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To help computers make better decisions, it is desirable to describe all our knowledge in
computer-understandable terms. This is easy for knowledge described in terms on numerical
values: we simply store the corresponding numbers in the computer. This is also easy for
knowledge about precise (well-defined) properties which are either true or false for each object:
we simply store the corresponding “true” and “false” values in the computer. The challenge is
how to store information about imprecise properties. In this paper, we overview different ways to
fully store the expert information about imprecise properties. We show that in the simplest case,
when the only source of imprecision is disagreement between different experts, a natural way
to store all the expert information is to use random sets; we also show how fuzzy sets naturally
appear in such random set representation. We then show how the random set representation
can be extended to the general (“fuzzy”) case when, in addition to disagreements, experts are
also unsure whether some objects satisfy certain properties or not.
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1. Introduction

Need to describe properties in computer-understandable terms. In the modern world, we use
computers in many important activities – to help us make decisions, to help us control different
systems, etc. To make computers as helpful as possible, it is desirable to make them understand
and use – as much as possible – our knowledge about different objects.

How do we describe objects? To describe an object, usually:

• we list the properties that this object satisfies and
• we describe numerical values of different quantities characterizing this property.

For example, we can describe a person as blond (property), tall (property), with blue eyes
(property) and weighing 80 kg (numerical value).

Thus, to make computers understand our knowledge, we must describe properties and numer-
ical values in computer-understandable terms. It is easy to represent numerical values: computers
were originally designed to represent and process numbers. So, the remaining challenge is to
represent properties.

Precise and imprecise properties: a challenge. At first glance, representing properties also seems
easy:
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• if an object satisfies a property, we store “true” in the corresponding place in the computer
memory (“true”, in the computer, is usually stored as 1); and

• if an object does not satisfy a property, we store “false” in the corresponding place in the
computer memory (“false”, in the computer, is usually stored as 0).

In the computer, all the information is represented as 0s and 1s, so this is also a very computer-
friendly representation.

For each property P , we thus get a sequence of 0-1 values χP (x) describing which objects x
satisfy this property and which do not. In mathematical terms, this sequence of values χP (x) is
known as the characteristic function of the set of all the objects which satisfy the property P .

The problem with the 0-1 (set) representation is that this representation is only possible for
precise (well-defined) properties; e.g. for a property to be taller than 180 cm. For such properties:

• once a person gets all needed information about the object, this person can uniquely decide
whether this object satisfies the given property or not; and

• different people make the same decision about this property, i.e. if one person comes to
the conclusion that the object satisfies the given property, then other people come to the
same conclusion.

In practice, many properties such as “tall” (and even “blond”) are not precise, in the sense
that at least one of the above meanings of precision is not satisfied:

• It could be that for some objects, some people – even when given all the information –
are not 100% sure whether this object satisfies the given property. For example, to most
people, someone 2 m high is clearly tall, while someone 1.6 m high is clearly not tall;
however, in the borderline cases, e.g. of 1.8 m, a person may be not sure whether this
height indicates tallness.

• It could also be that different people have different opinions about who is tall and who
is not tall. For example, to most people, 1.85 m is tall, but to a 2 m tall basketball player,
1.85 m may not feel tall.

How can we describe such imprecise properties in a computer – in such a way that we preserve
all the information that human experts have?

What we do in this paper. In this paper, we describe different ways how expert information about
imprecise properties can be fully represented in a computer.

We start with a simple case when disagreement between people is the only source of impre-
cision. In other words, we start with the situation in which:

• each person has a definite opinion on which objects satisfy the property and which do not,
and

• the only problem is that different people may have different opinions about the same
property.

We will show that in this case, a full description of the expert knowledge corresponds to the
mathematical notion of a random set. We also show that this description naturally leads to fuzzy
sets as first approximations to random sets.

Then, we extend our analysis to a general case when not only people disagree, they may also
be unsure which objects satisfy the property and which do not.

Comment. The main objective of this overview is to provide, to a general reader, detailed con-
vincing motivations for the use of random sets and for their relation to fuzzy sets. To the best of
our knowledge, this is the first paper where all these motivations come together.
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As appropriate for an overview paper, while some results are new, many of the results have
already appeared earlier; for example, many definitions were already introduced in Goodman
(1982).

2. Case when every person is certain, but different people may disagree: enter random sets

Description of the case. As planned, we start with the case when for each object x and each
property P , an expert is:

• either absolutely sure that the object x satisfies the property P ,
• or absolutely sure that the object x does not satisfy the property P .

How to fully represent expert information in this case: first idea. Let us fix a property P and analyse
how to represent all the information corresponding to this property. Each expert is absolutely sure
which objects satisfy the property P and which objects do not satisfy this property. Thus, for each
expert, his/her opinion about P can be represented as the corresponding sequence of 0s and 1s,
i.e. as the set of all objects which – according to this expert – satisfy the property P .

So, in principle, to fully store the knowledge of all the experts corresponding to the property
P , it is sufficient to store the sets S1, . . . , SN corresponding to all N experts.

For example, in case of tallness, Expert 1 may believe that everyone of height 170 cm and
above is tall, so S1 = [170,∞). Similarly, we may have S2 = S3 = [180,∞), S4 = [200,∞),
etc.

Case when experts are equal. In some situations, we have expert of varying degree of expertise.
In such cases, it is important to keep track of which opinion set corresponds to which expert. In
such situations, the above representation – of a sequence of sets labelled by names of different
experts – is a perfect full representation of the expert knowledge about the property P .

In many other cases, however, we do not have any reason to believe that different people
have different degree of expertise. One needs to be an expert to classify a tumour as malignant or
benign, but no one is an expert in deciding who is tall or who is young. For such commonsense
terms, everyone is equally an “expert”.

Since everyone has the same level of expertise, it does not matter which expert corresponds to
the set S1, and which expert corresponds to the set S2. So, in this case, it does not matter in what
order we list the sets – permutation of two sets Si and S j does not change the resulting knowledge.

How to deal with equally important sets. It is quite possible that two or more experts fully agree
about which objects have the property P and which do not. In this case, their set Si will coincide.
(People agree with each other rather frequently, so such situations are common.)

In this case, instead of storing several copies of the same set Si , it is easier to simply store the
number of experts whose beliefs about the property P are described by this set. In other words,
instead of a list of all (possibly repeating) sets, we can store a list of non-repeating sets S, together
with the number of repetitions n(S) of each set S from this list.

How to make this representation intuitively clearer. From the mathematical viewpoint, the above
representation is sufficient. However, as we will see, this representation is not very intuitive. Since
we want to have a computer representation that captures expert knowledge, it is a good idea to
make this presentation as intuitive as possible.

The representation is not very intuitive because, e.g. if we learn that 99 experts supported
some opinion set S, this information does not tell us much; is it 99 out of 100? out of 10,000? In
these two different cases, the same number 99 has different meanings:



International Journal of General Systems 589

• if 99 out of 100 experts agree on the set S, this means that we, in effect, have a consensus,
so it is probably safe to use the set S as a commonly agreed description of the imprecise
property P;

• on the other hand, if 99 out of 10,000 experts agree, it may be the case that all other
9901 experts agree on some other set S′ �= S, so this different set S′ should be taken as a
consensus representation of the property P .

To make the above description more intuitively clear, it is therefore reasonable to replace the

original values n(S) with the corresponding frequencies p(S) = n(S)

N
. Thus, we arrive at the

following representation of the expert knowledge about the property P being satisfied or not for
objects from the set X :

• we have a list of sets S ⊆ X ;
• to each set from this class, we assign a value p(S) ≥ 0.

Since each expert produces some set, we have
∑

Sn(S) = N and hence,
∑

S p(S) = 1.

The above construction corresponds to the mathematical notion of a random set. The above
construction is known in mathematics; to be more precise, this construction corresponds to a
notion which is reasonably well known inside math (and barely known outside): the notion of a
random set; see e.g. Nguyen (2006). To understand the notion of a random set, let us first recall a
more general idea of a random object, and its most well-known case – a random variable.

A random object means that we have several possible objects, and we have a probability
assigned to each object – so that the total probability is equal to 1. For example, we may have the
set of three objects: an apple, an orange and a tomato, and we assign probabilities 0.2, 0.5 and 0.3
to these objects. In practical terms, this means that in a repeated experiment, in 20% of the cases
we get an apple, in 50% of the cases we get an orange, and in the remaining 30% of the cases we
get a tomato.

The usual example of random objects is a random number, where we have different numbers
with different probabilities. For example:

• in a uniform distribution on the interval [0, 1], we get all numbers from this interval with
equal probability;

• for a normal distribution with 0 mean and standard deviation 1, we get numbers between
−2 and 2 with probability ≈90%, numbers from the interval [−3, 3] with the probability
≈99.9%, etc.

Aslightly more complicated example is a random vector – which corresponds to a joint distribution
of several (in general, correlated) random variables.

A random set is when we get different sets with different probabilities (adding up to 1) – and
this is exactly what we came up with. For example, if:

• two experts out of 10 think that “tall” means taller than or equal to 170 cm,
• five experts think that “tall” means taller than or equal to 180 cm, and
• the remaining three experts think that “tall” means taller than or equal to 200 cm.

then we have a random set, in which we have three possible sets [170,∞), [180,∞), and [200,∞)

with probabilities, correspondingly, 0.2, 0.5 and 0.3.

Definition 1 Let X be a set. By a random set we mean a probability measure p on the set 2X

of all subsets of the set X .
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Comments:

• Please note that in knowledge representation, a random set is also known as a body of
evidence, when we assign, to different sets, non-negative “masses” which add up to 1;
see e.g. Dempster (1967), Shafer (1976), Yager, Kacprzyk, and Pedrizzi (1994), Yager
and Liu (2008);

• In the above example, we have random sets for which there are finitely many possible
sets S1, . . . , SN . Sometimes, it is convenient to use a continuous random set instead, in
which we have continually many different sets. For example, if different experts select,
for the property “old”, thresholds which are uniformly distributed between 50 and 60,
then, instead of storing all these randomly selected thresholds, it makes sense just to
store the information that these corresponding thresholds are uniformly distributed. (The
corresponding description of continuous fuzzy sets is given, e.g. in Nguyen, Kreinovich,
and Xiang (2008)).

3. Fuzzy sets as a natural first approximation to random sets

We need approximations. Ideally, to describe the expert knowledge, we list all possible sets and
their probabilities. In practice, we may have too many experts who have different opinions of what
“tall” (or “young”) means. In this case, we will have too many sets to represent. It is therefore
desirable to come up with an approximation to a random set, an approximation which would enable
us to capture the main essence of the expert opinions without having to store all the information.

How can we do that?

Let us use the general experience of approximate representation of random objects. Random sets
are objects of a relatively new area of study, and there is not much experience with their various
approximations. However, since random sets are a particular case of random objects, we can use
the general experience of approximating random objects.

As we have mentioned earlier, a set S ⊆ X can be described as a sequence of 0-1 truth values
χS(x) of the statements x ∈ S corresponding to different elements x ∈ X . In other words, a set
can be viewed as a vector (χS(x1), χS(x2), . . .) of truth (0-1) values corresponding to different
elements xi ∈ X . A random set, in this representation, is a random vector, and thus describes a
joint distribution of several 0-1 random variables χS(xi ).

How do we usually represent the joint distribution of several random variables v1, v2, . . .?

• In the first approximation, we provide a representation of each of the random variables,
and we ignore dependence between them. In other words, we only represent marginal
distributions of each vi .

• In the next approximation, we take into account possible relation between pairs of random
variables. In this case, we describe joint distributions of all pairs (vi , v j ).

• In the third approximation, we describe all possible distributions of triples, etc.

The larger the size of the tuples that we take into account, the more accurate our representation.
For finite sets X , when this size coincide with the size of the universal set X , we get the
exact representation of the joint distribution. For infinite sets, the larger the sample size, the
more accurate our representation – so that the actual distribution can be viewed as a limit of
representations corresponding to tuples of different size.

Let us see how this general idea can be applied to the case of random sets.

First approximation to random sets: analysis. In the case of random sets, we have variables
vi = χS(xi ) corresponding to different elements xi ∈ X . Thus, to get a natural first approximation
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to a random set, we describe the (marginal) probability distribution of each of these random
variables.

Each variable vi = χS(xi ) attains only two possible values: 0 and 1. Thus, to describe the

probability distribution of this variable, it is sufficient to describe the probability μP (x)
def=

p(x ∈ S) that this variable attains the value 1. Since all experts are considered equal, this
probability is equal to the proportion of experts who believe that the value x satisfies the given
property.

In other words, as a natural first approximation to a random set describing a property P , we
can use a function which assigns, to each value x ∈ X , a proportion μP(x) ∈ [0, 1] of experts
who believe that this value x satisfies the property P .

This is exactly a fuzzy set. A reader who is familiar with fuzzy sets will immediately recognize that
this is one of the most widely ways to determine the values of the membership function μP(x)

corresponding to a property P: we ask N experts, and if M of them think that the value x satisfies

the property P , we take μP(x) = M

N
; see e.g. Klir and Yuan (1995), Nguyen and Walker (2006).

(This method of eliciting membership values from experts is known as polling.)
Thus, we arrive at a conclusion that a natural first approximation to a random set is a fuzzy

set.

Historical comment. The above relation between random sets and fuzzy sets was first described
in Goodman (1982); in this paper, the function μP (x) is called a one-point coverage function.

Definition 2 Let P be a random set on the set X . By a fuzzy set corresponding to P , we mean

a function μP(x)
def= p(x ∈ S).

Mathematical comment. In precise terms, p(x ∈ S) is the probability measure p({S : x ∈ S}) of
the set {S : x ∈ S} of all the sets S that contain the value x .

Comment. The above argument shows that fuzzy sets can be viewed as a first approximation to
random sets, but it does not mean that every fuzzy set is such an approximation. There are other
methods of eliciting membership degrees, methods which are especially useful when we only
have a single expert: e.g. we can ask the expert to mark, on a scale from 0 to some n, to what
extent this expert agrees that x satisfies the property P . If an expert marks m on a scale from 0
to n, we take μP (x) = m/n. For example, if an expert marks 4 on a scale from 0 to 5, we take
μP (x) = 4/5 = 0.8.

Such fuzzy sets do not come from polling and thus cannot be naturally interpreted in terms of
random sets. In one of the following sections, we describe how to take this type of fuzziness into
account when describing knowledge of multiple experts.

An alternative approximation scheme. An alternative approximation scheme can be obtained by
using another analogy: between a random variable and a random set. For a random variable X ,
one of the most widely used descriptions is in terms of a cumulative distribution function (cdf)

F(x)
def= p(X ≤ x). It is known that if we are given the cdf, then we can uniquely reconstruct the

original probability distribution.
Once we know the probabilities F(x) = p(X ≤ x) of the events X ≤ x , we can also compute

the probabilities of opposite events as G(x)
def= p(X �≤ x) = 1 − F(x). Since the real numbers

are linearly ordered – i.e. for every two real numbers x and y, we have x ≤ y or y ≤ x – the
“negative” condition X �≤ x can be described in the equivalent “positive” form, as X > x . Thus,
G(x) = p(X > x).

The definition of the cdf is based on the fact that on the set of real numbers, there is a natural
order a ≤ b. On the class of all sets, there is also a natural ordering relation: the subset relation
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A ⊆ B. Thus, it makes sense to define, for each set A, the value F(A)
def= p(S ⊆ A). In the

Dempster-Shafer approach, the corresponding value F(A) is known as belief and usually denoted
by Bel(A). It is known that if we are given all the values Bel(A), then we can uniquely reconstruct
the original probability distribution on the class of all sets.

Similarly to the case of a random variable, we can also define the probability of the opposite
event p(S �⊆ A) = 1 − Bel(A). In contrast to the ordering of real numbers – which is linear –
the subset relation is not a linear order, we can have two sets A and B for which A �⊆ B and
B �⊆ A. Thus, the description of the “negative” condition S �⊆ A in an equivalent “positive”
form is somewhat more complicated than in the case of real numbers – but still possible. Namely,
one can easily check that S is not a subset of A (S �⊆ A) if and only if S has common elements

with the complement B
def= −A of the set A: S ∩ −A �= ∅. Thus, p(S ∩ A �= ∅) = 1 − Bel(A).

Such a function is also considered in the Dempster-Shafer approach. For historical reasons, it
is associated with the complement −A, not with the set itself: a plausibility Pl(B) of any set
B is defined as p(S ∩ B �= ∅). Due to the above formula for 1 − Bel(A), we conclude that
Pl(B) = 1 − Bel(−B).

In this representation, to get a full representation of a random set, we need to store either the
values Bel(A) for all sets A ⊆ X or the values Pl(B) for all sets B ⊆ X . From this viewpoint, to
get an approximation, we should keep only the values corresponding to the simplest sets A and B.
The simplest possible non-empty sets are 1-element sets, next in complexity are 2-element sets,
etc. So, the first approximation corresponds to the use of 1-point sets, the second approximation
to 2-points sets, etc.

For most properties, the set S is infinite, so S cannot be a subset of a finite set A. Since the
condition S ⊆ A is impossible (for such finite sets A), the probability Bel(A) = p(S ⊆ A) is
equal to 0. Thus, the only non-zero parts of the corresponding approximation are the values Pl(B).
In particular, in the first approximation, we keep the values Pl(B) = p(S ∩ B �= ∅) corresponding
to 1-element sets B = {x}. For such sets, the condition B ∩ {x} �= ∅ is equivalent to x ∈ S. So,
the corresponding values Pl({x}) simply coincide with the probability μP(x) = p(x ∈ S).

4. From a traditional fuzzy set to more accurate descriptions of a random set

Fuzzy set, what next? As we have mentioned, it is desirable to get a representation of the expert
knowledge which is as accurate as possible. In the previous section, we showed that a fuzzy set
is a natural first approximation to a random set. What is the next approximation?

Why do we need to go beyond the first approximation? While the first approximation often leads
to intuitively reasonable results, sometimes the results are far from intuitive. For example, in the
traditional fuzzy logic, we use an “and”-operation (t-norm) f&(a, b) to combine the expert’s degree
of belief d(A) and d(B) in statements A and B into an estimate f&(d(A), d(B)) for the degree
of belief d(A & B) that both A and B are true. Most frequently, we use f&(a, b) = min(a, b) or
f&(a, b) = a · b.

Similarly, we use a negation operation f&(a) (usually, f&(a) = 1 − a) to estimate the degree
to which the negation ¬A is true.

In many practical applications, these estimates lead to reasonable results. However, in some
cases, they lead to counterintuitive conclusions. For example, suppose that:

• the expert’s degree of belief that a 50-year-old is old is 0.1 and
• the expert’s degree of belief that a 60-year-old is old is 0.8.

What is the expert’s degree of belief that 50 is old but 60 is not old? The above procedure leads
to:
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• d(60 is not old) = 1 − d(60 is old) = 1 − 0.8 = 0.2, and thus, to
• d((50 is old) & (60 is not old)) = f&(0.1, 0.2).

Whether we use f&(a, b) = min(a, b) or f&(a, b) = a · b, we get a positive degree – which
makes no sense, since if an expert considers 50-year olds to be old, then of course this expert
should also consider 60-years olds to be old.

The reason for this counterintuitive result is that the traditional fuzzy logic does not consider
possible dependence between the statements. This problem does not appear if we use the full
random set description: indeed, in this case,

• none of the sets Si describing “old” would contain 50 but not 60, and so,
• the proportion p((50 is old) & (60 is not old)) of those sets for which 50 is old but 60 is

not will be 0.

So, in principle, one way to avoid this problem is to use full random sets. However, as we have
mentioned, this often means storing and processing too much information. Let us show that to
avoid the above counterintuitive result, we do not need to consider full random sets: it is sufficient
to go one step beyond the first approximation (which corresponds to traditional fuzzy sets) and
consider a natural second approximation to random sets.

What is a natural second approximation: analysis of the problem. The above analysis of random
sets as a joint distribution of random variables χS(x) shows that a natural second approximation
emerges when we consider joint distributions of pairs (v, v′) = (χS(x), χS(x ′)) of these random
variables.

For each pair of objects (x, x ′), since each of the two variables χS(x) and χS(x ′) takes only
values 0 and 1, the corresponding pair (v, v′) = (χS(x), χS(x ′)) has four possible values: (0, 0),
(0, 1), (1, 0) and (1, 1). So, to get a full representation of this probability distribution, we need to
know four probabilities which add up to 1, i.e. we need three independent probabilities.

In addition to μP(x) = p(x ∈ S) and μP(x ′) = p(x ′ ∈ S), we can, e.g. consider an additional

probability μP P (x, x ′) def= p((x ∈ S) & (x ′ ∈ S)). Once we know these three probabilities, we
can determine all four probabilities of different values of the pair (v, v′):

p((x ∈ S) & (x ′ �∈ S)) = p(x ∈ S) − p((x ∈ S) & (x ′ ∈ S))

= μP(x) − μP P (x, x ′);
p((x �∈ S) & (x ′ ∈ S)) = p(x ′ ∈ S) − p((x ∈ S) & (x ′ ∈ S))

= μP(x ′) − μP P(x, x ′);
p((x �∈ S) & (x ′ �∈ S)) = 1 − p(x ∈ S) − p((x �∈ S) & (x ′ ∈ S))

= 1 − μP(x) − (μP (x ′) − μP P(x, x ′))
= 1 − μP(x) − μP (x ′) + μP P (x, x ′).

How to describe this second approximation in fuzzy terms. Using this second approximation means
that:

• in addition to determining, for each x ∈ X , the proportion of experts who believe that x
satisfies the property P ,

• we should also determine, for all pairs of elements x ∈ X and x ′ ∈ X , the proportion
μP P(x, y) of experts who believe that both x and x ′ satisfy the desired property P .

These additional values enable us to describe, in fuzzy terms, the dependence between the
membership degrees at x and x ′.
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Towards a formal description. In the traditional fuzzy approach, a property is described by a single
function μP : X → [0, 1]. In the new approach, to describe a property, we need two functions:

• a function μP : X → [0, 1], and
• a function μP P : X × X → [0, 1].

Since we now need two functions to describe a property, it is natural to call such pairs of functions
(μP , μP P ) double fuzzy sets.

Since the probability p((x ∈ S) & (x ′ ∈ S)) does not depend on the order in which we list x
and x ′, we should have μP P (x, x ′) = μP P (x ′, x).

Since p((x ∈ S) & (x ′ ∈ S)) ≤ p(x ∈ S), we should have μP P (x, x ′) ≤ μP (x). Thus, we
arrive at the following definition.

Definition 3 Let X be a set. By a double fuzzy set, we mean a pair of functions μP : X → [0, 1]
and μP P : X × X → [0, 1] for which, for all x, x ′ ∈ X , we have μP P (x, x ′) = μP P (x ′, x) and
μP P (x, x ′) ≤ μP (x).

Definition 4 Let p be a random set over the set X . By a double fuzzy set corresponding to the
random set p, we mean a pair consisting of the functions μP(x) = p(x ∈ S) and μP P (x, x ′) =
p((x ∈ S) & (x ′ ∈ S)).

Comment. This definition also goes back to Goodman (1982), where the function μP P (x, x ′) is
called a two-point coverage function.

Discussion. In the traditional fuzzy approach, we only use membership degrees μP (x) and μP (x ′),
we do not have any additional information about the relation between x and x ′. Thus, to estimate
our degree of belief that x satisfies the property P and x ′ satisfies the property P , we can only
use the degree μP(x) that x satisfies the property P and the degree μP(x ′) that x ′ satisfies the
property P .

An operation f&(a, b) that transforms our degrees of belief d(A) and d(B) in statements A
and B into an estimated degree of belief d(A & B) ≈ f&(d(A), d(B)) for a composite statement
A & B is called an and-operation or a t-norm; see e.g. Klir and Yuan (1995), Nguyen and Walker
(2006). Thus, in the traditional fuzzy approach, the degree of belief that both x and x ′ satisfy the
property P would be estimated as f&(μP (x), μP (x ′)).

In the new approach, instead of using this approximate description, we actually measure how
many experts believe that both x and x ′ satisfy the property P . This does not mean that we no
longer have to use t-norms (or similar operations). For example:

• while, in this second approximation, we explicitly ask experts about the pairs of values
(x, x ′),

• we do not ask the experts about the triples (x, x ′, x ′′).

Thus, to get an estimate for the expert’s degree of belief that all three given elements x , x ′ and
x ′′ satisfy the property P , we still need to use a t-norm (or a similar operation): e.g. we can apply
a t-norm to the values μP P (x, x ′) and μP (x ′′). (A more detailed analysis is given in the special
section on such operations.)

What we gain by using the double fuzzy descriptions. As we have mentioned, for the property
“tall”, the intuitive meaning is that if a person A is tall, and B is taller than A, then B is tall too. In
other words, if a value x satisfies this property and x < x ′, then x ′ also satisfies this property. Thus,
for this property, each set S describing an expert’s opinion should contain, with each element x ,
all larger elements x ′. In mathematical terms, this means that if x < x ′ then χS(x) ≤ χs(x ′), i.e.
that the set characteristic function of the set S is monotonic (specifically, non-decreasing).
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Definition 5

• We say that the set S is monotonic if x < x ′ and x ∈ S implies that x ′ ∈ S, i.e. if it is
impossible to have x ∈ S, x ′ �∈ S and x < x ′. In other words, a set is monotonic if for
x < x ′ it is impossible to have x ∈ S and x ′ �∈ S.

• We say that a random set p is monotonic if for every pair x < x ′, the probability
p((x ∈ S) & (x ′ �∈ S)) is equal to 0.

Comment. If for a random set, all possible sets are monotonic, then this random set is clearly
monotonic as well.

The monotonicity property cannot be described in terms of the traditional fuzzy sets. Let us show
that the non-decreasing property cannot be described in terms of the traditional fuzzy set.

Proposition 1 There exist random sets p and p′ such that:

• the random set p is monotonic,
• the random set p′ is not monotonic, and
• the same fuzzy set μP(x) corresponds to both random sets p and p′.

Proof As p, we take a random set in which we get the set of all real numbers and the empty set
with equal probability 0.5. For both these sets S, if x belongs to S and x < x ′, then x ′ ∈ S. Since
both these sets are monotonic, the random set is monotonic.

As p′, we take a random set in which we have (−∞, 0) and [0,∞) with equal probability
0.5. In this case, for x = −1 < x ′ = 0, with probability 0.5 > 0, we have −1 ∈ S and 0 �∈ S.
Thus, the random set p′ is not monotonic.

One can easily check that both random sets lead to the same membership function μP (x) = 0.5
for all x . �
We can describe monotonicity in terms of double fuzzy sets. With double fuzzy sets, we can
describe the monotonicity property in terms of the functions μP(x) and μP P (x) as follows:

Proposition 2 For a random set p, the following two conditions are equivalent to each other:

• the random set p is monotonic;
• if x < x ′, then μP P (x, x ′) = μP(x).

Proof Let x < x ′. We already know that p((x ∈ S) & (x ′ �∈ S)) = μP(x) − μP P (x, x ′). Thus,
if the random set p is monotonic, this implies that

p((x ∈ S) & (x ′ �∈ S)) = μP(x) − μP P (x, x ′) = 0

and so, that μP P (x, x ′) = μP(x).
Vice versa, if μP P (x, x ′) = μP (x), then p((x ∈ S) & (x ′ �∈ S)) = μP (x)−μP P(x, x ′) = 0.

Since this is true for all pairs x < x ′, this means that the random set p is monotonic. �
An alternative approach to second approximation. In the above-described alternative approach, a
second approximation to a fuzzy set is provided by the plausibility values Pl(B) = p(S ∩ B �= ∅)

corresponding to 1- and 2-element sets B. We already know that the plausibility values for
1-element sets B = {x} are simply values μP(x). For a two-element set B = {x, x ′}, the condition
S ∩ {x, x ′} �= ∅ is equivalent to x ∈ S or x ′ ∈ S. Thus, what we have, in this approximation, are
values p((x ∈ S) ∨ (x ′ ∈ S)).

It turns out that this approximation carries exactly the same information as doubly fuzzy sets,
since we always have p(A∨ B)+ p(A & B) = p(A) = p(B). In particular, for x ∈ S and x ′ ∈ S,
we have
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p((x ∈ S) ∨ (x ′ ∈ S)) + p((x ∈ S) & (x ′ ∈ S)) = p(x ∈ S) + p(x ′ ∈ S).

In both approximations, we know μP(x) = p(x ∈ S) and μP(x ′) = p(x ′ ∈ S). Thus:

• If we know μP P (x, x ′) = p((x ∈ S) & (x ′ ∈ S)), then we can reconstruct
p((x ∈ S) ∨ (x ′ ∈ S)) as μP (x) + μP(x ′) − μP P (x, x ′).

• If we know p((x ∈ S) ∨ (x ′ ∈ S)), then we can reconstruct μP P (x, x ′) as μP (x) +
μP(x ′) − p((x ∈ S) ∨ (x ′ ∈ S)).

Is second approximation sufficient? On the example of the property “old”, the use of double fuzzy
sets instead of the traditional fuzzy sets helped make our estimates more intuitive. However, as
we will see, there are other cases when double fuzzy sets are not sufficient: e.g. when we want to
describe a property “medium”, for which if x < x ′ < x ′′ and x and x ′′ satisfy this property, then
the intermediate value x ′ should also satisfy the same property.

Definition 6

• A subset S of the set of real numbers is called convex if whenever x < x ′ < x ′′ and both
x and x ′′ belong to the set S, then x ′ also belongs to the set S. In other words, a set is
convex if for x < x ′ < x ′′ it is impossible to have x ∈ S, x ′′ ∈ S, and x ′ �∈ S.

• A random set p is called convex if for each x < x ′ < x ′′, the probability
p((x ∈ S) & (x ′ �∈ S) & (x ′′ ∈ S)) is equal to 0.

Comment. If all sets S corresponding to a random set are convex, then, as one can easily see, this
random set is convex as well.

Examples A property like “close to 0” should be convex: if x < x ′ < x ′′ and both x and x ′′ are
close to 0, then it is reasonable to conclude that the intermediate value x ′ is also close to 0. The
same is true for properties like “small”.

Proposition 3 There exist random sets p and p′ such that:

• the random set p is convex;
• the random set p′ is not convex and
• the same double fuzzy set μP (x) and μP P (x) corresponds to both random sets p and p′.

Proof Here:

• As p, we take a random set in which we have four sets with probability 0.25 each:
S1 = [0, 3), S2 = [0, 1), S3 = [1, 2), and S4 = [2, 3). All fours sets are convex, so the
random set p is also convex.

• As p′, we take a random set in which we have four sets with probability 0.25 each: S′
1 =

[0, 1) ∪ [2, 3), S′
2 = [0, 2), S′

3 = [1, 3) and S′
4 = ∅. Here, for x = 0 < x ′ = 1 < x ′′ = 2,

the corresponding probability is positive:

p((x ∈ S) & (x ′ �∈ S) & (x ′′ ∈ S)) = 0.25 > 0

(since this property is true for S′
1), and thus, the random set p′ is not convex.

If we divide the domain X = [0, 3) into three zones [0, 1), [1, 2), and [2, 3), then we conclude
that for both random sets p and p′:

• μP(x) = 0.5 for all x and
• μP P(x, x ′) = 0.5 when x and x ′ belong to the same zone and μP P (x, x ′) = 0.25 if x

and x ′ are in different zones.

�
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From double to triple fuzzy sets. The above example shows that we need to go beyond double fuzzy

sets. A natural next step is to consider the probabilities μP P P (x, x ′, x ′′) def=
p((x ∈ S) & (x ′ ∈ S) & (x ′′ ∈ S)). Similarly to the case of the double sets, we arrive at the
following definitions.

Definition 7 Let X be a set. By a triple fuzzy set, we mean a triple of functions μP : X → [0, 1],
μP P : X × X → [0, 1], and μP P P : X3 → [0, 1] for which, for all x, x ′, x ′′ ∈ X , we have:

• μP P(x, x ′) = μP P (x ′, x),
• μP P P (x, x ′, x ′′) = μP P P (x, x ′′, x ′) = μP P P (x ′, x ′′, x), and
• μP P P (x, x ′, x ′′) ≤ μP P(x, x ′) ≤ μP(x).

Definition 8 Let p be a random set over the set X . By a triple fuzzy set corresponding to p, we
mean a triple consisting of the functions μP(x) = p(x ∈ S), μP P (x, x ′) =
p((x ∈ S) & (x ′ ∈ S)), and

μP P P (x, x ′, x ′′) = p((x ∈ S) & (x ′ ∈ S) & (x ′′ ∈ S)).

Triple fuzzy sets can do what neither traditional not double fuzzy sets can do: namely, detect
convexity. Let us show that triples fuzzy sets can do what previous approximations cannot do:
detect convexity.

Proposition 4 For a random set p, the following two conditions are equivalent to each other:

• the random set p is convex;
• if x < x ′ < x ′′, then μP P P (x, x ′, x ′′) = μP P(x, x ′′).

Proof Let x < x ′ < x ′′. By definition, convexity of a random set means that p((x ∈ S) & (x ′ �∈
S) & (x ′′ ∈ S)) = 0. It is easy to see that

p((x ∈ S) & (x ′ �∈ S) & (x ′′ ∈ S)) = p((x ∈ S) & (x ′′ ∈ S))

− p((x ∈ S) & (x ′ ∈ S) & (x ′′ ∈ S)) = μP P(x, x ′′) − μP P P (x, x ′, x ′′).

So, if the random set is convex, then p((x ∈ S) & (x ′ �∈ S) & (x ′′ ∈ S)) = 0 implies that
μP P (x, x ′′) − μP P P (x, x ′, x ′′) = 0, i.e. that μP P P (x, x ′, x ′′) = μP P(x, x ′′).

Vice versa, if μP P P (x, x ′, x ′′) = μP P (x, x ′′), then

p((x ∈ S) & (x ′ �∈ S) & (x ′′ ∈ S)) = 0.

Since this is true for all x < x ′ < x ′′, this means that the random set p is indeed convex. �
Tuples of arbitrary size. The traditional fuzzy logic corresponds to points x . Double and triple
fuzzy logic correspond to pairs and triples. In general, for tuples of size k, we need to consider
joint distributions of k random boolean (0-1) variables vi = χS(xi ) corresponding to a set of k

elements sk
def= {x1, . . . , xk}.

Each of these k variables vi takes two possible values 0 and 1. Thus, the tuple (v1, . . . , vk) takes
2k possible values (0, . . . , 0), (0, . . . , 0, 1), …, (1, . . . , 1). To describe a probability distribution
on such tuples, we therefore need to list the 2k probabilities of such values – probabilities that
should add up to 1. Similarly to the case of pairs, it is sufficient, for each subset s ⊆ {1, . . . , k},
to describe the probability that vi = 1 for all i from this subset.

Proposition 5 For each tuple (ε1, . . . , εk) of 0s and 1s, the probability

p((v1 = ε1) & . . . &(vk = εk))
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if we know, for each sets s ⊆ {1, . . . , k}, the probability p(vi = 1 for all i ∈ s).

Proof We will prove this result by induction, by reducing, for each z > 0, probabilities
corresponding to tuples with z zero (“false”) values of εi to probabilities of tuples with z − 1 zero
values. By using this reduction, we can eventually get to the probabilities of tuples in which all
values εi are “true” – and for all these tuples, probabilities are given.

Specifically, if εi = 0, then

p((v1 = ε1) & . . . & (vi−1 = εi−1) & (vi = 0) & (vi+1 = εi+1) & . . . & (vk = εk))

= p((v1 = ε1) & . . . & (vi−1 = εi−1) & (vi+1 = εi+1) & . . . & (vk = εk))

−p((v1 = ε1) & . . . & (vi−1 = εi−1) & (vi = 1) & (vi+1 = εi+1) & . . . & (vk = εk)).

�
Example Let us show how we can use the above construction to find the probability
p((v1 = 0) & (v1 = 0) & (v3 = 0)). In the corresponding tuple (0, 0, 0), all three values εi

are equal to 0. Let us first use the above construction with i = 1, to reduce this probability to the
cases when two values εi are equal to zero; we get

p((v1 = 0) & (v2 = 0) & (v3 = 0)) =
p((v2 = 0)& (v3 = 0)) − p((v1 = 1) & (v2 = 0) & (v3 = 0)).

For each of the two terms, we apply the same construction with i = 2, we reduce the problem to
cases when only one value εi is equal to 0:

p((v2 = 0) & (v3 = 0)) = p(v3 = 0) − p((v2 = 1) & (v3 = 0));

p((v1 = 1) & (v2 = 0) & (v3 = 0)) =
p((v1 = 1) & (v3 = 0)) − p((v1 = 1) & (v2 = 1) & (v3 = 0)).

Now, wehave reduced the problem to computing four probabilities p(v3 = 0), p((v2 = 1) &
(v3 = 0)), p((v1 = 1) &(v3 = 0)), and

p((v1 = 1) & (v2 = 1) & (v3 = 0)).

For each of these four probabilities, we apply the above construction to i = 3 and reduce these
probabilities to the known probabilities – corresponding to the cases when all the values εi are
“true”: p(v3 = 0) = 1 − p(v3 = 1);

p((v2 = 1) & (v3 = 0)) = p(v2 = 1) − p((v2 = 1) & (v3 = 1));
p((v1 = 1) & (v3 = 0)) = p(v1 = 1) − p((v1 = 1) & (v3 = 1));
p((v1 = 1) & (v2 = 1) & (v3 = 0))

= p((v1 = 1) & (v2 = 1)) − p((v1 = 1) & (v2 = 1) & (v3 = 1)).

Substituting these expressions into the formulas for p((v2 = 0) & (v3 = 0)) and
p((v1 = 1) & (v2 = 0) & (v3 = 0)), we conclude that

p((v2 = 0) & (v3 = 0)) = 1 − p(v2 = 1) − p(v3 = 1) + p((v2 = 1) & (v3 = 1));
p((v1 = 1) & (v2 = 0) & (v3 = 0)) = p(v1 = 1) − p((v1 = 1) & (v2 = 1))

−p((v1 = 1) & (v3 = 1)) + p((v1 = 1) & (v2 = 1) & (v3 = 1)).
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Finally, substituting these expressions into the formula for

p((v1 = 0) & (v2 = 0) & (v3 = 0)),

we get

p((v1 = 0) & (v2 = 0) & (v3 = 0)) = 1 − p(v1 = 1) − p(v2 = 1) − p(v3 = 1)

+p((v1 = 1) & (v2 = 1)) + p((v1 = 1) & (v3 = 1)) + p((v2 = 1) & (v2 = 1))

−p((v1 = 1) & (v2 = 1) & (v3 = 1)).

Definition 9 Let X be a set, and let k > 0 be an integer. By a k-ary fuzzy set, we mean a tuple
of functions μP : X → [0, 1], μP P : X × X → [0, 1], …, μP...P : Xk → [0, 1] for which, for
all x, . . . , x ′ ∈ X , we have:

• μP...P (. . . , x, . . . , x ′, . . .) = μP...P (. . . , x ′, . . . , x, . . .), and
• μP...P P (x, . . . , x ′, x ′′) ≤ μP...P (x, . . . , x ′).

Definition 10 Let p be a random set over the set X and let k > 0 be an integer. By a k-ary
fuzzy set corresponding to P , we mean a tuple consisting of the functions μP...P(x, . . . , x ′) =
p((x ∈ S) & . . . & (x ′ ∈ S)) corresponding to i = 1, 2, . . . , k inputs.

Historical comment. This notion was first introduced in Goodman (1982) as many-point coverage
functions.

Comment. The larger k, the more information we retain about the original random set. In the limit
k → ∞, we get a complete description of the random set.

Alternative approach. In the alternative approach, we store values Pl(B) = p(S ∩ B �= ∅)

corresponding to sets B with ≤ k elements. For each such set B = {x1, . . . , x j } with j ≤ k
elements, the corresponding plausibility is equal to p((x1 ∈ S) ∨ . . . ∨ (x j ∈ S)). Similarly to
the case of a double fuzzy sets, one can show that this approximation is equivalent to the k-ary
fuzzy sets in the sense that:

• once we know all the probabilities p((x1 ∈ S) ∨ . . . ∨ (x j ∈ S)), we can uniquely
reconstruct probabilities μP...P (x1, . . . , x j ) = p((x1 ∈ S) & . . . & (x j ∈ S));

• vice versa, once we know the probabilities

μP...P (x1, . . . , x j ) = p((x1 ∈ S) & . . . & (x j ∈ S)),

we can uniquely reconstruct all the probabilities p((x1 ∈ S) ∨ . . . ∨ (x j ∈ S)).

5. Case of several properties

Idea. What happens if we have several different properties P(1), . . . , P(�)? In situations in which
each expert has a clear opinion on when each property is satisfied, each expert has a set describing
each of these properties. In other words, the opinions of each expert can be described by a tuple
of sets (S(1), . . . , S(�)) corresponding to different properties. In this case, to describe the opinion
of several experts, we need to describe which tuples appear with what frequency, i.e. we need to
describe a probability measure on the set of such tuples.

Definition 11 Let X be a set, and let � > 0 be a positive integer. By a random tuple of sets we
mean a probability measure on the set (2X )� of all �-tuples of subsets of the set X .

First and second approximations. To describe a tuple, we need to describe boolean variables
x ∈ S(i) corresponding to different elements x ∈ X and to different properties i = 1, . . . , �.
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As a first approximation, we can therefore consider the probabilities p(x ∈ S(i)) of all these
boolean variables. In other words, in the first approximation, we consider � fuzzy sets μP(i) (x) =
p(x ∈ S(i)) corresponding to different properties.

In the second approximation, we need to consider probabilities of pairs of such variables. This
means that, in addition to the original membership functions μP(i) (x) and double membership
functions μP(i) P(i) (x, x ′), we also need to consider “mixed” membership functions
μP(i) P( j) (x, x ′) = p((x ∈ S(i)) & (x ′ ∈ S( j))). These functions describe dependence between
different properties.

In general, we get the following definitions.

Definition 12 Let X be a set, and let k > 0 and � > 0 be integers. By a k-ary fuzzy description
of � properties, we mean a collections of functions μP(i1)...P(is ) : Xs → [0, 1] corresponding to
all possible combinations of indices i j ≤ � with s ≤ k for which, for all x, . . . , x ′ ∈ X , we have:

• μ...P...P...(. . . , x, . . . , x ′, . . .) = μ...P...P...(. . . , x ′, . . . , x, . . .), and
• μ

P(i1)...P(i j−1) P(i j ) (x, . . . , x ′, x ′′) ≤ μ
P(i1)...P(i j−1) (x, . . . , x ′).

Definition 13 Let P be a random set over the set X and let k > 0 and � > 0 be integers. By a
k-ary fuzzy description of � properties corresponding to P , we mean a collection of functions

μ
P(i1)...P(i j ) (x1, . . . , x j ) = p((x1 ∈ S(i1)) & . . . & (x j ∈ S(i j ))).

Alternative approximation. For tuples of sets (A, A′, . . .) and (B, B ′, . . .) a natural order is
component-wise inclusion (A ⊆ B) & (A′ ⊆ B ′) & . . . Thus, a natural analog of a cdf is the
probability

Bel(A(1), . . . , A(�))
def= p((S(1) ⊆ A(1)) & . . . & (S(�) ⊆ A(�))).

The corresponding positive reformulation leads to the probability Pl(B(1), . . . , B(�))
def=

p((S(1) ∩ A(1) �= ∅) ∨ . . . ∨ (S(�) ∩ A(�) �= ∅)). To approximate the random set, we consider
values corresponding to finite sets A(i) and B(i) in which, e.g. the total number of elements in all
the sets B(i) does not exceed k. For such sets, the belief values are equal to 0, and plausibility
values Pl(B(1), . . . , B(�)) are equal to the probabilities p((x1 ∈ S(i1)) & . . . & (x j ∈ S(i j ))).

Similarly to the case of a single property, we can show that this representation is equivalent
to a k-ary fuzzy description; namely:

• if we know all the probabilities

μ
P(i1)...P(i j ) (x1, . . . , x j ) = p((x1 ∈ S(i1)) & . . . & (x j ∈ S(i j ))),

then we can uniquely reconstruct the plausibility values

p((x1 ∈ S(i1)) ∨ . . . ∨ (x j ∈ S(i j )));
• vice versa, if we know all the plausibility values

p((x1 ∈ S(i1)) ∨ . . . ∨ (x j ∈ S(i j ))),

then we can uniquely reconstruct all the probabilities μ
P(i1)...P(i j ) (x1, . . . , x j ) =

p((x1 ∈ S(i1)) & . . . & (x j ∈ S(i j ))).

6. “And”- and “Or”-operations for double and triple fuzzy sets

“And”- and “or”-operations for traditional fuzzy sets: reminder. As we have mentioned, often,
we only know the probabilities (degrees of belief) d1 = p(s1) and d2 = p(s2) of two statements s1
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and s2, we have no information about their correlation, and we need to estimate the probability of
s1 & s2. In this case, we use some algorithm to transform d1 and d2 into an estimate for p(s1 & s2).
Let f&(a, b) denote the function computed by this algorithm; then, the resulting estimate for
p(A & B) takes the form f&(a, b) = f&(p(A), p(B)). In fuzzy logic, this function f&(a, b) is
known as an “and”-operation or, alternatively, as a t-norm.

Similarly, when we want to estimate d(A∨ B), we use an appropriate “or”-operation f∨(a, b);
such “or”-operations are also known as t-conorms.
We need similar operations for double, triple, etc. fuzzy sets. In the case of a double fuzzy set, we
do not need to estimate the degree to which both x and x ′ satisfy a given property (or properties),
since these probabilities are also given. However, we do need to estimate the triple probabilities –
since such triple probabilities are not given. In general, we thus arrive at the following problem:
for three statements s1, s2, and s3:

• we know the probabilities d1 = p(s1), d2 = p(s2), d3 = p(s3), d12 = p(s1 & s2),
d13 = p(s1 & s3) and d23 = p(s2 & s3); and

• we want to estimate x
def= p(s1 & s2 & s3) based on the known probabilities.

For k-ary tuples, we get a similar problem of estimating the joint probability of k + 1 events.

Let us use the experience of the usual t-norms. To solve the above estimation problem, let us use
the experience of the usual “and”-operations (t-norms).

There are many different t-norms. Since we are dealing with the probabilistic situation, in this
paper, we focus on two probability-related techniques of producing t-norms: the inequality (linear
programming) approach and the Maximum Entropy approach. Let us describe both approaches
in detail.

Inequalities (linear programming) approach. To get a full description of the joint probability
distribution on the set of two statements s1 and s2, we need to know the probabilities of all basic
combinations s1 & s2, s1 & ¬s2, ¬s1 & s2 and ¬s1 & ¬s2. We have already shown that, once we

know the probabilities d1 = p(s1) and d2 = p(s2) and the probability x
def= p(s1 & s2), we can

uniquely determine all the remaining probabilities: p(s1 & ¬s2) = p(s1) − p(s1 & s2) = d1 − x,

p(¬s1 & s2) = p(s2)−p(s1 & s2) = d2−x , and p(¬s1 & ¬s2) = 1−p(s1)−p(s2)+p(s1 & s2) =
1 − d1 − d2 + x .

For which values of x do these formulas lead to a probability distribution? In a probability
distribution, all the basic probabilities are non-negative and add up to 1. It is easy to check that
the values x , d1 − x , d2 − x and 1 − d1 − d2 + x always add up to 1. Thus, to make sure that
the value x describes a probability distribution, it is sufficient to make sure that all four resulting
values of basic probabilities are non-negative, i.e. that the following four inequalities hold: x ≥ 0,
d1 − x ≥ 0, d2 − x ≥ 0 and 1 − d1 − d2 + x ≥ 0. In general, several possible value x satisfy
these inequalities. It is reasonable to find the range of such values x , i.e. to find the smallest and
the largest value x for which the above four expressions form a probability distribution.

From the mathematical viewpoint, we thus need to find the maximum and the minimum of x
under the above four linear inequalities. The problem of optimizing a linear function under linear
equalities and/or inequalities is known as linear programming; there exist efficient algorithms for
solving such problems; see e.g. Ceberio et al. (2007), Chopra (2008), Cormen et al. (2009), Nilsson
(1986). In view of this relation, the above approach is also known as the linear programming
approach.

For the above inequalities, we can find an explicit solution if we move x to one of the sides of
each inequality and all the other terms to the other side. As a result, we get the following system of
four inequalities: x ≥ 0, x ≤ d1, x ≤ d2 and x ≥ d1 +d2 −1. The inequalities x ≤ d1 and x ≤ d2
can be described as x ≤ min(d1, d2). Similarly, the inequalities x ≥ 0 and x ≥ d1 + d2 − 1 can
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be described as x ≥ max(d1 + d2 − 1, 0). Thus, the value x determines a probability distribution
if and only if max(d1 + d2 − 1, 0) ≤ x ≤ min(d1, d2). We have thus found the desired range; its
lower endpoint is the value max(d1 + d2 − 1, 0), its upper endpoint is the value min(d1, d2).

Both endpoints serve as possible t-norms:

• f&(a, b) = max(a + b − 1, 0) is the smallest possible t-norm; while
• f&(a, b) = min(a, b) is the largest possible t-norm; it is actually one of the most widely

used t-norms.

Maximum Entropy approach. In applications of probability theory, we often encounter situations
when we do not know the exact probability distribution, i.e. when several different distributions
are consistent with our knowledge. Some of these distributions have smaller uncertainty, some
have larger uncertainty. In this case, a reasonable idea is not to hide the possible uncertainty, i.e. to
select a distribution with the largest uncertainty. There are reasonable arguments that uncertainty
of a probability distribution is best described by its entropy S = − ∑

pi · ln(pi ); as a result,
we usually select a distribution with the largest entropy; see e.g. Chokr and Kreinovich (1994),
Jaynes (2003).

In the above case, we have four probabilities x , d1 − x , d2 − x , and 1 − d1 − d2 + x, so the
entropy takes the form

S = −x · ln(x) − (d1 − x) · ln(d1 − x) − (d2 − x) · ln(d2 − x)

−(1 − d1 − d2 + x) · ln(1 − d1 − d2 + x).

To find the value x for which entropy is the largest, we differentiate this expression with respect
to x and equate the derivative to 0. As a result, we get

− ln(x) + ln(d1 − x) + ln(d2 − x) − ln(1 − d1 − d2 + x) = 0.

Moving all negative terms to the right-hand side, we get

ln(d1 − x) + ln(d2 − x) = ln(x) + ln(1 − d1 − d2 + x).

Raising e to the power of both sides, and taking into account that ea+b = ea · eb and that
eln(z) = z, we conclude that (d1 − x) · (d2 − x) = x · (1 − d1 − d2 + x). Opening parentheses,
we get d1 · d2 − x · (d1 + d2) + x2 = x − x · (d1 + d2) + x2. Cancelling similar terms in both
sides, we get x = d1 · d2.

The corresponding “and”-operation is indeed one of the most widely used in fuzzy logic.

“And”-operations for double fuzzy sets: inequalities approach. Let us apply the above approaches
to estimate x = p(s1 & s2 & s3) for double fuzzy sets. Let us start with the inequalities approach.
To fully describe the probability distribution for the case of three statements, we need to find
the probabilities of all eight possible basic combinations: p(s1 & s2 & s3), p(s1 & s2 & ¬s3),
p(s1 & ¬s2 & s3), p(s1 & ¬s2 & ¬s3), p(¬s1 & s2 & s3), p(¬s1 & s2 & ¬s3), p(¬s1 & ¬s2 & s3)

and p(¬s1 & ¬s2 & ¬s3).
As we have shown earlier, if we know the values d1 = p(s1), d2 = p(s2), d3 = p(s3),

d12 = p(s1 & s2), d13 = p(s1 & s3), d23 = p(s2 & s3) and x = p(s1 & s2 & s3), then we can
uniquely reconstruct all remaining seven probabilities:

p(s1 & s2 & ¬s3) = p(s1 & s2) − p(s1 & s2 & s3) = d12 − x;
p(s1 & ¬s2 & s3) = p(s1 & s3) − p(s1 & s2 & s3) = d13 − x;
p(¬s1 & s2 & s3) = p(s2 & s3) − p(s1 & s2 & s3) = d23 − x;

p(s1 & ¬s2 & ¬s3) = p(s1) − p(s1 & s2) − p(s1 & s3) + p(s1 & s2 & s3) = d1 − d12 − d13 + x;
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p(¬s1 & s2 & ¬s3) = p(s2) − p(s1 & s2) − p(s2 & s3) + p(s1 & s2 & s3) = d2 − d12 − d23 + x;
p(¬s1 & ¬s2 & s3) = p(s3) − p(s1 & s3) − p(s2 & s3) + p(s1 & s2 & s3) = d3 − d13 − d23 + x;

p(¬s1 & ¬s2 & ¬s3) = 1 − p(s1) − p(s2) − p(s3) + p(s1 & s2)

+p(s1 & s3) + p(s2 & s3) − p(s1 & s2 & s3)

= 1 − d1 − d2 − d3 + d12 + d13 + d23 − x .

Similar to the case of two statements, these eight probabilities add up to 1, so the only requirement
is that all these eight expressions are non-negative: x ≥ 0, d12 − x ≥ 0, d13 − x ≥ 0, d23 − x ≥ 0,
d1 − d12 − d13 + x ≥ 0, d2 − d12 − d23 + x ≥ 0, d3 − d12 − d23 + x ≥ 0, 1 − d1 − d2 −
d3 + d12 + d23 + d13 − x ≥ 0. By moving x to one side and all other terms to another side, we
get an equivalent set of inequalities: x ≥ 0, x ≤ d12, x ≤ d13, x ≤ d23, x ≥ d12 + d13 − d1,
x ≥ d12 + d23 − d2, x ≥ d13 + d23 − d3, and x ≤ 1 − d1 − d2 − d3 + d12 + d13 + d23. These
inequalities provide several lower and upper bounds for x . The value x is larger than or equal to
several lower bounds if and only it is larger than or equal than the largest of these lower bounds.
Similarly, the value x is smaller than or equal to several upper bounds if and only it is smaller than
or equal than the smallest of these upper bounds. Thus, the above eight inequalities are equivalent
to the following inequality:

max(d12 + d13 − d1, d12 + d23 − d2, d13 + d23 − d3, 0) ≤ x

≤ min(d12, d13, d23, 1 − d1 − d2 − d3 + d12 + d13 + d23).

So, we get the formulas for the lower and upper estimations for p(s1 & s2 & s3):

• we can take max(d12 + d13 − d1, d12 + d23 − d2, d13 + d23 − d3, 0) as the lower estimate,
and

• we can take min(d12, d13, d23, 1 − d1 − d2 − d3 + d12 + d13 + d23) as the upper estimate.

“And”-operations for double fuzzy sets: Maximum Entropy approach. For each value x form the
corresponding range, we get a probability distribution with probabilities x , d12−x , d13−x , d23−x,
d1 −d12 −d13 +x , d2 −d12 −d23 +x , d3 −d12 −d23 +x , and 1−d1 −d2 −d3 +d12 +d23 +d13 −x .
The entropy of this distribution is equal to

S = −x · ln(x) − (d12 − x) · ln(d12 − x) − (d13 − x) · ln(d13 − x) − (d23 − x) · ln(d23 − x)

−(d1 − d12 − d13 + x) · ln(d1 − d12 − d13 + x) − (d2 − d12 − d23 + x) · ln(d2 − d12 − d23 + x)

−(d3 − d13 − d23 + x) · ln(d3 − d13 − d23 + x)

−(1 − d1 − d2 − d3 + d12 + d23 + d13 − x) · ln(1 − d1 − d2 − d3 + d12 + d23 + d13 − x).

Differentiating this expression with respect to x and equating the derivative to 0, we conclude
that

− ln(x) + ln(d12 − x) + ln(d13 − x) + ln(d23 − x)

− ln(d1 − d12 − d13 + x) − ln(d2 − d12 − d23 + x) − ln(d3 − d13 − d23 + x)

+ ln(1 − d1 − d2 − d3 + d12 + d23 + d13 − x) = 0.

If we raise e to the power of both sides, we get a fourth order equation (actually third order since
terms x4 cancel out). In this case, however, we do not have a solution in a nice close form, we
need to use numerical methods to solve this equation.

7. General case, when experts are not necessarily 100% certain about their statements

General case: reminder. In the previous sections, we considered the case when each expert is
absolute sure which object satisfies the given property and which object does not (e.g. who is tall
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and who is not tall), and the only uncertainty comes from the fact that different experts may have
different opinions. In practice, experts are often not absolutely certain about their judgments. So,
we need to take into account their degree of certainty.

Individual degrees of certainty. To describe the corresponding degree of certainty, we can, e.g.
ask the experts to mark their certainty by selecting a mark on a scale from 0 to some positive
integer n, so that n corresponds to full certainty and 0 corresponds to no certainty. If an expert
marks m on a scale from 0 to n, we take the ratio m/n as the expert’s degree of certainty in the
given statement.

An alternative idea: subjective probabilities. Some people can easily mark their uncertainty on
a scale, but for other people, this is a difficult task. To get the information about the degree of
certainty of these people, we can use subjective probabilities.

To get the main idea behind such probabilities, it is important to recall why we are storing
this imprecise knowledge like “small” or “old” – because we want to help computer emulate
human decisions, and humans describe their decision-making by using such imprecise terms. So,
a natural way to describe to what extent, e.g. a 50-year old is old is to elicit, from an expert,
the subjective probability that, e.g. a medical treatment which is efficient for old people will be
successful for a 50-year old. This subjective probability can be obtained, e.g. by asking the expert
to select between the following two situations:

• the situation L0, in which the expert wins a certain sum of money (e.g. $100) if a medical
treatment which is efficient for old people succeeds for a randomly selected 50-year-old
patient; and

• the situation L(p), in which the expert wins the same sum of money with probability p.

Clearly, for an expert, the alternative L(0) in which he or she never gets any money is worse
than the alternative L0 in which an expert has a chance to win some money; we will denote this
by L(0) < L0. Similarly, the alternative L(1) in which the expert unconditionally gets the sum
is preferable to the alternative L0 in which there is a chance that the expert will get nothing:
L0 < L(1). A subjective probability is defined as the probability p for which, to the expert, the
corresponding alternative L(p) is equivalent to L0: L(p) ∼ L0.

This value p can be found by bisection. At each stage of the bisection procedure, we maintain
an interval [p, p] that contains the desired probability p, i.e. for which L(p) < L0 < L(p).
In the beginning, we take p = 0 and p = 1. On each iteration step, we compute the midpoint
p̃ = (p + p)/2 and ask the expert to compare L0 with the alternative L( p̃) corresponding to this
midpoint. Depending on the result of this comparison, we do the following:

• if L( p̃) ∼ L0, we have found the desired subjective probability, it is p̃;
• if L0 < L( p̃), we can take p̃ as the new value of the upper bound p;
• if L( p̃) < L0, we can take p̃ as the new value of the lower bound p.

In all these cases, we either find the value of the subjective probability, or divide the width of
the interval [p, p] in half. We started with an interval of width 1. Thus, in m steps, we get an
interval of width 2−m which contains the desired value of the subjective probability – and so, e.g.
the midpoint of this interval approximates the subjective probability with accuracy 2−(m+1). For
example:

• to find the subjective probability d(x) with accuracy 10%, it is sufficient to make three
iterations, i.e. to ask the expert to make three comparisons;

• to get the accuracy of 1%, it is sufficient to perform six iterations, i.e. to ask the expert to
make six comparisons, etc.
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Resulting representation of expert knowledge. For each property P , for each expert and for each
possible value x of the corresponding quantity, the expert has a certain degree of certainty d(x)

that the value x satisfies the given property P . Thus, the opinion of an individual expert about the
property P can be described by a function which assigns, to each x , the corresponding degree d(x).

In fuzzy set theory, this function is called a membership function. In these terms, to describe
the opinions of all the experts, we need to store the membership functions corresponding to all
the experts.
What if experts are equal. Some experts agree between themselves; as a result, their membership
functions coincide. When the experts are equal, there is no need to store several identical copies of
the same membership function, it is sufficient to store different membership functions d , together
with the frequency p(d) with which different membership functions occur.

When we have different numerical values with different probabilities, this is called a random
variable. When we have different sets with different probabilities, this is called a random set. In
our case, we have different membership functions (fuzzy sets) with different probabilities, this is
a random function (also known a stochastic process) or, a random fuzzy set.
How to approximate expert knowledge. In the above simple case, when each expert is absolutely
sure whether each object satisfies each property or not, we have mentioned that it often takes too
much space to store (and too much time to process) all the truth value χP (x) corresponding to
all experts and to all values x . So, instead of the exact representation, we need an approximate
representation of random sets.

In the general case, for each expert and for each value x , we need to store not just one bit
(“true”-“false”, 0-1 value), we need to store the entire real number d(x) ∈ [0, 1]. In the general
case, we therefore also need to use some approximations.

Similar to the simple case, we will approximate the general probability measure by marginal
distributions, i.e. in this case, by:

• distributions of d(x) corresponding to each x ,
• distributions of pairs (d(x), d(x ′)) corresponding to pairs (x, x ′),
• distributions of triples (d(x), d(x ′), d(x ′′)) corresponding to triples (x, x ′, x ′′),
• in general, distributions of k-tuples (d(x1), . . . , d(xk)) corresponding to k-tuples

(x1, . . . , xk).

In the simple case, this approximation was sufficient, since, e.g. for each x , to get a full description
of the probabilities of different values of χP (x), it is sufficient to provide a single probability
μP (x) = p(χP (x) = 1). In the general case, even for a single variable d(x), we fully describe
its probability distribution, we need to describe, e.g. its cumulative distribution function F(z) =
p(d(x) ≤ z) – and to represent this function exactly, we need to describe the values F(z)
corresponding to many values z. Thus, in the general case, we need to approximate each such
marginal distribution as well.

A natural way to describe a probability distribution is to describe its moments. In the first
approximation, we represent the expert knowledge by storing all first moments; in the second
approximation, we also store all second moments, etc. Let us describe this idea in more detail.

First approximation. In the first approximation, we represent only the first moments μP (x)
def=

E[d(x)], i.e. the values of the membership function averaged over all the experts. In this repre-
sentation, we ignore the variations between the opinions of different experts, and only use the
averages.

This representation corresponds to the traditional fuzzy logic.
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Second approximation. In the second approximation, in addition to the means μP (x) = E[d(x)],
we also store the second moments E[d(x) ·d(x ′)]. It is known that describing the second moments
is equivalent to describing:

• the variance V (x) = σ 2(x)
def= E[(d(x)−μP (x))2] that gauges the difference in expert’s

opinions, and

• the covariance C(x, x ′) def= E[(d(x) − μP(x)) · (d(x ′) − μP(x ′))] that describes the
dependence between the expert’s opinions about different values x, x ′ ∈ X .

The idea behind the standard deviation σ(x) is similar to the idea of type-2 fuzzy logic (see e.g.
Mendel 2001; Mendel and Wu 2006), which also takes into account how different are opinions
of different experts. The covariance, however, captures the dependence which is not captured by
the type-2 fuzzy set approach.

Case of several properties. A similar description can be used when we have several properties
P(1), …, P(�). In this case, for each property P(i), we get, from each expert, the corresponding
individual membership function d(i)(x). In the first approximation, we use only the first moments,
i.e. we take the average membership functions μP(i)

(x) = E[d(i)(x)].
In the second approximation, in addition to these averages, and to variances VP (x) =

(σP (x))2 = E[(dP (x) − μP (x))2] and covariances

CP P (x, x ′) = E[(dP (x) − μP (x)) · (dP (x ′) − μP(x ′)]
corresponding to each property P , we also store covariances describing dependence between

different properties: cP P ′(x, x ′) def= E[(dP (x) − μP(x)) · (dP ′(x ′) − μP ′(x ′)].
Example: “and”- and “or”-operations in the first and second approximations. Let us assume that
we use the algebraic product f&(a, b) = a · b as an “and”-operation. In this case, if we know the
exact expert’s degree of certainty a and b in statements A and B, then we estimate the expert’s
degree of certainty in A & B as a · b.

In the first approximation, instead of the exact degrees a and b, we know the means μ(A) =
E[a] and μ(B) = E[b] of both degrees. We want to estimate μ(A & B) = E[a · b]. Strictly
speaking, we do not have enough information to get an exact estimate for this quantity, since the
exact computation would require that, in addition to the means E[a] and E[b], we also know the
covariance C = E[(a −μ(A)) · (b −μ(B)] = E[a ·b]−μ(A) ·μ(B). If we knew the covariance
C , then we would be able to get the exact value E[a · b] = μ(A) · μ(B) + C . This covariance
corresponds to the second approximation, so, in the first approximation, it can be safely ignored.
Thus, in the first approximation, we estimate μ(A & B) = E[a · b] as μ(A) · μ(B).

Similarly, if we use the “or”-operation f∨(a, b) = a + b − a · b, we estimate μ(A ∨ B) =
E[a + b − a · b] = E[a] + E[b] − E[a · b] as μ(A) + μ(B) − μ(A) · μ(B). In other words, in
the first approximation, “and”- and “or”-operations are the same as in the traditional fuzzy logic.

In the second approximation, the situation differs since we already know the covariance
C = E[(a − μ(A)) · (b − μ(B))] = E[a · b] − μ(A) · μ(B). In this case, we get an exact
value of μ(A & B) = E[a · b] = μ(A) · μ(B) + C and, correspondingly, the exact value of
μ(A ∨ B) = E[a] + E[b] − E[a · b] = μ(A) + μ(B) − μ(A) · μ(B) − C.

However, since we are in the second approximation, it is now not enough to estimate the
values μ(A & B) and μ(A ∨ B), we also need to estimate the corresponding standard deviations
σ [A & B] and σ [A ∨ B]. Here, σ 2[A & B] = E[(a · b)2] − μ2(A & B). The first term is equal
to E[a2] · E[b2] + c, where c is the covariance between a2 and b2. This covariance is a fourth-
order term, so in the second approximation, it can be ignored. Since E[a2] = μ2(A) + σ 2(A)

and E[b2] = μ2(B) + σ 2[B], we conclude that σ 2[A & B] = (μ2(A) + σ 2(A)) · (μ2(B) +
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σ 2(B))− (μ(A) ·μ(B)+ C)2. Opening parentheses and cancelling the terms μ2(A) ·μ2(B) and
−μ2(A) · μ2(B), we get

σ 2[A & B] = μ2(A) · σ 2(B) + μ2(B) · σ 2(A) + σ 2(A) · σ 2(B) − 2 · μ(A) · μ(B) · C − C2.

For A ∨ B, from the fact that a + b − a · b = 1 − (1 − a) · (1 − b) and that E[1 − a] = 1 − E[a]
and E[1 − b] = 1 − E[b], we conclude that

σ 2[A ∨ B] = ((1−μ(A))2 +σ 2(A)) · ((1−μ(B))2 +σ 2[B])− ((1−μ(A)) · (1−μ(B))+C)2,

and

σ 2[A ∨ B] = (1 − μ(A))2 · σ 2(B) + (1 − μ(B))2 · σ 2(A) + σ 2(A) · σ 2(B)

−2 · (1 − μ(A)) · (1 − μ(B)) · C − C2.

Third and higher order approximations. In the third and higher order approximations, in addition
to the first and second moments, we also store third and higher order moments.

How to take into account that an expert is often uncertain about his or her degrees of belief. In
the beginning of this section, we assumed that the expert can always meaningfully describe his
or her degree of belief by a number from 0 to n. Sometimes, however, an expert is not sure about
his or her degree of belief. For example, instead of selecting a single value (such as 6, 7 or 8)
on a scale from 0 to 10, the expert selects the whole interval [6, 8]. In such situations, for each
property P , for each expert and for each possible value x , instead of a single value d(x), we have
an interval [d(x), d(x)] which describes the expert’s degree of certainty that the value x satisfies
the property P .

Thus, for each individual expert, we have an interval-valued membership function (see e.g.
Mendel 2001; Mendel and Wu 2006). To describe the opinion of all the experts, we need to describe
a probability measure on the set of all such functions, i.e. we need to describe a random interval-
valued fuzzy set. We can approximate this general description by storing moments corresponding
to d(x) and d(x).

We can similarly describe more complex descriptions of the individual expert’s uncertainty:
e.g. in addition to marking an interval, the expert can also describe, for each point from this
interval, he or she is sure that this mark reflects his/her degree of confidence. In this case, each
individual membership function is itself a type-2 membership function: to each possible value
d = m/n of expert’s degree of confidence, we assign a value d2(d) describing the degree to which
d is a possible value.

8. Conclusion

To adequately represent and process expert knowledge, we need, in particular, to represent expert
information about imprecise properties. In this paper, we show that the need to represent such
information naturally leads to random sets.

Representing a general random set is, however, computationally taxing, so we need to use
computationally efficient approximations to general random sets. We show that a natural first
approximation is equivalent to a fuzzy set.

We also describe reasonable second, third, etc. approximations – which correspond to “dou-
ble”, “triple”, etc. fuzzy sets. We show how “and” and “or”-operations (t-norms and t-conorms)
can be naturally extended from the usual fuzzy sets to such “double”, “triple”, etc. fuzzy sets.
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We also show how the relation between random sets and fuzzy sets can be extended to interval-
valued and more general type-2 fuzzy sets.
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