adjusted fluid and diffu-
sion approximations. We replace the standard fluid model
with the adjusted model and it turns out that the non-

differentiability of the drift matrix in the diffusion model
disappears.

To validate the adjusted models, we provide a number of
examples that show that the adjusted models outperform
the standard models in terms of accuracy, especially before
t2 as desired. Moreover, we provide several numerical ex-
amples that show the effects of parameters and also show
that the extension to time-varying rate functions is quite
straightforward. From the numerical experiments, we see
that a higher arrival rate causes larger t2 values and the
expected number of customers (peers) at t2. In addition, we
provide other insightful numerical analyses. For example,
we see that a higher sojourn probability decreases t2 values,
whereas the expected number of customers does not de-
crease much. For time-varying rate functions, we consider
discrete arrival rate functions. From the examples provided,
the increase (or decrease) in the rate of the number of cus-
tomers is immediately affected by changes in the arrival
rates. We see that the extreme points of the number of ac-
tive peers appear with some delay, compared to the number
of customers, which is due to the service time.

There are several extensions to this paper that can be con-
sidered in the future. First, we assume that the X(t) process
is Gaussian. This assumption, however, is broken around
the switching time between stages 2 and 3 (i.e., around time
t2) in simulation and it might cause inaccuracy of covari-
ance matrix entries during the early part of stage 3. To
overcome this, studies on how to obtain an asymptotic dis-
tribution of X(t) are required. Empirically, we observe that
the distribution of X(t) shows extreme value type distribu-
tion near the switching time. Second, we assume that all the
times follow exponential distributions. In some situations,
this assumption is not realistic. Therefore, the relaxation
of this assumption could be considered in future model
formulations.
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