
Web Intelligence and Agent Systems: An International Journal 9 (2011) 161–178 161
DOI 10.3233/WIA-2011-0213
IOS Press

Configuration and control design model for
an agent based Flexible Distributed System

Akiko Takahashi a,* and Tetsuo Kinoshita b

a Sendai National College of Technology, 4-16-1 Ayashi-Chuo, Aoba-ku, Sendai 989-3128, Japan
E-mail: akiko@sendai-nct.ac.jp
b Cyberscience Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
E-mail: kino@riec.tohoku.ac.jp

Abstract. Realizing application systems that match people’s expectations and providing adequate network services for various
users under various network and platform environments are difficult challenges. To overcome these problems, we have studied
application systems based on multiagent systems and design models of multiagent systems. We propose a method to observe and
control the behavioral characteristics of multiagent systems to support the design, development, and operation of such systems.
More specifically, we propose a Flexible Distributed System and a Behavioral Characteristics Model, and we apply these two
models to the design of an actual multimedia communication system and evaluate the effectiveness of the proposed scheme.

Keywords: Multiagent system, Flexible Distributed System, Behavioral Characteristics Model, multimedia communication
system

1. Introduction

As network services have spread, various people,
from children to the elderly, routinely use and even
rely upon network services. Consequently, it is neces-
sary for applications to be easier to use and closer to
people’s expectations. Furthermore, with the spread of
ubiquitous environments, it is necessary to provide ad-
equate network services for various users on various
networks and platform environments, including envi-
ronments in which resources are restricted. To solve
these problems, applications based on multiagent sys-
tems have been proposed.

In a multiagent system, the behavior of the over-
all system is extremely context-sensitive and non-
deterministic because the behavior of each agent is de-
cided dynamically by using the embedded knowledge
of individual agents. Moreover, multiagent systems are
distributed systems that compose an organization by
the agent group that operates autonomously and be-

*Corresponding author.

haves as an entire system through the cooperation of
agents. Consequently, it is difficult to define the func-
tions of the system and eliminate undesirable actions in
the initial design phase of the system. This is a signif-
icant obstacle in the construction of usable multiagent
systems. To overcome this obstacle, it is necessary to
solve the following problems.

(P1) It is difficult to manage and update the agent’s
knowledge.
It is difficult to manage and update the knowl-
edge of an individual agent systematically be-
cause the relations between an individual agent’s
operation specification and actual control are in-
definite.

(P2) It is difficult to observe and control the overall
system.
In some situations, control of the system be-
comes an infinite loop with insufficient control
because each agent operates based on an individ-
ual specification and is controlled experientially.

In the design models of network service systems
in previous studies, a semantic model for specifying

1570-1263/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved

162 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

and reasoning the required components for open dis-
tributed systems has been proposed [14]. A quantita-
tive performance model has also been reported to pre-
dict the performance of a component-based server-side
application in the design phase [22]. In addition, mod-
els of multiagent systems have been proposed, such
as an organizational model that defines the knowledge
of the system’s organizational structure and capabil-
ities to enable dynamic system reorganization, and a
mathematical model prescribing that the agents act by
Markov Chains to describe a system’s emergent be-
havior as a Markov Decision Process [11,16]. How-
ever, the above issues remain as obstacles to realizing
the flexible QoS control functions for some network
service systems that are designed and implemented as
multiagent systems.

The multiagent system requires a self-organizing
model and self-control model [6,13]. Though self-
organizing models have been proposed [4,9,21], these
specialize in composing the agent organization. Addi-
tionally, as self-control models [5,10,12,20] are pro-
vided, the candidates are the control scheme or trust as-
surance of the overall agent system. However, to real-
ize an adequate multiagent system, it is necessary that
the multiagent’s design model considers both the self-
organizing model and the self-control model. Conse-
quently, the models can realize a manageable, system-
atic and reliable multiagent system.

In this paper we propose a method to observe and
control the behavioral characteristics of multiagent
systems to support the design, development and oper-
ation of multiagent systems. In particular, to overcome
the problems described above, we propose two mod-
els, as follows:

(S1) Flexible Distributed System (FDS).
This model is intended to support the construc-
tion of multiagent systems and respective agents
in a distributed system. We can design func-
tions of FDS systematically to manage informa-
tion concerning not only the application func-
tions and their QoS, but also the platform and
network functions and their QoS based on the
model.

(S2) Behavioral Characteristics Model (BCM) of a
multiagent system based on FDS.
This is a support model to observe the service
provision and situation of an agent, and to deter-
mine a necessary control and an actual control
while providing service through the multiagent
system. By setting the control criteria of BCM,

it is possible to realize situation-oriented control
of FDS.

By using FDS, a multiagent system can be designed
and constructed systematically. Furthermore, by using
BCM, a multiagent system with flexible QoS control
capability can deal with changes in the system’s op-
erational situations and thereby maintain the required
QoS as well as its behavioral characteristics.

In this study, to evaluate the effectiveness of the pro-
posed models, we apply the models to the design of
an actual multimedia communication system. We con-
firm that stable multimedia communication services
can be provided by a system that is designed and con-
trolled based on the proposed models. We also com-
pare these results with results obtained using a con-
ventional multimedia communication system. Subse-
quently, we evaluate the effectiveness of FDS and
BCM.

The remainder of this paper is organized as follows.
We propose FDS in Section 2 and then propose BCM
in Section 3. In Section 4, a multimedia communi-
cation system is designed and implemented based on
FDS and BCM. Section 5 presents the experimental re-
sults of the multimedia communication system to show
the effect of the proposed scheme. Finally, we con-
clude the paper in Section 6.

2. Construction model of multiagent system

2.1. Outline of the Flexible Distributed System (FDS)

In this section, we propose the Flexible Distributed
System (FDS) as a construction model of a multiagent
system.

FDS autonomously configures a service that satis-
fies user requirements and functions during run time
to provide the service to the users. During this service
provision, the model activates processing to reduce un-
desirable influences on the service when changes oc-
cur inside and outside the system. According to these
characteristics, the system can maintain service auto-
matically.

The FDS function is realized by integrating the
knowledge-processing abilities of each agent accord-
ing to agent-based computing technology; that is, each
agent manages its function and situation. The flexibil-
ity to address various requirements is attained through
the cooperation of multiple agents. FDS function can
handle the changes in system resources at the overall
system level.

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 163

2.2. Flexible Distributed System

In this section, we represent FDS in a syntactic man-
ner. FDS consists of requirements, available services
and possible services.

Definition 1. A Flexible Distributed System, denoted
as FDS , is designed based on an R, an AS and an S.
The FDS can be described in the following expres-
sion:

FDS = 〈R, AS, S〉,

where the R is a set of user requirements and system
requirements, the AS is a set of available services for
the user and the system and the S is a set of possible
services that can be realized in the system.

Detailed elements of an FDS are shown below. An
R contains r(i) (i = 1, 2, . . . , n) and is classified into
an R_U and an R_S, as follows:

R = R_U ∪ R_S,

where the R_U is a set of user requirements and the
R_S is a set of system requirements. The R_U con-
tains r_u(i) (i = 1, 2, . . . , n), and an r_u(i) is de-
termined task Ts which is a set of user tasks t(i)
(i = 1, 2, . . . , n) and the quality of a task QoT which
is a set of functions to determine the quality of a task
qot(i) (i = 1, 2, . . . , n), as follows:

R_U = {r_u(i) | r_u(i) = 〈t(i), qot(i)〉,
t(i) ∈ Ts,

qot(i) ∈ QoT ,

i = 1, 2, . . . , n}.

The R_S is classified into an R_S_Ap, an R_S_Pt
and an R_S_Nt, and described in the following ex-
pression:

R_S = R_S_Ap ∪ R_S_Pt ∪ R_S_Nt,

where the R_S_Ap is a set of requirements of applica-
tion, the R_S_Pt is a set of requirements of platform
and the R_S_Nt is a set of requirements of network.
The R_S_Ap contains r_s_ap(i) (i = 1, 2, . . . , n),
and an r_s_ap(i) is the requirement description of
an application function ap_f(i) that is defined by
a required application function req_ap_f(i), a re-

quired quality of application service req_ap_f_q(i),
an R_S_Pt and an R_S_Nt, as follows:

R_S_Ap = {r_s_ap(i) | r_s_ap(i)

= 〈req_ap_f(i), req_ap_f_q(i),

R_S_Pt, R_S_Nt〉,
i = 1, 2, . . . , n}.

Similarly, the R_S_Pt contains r_s_pt(i) (i = 1, 2,
. . . , n), and an r_s_pt(i) is the requirement descrip-
tion of a platform function pt_f(i) that is defined by
a required platform function req_pt_f(i) and a re-
quired quality of platform service req_pt_f_q(i). The
R_S_Pt is represented as follows:

R_S_Pt = {r_s_pt(i) | r_s_pt(i)

= 〈req_pt_f(i), req_pt_f_q(i)〉,
i = 1, 2, . . . , n}.

The R_S_Nt contains r_s_nt(i) (i = 1, 2, . . . , n),
and an r_s_nt(i) is the requirement description of a
network function nt_f(i) that is defined by a required
network function req_nt_f(i) and a required quality
of network service req_nt_f_q(i). The R_S_Nt is
represented as follows:

R_S_Nt = {r_s_nt(i) | r_s_nt(i)

= 〈req_nt_f(i), req_nt_f_q(i)〉,
i = 1, 2, . . . , n}.

An AS contains as(i) (i = 1, 2, . . . , n), and an
as(i) is determined and selected from an S based on
an r(i). The AS is given as a result of a design process
D in the following expression:

AS = {as(i) | as(i) ← D(r(i), S),

i = 1, 2, . . . , n}.

The AS is classified into three kinds of services: a set
of available application services AS_Ap, a set of avail-
able platform services AS_Pt and a set of available
network services AS_Nt, as follows:

AS = AS_Ap ∪ AS_Pt ∪ AS_Nt.

Definition 2. Because an AS consists of an AS_Ap,
an AS_Pt and an AS_Nt, a design process D also

164 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

consists of the design process of an application ApD ,
the design process of a platform PtD and the design
process of a network NtD :

D = ApD ∪ PtD ∪ NtD .

A possible application service S_Ap contains
s_ap(j) (j = 1, 2, . . . ,m), and an s_ap(j) is speci-
fied by an ap_f(j), an ap_f_q(j), an N_S_Pt and
an N_S_Nt, where the ap_f(j) is application func-
tion, the ap_f_q(j) is the quality of the ap_f(j), the
N_S_Pt is a set of platform services that is necessary
for the ap_f(j) and the N_S_Nt is a set of network
services that is necessary for the ap_f(j). The S_Ap
can be described in the following expression:

S_Ap = {s_ap(j) | s_ap(j)

= 〈ap_f(j), ap_f_q(j), N_S_Pt,

N_S_Nt〉, j = 1, 2, . . . ,m,

N_S_Pt ⊆ S_Pt,

N_S_Nt ⊆ S_Nt}.

Given an r_s_ap(i) ∈ R_S_Ap, an available ap-
plication service av_s_ap(i) is selected from the
S_Ap, AS_Ap ⊆ S_Ap in an ApD :

av_s_ap(i) ← ApD(r_s_ap(i), S_Ap).

As a result, an AS_Ap is derived in the ApD , denoted
as following expression:

AS_Ap = {av_s_ap(i) | av_s_ap(i)

= 〈ap_f(j), ap_f_q(j),

AS_Pt, AS_Nt〉,
s_ap(j) ∈ S_Ap,

req_ap_f(i) = ap_f(j),

req_ap_f_q(i) ≤ ap_f_q(j),

R_S_Pt ⊆ N_S_Pt ⊆ AS_Pt,

R_S_Nt ⊆ N_S_Nt ⊆ AS_Nt,

i = 1, 2, . . . , n}.

Similarly, a possible platform service S_Pt contains
s_pt(k) (k = 1, 2, . . . , r), and an s_pt(k) is specified
by a pt_f(k), a pt_f_q(k) and an N_Rs_Pt, where
the pt_f(k) is a platform function, the pt_f_q(k) is

the quality of the pt_f(k) and the N_Rs_Pt is a set
of the necessary resources of the pt_f(k) and is a part
of the platform resources Rs_Pt. The S_Pt can be
described in the following expression:

S_Pt = {s_pt(k) | s_pt(k)

= 〈pt_f(k), pt_f_q(k), N_Rs_Pt〉,
N_Rs_Pt ⊆ Rs_Pt,

k = 1, 2, . . . , r}.

Given an r_s_pt(i) ∈ R_S_Pt, an available plat-
form service av_s_pt(i) is selected from the S_Pt,
AS_Pt ⊆ S_Pt in a PtD :

av_s_pt(i) ← PtD(r_s_pt(i), S_Np).

As a result, in the PtD , if an A_Rs_Pt is a set of avail-
able resources of a pt_f(i), the following AS_Pt is
derived:

AS_Pt = {av_s_pt(i) | av_s_pt(i)

= 〈pt_f(k), pt_f_q(k), A_Rs_Pt〉,
s_pt(k) ∈ S_Pt,

pt_f(k) = req_pt_f(i),

req_pt_f_q(i) ≤ pt_f_q(k),

N_Rs_Pt ⊆ A_Rs_Pt}.

A possible network service S_Nt contains s_nt(l)
(l = 1, 2, . . . , t), and an s_nt(l) is specified by an
nt_f(l), an nt_f_q(l) and an N_Rs_Nt, where the
nt_f(l) is a network function, the nt_f_q(l) is a qual-
ity of the nt_f(l) and the N_Rs_Nt is a set of the nec-
essary resources of the nt_f(l) and is a part of the net-
work resources Rs_Nt. The S_Nt can be described in
the following expression:

S_Nt = {s_nt(l) | s_nt(l)

= 〈nt_f(l), nt_f_q(l), N_Rs_Nt〉,
N_Rs_Nt ⊆ Rs_Nt,

l = 1, 2, . . . , t}.

Given an r_s_nt(i) ∈ R_S_Nt, an available net-
work service av_s_nt(i) is selected from the S_Nt,
AS_Nt ⊆ S_Nt in a NtD :

av_s_nt(i) ← NtD(r_s_nt(i), S_Nt).

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 165

As a result, in the NtD , if an A_Rs_Nt is a set
of available resources of the nt_f(i), the following
AS_Nt is derived:

AS_Nt = {av_s_nt(i) | av_s_nt(i)

= 〈nt_f(l), nt_f_q(l), A_Rs_Nt〉,
s_nt(l) ∈ S_Nt,

nt_f(l) = req_nt_f(i),

req_nt_f_q(i) ≤ nt_f_q(l),

N_Rs_Nt ⊆ A_Rs_Nt}.

Next, we consider a variable QoT . Two kinds of QoT
are definable: a required QoT and a realized QoT .

Definition 3. The required quality of a task Req_QoT
is defined by required qualities of an R_S_Ap,
an R_S_Pt, and an R_S_Nt, i.e., R_Ap_QoS ,
R_Pt_QoS and R_Nt_QoS , denoted as follows:

Req_QoT = G(R_Ap_QoS , R_Pt_QoS ,

R_Nt_QoS).

For example, if α1, α2 and α3 are priorities and ϕ is
a coefficient constant, using a linear combination op-
eration, a Req_QoT is calculated in the following:

Req_QoT = ϕ(R_Ap_QoS + R_Pt_QoS

+ R_Nt_QoS)

= ϕ

(
α1

∑
i

req_ap_f_q(i)

+ α2

∑
j

req_pt_f_q(j)

+ α3

∑
k

req_nt_f_q(k)
)

.

Definition 4. Because a required task is realized by
available functions of an AS_Ap, an AS_Pt and
an AS_Nt, the realized quality of a task Rlz_QoT
is defined by qualities of the AS_Ap, the AS_Pt
and the AS_Nt, i.e., A_Ap_QoS , A_Pt_QoS and
A_Nt_QoS , as follows:

Rlz_QoT = G(A_Ap_QoS , A_Pt_QoS ,

A_Nt_QoS).

If β1, β2 and β3 are priorities and μ is a coefficient
constant, using a linear combination operation as an
example, an Rlz_QoT is calculated in the following:

Rlz_QoT = μ(A_Ap_QoS + A_Pt_QoS

+ A_Nt_QoS)

= μ

(
β1

∑
i

ap_f_q(i)

+ β2

∑
j

pt_f_q(j)

+ β3

∑
k

nt_f_q(k)
)

.

Definition 5. The margin of QoT M_QoT is defined
as the difference of a Req_QoT and a Rlz_QoT , as
follows:

M_QoT = Rlz_QoT − Req_QoT.

Because the M_QoT has the following characteristics:

if Rlz_QoT ≥ Req_QoT, then M_QoT ≥ 0,

else M_QoT < 0,

the M_QoT can be used as a measure of the system’s
characteristics:

if M_QoT ≥ 0,

then the Req_QoT is maintained
and the user requirement is satisfied,

else the Rlz_QoT is degraded
and the user requirement is not satisfied.

During M_QoT < 0 when using a system, various
changes occur in the system. Operations to remove or
recover the degradation, such as tuning the system pa-
rameters or changing the system configuration, should
be executed to maintain the user requirements.

3. Control model of multiagent system

3.1. Outline of the Behavioral Characteristics Model
(BCM)

In this section, we propose the Behavioral Charac-
teristics Model (BCM) as the control model of the mul-
tiagent system.

166 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

BCM is a control model of multiagent systems and
is defined based on the change in QoT and its duration
time. When a change in QoT is observed, BCM exerts
control according to the characteristics of the change.
These characteristics are decided by specifying the ele-
ment that caused the change. BCM performs sufficient
control so that the control recovers from the change
directly.

3.2. Observation of service changes in FDS

Changes in an FDS are classified into the following
three patterns according to the causes of the changes in
an AS: changes caused by a change in the AS itself, a
change in an S, and a change in an R. The changes in
QoT are affected by applications, platforms, and net-
works. Changes then occur in the AS in the overall
FDS . Next we define the changes in the FDS .

Definition 6. A change in an FDS occurs because of
a ΔAS. The ΔAS is a change in an AS and a ΔFDS
is a change in the FDS . The change of the FDS can
be described in the following expression:

FDS =⇒ FDS + ΔFDS ,

FDS + ΔFDS = 〈R, AS + ΔAS, S〉.

Definition 7. A ΔAS is classified into a ΔAS_Ap, a
ΔAS_Pt and a ΔAS_Nt, where the ΔAS_Ap is a
change in an AS_Ap, the ΔAS_Pt is a change in an
AS_Pt and the ΔAS_Nt is a change in an AS_Nt.
If an FDS changes to an FDS + ΔFDS , an avail-
able application QoS A_Ap_QoS is also changed to
an AS_Ap + ΔAS_Ap, as follows:

AS_Ap =⇒ AS_Ap + ΔAS_Ap,

A_Ap_QoS =⇒ A_Ap_QoS + ΔA_Ap_QoS ,

an available platform QoS A_Pt_QoS is changed to
an AS_Pt + ΔAS_Pt, as follows:

AS_Pt =⇒ AS_Pt + ΔAS_Pt,

A_Pt_QoS =⇒ A_Pt_QoS + ΔA_Pt_QoS ,

an available network QoS A_Nt_QoS is changed to
an AS_Nt + ΔAS_Nt, as follows:

AS_Nt =⇒ AS_Nt + ΔAS_Nt,

A_Nt_QoS =⇒ A_Nt_QoS + ΔA_Nt_QoS .

For example, let us assume

av_s_ap(i) = 〈ap_f(i), ap_f_q(i),

AS_Pt, AS_Nt〉

is changed to

av_s_ap′(i) = 〈ap_f ′(i), ap_f_q′(i),

AS_Pt, AS_Nt〉,
ap_f ′(i) �= ap_f(i), ap_f_q′(i) �= ap_f_q(i).

An A_Ap_QoS is also changed to an A_Ap_QoS ′

(tentative and permanent changes in an AS_Ap).
The sum of the differences of the changed qualities
ΔA_Ap_QoS is given as follows:

ΔA_Ap_QoS =
∑

i

(ap_f_q′(i) − ap_f_q(i)).

Consequently, if ΔA_Ap_QoS < 0, then negative
changes occurred in the system (tentative and perma-
nent changes in both an AS_Pt and an AS_Nt). Sim-
ilarly, a ΔA_Pt_QoS is given as follows:

ΔA_Pt_QoS =
∑

j

(pt_f_q′(j) − pt_f_q(j)),

if ΔA_Pt_QoS < 0, then negative changes occurred
in the platform. A ΔA_Nt_QoS is also given as fol-
lows:

ΔA_Nt_QoS =
∑

k

(nt_f_q′(k)−nt_f_q(k)),

if ΔA_Nt_QoS < 0, then negative changes occurred
in the network.

Definition 8. The difference of change in an FDS
ΔM_QoT is the sum of a ΔA_Ap_QoS ,
a ΔA_Pt_QoS and a ΔA_Nt_QoS , denoted as fol-
lowing expression:

ΔM_QoT = ΔA_Ap_QoS

+ ΔA_Pt_QoS + ΔA_Nt_QoS .

The ratio of a ΔM_QoT , i.e. rat_ΔM_QoT is de-
fined based on a ΔM_QoT and a Req_QoT , as fol-
lows:

rat_ΔM_QoT =
∑

ϕ|ΔM_QoT |/Req_QoT.

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 167

3.3. Detection of service changes in FDS

In this section, we explain several characteristics of
changes in an FDS.

Definition 9. A change in QoT is classified into
change in QoT , fluctuation of QoT and degradation of
QoT , as follows:

if ΔM_QoT �= 0 and rat_ΔM_QoT > ψ,
then a change in QoT Ch(t) is detected at time t,

if rat_ΔM_QoT ≤ ψ,
then a fluctuation of QoT is detected,

if Ch(t) and ΔM_QoT < 0 and
rat_ΔM_QoT > ε,

then a degradation of QoT Dg(ε, t) is detected
at time t.

Here, ψ and ε are threshold values of the ΔM_QoT
and the rat_ΔM_QoT respectively.

An FDS does not need to operate when a fluctuation
of QoT is observed because the fluctuation of QoT
does not influence the external FDS . In contrast, when
a change in QoT is observed, especially when a degra-
dation of QoT is detected, the FDS analyzes the situa-
tion and performs some operations on the system. The
degradation of QoT is defined as a temporary change
in QoT and a permanent change in QoT .

Definition 10. Let ξ is the duration of change in QoT:

if ∀t′, t ∈ [t1, t2), 0 ≤ t1 < t2, Dg(ε, t),
then ξ = t2 − t1.

Here, γ is a threshold of a temporary change in QoT
and γ0 is a threshold of a fluctuation of QoT .

If 0 ≤ ξ ≤ γ0, then an FDS is considered to be a
fluctuation of QoT .

A degradations of QoT can be classified into a tem-
porary change in QoT and a permanent change in
QoT . The details of degradations can be described in
the following expression:

if ∀ξ, γ0 < ξ ≤ γ and Dg(t + ξ),
then a temporary change in QoT TDg(t + ξ)

is detected,
else ∀ξ, γ < ξ and Dg(t + ξ),

then a permanent change in QoT PDg(t + ξ)
is detected.

3.4. Flexibility of FDS

In an FDS , when a degradation of QoT is observed,
a counter operation δFDS is activated to process the
change in the FDS to cancel a ΔFDS .

Definition 11. A δAS for a degradation of QoT con-
sists of TNi (i = 1, 2, . . . , n) and RDi (i = 1, 2,
. . . , n), where the δAS is counter operation, and a
TNi is tuning operation and a RDi is redesign opera-
tion. Suppose that a τi is the duration of counter oper-
ation, a TNi(t, R, AS + ΔAS, S, τi) provides as the
δAS against a ΔAS at time t. If the QoT isn’t recov-
ered by the TNi, an RDi(t, R, AS + ΔAS, S, τi) al-
ters the AS of the FDS to the other AS′ of an FDS ′

as the δAS .
When a QoT is recovered by these operations, the

FDS becomes a new FDS ′ i.e., FDS + ΔFDS +
δFDS , as follows:

FDS + ΔFDS + δFDS

= 〈R, AS + ΔAS + δAS, S〉.

Using these operations, the flexibilities of a temporary
change in QoT and a permanent change in QoT are
defined.

Definition 12. An FDS which is flexible with respect
to a temporary change in QoT can be described in the
following expression:

if TDg(ε, t + γ0), ts = t + γ0 ≤ T and
ξ = γ0 + τ ≤ γ, where t is a time point
which starts a degradation of QoT , the T is
the threshold of a TDg and the τ is the
duration of the counter operations,

then a tuning operation is activated to recover
the QoT for the FDS :
δAS ← TNi(ts, R, AS + ΔAS, S, τ),

as a result, ΔM_QoT (t + ξ) ≥ 0,
rat_ΔM_QoT (t + ξ) ≤ ε,
∀t′, t′ > t + ξ, ΔM_QoT (t′) ≥ 0,
rat_ΔM_QoT (t′) ≤ ε,

then the FDS is flexible with respect to the
temporary changes in QoT , and an
FDS (t) is change to an FDS ′(t′):
FDS (t) =⇒ FDS ′(t′).

Figure 1 shows that if an FDS can resolve a tem-
porary change in QoT using the procedure described

168 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

Fig. 1. Flexibility for the temporary change in QoT and the permanent change in QoT .

above, then the FDS is regarded as flexible with re-
spect to the temporary change in QoT . Otherwise, as
portrayed in Fig. 1, operations for a permanent change
in QoT is required.

Definition 13. An FDS isn’t flexible for a temporary
change in QoT , the FDS provides a operation for a
permanent change in QoT , as follows:

if TDg(ε, t + γ0), ts = t + γ0 ≤ T ,
ξ = γ0 + τ ≤ γ,

then a tuning operation is activated to recover
the QoT for FDS is observed, as follows:
δAS ← TNi(ts, R, AS + ΔAS, S, τ),

as a result, TDg(t + ξ), ΔM_QoT (t + ξ)< 0
and rat_ΔM_QoT (t + ξ) > ε,

then a temporary change in QoT continues
at t + ξ,

if ∀t′, t + ξ < t′ ≤T , TDg(ζ, t′), ξ′ = ξ +
∑

τi,
where τi is the duration of the counter
operations,

then a tuning operation is activates to recover
the QoT for FDS again:
δAS ← TNi(t′, R, AS + ΔAS, S, τi),

as a result, TDg(ε, t + ξ′), ξ′ = ξ +
∑

τi

is observed,
then PDg(t + T) is detected at t + T

and a RDi operation is applied.

A premanent change in QoT is detected, a rede-
sign operation is activated to recover the QoT for
the FDS :

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 169

if AS′ ←RDi(tss, R + ΔR, AS + ΔAS, S, Δτ ′),
then tss = t + T , ΔM_QoT (tss + τ ′) ≥ 0,

rat_ΔM_QoT (tss + τ ′) ≤ ε, AS ⊆ AS’
and ∀t′′, t′′ ≥ tss + τ ′, QoT (t′′) ≥ QoT (t)
are observed,

then the FDS is flexible with respect to the
permanent changes in QoT , and an
FDS (t) is change to an FDS ′(t′′):
FDS (t) =⇒ FDS ′(t′′)(t′ ≥ tss + τ ′).

If an FDS can resolve a permanent change in QoT

by using the procedure described above, then the FDS
is regarded as flexible with respect to the permanent
change in QoT . Otherwise, FDS designers must re-
design the FDS to satisfy the requirements.

Finally, the notions of a QoS -stable FDS and a
pseudo-QoT -stable FDS are definable with respect
to an FDS behavior.

Definition 14. A QoT_stable FDS exists if a changed
FDS can be returned to the original FDS . The
QoT_stable FDS can be described in the following
expression:

FDS (t) =⇒ FDS ′(t + ξ)

=⇒ FDS (t + ξ + ρ + ν),

AS =⇒ AS + δAS =⇒ AS,

Rlz_QoS =⇒ Rlz_QoS + ΔRlz_QoS

=⇒ Rlz_QoS .

Therefore, FDS changes to the original FDS when the
state of the system recovers. A pseudo_QoT_stable
FDS exists if the QoT of the changed FDS can
be brought closer to the original QoT . The
pseudo_QoT_stable FDS can be described in the fol-
lowing expression:

FDS (t) =⇒ FDS ′(t + ξ),

AS =⇒ AS + δAS =⇒ AS′,

Rlz_QoS =⇒ Rlz_QoS + ΔRlz_QoS ,

=⇒ Rlz_QoS ′.

The FDS provides similar services when the original
FDS cannot be recovered.

4. Example of a multimedia communication
system

4.1. Multimedia communication system based on
FDS and BCM

This section presents an agent based multimedia
communication system (AMCS) as an application of
FDS and BCM [1]. AMCS consists of various mul-
timedia communication service components that are
realized as agents (multimedia processing agents).
Moreover, the organization of these agents is config-
ured dynamically at the run time of AMCS on the basis
of the BCM of FDS, explained in Section 3.

By applying FDS and BCM to the design of AMCS,
the detailed analyses and design of the operational sit-
uations of AMCS can be carried out, and the actual ob-
servation parameters of AMCS can be mapped into the
elements of BCM.

Figure 2 depicts the architecture of a media pro-
cessing agent implemented as an ADIPS/DASH agent
[3,7,17–19]. The agent’s knowledge, which is defined
based on FDS, is embedded into each agent. For exam-
ple, the agent’s knowledge is designed and represented
based on R_S_Ap, S_Ap, and AS_Ap. An example
of the S_Ap description is also presented in Fig. 3. In
Fig. 3, elements of the S_Ap are represented as “facts”
in the form of objects, attributes, and values (OAV). In
this OAV representation, an object name follows a left
parenthesis “(”, an attribute name follows a colon “:”,
and a value follows the respective attribute names. For
the fact depicted in Fig. 3, the object name “s_ap” con-
sists of four pairs of attributes and values; this fact rep-
resents the first element of S_Ap.

4.2. Agent behavior of AMCS

The organization of agents is constructed using the
QoS-based CNP (Q-CNP) [1], which is designed using
an extended cooperation protocol of the Contract Net
Protocol (CNP) [15].

Figure 4 illustrates the AMCS framework. In AMCS,
the Agent Repository, where agents are stored, and the
Agent Workplace, where agents are actually working
during run time, are located in a networked environ-
ment. The agents stored in the Agent Repository are
designed based on FDS. Each agent is designed and
implemented as an element of S_Ap, together with the
knowledge of the respective multimedia communica-
tion services. When a user requirement (R_S_Ap) is
given to a User Agent (UA), the suitable agents that

170 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

Fig. 2. Architecture of a media processing agent.

Fig. 3. Example of an S_Ap description.

satisfy R_S_Ap are selected and organized using the
S_Ap stored in the Agent Repository by the Manager
Agent (Manager) based on FDS. Then, the organiza-
tion of agents is instantiated into the Agent Workplace
as the AS_Ap of the AMCS. Figure 5 shows an ex-
ample of the knowledge description for selecting the
AS_Ap based on the S_Ap that is implemented as one
rule of the model of Fig. 2.

The syntax of this rule is identical to that of OPS5
[2]. That is, it consists of a conditional part, which
precedes “−−>”, and an action part, which follows
“−−>”. An element with “:” is an attribute and an el-
ement with “?” is a variable. The rule is interpreted by
the first-match strategy, as with OPS5. That is, the rule

is interpreted by pattern-matching of the descriptions
for req_s_ap and s_ap, which are given as facts.

According to this rule, if all nine patterns match,
then the bound s_ap is selected and pushed to the list
of candidates of possible services that fulfill the service
requirement. Then, the instantiated agents start the ser-
vice provision. During this service provision, the Man-
ager operates the service using AS_Ap, AS_Pt, and
AS_Nt, which are observed by the Manager, Platform
Monitoring Agent (PtMA), and Network Monitoring
Agent (NtMA), respectively.

4.3. Definition of QoT and the AMCS operations

This section provides a more detailed description of
the definition of QoT and the operations of AMCS.
The parameters that are used to evaluate the status of
the services of AMCS are given as follows:

Req_QoT =
(

α1

∑
i

req_ap_f_q(i)

+ α2

∑
j

req_pt_f_q(j)

+ α3

∑
k

req_nt_f_q(k)
)

/(i + j + k),

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 171

Fig. 4. Framework of the AMCS.

Fig. 5. Example of knowledge description to select the AS_Ap.

Rlz_QoT =
(

β1

∑
i

ap_f_q(i)

+ β2

∑
j

pt_f_q(j)

+ β3

∑
k

nt_f_q(k)
)

/(i + j + k).

According to the above definitions, the quality pa-
rameters of the multimedia communication services
are mapped to the attributes of the qualities of the

BCM components: the frame rate, encoding quality,
and video size are ap_f , the CPU resource is pt_f , and
the bandwidth is nt_f . The parameters α1 to α3 and
β1 to β3 are determined depending on the QoS priori-
ties, which are provided by the applications, platforms,
and networks. For example, when a QoS of an applica-
tion is prioritized, α1 and β1 are weighted more than
α2, α3, β2, and β3.

After the services of AMCS are provided, ΔM_QoT

and rat_ΔM_QoT are calculated according to the
changes in QoT that occurred in the system, as follows:

ΔM_QoT = β1

∑
i

Δap_f_q(i)

+ β2

∑
j

Δpt_f_q(j)

+ β3

∑
k

Δnt_f_q(k)

− α1

∑
i

Δreq_ap_f_q(i)

− α2

∑
j

Δreq_pt_f_q(j)

− α3

∑
k

Δreq_nt_f_q(k),

rat_ΔM_QoT = rat(ΔM_QoT,Req_QoT)

= |ΔM_QoT |/Req_QoT.

172 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

The counter operations are selected and executed
against these changes when a temporary change in
QoT or a permanent change in QoT is observed using
ΔM_QoT and rat_ΔM_QoT . The tuning operations
of the agents’ working conditions should be activated
as a TN operation when a temporary change in QoT is
observed. However, when a permanent change in QoT
is observed, a reorganization operation of the agent
organization is activated as an RD operation. From
these operations, the undesirable operational situations
of AMCS are recovered. Consequently, the flexible
QoS control strategies in AMCS can be expressed and
designed based on BCM. Moreover, using FDS, the
QoS control knowledge can be designed and imple-
mented systematically as the operational knowledge of
the agents of AMCS.

5. Experiment and evaluation

5.1. Purpose of experiment

In this section we evaluate the proposed scheme
using two experiments. The experimental results are
demonstrated using an AMCS prototype.

Through those experiments, we evaluate how the
AMCS recovers the degraded QoT at run time and we
show that the AMCS appropriately handles the degra-
dation of QoT in the provision of a live streaming ser-
vice. Moreover, we observe the system’s response to
the temporary change in QoT , which is a basic and

typical operation. From these results, we can confirm
whether the proposed model is useful for analysis of
the behavior of multimedia network middleware.

5.2. Environment of the experiment

Figure 6 depicts the configuration of the experimen-
tal system of experiment 1. A sender-side PC is con-
nected to a 100 Mbps Ethernet LAN; a receiver-side
PC is connected with an 11 Mbps link of IEEE802.11b
via a wireless access network.

The initial experimental conditions are as follows:

R_S_Ap = {〈streaming-service-function,
fps: 15 (fps)
quality: 80 (%)
size: 320 (pixel)
sender-CPU: 60 (%)
receiver-CPU: 60 (%)
bandwidth: 5000 (kbps)〉}

R_S_Pt = {〈CPU usage, sender-CPU: 60 (%)
receiver-CPU: 60 (%)〉}

R_S_Nt = {〈bandwidth,
bandwidth: 5000 (kbps)〉}

Thresholds: γ0 = 3.0 s, γ = 20 s

All were given as fixed values.
Three systems were selected for experiment 1:

system 1 A multimedia communication system with-
out QoS control functions,

Fig. 6. Configuration of experimental system 1.

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 173

Fig. 7. Configuration of experimental system 2.

system 2 An AMCS with FDS, and
system 3 An AMCS with FDS and BCM.

Figure 7 depicts the configuration of the experi-
mental system used for experiment 2. A sender-side
PC is connected to a 100 Mbps Ethernet LAN; and a
receiver-side PC is connected with an 11 Mbps link of
IEEE802.11b via a wireless access network.

The initial experimental conditions are as follows:

R_S_Ap= {〈streaming-service-function,
fps: 15 (fps)
quality: 60 (%)
size: 280 (pixel)
sender-CPU: 40 (%)
receiver-CPU: 50 (%)
bandwidth: 200 (kbps)〉}

R_S_Pt = {〈CPU usage, sender-CPU: 40 (%)
receiver-CPU: 50 (%)〉}

R_S_Nt = {〈bandwidth, bandwidth: 200 (kbps)〉}

All were given as fixed values.
Two systems were selected for experiment 2:

system 2 An AMCS with FDS, and
system 3 An AMCS with FDS and BCM.

In this experiment, we used the Java Media Frame-
work (JMF) [8] as a basic multimedia communi-
cation system framework. Although JMF provides
component-based multimedia processing capabilities,
it has no QoS control functions by itself.

For system 1, we used JMF as it is and observed
the service provided by JMF. In JMF, when a user

requirement is issued, a multimedia communication
system is constructed using media processing compo-
nents, thereby realizing the required service. This con-
figuration is determined using a “graph-building algo-
rithm” based on JMF. This algorithm selects the small-
est organization from the possible organizations con-
figured by using a connectable component chain with
consideration of the input and output specifications
of the components. The selected configuration is per-
formed with no QoS consideration. In system 2, we
used an AMCS, which is designed based on FDS. In
this case, BCM is not used. The system is constructed
by adding the configuration function of components
based on QoS to system 1. Although the system is pro-
vided in a start-up sequence, this system does not tune
the QoS after the service provision starts. In contrast,
in system 3, at the design phase of the system, the QoS
tuning operations based on BCM are realized in addi-
tion to the functions of both system 1 and system 2.
Therefore, because of the changes in the system’s op-
erational conditions, the system can tune the QoS flex-
ibly after the service provision starts.

The experiment was conducted using the following
procedures.

(1) Provide a user requirement to the system.
(2) Start the service automatically.
(3) Observe the system’s behavior and the M_QoT .

The M_QoT values of each system were observed
with respect to the changes in AS_Ap, AS_Pt, and
AS_Nt under the initial conditions of R_S_Ap,
R_S_Pt, and R_S_Nt. Moreover, we assumed that
the user requirement was satisfied and that M_QoT

174 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

was controlled appropriately when the observed
M_QoT was in the range of −0.05≤M_QoT ≤ 0.05.

5.3. Results of experiment 1

The results of experiment 1 for system 1, system 2,
and system 3 are shown. In the figures shown, the x-
axis is the time and the y-axis is the M_QoT value.

First, we describe the experimental result for sys-
tem 1: service provision via the multimedia communi-
cation system without the QoS control function. The
result is presented in Fig. 8.

After service provision started, a decrement of
M_QoT was observed immediately and degradation
of M_QoT continued because system 1 was incapable
of controlling the situation of the service provision by
itself. System 1 was designed with no policy to han-
dle the user requirement and the actual platform and
network environment. Therefore, stable service provi-
sion could not be ensured. It was difficult to provide
adequate services for the users.

Next is the result of the service provision for sys-
tem 2, which is based on AMCS with FDS, The result
is shown in Fig. 9.

After the service provision started, a decrement of
M_QoT was observed immediately, and it continued
thereafter. Compared to system 1, M_QoT reached a
higher level due to the effect of FDS. For period [A]
in Fig. 9, the decrement of M_QoT continued. Sub-
sequently, M_QoT improved automatically by itself.

However, degradation of M_QoT was observed again
and continued for period [B]. Although M_QoT re-
covered similarly to the recovery shown after pe-
riod [A], M_QoT decreased again. Oscillation was
observed, showing that system 2 is unstable.

The result shows no beneficial effect of FDS to
maintain an adequate M_QoT . Therefore, this situ-
ation is not preferable because the assumed environ-
ment in the design of system 2 differs from the actual
environment. The QoS of the system decreased overall.

Although the QoS of system 2 recovered because
some change occurred after period [B], the service
provision is not stable because the essential cause of
degradation was not removed at that time. Such a
weakness of system 2 is attributable to the inability of
the system to process the differences between the op-
erational conditions of the assumed environment at the
design phase and the actual environment during run
time.

Finally, the result of the service provision for sys-
tem 3 is presented in Fig. 10.

When the user requirement was issued and service
provision started, the decrement of M_QoT was ob-
served immediately, and then it continued. Therefore,
the control operations to recover M_QoT were acti-
vated for period [A], as portrayed in Fig. 10. The re-
source was not degraded rapidly and remained suffi-
cient. The cause of the degradation of M_QoT was
determined to be a decrement of the other AS_Ap be-
cause the value of the quality of M_QoT at that time

Fig. 8. Behavior of multimedia communication system without a QoS control function.

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 175

Fig. 9. Behavior of AMCS with FDS.

Fig. 10. Behavior of AMCS with FDS and BCM.

was high. The other AS_Ap was found. It recovered
by decreasing its quality slightly, and M_QoT was
thereby improved. Subsequently, the stable service of
system 3 recovered because the AMCS with BCM can
detect changes and execute counter operations based
on BCM, even when the actual environment at run time
is different from the assumed environment at the de-
sign phase.

These results demonstrate that the proposed scheme
resolves the causes of degradation by considering other

possible service components that can omit the excess
quality. The proposed scheme, therefore, realizes sta-
ble service provision when the service provision starts.

5.4. Results of experiment 2

The results of experiment 2 for system 2 and sys-
tem 3 are shown. In the figures shown, the x-axis is the
time and the y-axis is the M_QoT value.

176 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

Fig. 11. Behavior of AMCS with FDS.

Fig. 12. Behavior of AMCS with FDS and BCM.

First, we describe the experimental result for sys-
tem 2, which is AMCS with FDS, as shown in Fig. 11.

When the user requirement was issued and service
provision started, stable M_QoT was observed. How-
ever, after period [A], a decrement of M_QoT was
observed and the degradation of M_QoT continued.
This happened because system 2 was incapable of con-
trolling the service situation after the service provi-
sion conditions changed. Therefore, this situation is
not preferable because the assumed environment in the

design of system 2 differs from the actual environment
in the service provision. The QoS of the system de-
creased overall during the service provision.

Next, the result of the service provision of system 3,
which is AMCS with FDS and BCM, is presented in
Fig. 12.

After the service provision started, stable M_QoT

was observed and continued. However, after period [A],
a decrement of M_QoT was observed. The control
operations to recover M_QoT were activated and it

A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System 177

recovered. The cause of the degradation of M_QoT
was determined to be a decrement of AS_Pt because
the value of the sender CPU at that time was degraded.
Therefore, M_QoT improved by decreasing its qual-
ity slightly in period [B]. The stable service of sys-
tem 3 recovered because the AMCS with FDS and
BCM can detect a change and execute a counter op-
eration based on BCM when the actual environment
changes at run time.

These results demonstrate that the proposed scheme
realizes stable service provision against service degra-
dation during the service provision.

5.5. Discussion

In a multimedia communication system, it is im-
portant to provide suitable services with respect to the
given user requirements and the actual platform and
network environment during run time. As described in
Sections 5.3 and 5.4, it is difficult to provide stable ser-
vices for users if the requirements and environments
are not considered and the operations after the start of
the service provision are ignored, as they were by sys-
tem 1 and system 2. In contrast, stable service provi-
sion can be achieved by using system 3 with the ap-
propriate design and operations based on the BCM of
FDS.

Generally, because the organization of a multiagent
system is realized dynamically during run time, the re-
lations between the design specifications of individual
agents and the actual behavior of the system cannot
be clearly associated. Therefore, it becomes difficult
to tune the knowledge of each agent based on the be-
havior of the actual system. However, under the pro-
posed scheme, a designer of multiagent systems can
specify the behavioral characteristics and operations
for the required QoS control of the target system; as
a result, the designer can also define the behavioral
knowledge using the operations as design specifica-
tions of the agents. Then, testing and debugging of the
agents can be conducted by using the design specifi-
cations based on FDS. This practical solution solves
(P1) regarding the management of knowledge of the
multiagent system.

From the viewpoint of multiagent systems for mul-
timedia communication applications, QoS control is
performed based on the heuristics of the system op-
erators. Sometimes the system could go into an infi-
nite loop or stop the system behavior without suffi-
cient QoS control capabilities. In contrast, by using the
BCM of FDS, it is possible to determine the charac-

teristics of the change in the system behavior and con-
trol operations to address the change in QoS during
the system run time. The scheme proposed in this pa-
per presents clear insight into the policy of design and
control of behavior of a multiagent system. It also can
improve the overall system performance, as confirmed
by the experiments described in Sections 5.3 and 5.4.
In addition, an agent of a multiagent system behaves
based on its own design specification. However, it is
difficult to observe and control the overall behavior of
a multiagent system. In the proposed scheme, an in-
dividual agent can be designed and managed system-
atically based on FDS and its BCM. Each agent ob-
serves its own behavioral situation and controls the sit-
uation independently to maintain the behavioral char-
acteristics of the whole system. Consequently, moni-
toring some aspects of the system behavior, such as the
changes in Fig. 3 QoS of the whole system, is simpli-
fied. Moreover, we can find the root cause of the degra-
dation of QoS in order to maintain the system during
run time. The proposed scheme has the capabilities to
observe and control the behavior of the multiagent sys-
tem with flexible QoS control. Therefore, a solution to
problem (P2) is available.

6. Conclusion

As described in this paper, we proposed the FDS and
its BCM as new models for observing and controlling
the behavior of a multiagent system. Using the pro-
posed scheme, a multiagent system was created with
flexible QoS control capabilities that can correctly pro-
cess changes in the operational situations of a system
to maintain the required QoS as well as its behavioral
characteristics. To evaluate the effects of the proposed
scheme, we applied these models to a multimedia com-
munication system constructed as a multiagent system.
Experiments were performed using a multimedia com-
munication prototype system. The results confirmed
that the proposed models provide an effective scheme
for the designers of multiagent systems. The models
resolve several of the current problems described in
Section 1.

In future work, we intend to construct a multime-
dia communication system of a multiagent system that
can adapt to the permanent changes in QoT . This work
includes many technical challenges that we must fur-
ther investigate. Additionally, we will apply the pro-
posed models to the service provision systems of other
types of applications in a ubiquitous environment. We

178 A. Takahashi and T. Kinoshita / Configuration and control design model for an agent based Flexible Distributed System

aim to achieve a multiagent system that provides user-
oriented, stable service by enhancing the proposed
models. A series of studies similar to this one would
contribute to the practical use of multiagent based ap-
proaches in many application domains.

References

[1] A. Takahashi, S. Konno, T. Suganuma, T. Kinoshita and N. Shi-
ratori, A design of agent-based multimedia component in flex-
ible network layer, in: Proc. of the Int. Conf. on Advanced In-
formation Networking and Applications, 2003, pp. 570–573.

[2] C. Forgy, OPS5 User’s Manual, Technical report CMU-CS, 81–
135, 1981.

[3] DASH, Dash-distributed agent system based on hybrid archi-
tecture!, http://www.agent-town.com/dash/index.html.

[4] F. Zambonelli, N.R. Jennings and M. Wooldridge, Organiza-
tional abstractions for the analysis and design of multi-agent
system, Lecture Notes in Computer Science 1957 (2001), 235–
251.

[5] G. Tesauro, D.M. Chess, W.E. Walsh, R. Das, A. Segai,
L. Whalley, J.O. Kephart and E.R. White, A multi-agent sys-
tems approach to autonomic computing, in: Proc. Int. Conf. on
Autonomous Agents and Multiagent Systems, 2004, pp. 464–
471.

[6] IBM, Autonomic vision & manifesto, http://www.research.
ibm.com/autonomic/manifesto/.

[7] IDEA, Idea-interactive design environment for agent system,
http://www.ka.riec.tohoku.ac.jp/idea/index.html.

[8] JMF, JMF home page, http://java.sun.com/products/java-
media/jmf/.

[9] J.M. Serrano and S. Ossowski, A compositional framework for
the specification of interaction protocols in multiagent organi-
zations, Web Intelligence and Agent Systems 5(2) (2007), 197–
214.

[10] L.K. Wickramasinghe and L.D. Alahakoon, Dynamic self or-
ganizing maps for discovery and sharing of knowledge in
multi agent systems, Web Intelligence and Agent Systems 1(3)
(2005), 31–48.

[11] M. Randles, D. Lamb and A. Taleb-Bendiab, Engineering au-
tonomic systems self-organisation, in: Proc. of the Fifth IEEE
Workshop on Engineering of Autonomic and Autonomous Sys-
tems, 2008, pp. 107–118.

[12] M. Xu, L. Padgham, A. Mbala and J. Harland, Tracking reli-
ability and helpfulness in agent interactions, Web Intelligence
and Agent Systems 1(5) (2007), 31–46.

[13] N.R. Jennings, On agent-based software engineering, Artificial
Intelligence 177(2) (2000), 277–296.

[14] N. Venkatasubramanian, C. Talcott and G.A. Agha, A formal
model for reasoning about adaptive QoS-enabled middleware,
ACM Trans. on Software Engineering and Methodology 13(1)
(2004), 86–147.

[15] R.G. Smith, The contract net protocol: High-level communica-
tion and control in a distributed problem solver, IEEE Trans.
Comp. C-29(12) (1980), 1104–1113.

[16] S.A. DeLoach, W.H. Oyenann and E.T. Matson, A capabilities-
based model for adaptive organizations, Autonomous Agents
and Multi-Agent Systems 16(1) (2008), 13–56.

[17] S. Fujita, H. Hara, K. Sugawara, T. Kinoshita and N. Shiratori,
Agent-based design model of adaptive distributed system, The
International Journal of Applied Intelligence, Neural Network
and Complex Problem-Solving Technologies 9(1) (1998), 57–
70.

[18] T. Kinoshita and K. Sugawara, ADIPS framework for flexible
distributed systems, in: Multiagent Platforms, T. Ishida, ed.,
LNAI, Vol. 1599, 1998, pp. 18–32.

[19] T. Uchiya, T. Maemura, L. Xiaolu and T. Kinoshita, Design
and implementation of interactive design environment of agent
system, in: Proc. 20th Int. Conf. Industrial, Engineering and
Other Applications of Applied Intelligent Systems, LNAI, Vol.
4570, 2007, pp. 1088–1097.

[20] W.H. Oyenan and S.A. DeLoach, Design and evaluation of a
multiagent autonomic information system, in: Proc. Int. Conf.
on Intelligent Agent Technology, 2007, pp. 182–188.

[21] W. Jiao, J. Debenham and B. Henderson-Sellers, Organiza-
tional models and interaction patterns for use in the analysis
and design of multi-agent systems, Web Intelligence and Agent
Systems 3(2) (2005), 67–83.

[22] Y. Liu, A. Fekete and L. Gorton, Design-level performance pre-
diction of component-based applications, IEEE Trans. on Soft-
ware Engineering 31(11) (2005), 928–941.

Copyright of Web Intelligence & Agent Systems is the property of IOS Press and its content may not be copied

or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

