
74 Bell Labs Technical Journal ◆ Winter 1997 Copyright 1997. Lucent Technologies Inc. All rights reserved.

Introduction
CoMMware is a communication middleware sys-

tem. Using a common overall architecture, distinct

versions have been built in Bell Labs and in Lucent

Technologies’ Business Communications Systems

Division. This paper describes the Bell Labs version.

CoMMware is a collection of software modules

that helps developers write multi-party multimedia

applications, such as real-time conference pro-

grams, distance learning tools, and distributed

games. As Figure 1 illustrates, this collection of

software components may be characterized as a

conceptual layer, situated between higher-level

application programs and underlying computation

and communication systems. Middleware, which

hides details of lower-level operating systems and

networks from the application developer, is

described by and made available through its appli-

cation program interfaces. Thus, middleware creates

a stable programming base for building applications

that can execute on various computer systems and

communication networks.

While the more familiar and fundamental mid-

dleware provides distributed programming tools,

communication middleware also provides quality-of-

service communication support. Applications can use

this program base for an important set of core func-

tions including multi-party session management and

multimedia connection management. Furthermore,

these core functions are available on several operat-

ing system and network platforms. Therefore, an

application—for example, an audio-video conferenc-

ing system—could be built using CoMMware to exe-

cute on both local area network (LAN) and

integrated services digital network (ISDN) platforms.

CoMMware helps people build distributed pro-

grams and encourages construction of applications

through composition of program modules. Its program

development environment includes a definition lan-

♦ Communication Middleware for
Multi-Party Multimedia Applications
J. Robert Ensor and Sudhir R. Ahuja

This paper describes a communication middleware system called CoMMware. The
CoMMware software package contains a set of modules that supports a wide variety
of multimedia communication applications, such as real-time conference programs,
distance learning tools, and distributed games. It encourages modular program
development and software use through its registry and brokering mechanisms.
CoMMware also supports behavior policies, which act as plug-ins for controlling how
program modules interact with each other. In addition to aiding development of dis-
tributed programs, communication middleware provides a means of exchanging
data in multiple media. CoMMware’s virtual transport is a programming interface
for specifying communication paths among program modules and qualities of ser-
vice for transmission of multimedia data over these paths. CoMMware also helps
people use multimedia applications. The system’s persistent environment helps users
locate and access applications during real-time interactive communication sessions,
and it coordinates information storage between these sessions. The paper also pre-
sents brief overviews of some applications built with CoMMware.

Bell Labs Technical Journal ◆ Winter 1997 75

guage for module interfaces and a registration mecha-

nism that makes these program modules available for

use in applications. The CoMMware run-time envi-

ronment is a set of processes and application library

elements that permits application modules to interact.

When an application module invokes a registered pro-

gram module, CoMMware broker components query a

CoMMware-maintained database to locate the called

module. The broker components then manage execu-

tion of the called module. Data is exchanged between

the program parts through the calling module’s para-

meters. CoMMware also provides a means of defining

and using behavior policies, which are software plug-ins

for controlling how program modules interact.

CoMMware supports communications among

application program modules by providing:

• Mechanisms for signaling among modules,

• Control for connections that are used by appli-

cation modules to exchange data (in one or

more media), and

• Communication session control.

All these services use underlying transport primi-

tives. However, they are built independently and can

be realized using distinct networks. Hence,

CoMMware is suitable for application development in

several network environments. CoMMware has been

used to create applications that execute on LANs, pri-

vate branch exchanges, ISDN, and asynchronous

transfer mode broadband networks.

The CoMMware run-time environment manages

groups of modules. It creates transaction mechanisms

to define atomic operations on these groups. The

transactional group operations include support for

signaling among modules located within a group.

The operations provide event distribution among

group members. This mechanism supports synchro-

nization among program elements. The group opera-

tions also provide program developers with a

composition mechanism that permits dynamic run-

time construction of applications.

CoMMware provides virtual transport, which acts

as an interface to underlying communication net-

works. The virtual transport operations establish and

manage media connections among program elements.

They also include a means of specifying the required

qualities of service—that is, performance characteris-

tics for multimedia communications. The virtual trans-

port component also helps developers specify

distribution paths for information, which aids the

building of multi-party applications.

CoMMware provides a multi-party session control

mechanism called a context. Traditional call manage-

ment functions are supported by contexts. Because

CoMMware contexts can persist longer than a single

communication session, they also provide a mecha-

nism for conducting a series of related communication

sessions. People and programs can rendezvous for a

communication session using a CoMMware context.

Context persistence is also a means of supporting

Panel 1. Abbreviations, Acronyms, and Terms
ACM—Association for Computing Machinery
CORBA—Common Object Request Broker

Architecture
ISDN—integrated services digital network
ITU-T—International Telecommunication

Union – Telecommunication Standardization
Bureau

LAN—local area network
MMCX—MultiMedia Communications

eXchange
MSS—Multimedia System Services
OLE/COM—object linking and embedding/com-

ponent object model
SIGCHI—Special Interest Group on

Computer-Human Interaction
TINA-C—Telecommunications Information

Network Architecture Consortium

Application programs

Application program interfaces

(Communication) Middleware

Device driver and
process structures

Communication network(s)

Communication
primitives

Operating system

Figure 1.
Conceptual view of middleware.

76 Bell Labs Technical Journal ◆ Winter 1997

mobile access to services. That is, a user can access a

context while moving among several locations (and

changing input/output devices).

The CoMMware execution environment also sup-

ports users of applications. For example, suppose Kate

is the user of a multimedia conferencing system that

has been constructed with CoMMware. She could

access the application within a context by issuing com-

mands from her office computer. CoMMware is

responsible for providing Kate with a session and for

establishing signaling and transport connections

among the application components. If the conferenc-

ing application requires bridging services during the

conference, they can be added to the context using

CoMMware group operations. Kate may then leave

her office and drive home. During the drive, she may

re-enter the context, accessing the application (and

perhaps talking with other parties) through her car

telephone. At her house, she can use a set-top box to

re-establish contact with the CoMMware server and

re-enter the context.

Background and Related Work
Most familiar instances of middleware—for exam-

ple, the Object Management Group’s Common Object

Request Broker Architecture (CORBA)1 and

Microsoft’s object linking and embedding/component

object model (OLE/COM)2—are targeted for the sup-

port of distributed programs. These systems aid pro-

gram creation and description by defining an interface

description language that allows program elements to

be described independently of the programming lan-

guage used in their implementation or invocation.

These middleware systems also specify mechanisms

that allow program elements to be registered with a

name service. When one program element requires

service from a second element, it sends a request to a

component of the middleware execution environ-

ment. This component is called the broker, and it

selects one of the registered program elements to sup-

ply the requested service. The program elements are

then able to communicate using information exchange

standards defined by the middleware. The standard-

ized description of programs and their input/output

makes invoking and controlling services easier while

supporting reuse of existing programs.

The Multimedia System Services (MSS) proposal

within the Interactive Multimedia Association3 and

the Telecommunications Information Network

Architecture Consortium (TINA-C) proposal4 repre-

sent a specialized class of communication middleware.

Both MSS and TINA-C are based on the CORBA speci-

fications. However, these proposals not only support

transmission of requests and responses among pro-

gram elements. They also support exchange of time-

dependent data (for example, voice and video) in

multimedia applications. These proposals define the

means of specifying quality-of-service parameters and

synchronization among multiple information streams.

While the first class of middleware is useful over a

wide range of data communication networks, the sec-

ond class depends more on the performance offered by

underlying multimedia networks. CoMMware is also

communication middleware. One version of

CoMMware has been built with OLE and another

with a CORBA-like framework. (The CoMMware vir-

tual transport is a predecessor of the proposed

WinSock 2.0 open-network Application Program

Interface (API) standard, which could be used for this

CoMMware interface.)

Communication middleware proposals represent

services that closely resemble those offered by

advanced signaling protocols. For example, the

International Telecommunications Union H-series

recommendations5 specify quality-of-service-based

communications on a suite of networks. However,

the H-series protocols bundle session control, media

connection support, and coding schemes with appli-

cation management. These protocols do not permit

platform-independent application development. For

example, H.320 applications are dependent on ISDN-

based session control, connection management, and

coding schemes. On the other hand, middleware

need not be restricted to any one underlying net-

work. Therefore, middleware can offer a common

application programming interface for a variety of

underlying networks (and associated signaling proto-

cols). This transport independence is a major strength

of communication middleware.

CoMMware goes beyond other communication

Bell Labs Technical Journal ◆ Winter 1997 77

middleware and signaling proposals. It provides sup-

port for collections of program modules, applications,

and communication sessions. The behavior policies of

CoMMware provide a unique means of controlling

collections of program modules. The CoMMware con-

text provides mechanisms for users to control multiple

applications. The context also provides a stable envi-

ronment within which to control multiple sessions.

Only CoMMware creates a persist communication

environment that relates applications and multiple

communication sessions. In conventional communica-

tion systems, any higher-level context extending

beyond a single session (which might exist among the

communicating parties) must be maintained by those

parties. For example, no communication standard

helps conference participants store meeting minutes

on a file server.

System Architecture
CoMMware is built as a specialized client-server

system. A context agent, which is a client of a

CoMMware context server, represents each user. A

context server provides two sets of resources to its

clients—contexts and sessions. A context (or call envi-

ronment) is a persistent electronic environment within

which users may access collections of communication-

based applications. Once a context has been created,

its description is maintained by a context server until a

user (with the necessary authority) requests that the

context be destroyed. Thus, a context serves as an

electronic place of rendezvous—that is, a meeting

place—and also as an electronic environment within

which to create and offer services—that is, a place for

information storage and exchange. A session (also

termed a call or a conference) is a period of user activity

within a context.

Figure 2 illustrates the fundamental elements of

the CoMMware architecture—context servers and

context agents—as well as clients of the CoMMware

system. These clients are called context service clients

(or derived applications). The term “derived” is used

because the applications derive part of their functional

qualities from CoMMware. (The term does not refer to

derived classes within object-oriented programming

languages.) Context servers and context service clients

are described as separate loci of activity. Each context

service client is connected to a context agent so that it

can communicate with context servers by means of a

proprietary protocol. A context service client can pro-

vide a local representation of a context for users or

other application programs.

The figure also explicitly represents two other

CoMMware elements, which support its two funda-

mental elements: the agent selector and the name server.

Additionally, unspecified supporting elements, such as

security and billing modules, are indicated as a collec-

tion and labeled as “other elements” in the figure.

Figure 2 also shows the communication connec-

Client

Context agent

Context server

Agent selector

Name server

Client

Context agent m

Other
elements

Other
elements

Client

Context agent n

Client

Context server

Agent selector

Name server

Figure 2.
CoMMware architectural elements.

78 Bell Labs Technical Journal ◆ Winter 1997

tions among the above-mentioned elements. Each

communication connection may be produced by the

CoMMware virtual transport feature. Virtual transport

is a software module that abstracts details of underly-

ing physical communication networks to provide a sta-

ble application program interface for a variety of

communication networks. Many physical realizations

of these connection abstractions are possible. These

realizations may vary from shared memory structures

within a single computer to collections of channels

within a collection of wide area networks.

Context Server
A CoMMware context is an object (that is, a soft-

ware data structure and associated procedures) repre-

senting the abstract notion of a communication

context. Many implementations of the context object

are possible. For the purposes of exposition, this paper

describes a context object’s representation in terms of

the context server introduced above.

For simplicity, we elaborate our description of the

representation in terms of two restrictions. First, we

avoid descriptions of distributed consistency controls

by assuming that each context object is managed (cre-

ated, manipulated, and destroyed) by exactly one con-

text server. Second, we assume that a context server

may represent more than one context object at a time.

The context abstraction is defined in terms of a

state machine and the messages that trigger its transi-

tion from one state to another. Correspondingly, we

describe a context server as maintaining a finite-state

machine for each context that it manages. Therefore,

each context server contains a component known as

the engine that acts as a manager of its finite-state

machines. The messages triggering context state transi-

tions are received by the state machine’s managing

context server and may come either from context ser-

vice clients (via context agents) or other context

servers. As a resource manager, a context server allo-

cates identifiers for its managed resources. Context

servers allocate context identifiers in a way that guar-

antees each identifier is globally unique.

Context Agent
The conduit between context servers and context

service clients is called a context agent. While the actual

participants in CoMMware protocol exchanges are

context servers and context server clients, the protocol

messages are transmitted between these parties

through context agents.

A context agent is a “port” for a set of clients to

one or more context servers. A context agent is also a

port for a context server to one or more of its clients.

With this communication indirection, CoMMware can

provide context services, such as authentication and

billing, independently of any other specialized services

that might be accessed within a context. The indirec-

tion also supports the multiplexed handling of protocol

messages on server and client computers. It also per-

mits flexible techniques for building dispatching poli-

cies for the context messages that are associated with a

given single context.

A context agent serves as the dispatcher for

events to and from one or more context servers

simultaneously for communication sessions involving

different contexts. An example of this situation is illus-

trated by the context agent m in Figure 2, which is

interacting simultaneously with two context servers.

Similarly, a context agent can interact with more

than one context service client simultaneously for

communication sessions involving different contexts.

Figure 2 illustrates this situation as well. Context

agent n interacts with multiple clients simultane-

ously. Furthermore, a context agent can dispatch

events from concurrent activities within a single con-

text—that is, it can act as an dispatcher.

However, the distribution of events has funda-

mental impact on service interactions when multiple

applications are active in a single context. Therefore, in

some cases, the event dispatch policies should become

part of a user’s view of the application environment.

This need is easily met in the CoMMware architecture.

One simply makes a context service client the dis-

patcher for the service-specific messages that go to and

from all applications in a given context. When serving

in this role, the client is termed an intracontext dis-

patcher. This dispatch structure permits application-

level control of interactions among services—that is,

all policies regarding service interaction are imple-

mented explicitly in application space.

Name Server and Agent Selector
This paper does not contain detailed behavioral

Bell Labs Technical Journal ◆ Winter 1997 79

specifications for the other CoMMware architectural

elements. The elements that support the components

described above have little impact on the protocol

exchanged between context servers and their clients.

However, we briefly mention here the roles played by

the supporting elements in CoMMware service, and

we note some of the information needed by the sup-

porting elements to effect these roles.

CoMMware architectural elements communicate

with one another. Therefore, all elements that are dis-

tinct implementation units must be named to establish

communication paths. Because context servers pro-

vide uniquely identified context resources for their

users, the context servers themselves have globally

unique names, which permit rendezvous and access to

shared resources. The context servers interact with

their clients through context agents. Therefore, the

context agents also have globally unique names. One

or more name servers contain the communication

network ports as values corresponding to these names.

Context service client names are local to their corre-

sponding context agents, so their names may be main-

tained within context agent name spaces.

In the CoMMware architectural model, a context

server does not access a name server directly to resolve

a context agent name. Rather, it interacts with an

agent selector, which, in turn, uses one or more name

servers. This interaction occurs when a context server

responds to a service request. The selection of an

appropriate agent may be effected in a variety of ways.

For example, selection may be accomplished either

through look-up in a static table or through evaluation

of a set of dynamic state descriptors, including the cur-

rent operation field(s) and the current states of the

context server engine, selector, and a context service

client. In the latter example, the selector must com-

municate with other architectural elements to gain the

necessary state information.

Other Supporting Elements
Authentication and billing components and other

supporting elements are important parts of

CoMMware service. However, these elements play a

secondary role in the protocols described below. Their

impact is limited to the interpretation steps performed

by the context server. Hence, their impact on the pro-

tocol can be limited to changes in the information that

is included in the parameters of requests to context

servers and of responses from the context servers.

Virtual Transport
CoMMware is a distributed software system.

Therefore, components of CoMMware must be able to

communicate with one another. To support such com-

munication, CoMMware contains an independent

software module called virtual transport. CoMMware’s

virtual transport provides a means for context servers

to communicate with context agents and other con-

text servers.

The CoMMware model assumes that protocol

messages among context servers and context agents

are exchanged over reliable transport. The virtual

transport connections between context servers and

context agents may also be used as a means of

exchanging negotiation messages among context

agents (on behalf of context service clients) for end-to-

end application-specific negotiations. In addition, vir-

tual transport functions are available for use outside

the CoMMware context framework. They may be

used for application-specific payload messages.

Session Control
CoMMware creates an execution environment

that explicitly represents communication contexts as

persistent data records and uses this information to

structure user communications and access to sets of

shared data. Figure 3 illustrates the relationship

between contexts and periods of activity within these

Create context A
Create session 1

Destroy session 1

Create session k

Destroy session k

Create session m

Destroy session m

Destroy context A

Time

Create session i

Destroy session i

Figure 3.
The scope of context and sessions.

80 Bell Labs Technical Journal ◆ Winter 1997

contexts, which are labeled sessions. A session must

take place within a context; hence, the scope (life-

time) of a session must be contained within the scope

of a context.

A session can take place either in a newly created

context or in some existing context. Thus, traditional

session management can be effected within

CoMMware by creating a context when the session

begins and destroying the context when the session

ends. This approach restricts the scope of the context

to equal the scope of a session. However, CoMMware

treats contexts and sessions more generally than con-

ventional session managers.

A CoMMware context can be created before a ses-

sion is held within it and it can exist after the session

has ended. Thus, the context is an environment that

can relate sessions. A session can be started in an exist-

ing context, which might contain state that is serving

as higher-level context for each session participant.

This is a means of relating sessions held sequentially in

the same context. Concurrent sessions can also be

related by sharing a context. For example, while using

a collection of applications in one session, a user might

access another set in a second session. In addition,

CoMMware permits a session to have only one partici-

pant. Consequently, a person or program can use a

session for individual purposes or as a rendezvous

mechanism—a means of waiting for another party.

Through trials with CoMMware-based systems,

we have seen that persistent contexts are especially

useful for long-term collaborations. Figure 4 repre-

sents an example of the use of a CoMMware context

in a collaborative situation. The scenario illustrated is

one in which Bob and Sid are long-term collaborators

on the design of a windsurfing sail. They have used

CoMMware to create a long-lived environment called

Slalom 4.5 for their project. This context is used as their

meeting place and as a repository for their shared

information regarding the project.

During a typical session, Bob and Sid use a collec-

tion of derived applications to support their conversa-

tions—namely, audio, video, and program sharing

applications. To help with their design tasks, the

designers also make use of some specialized CAD

tools—an aerodynamic simulator, a panel layout tool,

and a material inventory control program. During the

session, each derived application might require multi-

ple connections from the underlying multimedia net-

Bridged (mixed) video
available for context.

Mixed video is composite
of Bob’s and Sid’s video.

Bob

Camera output

Monitor input

Microphone output

Speaker input

Mouse and
keyboard output

Data input/output

Slalom 4.5 context

Aerodynamic simulator

Panel layout tool

Bridged (mixed) audio
available for context.

Mixed audio is composite
of Bob’s and Sid’s audio.

Material inventory control

Sid

Camera output

Monitor input

Microphone output

Speaker input

Mouse and
keyboard output

Data input/output

Figure 4.
Typical use of CoMMware context.

Bell Labs Technical Journal ◆ Winter 1997 81

work to move the information to and from Bob and

Sid. After a design session has ended, the multimedia

network connections can be released. Later, Bob or Sid

can use CoMMware to re-enter the Slalom 4.5 context,

re-establish network connections to the appropriate

applications, and continue work. A subsequent session

can continue the design in the same environment.

Negotiation and Policies
The CoMMware context operations per se are lim-

ited to a set of group management operations. In this

respect, the CoMMware context shares properties with

other group management systems—for example, the

Isis system6. Some common characteristics, such as

atomicity of operations, are addressed in conventional

ways by CoMMware. The primary operations defined

for contexts are also those associated with typical

group management—that is, create and destroy the

group and add and drop members to and from the

group. Membership in a context is limited to context

service clients. As discussed above, each context ser-

vice client interacts with context servers through con-

text agents.

In general, group members are geographically

distributed. Hence, CoMMware must establish and

manage communications for group members and

potential group members. Communications are

needed for a user to make requests to CoMMware

and for CoMMware to respond to a user. CoMMware

also sends information to all group members when

their group state changes. In addition, CoMMware

offers communication services to group members so

that distribution of information among these sets of

users can be precisely controlled. The message distri-

bution services provide various ordering and reliabil-

ity properties.

Group members may be involved in operations

that affect their group. Whenever CoMMware receives

a request to alter the state of a group, it offers the

group members a chance to accept or reject the pro-

posal or to exchange information with each other

regarding the proposal. Each member can define its

own policies regarding an operation. Furthermore, if

the member has the necessary authority, it can exer-

cise these local policies during group operations. For

example, as members of the Slalom 4.5 group, the two

parties named in Figure 5 (Bob and Sid) can influence

the handling of operations on that group. In one sce-

nario, Bob proposes to add a video server to the group.

Sid, however, thinks that this medium represents a

costly and unnecessary service, and he can execute a

policy that rejects the proposal.

Event Distribution
Acting on behalf of context service clients, a con-

text server receives messages from context agents

and other context servers. In response to these mes-

sages, the context server may distribute events to

context agents (for context service clients) and other

context servers. As the context server interprets the

message, it manages distribution of events generated

by this interpretation.

Context server

Context agent

Create context policy

Add member policy

Bob

Context agent

Create context policy

Add member policy

Sid

Figure 5.
An example of negotiation and policies.

82 Bell Labs Technical Journal ◆ Winter 1997

Event Ordering and Race Conditions
When a context server interprets a context server

or context client protocol message, it may send events

to several context service clients through their context

agents. The event distribution by a context server is

effected under one of two event ordering schemes:

partial ordering or total ordering. Partial ordering gener-

ates less message overhead and permits clients to react

more quickly to events. However, race conditions, or

events executed out of sequence, can arise from out-of-

band communication among clients following partially

ordered event distribution within a transaction. Total

ordering of event distribution generates more message

exchanges and delays agent reaction to events.

However, the total ordering mechanism helps prevent

race conditions among clients.

Two examples illustrate the uses of partial and

total ordering of event distribution. Suppose context

server S manages context X with members (context

service clients) A, B, and C. Suppose further that mem-

ber A adds a new member D to the context X. The

AddMember transaction begins with the

AddMember_Begi n request, continues with some

negotiation messages, and ends with an

AddMember_End request. In the first example, which

Figure 6 illustrates, context server S uses the partial

ordering scheme to distribute events generated during

its interpretation of the AddMember transaction. In the

second example, which Figure 7 illustrates, S uses the

total ordering scheme to distribute the same events.

Suppose that after the AddMember_Begi n and

negotiation messages have been handled by the con-

text server S, it receives an AddMember_End request

from D (shown as message 1 in Figures 6 and 7).

Interpreting this request, S broadcasts the

AddMember_Event to the other members of the con-

text (B and C) indicating that D has been added to X.

Meanwhile, D, now acting as a member in the con-

text, establishes an out-of-band connection with B.

(The user represented by D might have attempted to

connect to a server associated with B, for example). B

might not have received the AddMember_Event from

the context server yet and, hence, may not know if it

should honor the connection request. As a policy, B

might accept the connection and defer the integrity

checking until it receives the AddMember_Event or a

time out. Such a policy would permit B to offer service

quickly but with some danger of security breaches.

Let us now consider the total ordering of events as

Figure 7 shows. When the new member D sends the

AddMember_End request, the transaction still is not

committed by the context server. No member can

assume that the transaction is committed until it

receives a transaction commit event from the context

server for this transaction. The context server sends

the AddMember_Event to all the other members of

the context and waits for the acknowledgment (note

the existence of a time-out policy here in the context

server for the acknowledgment wait).

After it receives the acknowledgment from all the

Context server

A B C D

AddMember_End(D)
(5)

AddMember_Event
(2) (3)

AddMember_End(D)
(1)

Connection request (4)

In partial ordering, (4) can happen before (2), which is a race condition.
B could go ahead with (4) and do integrity checking when (2) actually happens.

Figure 6.
Partial ordering of events.

Bell Labs Technical Journal ◆ Winter 1997 83

context members, the context server sends a transac-

tion commit event to all the members, including the

newly added member. Any member can assume that

the transaction has committed only at this point.

Note that the context server need not wait for the

acknowledgment of the transaction commit event.

Now, if D attempts an out-of-band communication

with B based on the previous transaction, B will

honor the request appropriately.

Experiences
CoMMware has been used as a middleware com-

ponent—that is, a foundation of program modules—in

the construction of several multimedia applications.

Two applications, Visual Meeting Minutes7 and

Archways8, were discussed in a previous paper.9

Recently, the Persyst10 and MultiMedia

Communications eXchange (MMCX)11 applications

have been built with CoMMware.

Persyst is a software system that helps support dis-

tance learning by providing teachers and students with

virtual classrooms. This system creates a collection of

virtual rooms called a course, which corresponds to an

academic course. The teachers and students of an aca-

demic course interact in the corresponding Persyst

course, accessing its virtual rooms through the

Internet or an intranet. Each of these virtual rooms

provides specialized functions related to teaching and

learning. For example, Persyst defines rooms for

course information, libraries, recitation halls, lecture

halls, and calendars.

Persyst is built as an application on the Bell Labs

version of CoMMware. Each Persyst course and class-

room is based on a CoMMware context. Context ser-

vice clients representing teachers and students are

members of contexts associated with a course. Any

communication servers, such as audio and video

bridges, which support interactions among teachers

and students during a session within a virtual room,

are also members (through their program representa-

tions) of the corresponding contexts. Course data,

including calendars and lecture notes, are stored by

Persyst servers, which are also members of course and

classroom contexts. Thus, Persyst users interact with

each other and access course data in virtual rooms.

MMCX is a system that supports collaborative

work. It provides its users with a multimedia confer-

encing system featuring real-time interaction among

several parties through voice, video, and data commu-

nications. MMCX also provides such calling features as

call coverage and call forwarding for both multimedia

and conventional voice-only calls. MMCX is built on

Lucent Technologies’ Business Communications

Systems version of CoMMware. In addition,

CoMMware contexts are used as the basis for MMCX

call management operations and for the coordination

Context server

A B C D

Connection request (9)

AddMember_End(D)
(4) AddMember_End(D)

(1)

AddMember_Event
(2)

AddMember_Event
(3)

Commit
(8)

Ack.
(5)

Commit
(8)

Ack.
(6)

Commit
(8)

Ack.
(7)

Commit
(8)

Ack. – Acknowledgement

Figure 7.
Total ordering of events.

84 Bell Labs Technical Journal ◆ Winter 1997

of media servers during multimedia calls. Specific

behaviors are achieved through policies invoked dur-

ing negotiations.

Summary
CoMMware is a communication middleware

package supporting development of multimedia appli-

cations, such as real-time conference programs, dis-

tance learning tools, and distributed games. It

encourages modular program development and soft-

ware reuse through registry and brokering mecha-

nisms. It also provides a framework within which

behavior policies can act as plug-ins for controlling

how program modules interact with each other.

CoMMware also supports communication among

program modules. It provides means of signaling

among the program elements through partial and total

ordering of events. Its virtual transport interface pro-

vides a means of controlling real-time communication

of multimedia information among program modules.

This interface allows programmers to specify both

communication paths among program modules and

the performance characteristics of these paths.

CoMMware’s execution environment, based on

contexts, also helps people use these multi-party and

multimedia applications. Its persistent environment

helps users locate each other and establish communi-

cation sessions. It also helps them access applications

during these sessions, and it coordinates information

storage between sessions.

CoMMware has proven useful in building several

multimedia communication applications. It has

served as a middleware code base for these systems,

making them useful in a variety of computing and

communication environments. CoMMware-based

applications are currently used with different operat-

ing systems, as well as LAN, Internet, and various

telephony networks.

Acknowledgments
Murali Aravamudan played a central role in

CoMMware’s development. He was one of its principal

architects, leading implementation of the Bell Labs

version and helping to write system descriptions.

Many colleagues (too numerous to list) in Lucent’s

Business Communications Systems Business Unit

helped define the system’s architecture and developed a

version as part of the MMCX product. The authors

gratefully acknowledge the work of all these individuals.

References
1. Object Management Group, The Common Object

Request Broker: Architecture and Specification,
Revision 2.0, John Wiley, New York, July 1995.

2. OLE 2 Programmer’s Reference, Volumes 1 and 2,
Microsoft Press, Redmond, Washington, 1994.

3. Multimedia System Services, Project Description,
Interactive Multimedia Association, Annapolis,
Maryland, June 1993.

4. T. Handegard, “TINA-C Computational Modeling
Concepts,” Telecommunications Information
Network Architecture Consortium (TINA-C)
Document TP_HC.012_3.2_96, Red Bank, New
Jersey, May 17, 1996.

5. Line Transmission of Non-Telephone Signals, ITU-T
Series-H Recommendations H.100 through
H.331, International Telecommunications
Union – Telecommunication Standardization
Bureau (ITU-T), Geneva, Switzerland.
http://www.itu.ch/itudoc/itu-t/rec/h.html

6. K. P. Birman, “The Process Group Approach to
Reliable Distributed Systems,” Communications of
the Association for Computing Machinery (ACM),
Vol. 36, No. 12, Dec. 1993, pp. 36-53.

7. A. B. Ginsberg and S. R. Ahuja, “Automating
Envisionment of Virtual Meeting Room
Histories,” Proceedings of the Association for
Computing Machinery (ACM) Multimedia 95,
San Francisco, California, Nov. 1995, pp. 65-75.

8. D. D. Seligmann, R. T. Mercuri, and
J. T. Edmark, “Providing Assurances in a
Multimedia Environment,” Proceedings of the
Association for Computing Machinery, Special Interest
Group on Computer-Human Interaction
(ACM SIGCHI), Denver, Colorado, May 1995,
pp. 250-256.

9. D. A. Berkley and J. R. Ensor, “Multimedia
Research Platforms,” AT&T Technical Journal,
Vol. 74, No. 5, Sept./Oct. 1995, pp. 34-45.

10. Welcome to Persyst (general overview of the
Persyst virtual classroom), Bell Labs Multimedia
Communication Research Department,
Holmdel, New Jersey, 1997.
http://www.multimedia.bell-labs.com/
projects/persyst

11. B. S. Katz and L. M. Sanders, “MMCX Server
Delivers Multimedia Here and Now,”
AT&T Technology, Vol. 10, No. 4, Winter
1995-96, pp. 2-6.

(Manuscript approved March 1997)

http://www.itu.ch/itudoc/itu-t/rec/h.html
http://www.multimedia.bell-labs.com/

Bell Labs Technical Journal ◆ Winter 1997 85

J. ROBERT ENSOR is a distinguished member of technical
staff in the Multimedia Communication
Research Department at Bell Labs in Holmdel,
New Jersey. He conducts research in multime-
dia communication systems and currently
specializes in Internet-based applications.

Mr. Ensor holds a B.S. degree in biology from Furman
University in Greenville, South Carolina, as well as
M.S. and Ph.D. degrees in computer science from the
State University of New York in Stony Brook.

SUDHIR R. AHUJA is head of the Multimedia Communi-
cation Research Department at Bell Labs in
Holmdel, New Jersey. He is responsible for
research in multimedia collaboration, com-
munication, applications, and platforms, as
well as research and technology transfer of

key services, such as multimedia conferencing and multi-
point audio and video bridging. Mr. Ahuja received a
B.Tech. degree in electrical engineering from the Indian
Institute of Technology in Bombay, as well as M.S. and
Ph.D. degrees in computer science and electrical engi-
neering from Rice University in Houston, Texas. ◆

Copyright of Bell Labs Technical Journal is the property of John Wiley & Sons, Inc. and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

