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Abstract: A queueing-theoretic analysis of an ATM multiplexer handling two-class multimedia
traffic is described. Specifically, it assigns class-1 cells, constituting real-time traffic, high service
priority, and class-2 cells, constituting non-real time traffic, low service priority. The priority
discipline used is non-pre-emptive. For the purpose of the analysis, the multiplexer is modelled as a
priority, discrete time, single-arrival, single-server queueing system with an infinite buffer and
geometric service time. The model dynamics are extracted by a rather complex difference equation
whose solution is sought using a generating function technique. This difference equation approach
is a major contribution of the paper. Unlike the prevalent stochastic equation approach, it makes
the physical details of the system present and visible during the analysis. Results are obtained for
the multiplexer occupancy and cell waiting time. These results are verified analytically by producing
from them some previously published results as special cases. They are also verified by applying
them to numerical examples and obtaining intuitively acceptable values.

1 Introduction

An ATM multiplexer of the structure shown in Fig. 1 is
used in digital communications systems to improve the

efficiency of communications lines. Cells (i.e. packets of
equal length) arrive onto its input lines, are stored in a
buffer, and then are transmitted one at a time onto the
output line. The overall effect of the multiplexer is to
concentrate bursty traffic, thereby improving the efficiency
of the output line.

When the multiplexer is used in a multimedia environ-
ment, as is typically the case in a broadband integrated
services digital network (B-ISDN) [1], the traffic it handles
can be conveniently divided into two distinct types: real
time, e.g. live audio and live video cells, and non-real time,
e.g. file transfer cells. The quality of service (QoS) [1] of each
type is different from that of the other. Specifically, real-
time cells are loss-insensitive but delay-sensitive. This entails
that cells of this type should be served so rapidly by the

multiplexer that they get to their destinations in the shortest
time possible, even if some of them are lost. On the other
hand, non-real-time cells are delay-insensitive but loss-
sensitive. This entails that cells of this type should be served
so carefully that no cell is lost, even if the cells incur a longer
delay in the multiplexer. The multiplexer, therefore, has to
solve this problem.

A multiplexer equipped with a priority scheme can solve
this QoS problem easily. Namely, it assigns real-time cells,
henceforth called class-1 cells, high service priority, and
non-real-time cells, henceforth called class-2 cells, low
service priority. If a cell of class-1 and a cell of class-2
arrive at the multiplexer simultaneously, the multiplexer
serves the former first.

If a priority scheme is adopted, one of two disciplines
may be used, concerning what happens when a class-2 cell
being served is treated upon the arrival of a class-1 cell. In
the pre-emptive discipline, the arriving cell enters service
immediately in the next slot, ejecting the class-2 cell back to
the buffer. Later, when there are no more class-1 cells to
serve, the ejected class-2 cell enters service again. In the non-
pre-emptive discipline, on the other hand, the arriving cell
waits until the class-2 cell finishes service and then takes its
place. It can be seen that the pre-emptive discipline is
favourable to class-1 cells, whereas the non-pre-emptive is
favourable to class-2 cells.

Non-priority multiplexers handling single-medium traffic
have received much research attention since the advent of
digital communications. Buffered, they have typically been
modelled as a discrete time queueing system. A large
number of these models are available in the literature,
e.g. [2–6].

Multiplexers handling multimedia traffic, on the other
hand, have gained research attention only in recent years
due to the ever proliferating multimedia applications. They
have typically been modelled as a discrete priority queueing
system. A number of these models are available in the
literature [7–12]. The model in this paper is similar to these
models in that it is a discrete time priority queueing system.
However, it is different in that it incorporates three
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Fig. 1 ATM multiplexer with cells waiting for service
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distinguishing features. First, it uses a difference, rather than
stochastic, equation approach, making for better tracking
and visualisation. The visualisation is further enhanced by
supplying a transition diagram for the multiplexer states.
Second, it uses non-pre-emptive, rather than pre-emptive,
priority. Unlike pre-emptive priority, non-pre-emptive
priority has the advantage of not wasting any service time
already expended by the multiplexer. Third, it uses a
geometric, rather than deterministic, service time. The
geometric service time, in addition to accommodating the
deterministic service time as a special case, can accommo-
date wider application possibilities. For instance, it
accommodates the possibility that prior to transmission
the cells undergo some geometric processing time, for
activities such as error encoding and decoding or encryption
and decryption. Also, it accommodates the possibility that
the multiplexer uses an acknowledgment system, whereby it
will not dispose of a cell it has transmitted before receiving
an acknowledgment from the remote end, retransmitting
the cell continually in each intervening slot. Needless to say,
the transmission time in this case is geometric.

2 Model assumptions

The most basic assumption in this analysis is that the
multiplexer operates in a discrete time manner. That is,
the time axis is divided into slots, each exactly equal to the
transmission time of one cell. Non-negative integers k¼ 0,
1,?, are assigned to the individual slot boundaries. Time
interval [k, k+1) is referred to as slot k+1.

In the following, we formally state the remaining
assumptions, which are largely reflected by the diagram in
Fig. 1.

(i) The multiplexer has N �1 input lines and 1 output line.

(ii) The multiplexer has an infinite-capacity buffer to host
the arriving cells until they are moved, one by one, to the
transmission (service) phase where they go to the server.
The time a cell spends in the buffer is called the queueing
time, that in the server is called the service time, and the sum
of both is called the waiting time.

(iii) Cells arrive into the multiplexer as a Bernoulli process.
That is, every slot a cell will arrive (from all the inputs) with
probability r and will not arrive with probability r ¼ 1� r.
This implies that the cell arrival rate at the multiplexer is r
cells per slot, and that the cell interarrival time is
geometrically distributed with expectation 1/r slots.

(iv) Given that a cell has arrived at the multiplexer, it is
either of class-1 with probability l or of class-2 with

probability l ¼ 1� l. This implies that the class-1 batch

arrival rate is l and the class-2 batch arrival rate is l, and
that the batch interarrival times of class-1 and class-2 cells

are geometrically distributed with expectations 1/l and 1=l,
respectively. It also implies that the class-1 cell arrival rate is

r1¼ lr and the class-2 cell arrival rate is r2 ¼ lr, and that
the cell interarrival times of class-1 and class-2 cells are
geometrically distributed with expectations 1/r1 and 1/r2,
respectively. It is clear that the cell arrival rate r, regardless
of class, is related to r1 and r2 through the relation

r ¼ r1 þ r2 ð1Þ

(v) The arriving cells are stored in the buffer in the form of a
first-come-first-served (FCFS) queue.

(vi) The multiplexer has a single server, e.g. a register, to
host the cell under transmission.

(vii) A cell may enter a queue or service only at the
beginning of a slot. This implies that a cell arriving at the
multiplexer after the beginning of a given slot is not
considered to be in the multiplexer throughout that slot.

(viii) A cell being served in a certain slot will end service by
the end of that slot with probability s and will not end
service by the end of the slot with probability s ¼ 1� s .
This implies that the cell service rate of the multiplexer is s
cells per slot, and that the service time is geometrically
distributed with expectation 1/s slots. A cell may end service
only at the end of a slot.

(ix) Class-1 cells have priority over class-2 cells. This implies
that the multiplexer has two logical queues, one of class-1
cells and one of class-2 cells. Each queue operates on a
FCFS basis and no class-2 cell can enter service unless the
class-1 queue is empty.

(x) The type of priority is non-pre-emptive. That is, a class-1
cell that arrives while the class-1 queue is empty and a class-
2 cell is being served will wait until the latter finishes service.

In the next Section we analyse the occupancy of the
multiplexer under the above assumptions. Most of the
variables considered in the analysis are random variables
(RVs), all of them non-negative and integral-valued.

3 Multiplexer occupancy

Let P1
k¼ 0,1,?, be a RV denoting the class-1 occupancy in

slot k, i.e. the number of class-1 cells in the multiplexer at
the end of slot k. Similarly, let P2

k¼ 0,1,?, be a RV
denoting the class-2 occupancy in slot k. Clearly, the state of
the multiplexer in each slot k is fully determined by the pair
(P1

k, P2
k), with the pairs (P1

k, P2
k), for all k, forming a two-

dimensional Markov chain [13]. Let pm,n
k ¼Pr [P1

k¼m,
P2

k¼ n] be the transient distribution of that chain. It is the
aim of this Section to seek the stationary distribution pm,n of
that chain, defined as the limit as k tends to N of pm,n

k .

To facilitate finding the distribution of the chain (P1
k, P2

k),
we will identify another Markov chain by considering the
type of cell being served. To this end, let Lk¼ 0, 1, 2, be a
RV denoting the type of the cell being served in slot k,
where Lk¼ 1 indicates a class-1 cell, Lk¼ 2 a class-2 cell,
and Lk¼ 0 indicates that no cell is being served (multiplexer
empty). Clearly, the triplets (P1

k, P2
k, Lk), for all k, form a

three-dimensional Markov chain. Let pm,n,l
k ¼Pr[P1

k¼m,
P2

k¼ n, Lk¼ l] be the transient distribution of that chain. It
turns out that the transitions of the chain (P1

k, P2
k, Lk) are

easier to track down than those of the chain (P1
k, P2

k). First,
they can be readily evaluated from the assumptions given in
Section 2. Second, they can be visualized by a state
transition diagram for convenience as is done in Fig. 2.

The transition diagram has nodes which represent the
states the multiplexer can be in, and directed arcs which
represent the transitions between the states. Written next to
each transition is the probability that this transition is made
as time advances from one slot to the next. To illustrate this,
consider state (2,1,1), which means that the system will have
two class-1 cells, one class-2 cell and the cell in service will
be of class-1. This state will be reached in a certain slot k+1
if the multiplexer in the previous state k is in any one of the
following eight states and some event occurs.

(i) State (2,1,1) itself. This takes place if, by the end of slot k:
(the cell in service does not depart AND no cell arrives) OR
(the cell in service departs AND one class-1 cell arrives).
The probability of this event is s r þ sr1.
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(ii) State (2,0,1). This takes place if, by the end of slot k: the
cell in service does not depart AND one class-2 cell arrives.
The probability of this event is sr2.
(iii) State (3,0,1). This takes place if, by the end of slot k: the
cell in service departs AND one class-2 cell arrives. The
probability of this event is sr2.

(iv) State (2,1,2). This takes place if, by the end of slot k: the
cell in service departs AND one class-2 cell arrives. The
probability of this event is sr2.

(v) State (3,1,1). This takes place if, by the end of slot k: the
cell in service departs AND no cells arrive. The probability
of this event is s r.

(vi) State (2,2,2) itself. This takes place if, by the end of slot
k: the cell in service departs AND no cells arrive. The
probability of this event is s r.
(vii) State (1,1,1) itself. This takes place if, by the end of slot
k: the cell in service does not depart AND one class-1 cell
arrives. The probability of this event is sr1.
(viii) State (1,2,2) itself. This takes place if, by the end of slot
k: the cell in service departs AND one class-2 cell arrives.
The probability of this event is sr1.

The above enumeration explains why in Fig. 2 there are
eight arcs going into node (2,1,1). It also explains how the
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difference equation is derived. Actually, the eight states and
events above are generalised and used to construct the eight
terms of (2). Equations (3)–(10) are constructed analo-
gously. Each equation in the system of (2)–(10) represents a
region in the transition diagram of Fig. 2. In fact, a region
in the diagram is identified by being summarisable by a
single difference equation. Accordingly, the transition
diagram is divided into nine such regions, numbered R1
to R9 consecutively.

In what follows, we derive a set of subequations that
collectively form a difference equation defining the distribu-
tion pm,n

k . First, we focus on the case where there is a class-1
cell in the server. This case appears in regions R2, R3, R4,
and R5 of the transition diagram. From region R5 one can
write the principal equation

pkþ1
m;n;1 ¼ sr1 þ s rð Þpk

m;n;1

þ sr2pk
m;n�1;1 þ sr2pk

mþ1;n�1;1

þ sr2pk
m;n;2 þ srpk

mþ1;n;1 þ srpk
m;nþ1;2 þ sr1pk

m�1;n;1

þ sr1pk
m�1;nþ1;2; m ¼ 2; 3; � � � ; n ¼ 1; 2; � � �

ð2Þ
This equation has three boundary conditions as follows.
From region R3 we obtain

pkþ1
m;0;1 ¼ sr1 þ s rð Þpk

m;0;1 þ sr1pk
m�1;0;1 þ sr1pk

m�1;1;2

þ srpk
mþ1;0;1 þ srpk

m;1;2; m ¼ 2; 3; � � � ð3Þ

From region R4 we obtain

pkþ1
1;n;1 ¼ sr1 þ s rð Þpk

1;n;1

þ sr2pk
1;n�1;1 þ sr1pk

0;nþ1;2 þ sr2pk
2;n�1;1 þ sr2pk

1;n;2

þ srpk
2;n;1 þ srpk

1;nþ1;2; n ¼ 1; 2; � � �
ð4Þ

Then, from region R2 we obtain

pkþ1
1;0;1 ¼ sr1 þ s rð Þpk

1;0;1 þ srpk
2;0;1

þ srpk
1;1;2 þ r1pk

0;0;0 þ sr1pk
0;1;2 ð5Þ

Second, we focus on the case where there is a class-2 cell in
the server. This case appears in regions R6, R7, R8, and R9
of the transition diagram. From region R9 one can write
this principal equation

pkþ1
m;n;2 ¼s rpk

m;n;2 þ sr1pk
m�1;n;2 þ sr2pk

m;n�1;2;

m ¼1; 2; � � � ; n ¼ 2; 3; � � � ð6Þ
This equation has three boundary conditions obtained as
follows. From region R7 we obtain

pkþ1
0;n;2 ¼ sr2 þ s rð Þpk

0;n;2 þ sr2pk
0;n�1;2 þ sr2pk

1;n�1;1

þ srpk
0;nþ1;2 þ srpk

1;n;1; n ¼ 2; 3; � � � ð7Þ
From region R8 we obtain

pkþ1
m;1;2 ¼ s rpk

m;1;2 þ sr1pk
m�1;1;2; m ¼ 1; 2; � � � ð8Þ

Then from region R6 we obtain

pkþ1
0;1;2 ¼ sr2 þ s rð Þpk

0;1;2 þ r2pk
0;0;0 þ srpk

0;2;2

þ srpk
1;1;1 þ sr2pk

1;0;1 ð9Þ
Finally, we focus on the case where there is no cell in the
server. For this case, from region R1 of the transition
diagram we have the boundary condition

pkþ1
0;0;0 ¼ rpk

0;0;0 þ sr pk
1;0;1 þ pk

0;1;2

� �
ð10Þ

Assuming, the cell arrival rate at the multiplexer is strictly
less than the cell service rate, then the queue in the buffer
will be stable (i.e. will not blow up) and the multiplexer will
reach steady state after a sufficiently large number of slots.
That is, if ros then the limit

lim
k!1

pk
m;n;l ¼ pm;n;l

exists. Thus, in steady state, (2)–(10) become

sr1 þ s r � 1ð Þpm;n;1 þ sr2pm;n�1;1

þ sr2pmþ1;n�1;1 þ sr2pm;n;2

þ srpmþ1;n;1 þ srpm;nþ1;2

þ sr1pm�1;n;1 þ sr1pm�1;nþ1;2 ¼ 0

m ¼ 2; 3; � � � ; n ¼ 1; 2; � � �
ð11aÞ

sr1 þ s r � 1ð Þpm;0;1 þ sr1pm�1;0;1 þ sr1pm�1;1;2

þ srpmþ1;0;1 þ srpm;1;2 ¼ 0; m ¼ 2; 3; � � � ð11bÞ

sr1 þ s r � 1ð Þp1;n;1 þ sr2p1;n�1;1 þ sr1p0;nþ1;2

þ sr2p2;n�1;1 þ sr2p1;n;2 þ srp2;n;1

þ srp1;nþ1;2 ¼ 0; n ¼ 1; 2; � � � ð11cÞ

sr1 þ s r � 1ð Þp1;0;1 þ srp2;0;1 þ srp1;1;2

þ r1p0;0;0 þ sr1p0;1;2 ¼ 0 ð11dÞ

s r � 1ð Þpm;n;2 þ sr1pþm�1;n;2

þ sr2pm;n�1;2 ¼ 0; m ¼ 1; 2; � � � ; n ¼ 2; 3; � � � ð11eÞ

sr2 þ s r � 1ð Þp0;n;2 þ sr2p0;n�1;2 þ sr2p1;n�1;1

þ srp0;nþ1;2 þ srp1;n;1 ¼ 0; n ¼ 2; 3; � � � ð11f Þ

s r � 1ð Þpm;1;2 þ sr1pm�1;1;2 ¼ 0; m ¼ 1; 2; � � � ð11gÞ

sr2 þ s r � 1ð Þp0;1;2 þ r2p0;0;0 þ srp0;2;2 þ srp1;1;1

þ sr2p1;0;1 ¼ 0 ð11hÞ

rp0;0;0 � sr p1;0;1 þ p0;1;2

� �
¼ 0 ð11iÞ

Now, let P (z1, z2) be the probability generating function
(PGF) of the distribution pm,n. That is,

P z1; z2ð Þ ¼ P1 z1; z2ð Þ þ P2 z1; z2ð Þ þ p0;

jz1jo1; jz2jo1

ð12Þ

where

P1 z1; z2ð Þ ¼
X1
m¼1

X1
n¼0

pm;n;1zm1 z
n
2

P2 z1; z2ð Þ ¼
X1
m¼0

X1
n¼1

pm;n;2zm1 z
n
2

and p0¼ p0,0,0. In what follows, we use (11) to obtain
P (z1, z2).

We start by multiplying (11) by z1
mz2

n and summing over
the range over which the constituent subequations are
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defined. Thus, we get

sr1 þ s r�1ð Þ
X1
m¼2

X1
n¼1

pm;n;1zm1 z
n
2þ sr2

X1
m¼2

X1
n¼1

pm;n�1;1zm1 z
n
2

þ sr2
X1
m¼2

X1
n¼1

pmþ1;n�1;1zm1 z
n
2 þ

X1
m¼2

X1
n¼1

pm;n;2zm1 z
n
2

 !

þ sr
X1
m¼2

X1
n¼1

pmþ1;n;1zm1 z
n
2 þ

X1
m¼2

X1
n¼1

pm;nþ1;2zm1 z
n
2

 !

þ sr1
X1
m¼2

X1
n¼1

pm�1;n;1zm1 z
n
2 þ sr1

X1
m¼2

X1
n¼1

pm�1;nþ1;2zm1 z
n
2

¼ 0 ð13aÞ

sr1 þ s r � 1ð Þ
X1
m¼2

pm;0;1zm1

þ sr1
X1
m¼2

pm�1;0;1zm1 þ sr1
X1
m¼2

pm�1;1;2zm1

þ sr
X1
m¼2

pmþ1;0;1zm1 þ sr
X1
m¼2

pm;1;2zm1 ¼ 0 ð13bÞ

sr1 þ s r � 1ð Þ
X1
n¼1

p1;n;1zn2z1

þ sr2
X1
n¼1

p1;n�1;1zn2z1 þ sr1
X1
n¼1

p0;nþ1;2zn2z1

þ sr2
X1
n¼1

p2;n�1;1zn2z1 þ
X1
n¼1

p1;n;2zn2z1

 !

þ sr
X1
n¼1

p2;n;1zn2z1 þ
X1
n¼1

p1;nþ1;2zn2z1

 !
¼ 0 ð13cÞ

sr1 þ s r � 1ð Þp1;0;1z1 þ srðp2;0;1z1 þ p1;1;2z1Þ
þ r1p0;0;0z1 þ sr1p0;1;2z1 ¼ 0 ð13dÞ

s r � 1ð Þ
X1
m¼1

X1
n¼2

pm;n;2zm1 z
n
2

þ sr1
X1
m¼1

X1
n¼2

pm�1;n;2zm1 z
n
2

þ sr2
X1
m¼1

X1
n¼2

pm;n�1;2zm1 z
n
2 ¼ 0 ð13eÞ

sr2 þ s r � 1ð Þ
X1
n¼2

p0;n;2zn2

þ sr2
X1
n¼2

p0;n�1;2zn2 þ sr2
X1
n¼2

p1;n�1;1zn2

þ sr
X1
n¼2

p0;nþ1;2zn2 þ
X1
n¼2

p1;n;1zn2

 !
¼ 0 ð13f Þ

s r � 1ð Þ
X1
m¼1

pm;1;2zm1 z2 þ sr1
X1
m¼1

pm�1;1;2zm1 z2 ¼ 0 ð13gÞ

sr2 þ s r � 1ð Þp0;1;2z2 þ r2p0;0;0z2
þ srðp0;2;2z2 þ p1;1;1z2Þ þ sr2p1;0;1z2 ¼ 0 ð13hÞ

rp0;0;0 � sr p1;0;1 þ p0;1;2

� �
¼ 0 ð13iÞ

The function P1 (z1, z2) can be obtained by summing (13a)–
(13d ) to obtain

P1 z1; z2ð Þ ¼

½z1½sA z1; z2ð ÞP2 z1; z2ð Þ � sA 0; z2ð ÞP2 0; z2ð Þ
� z2sA 0; z2ð ÞP11 z2ð Þ þ z1z2r1p0��

z2 z1 � sr1z1 � s z1A z1; z2ð Þ � sA 0; z2ð Þð Þ
ð14Þ

where P11 z2ð Þ ¼
P1

n¼0 p1;n;1zn2, and A z1; z2ð Þ ¼ rþ
r1z1 þ r2z2. The function P2 (z1, z2) can be obtained by
summing (13e)–(13i) to obtain

P2 z1; z2ð Þ ¼

½sA 0; z2ð Þz2P11 z2ð Þ þ sA 0; z2ð ÞP2 0; z2ð Þ
þ ðA 0; z2ð Þ � 1Þz2p0�

ð1� s A z1; z2ð ÞÞz2
ð15Þ

The function P11 (z2) can be obtained using (13a) and (13i)
to obtain

P11 z2ð Þ ¼
ðz2� sA 0; z2ð Þ� s z2A 0; z2ð ÞÞP2 0; z2ð Þ� z2ðA 0; z2ð Þ�1Þp0

z2sA 0; z2ð Þ
ð16Þ

The probability p0 can be obtained as follows. Since the
probability that a queueing system, regardless of whether
uniclass or biclass, is empty is just the complement of the
probability that it is busy, and since the latter is known [14]
to be equivalent to the utilisation factor r, defined to be the
ratio of cell arrival rate to cell service rate, then in our case
we have

p0 ¼ 1� r
s

ð17Þ

Combining (14)–(17), it follows that

P z1; z2ð Þ ¼ A z1; z2ð Þ
½s 1� sA 0; z2ð Þð Þ z1 � z2ð ÞP2 0; z2ð Þ

þ z2 z1 � 1ð Þ s� rð Þ 1� sA z1; z2ð Þð Þ�
z2 z1 � A z1; z2ð Þ sþ sz1ð Þð Þ 1� sA z1; z2ð Þð Þ ð18Þ

Equation (18) does not quite give the final form of P(z1, z2)
since P2 (0, z2) is still unknown. To find P2 (0, z2) we use the
same methodology as in ([16], p. 131). It is based on noting
that the PGF P (z1, z2) is analytic on the unit disc 7z17r1,
for any fixed value of z2 for which 7z27o1 ([15], p. 394) and
[10]. The analyticity implies that whenever the denominator
in (18) has zeros on the unit disc, the numerator must have
the same zeros on it. So, by finding those zeros and plugging
them into the numerator, where the unknown function
exists, we can find the unknown. So, it is time now to find in
our case the zeros of the denominator in (18) and identify
their location regarding the unit disc.

Recalling that the arrival and service rates (which are
probabilities at the same time) are such that 0rrosr1,
and that 7z27o1, it can first be seen that the last factor

1� s r þ r1z1 þ r2z2ð Þ ¼ 0
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has exactly one zero, namely z1 ¼ 1� sr � sr2z2ð Þ=sr1.
This zero lies outside the unit disc since

jz1j ¼
1

sr1
� r
r1

� r2z2
r1

				
				

� 1

sr1
� r
r1

				
				� r2z2

r1

				
				

¼ 1

sr1
� 1

r1
þ r
r1

				
				� r2

r1
z2j j

4
1

sr1
� 1

r1
þ 1þ r2

r1

				
				� r2

r1

4 1þ r2
r1

				
				� r2

r1
¼1

Second, for the factor

z1 � r þ r1z1 þ r2z2ð Þ sþ sz1ð Þ ¼ 0 ð19Þ

it can be shown using Rouch!e’s theorem ([15], p. 20) that it
has exactly one zero on the unit disc z1r1. Since the factor
is quadratic in z1, it has two zeros, say x1 and x2, both
functions of z2. These zeros can be found by employing the
quadratic formula yielding

x1 ¼
½sþ rs� sr1

� sr2z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ rs� sr1 � sr2z2ð Þ2 � 4sr1 sr þ sr2z2ð Þ

q
�

2sr1

and

x2 ¼
½sþ rs� sr1

� sr2z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ rs� sr1 � sr2z2ð Þ2 � 4sr1 sr þ sr2z2ð Þ

q
�

2sr1

It is clear that 7x17o7x27, implying that x1 is the zero that
lies on the disc.

The above zero-finding analysis indicates that the
denominator of (18) has only one zero of z1 on the unit
disc, namely x1. Thus, for P(z1, z2) to be analytic on the unit
disc, x1 must also be a zero of the numerator of (18). That
is, if we substitute z1¼ x1 in that numerator we should get a
0, which enables us to find P (0, z2) as follows:

P2 0; z2ð Þ ¼ z2 1� x1ð Þ s� rð Þ 1� s A 0; z2ð Þ þ r1x1ð Þð Þ
sð1� sA 0; z2ð ÞÞ x1 � z2ð Þ

completing the derivation of the PGF P (z1, z2) in (18).
One means of verifying (18) is to force the multiplexer to

collapse to single class, with arrival rate r cells per slot and
service rate s cells per slot. Denoting the occupancy of that
single class multiplexer by P, its PGF P(z) can be obtained
from (18) using any of the following three methods.

(i) Substitute for z2¼ z1¼ z in (18). This is equivalent to
assuming that priorities among the cells are abolished.

(ii) Substitute for r2¼ 0 in (18), noting that the coefficient of
z2 there will vanish, and that z2¼ z1¼ z. This is equivalent
to assuming that only class-1 cells arrive at the multiplexer.

(iii) Substitute for r1¼ 0 in (18), noting that the coefficient
of z1 there will vanish, and that z2¼ z1¼ z. This is
equivalent to assuming that only class-2 cells arrive at the
multiplexer.

All three methods yield the same classical result [11, 14]:

P zð Þ ¼ s� rð Þ rzþ rð Þ
sr � rzs

ð20Þ

Before closing, it is worth noting that (18) can be used to
obtain the PGF of several interesting multiplexer occupan-
cies. For example, the marginal PGF P1 (z) of class-1
occupancy P1 can be obtained as follows:

P1 zð Þ ¼ P ðz; 1Þ

¼ 1� r1 þ r1zð Þ r2 þ 1� s 1� r1 þ r1zð Þð Þ s� rð Þð Þ
s� r1s� r1szð Þ 1� s 1� r1 þ r1zð Þð Þ

ð21Þ
Also, the marginal PGF P2 (z) of class-2 occupancy can be
obtained as follows:

P2 zð Þ ¼ P ð1; zÞ

¼ s 1� r2 þ r2zð Þ 1� s r þ r2zð Þð Þ 1� zð ÞP02 zð Þ
z 1� 1� r2 þ r2zð Þð Þ 1� s 1� r2 þ r2zð Þð Þ

ð22Þ

These two results conform well with those obtained by the
stochastic equation approach [11, 12].

4 Expectations and numerical results

In this Section we obtain expressions for the expectations of
the multiplexer occupancy. These expressions are then used
to find expressions for the expectations of cell waiting time.

First, the expected class-1 multiplexer occupancy can be
obtained from (21) by evaluating the first derivative at 1 as
follows:

E P1½ � ¼ P 0
1 1ð Þ ¼ r1

sr þ r2
s s� r1ð Þ ð23Þ

Second, the expected multiplexer occupancy regardless of
cell class, i.e. of the RV P1+P2, is obtained from (20) as
follows:

E P½ � ¼ P 0 1ð Þ ¼ rr
s� r

ð24Þ

Finally, we can get the expected class-2 multiplexer
occupancy as follows:

E P2½ � ¼ E P½ � � E P1½ � ¼ r2
s2r � r1ðs� rÞ
s s� rð Þ s� r1ð Þ ð25Þ

It should be noted that the expected class-1 and class-2
waiting times can be obtained, respectively, by dividing
E[P1] by r1 and E [P2] by r2, making use of Little’s formula
[14]. Namely, we get

E W1½ � ¼ sr þ r2
s s� r1ð Þ

and

E W2½ � ¼ s2r � r1ðs� rÞ
s s� rð Þ s� r1ð Þ

Now, we use (23)–(25) to plot the expected occupancy for
some example multiplexers. Fig. 3 shows the expected
multiplexer occupancy against the class-1 arrival rate, for
constant class-2 arrival rate r2¼ 0.2 and constant service
rate s¼ 0.95. Three occupancies are shown: class-1, E[P1],
class-2, E[P2], and total occupancy, E[P] (regardless of class,
that is). As anticipated, both class-1 and class-2 occupancies
increase as the class-1 arrival rate increases. However, the
rate of increase of class-1 is higher (and, incidently, almost
linear). This is understandable since class-1 cells increasingly
dominate the arrivals as r1 goes up.
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Note the intersection of class-1 and class-2 occupancies,
which arises as follows. At low class-1 arrival rate, i.e. at
r1or2¼ 0.2, the arrivals of class-2 are dominant, hence
class-2 occupancy is higher than class-1 occupancy. As r1
increases, class-1 occupancy approaches, becomes equal to,
and then goes beyond class-2 occupancy, hence the
intersection at the equality point.

It can easily be seen that the total occupancy curve stands
above that of class-1. This shows the difference between a
multiplexer without priority (real-time cell embedded in a
long queue, thus incurring a harmful, long waiting time)
and one with priority (real-time cell separated in a shorter
queue, thus incurring a shorter waiting time). It is thus
recommended to use priority when there are cells to be
given faster service than others.

Fig. 4 shows the expected multiplexer occupancy against
the class-2 arrival rate, for constant class-1 arrival rate

r1¼ 0.2 and constant service rate s¼ 0.95. The Figure is
similar to Fig. 3, and thus similar comments apply. The
notable observation here, however, is that class-1 occupancy
is almost constant. This is due to the fact that class-1
occupancy is not affected by class-2 arrival rate except in
one obviously rare circumstance, namely when a class-1 cell
arrives at a class-1 empty multiplexer finding a class-2 cell in
service.

Fig. 5 shows the expected occupancy against the multi-
plexer service rate s for constant class-1 and class-2 arrival
rates r1¼ r2¼ 0.2. The noticeable feature here is that the
three occupancies decrease with increase of s, albeit at
different rates. This difference can easily be justified along
the same lines given above.

5 Conclusions

In this paper the occupancy of a multiplexer handling two
class traffic has been analysed using a non-pre-emptive
priority scheme. For the purpose of the analysis, the
multiplexer is modelled as a priority, discrete-time, single-
server, single-arrival queueing system with infinite buffer.
The major contribution of the paper is use of a difference
equation approach rather than a stochastic equation
approach (as has typically been the case in the published
literature) to perform the analysis. The advantage of the
difference equation approach is that the physical details of
the system are always present and visible during the
analysis, so much so that one can even construct a diagram
showing the transitions among the system states.

We have obtained results for the multiplexer occupancy
and, as an aside, for the cell waiting time. The results have
been verified by showing that they conform with previously
published results. They have also been verified by showing
that they generate intuitively acceptable graphs when
translated into numerical values.
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