
January 10, 2003 16:38 WSPC/164-IJIG 00089

International Journal of Image and Graphics
Vol. 3, No. 1 (2003) 3–29
c© World Scientific Publishing Company

FASTER SIMILARITY SEARCH FOR MULTIMEDIA DATA
VIA QUERY TRANSFORMATIONS

CHRISTIAN A. LANG∗ and AMBUJ K. SINGH†

Department of Computer Science, University of California, Santa Barbara
Santa Barbara, CA 93106, USA

∗clang@cs.ucsb.edu
†ambuj@cs.ucsb.edu

Received 7 August 2002
Revised 26 September 2002

The performance of nearest neighbor (NN) queries degrades noticeably with increasing
dimensionality of the data due to reduced selectivity of high-dimensional data and an
increased number of seek operations during NN-query execution. If the NN-radii would
be known in advance, the disk accesses could be reordered such that seek operations are
minimized. We therefore propose a new way of estimating the NN-radius based on the
fractal dimensionality and sampling. It is applicable to any page-based index structure.
We show that the estimation error is considerably lower than for previous approaches.
In the second part of the paper, we present two applications of this technique. We show
how the radius estimations can be used to transform k-NN queries into at most two
range queries, and how it can be used to reduce the number of page reads during all-NN
queries. In both cases, we observe significant speedups over traditional techniques for
synthetic and real-world data.

Keywords: Multimedia data; high-dimensional indexing; query transformation; similarity

search.

1. Introduction

Nearest neighbor (NN) queries are an important query type for high-dimensional
data, such as multimedia data, strings, and time sequences. One example for such
a query is “Get the 10 closest images to a given query image” where similarity
is typically defined on color distributions or texture features. Another example is
DNA sequencing. Here, for each gene segment of one genome, all closest matching
gene segments of another genome have to be found. Instead of asking for one best
match, this query type asks for all best matches.a

On large databases, such queries can be very time-consuming, especially when
the number of feature dimensions is high. The main reason for the typically high

aAnalogously, k-NN queries ask for the k best matches.

3

January 10, 2003 16:38 WSPC/164-IJIG 00089

4 C. A. Lang & A. K. Singh

response times lies in the fact that index structures supporting these queries are
disk-based and therefore require a large amount of disk I/Os for answering queries.

Much research has therefore focused on accelerating the execution of such queries
by reducing the number of disk pages to read, or by reducing the number of disk
seek operations during page reads. Techniques that try to reduce the number of
seeks cannot guarantee a minimum number of pages to be read, and vice versa.
One extreme example is the linear scan for answering NN queries: by scanning the
whole data file, the number of seek operations is minimized but at the same time,
all pages have to be accessed. An example for the other extreme is Hjaltason and
Samet’s k-NN query algorithm.1 Their algorithm accesses only a minimal number
of disk pages but induces a high amount of seek operations.

An algorithm that obtains the best of both worlds would be reading only the
pages that contain the NNs with a read schedule that minimizes seeks. In other
words, the NN query is transformed into a range query. The problem with this
approach is that we need to know the required pages in advance. In order to deter-
mine these pages, it would be helpful to know the range of the query containing the
NNs. Much work in the last years went into predicting such query ranges. However,
current prediction techniques are not sufficient for this task since they predict an
average query range for the entire dataspace rather than for a single query.

A major contribution of this work is therefore an improved estimate of the query
range based on the fractal dimensionality of data and sampling. We distinguish
between two types of estimates: query-independent ones and query-dependent ones.
For the former, we introduce two improvements on the fractal dimensionality-based
estimation of the average query range. The latter type assumes that the query is
known and a range estimate is desired. We show how the new query-independent
estimate can be used to obtain an (even tighter) query-dependent query range
estimate through sampling. The basic idea is to get a first estimate on the sample
and then use the query-independent estimates to compensate for the effects due to
sampling.

As a second contribution, we introduce a way of obtaining a close upper bound
on the NN range for page-based index structures. This bound is obtained by in-
specting all points stored in pages that are intersected by the query-dependent
range estimate. The NNs found in these pages are then used to obtain an upper
bound on the query range estimate. Our experiments show that this estimate is
within 1% of the actual radius.

As a third contribution, we introduce two new NN query algorithms based on
these estimates. The first algorithm is for single k-NN queries, and the second
algorithm is for all-NN queries. Both new algorithms reduce the amount of disk
seeks and page reads at the same time by using our new query-dependent range
estimates to determine which pages will have to be fetched from disk in the future.
This set of pages is then read into memory using a read schedule that minimizes
disk seeks. In case the query-dependent range estimator underestimates the real
radius (and therefore would miss some NNs), we will use our second estimation

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 5

technique to obtain an upper bound on the query range. For both query types, we
observed a significant reduction in overall query time.

The paper is organized as follows. Section 2 discusses related work. In Sec. 3, we
show how the fractal dimensionality-based estimation of the average query range
can be improved. This is then used together with sampling to obtain a query-
dependent way of calculating a query range estimate in Sec. 4. Section 5 analyzes
the quality of the obtained estimates. Section 6 introduces a technique to compute
a tight upper bound on the query-dependent query range. Sections 7 and 8 present
two applications of these estimates and we conclude in Sec. 9.

2. Previous Work

2.1. Fractal dimensionality and NN-radius estimation

Faloutsos et al.2 presented the first cost model for R-trees based on the fractal
dimensionality which is claimed to be the “inherent dimensionality” of a dataset.
This first model was restricted to range queries but later works by Papadopoulos
and Manolopoulos3 extended it for 1-NN queries in R-trees. Korn et al.4 present a
version for k-NN queries which we discuss briefly in the following.

Korn et al.4 show how two different fractal dimensionality measures can be used
to describe certain properties of datasets. One of these measures is the so-called
correlation fractal dimensionality D2. It is defined as followsb:

Definition 1 (Correlation Fractal Dim). For a point set that has the self-
similarity property in the range of scales r ∈ (r1, r2), its correlation fractal dimen-
sionality D2 for this range is measured as

D2 ≡
∂ log

∑
i p

2
i

∂ log(r)
= const. r ∈ (r1, r2) ,

where pi is the percentage of points which fall inside the ith cell when dividing the
data space into hypercubic grid cells of side r.

Korn et al.4 show how this measure can be used to estimate the k-NN query
radius for arbitrary datasets. They show that for the L∞-norm, the average k-NN
radius is given by

dnn(k) =
1
2
·
(

k

N − 1

) 1
D2

, (1)

where N is the number of data points. Section 3.1 shows how D2 can be computed
for a given dataset using a box-counting algorithm and how this computation can
be improved.

bA summary of all symbols used in this paper can be found in Table 1.

January 10, 2003 16:38 WSPC/164-IJIG 00089

6 C. A. Lang & A. K. Singh

Table 1. Notation used in the paper.

N number of data points

σ data sampling rate

E embedding dimensionality (i.e. number of attributes)

D2 Correlation fractal dimensionality of the full dataset

D′2 Correlation fractal dimensionality of the data sample

rsample sampling-based k-NN radius estimate

rexpected query-dependent k-NN radius estimate

rupper upper bound on k-NN radius

dnn(k) radius estimate based on D2 (full dataset)

dsample−nn(k) radius estimate based on D2 (sample data)

dcutoff
nn (k) radius estimate with boundary effects (full dataset)

dcutoff
sample−nn(k) radius estimate with boundary effects (sample data)

k number of NNs

2.2. Accelerated k-NN query algorithms

Many researchers have investigated models for predicting the performance of index
structures for query optimization. Some of this work focuses on predicting the index
performance for an average workload, some of it focuses on the expected cost of a
single query. Since the technique presented in this paper aims at accelerating single
queries, we will concentrate on the latter body of work.

The work that comes most closely to our technique was presented by Chen
and Ling.5 They show how sampling can be used to predict the k-NN radius and
accelerate NN queries. However, their technique does not make use of the fractal
dimensionality of the data in order to compensate for sampling errors. Instead, they
require a calibration phase consisting of sample queries. This might introduce high
errors unless many sample queries are performed.

Berchtold et al.6 propose a new index structure, called the IQ-tree, and give a
probability-based method to optimize page reads during NN queries. The authors
estimate the probability that a page will be read during a query and use this
probability to decide which pages should be read together with the next page in
order to avoid expensive seeks. The probability that a page will be accessed is
defined as the percentage of the page volume covered by the NN sphere. In contrast
to our technique, this model assumes uniform data distribution within the pages.
This can lead to high estimation errors in the access probability. Since the page reads
are controlled by this probability estimate, many unnecessary pages are accessed.
Furthermore, at least one page needs to be accessed to get an initial radius estimate.

Other authors extend index structures by statistical information, which can
be used to estimate the query radius and the query cost. Ciaccia et al.7 extend
the M-tree nodes by statistics (the distance distribution) in order to predict the

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 7

CPU and I/O cost of range and NN queries. Most work is based on histograms
over the dataset. Theodoridis and Sellis8 give a model for predicting the perfor-
mance of range queries on R∗-trees. They generate what they call a density sur-
face which is basically a two-dimensional histogram representing the local densities
of the dataset. Acharya et al.9 show how the prediction error of histograms can
be reduced by reducing the variance of densities within the histogram regions.
Korn et al.10 demonstrate how discontinuities at the histogram region edges can
be avoided by using splines. Finally, Jin et al.11 extend the histogram approach for
spatial non-point data.

The advantage of these techniques is their high accuracy in modeling data by
considering local effects. A disadvantage of the histogram approaches is that they
are not applicable in high dimensions since either the number of histogram regions
becomes too large or these regions contain too much empty space and become
inaccurate.

Lang and Singh12 use sampling to overcome this problem. In contrast to this
paper, there the sample is used to predict the overall query cost of a given index
structure. More specifically, the sample is used to predict the index page layout.
Here, on the other hand, we use the sample to predict the query radius for one
particular query. Moreover, we employ the fractal dimensionality to compensate
for sampling, while Lang and Singh12 assume uniformity to adjust the page layout
prediction.

2.3. Accelerated All-NN query algorithms

Several approaches13,14 focus on efficient processing of spatial joins on R-trees.
However, they do not take seek and transfer costs into account. Instead, they try to
minimize the number of page misses during a join. Since these algorithms perform
the join by navigating through the index tree rather than through the disk pages,
they cause many random page accesses.

Other work15,16 investigates new indexing and query processing techniques in
order to reduce the number of page accesses during spatial joins. In contrast to our
approach, these techniques do not make use of existing index structures and are
restricted to join conditions of the type σ(x, y) = “the distance between x and y is
less than d”.

Hjaltason and Samet17 propose an incremental join algorithm that returns the
closest join pair first. This work does not try to accelerate the search for the full
join result as we do.

A different approach by Braunmüller et al.18 reduces the I/O and CPU-cost
of multiple NN-queries. They process one query after the other but take results
of older queries into account in order to accelerate newer ones. This process is
certainly faster than single NN-queries but it can be expected to perform worse
when searching for all NNs since the page accesses are still random. Our approach,
on the other hand, tries to maximize the number of sequential page accesses.

January 10, 2003 16:38 WSPC/164-IJIG 00089

8 C. A. Lang & A. K. Singh

3. Query-Independent k-NN Radius Estimation

In this section, we show how the NN radius estimation based on the fractal di-
mensionality, as presented by Korn et al.,4 can be improved in two ways. First, we
improve the computation of D2 by using smaller steps for the box-counting algo-
rithm. And second, we show how boundary effects can be taken into account when
estimating the radius.

3.1. Improved fractal dimensionality estimation

The correlation dimension D2 of point datasets is typically computed using a box-
counting algorithm,19 as shown in Fig. 1.c With each iteration of the algorithm,
another point on the r/N(r)-graph is computed. A typical graph is shown in Fig. 2.
It roughly consists of two constant tails, one at log(1) (on the right) and one at
log(N) (on the left), and a linear piece inbetween. Towards the right end, r becomes
large enough to cover the whole dataset at some point, leading to the log(1)-tail.
Towards the left end, r becomes so small that every data point falls into its own

� � � � � �
 � � � � � � � � � � � � � � � �
� � ! " � ! # $ % ' () ' + , . / 0 1 2 . 3 1 ' + .) 4

6 7 8 9 0) ; = ? @ A
B C E G H J K L K L M N K P Q R H K H T V H W Q L N YZ

[\ ^ ` b d ^ f d g h b i b k l m n o
q r s t v w r x x y z r w { | z ~ v � | v � z �� � � � � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¢ ¦ § ¨ ¨ © £ ¤ ª « ¬ ® ¯ ° ± ° ² ´ µ ¶

² · µ ¸ ¹ º » ± ¼ ½ ¾ ¹ º ½ ¿ À Á ¿ À ± ° Ã ± ¼ ½ Ä Å Ç É Ê Ë Ì Í Ï Ð Ñ Ò
Ó Ô Õ Ö Í × Õ Ö Í Ì Ø Ù Ð Õ Ú Ð Ô Û Ù Ö Ü Ñ Ý Þ Ú Ó Þ Ø Ø Õ Ö Ñ Ú ß Ï Ú Þ Ý Ï Ô Ó Þ à

Fig. 1. The box counting algorithm.

log(r)

lo
g

N
(r

)

step 1step 2. . .

log(1)

log(N)
slope = − frac.dim

Fig. 2. Typical r/N(r)-plot.

cNote that the presented algorithm is a slightly simplified version of the algorithm for computing
D2. The basic idea is the same, however.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 9

log(r)

lo
g

N
(r

)

log(1)

log(N)

(a) Original box counting algorithm

log(r)

lo
g

N
(r

)

log(1)

log(N)

(b) Modified box counting algorithm

Fig. 3. Relation between box coverage and log/log-plot.

box, causing the number of occupied boxes to reach N . For fractal datasets, a linear
section exists inbetween the tails. Its slope determines the fractal dimensionality.

The box counting algorithm partitions the data space into b(i) := 2d·(i−1) boxes
in the ith iteration. For uniform data, there are

(
b(i) +N − 1

N

)
possible distributions

of N data points in the b(i) boxes. It follows easily that the probability that a box
contains no points is (b(i)− 1)/(b(i)− 1 +N). For i = 2, N = 106 and d = 50, this

dBy “small enough,” we mean small enough for the linear part of the graph to be revealed.

January 10, 2003 16:38 WSPC/164-IJIG 00089

10 C. A. Lang & A. K. Singh

Input: normalized dataset
Output: fractal dimensionality

(1) Let r := 1.

(2) Partition the data space in
⌈

1
r

⌉d
boxes of side length r

and count the number of boxes N(r) containing points.
(3) Let r := r

rdiv
. If r is not small enough, go to (2).

(4) Find the linear part of the r/N(r)-graph
in log/log-scale and compute its slope, return it.

Fig. 4. The modified box counting algorithm.

probability is nearly 1. This means that nearly all boxes are empty. It follows that
with high probability the number of boxes with points is N after the first iteration.
In these cases, no linear slope can be found in Step (4) of the algorithm. This is
shown in Fig. 3(a).

Even though this problem is less severe for clustered data, in most cases the
number of points on the linear slope is still too small for accurate calculations. For
that reason, we modify the box counting algorithm as follows: instead of dividing
r by 2 in Step (3), we use a value 1 < rdiv < 2. The boxes in direction of higher
coordinates may now partly fall outside the data space [cf. Fig. 3(b)] but since they
still form a complete coverage of the points, the computed dimension is correct. The
modified algorithm is given in Fig. 4. Now, more points can be computed between
the maximal (logN) and minimal (log 1) values of the graph.

3.2. Taking boundary effects into account

The k-NN radius estimate can be further improved by taking boundary effects into
account. The formula for dnn(k) is derived by assuming that queries that exceed
the limits of the data space are wrapped around. In other words, in a data space
with extents normalized to 1, a query with radius ε = 1/2 is assumed to cover
the whole data space. In reality however, query shapes are cut off at the data space
boundary. In order to cover the same number of NNs, the NN radius has to increase
correspondingly. This effect becomes especially pronounced in high dimensions.

The expected volume of a query hypercube in E dimensions with radius r is

(2r)E

if no boundary effects are taken into account.
With boundary effects, this volume depends on the location of the query point.

The expected volume ṽol(r) is then∫
p

E∏
i=1

(min{pi + r, 1} −max{pi − r, 0}) dp ,

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 11

or

E∏
i=1

∫
pi

2r if pi < 1− r and pi > r

pi + r if pi < 1− r and pi ≤ r
1− pi + r if pi ≥ 1− r and pi > r

1 otherwise

dpi ,

or, integrated,1
2

+ r +
1
2

(min{1− r, r}2 + max{1− r, r}2) + rmin{1− r, r}

− (1 + r) max{1− r, r}

2r − 4r2 if r ≤ 1

2

2r − 1 otherwise

E

.

Then the expected k-NN radius is the r for which

k = (N − 1) · ṽol(r)
D2
E . (2)

We will denote this r by dcutoff
nn (k) in the following.

In order to evaluate the quality of the new query-independent radius estimates,
we computed the box counting dimension for a large number of high-dimensional
real-world datasets. We then used Eq. 1 to estimate the k-NN radius. In all cases, the
values returned by the modified algorithm gave better radius estimations than the
original algorithm. Table 2 shows how the relative error in NN-radius estimation
changes for different values of rdiv and k for the LANDSAT-dataset.e The error
was calculated by comparing the radius estimate dcutoff

nn (k) with an average NN-
radius obtained by running 500 random k-NN queries. As can be seen, by using
finer step sizes in the box counting algorithm, the estimation error can be reduced
significantly. As apparent, the obtained value for D2 is more accurate when more
intermediate steps are computed. Note, however, that this value will remain con-
stant from a certain step size on. This is due to the discrete nature of the underlying
dataset. The optimal value of rdiv therefore depends on the dataset and remains
the subject of future research.

Table 2. NN-radius estimation errors.

Rel. error Rel. error Rel. error
rdiv (10 NN) (20 NN) (50 NN)

2 (Orig. alg.) 49.29% 58.52% 84.35%

1.15 (5× more steps) −19.91% −11.43% 8.66%

eThis dataset consists of 275 000 60-dimensional texture feature vectors extracted from satellite
images.

January 10, 2003 16:38 WSPC/164-IJIG 00089

12 C. A. Lang & A. K. Singh

4. Query-dependent k-NN Radius Estimation

The box counting algorithm allows the estimation of the average k-NN radius. This
calculation can be done statically for a given dataset. It is possible to achieve better
results if we know the actual query location and have a data sample available. We
will refer to this case as query-dependent radius estimation.

Assume we have a dataset of size N and we obtain an in-memory sample of size
N · σ; σ is called the sampling rate.f Furthermore, let q be a query point and k the
number of its NNs we are looking for. We can obtain a first (rough) estimate of
the query radius by computing the k NNs of q on the sample. Since the sample is
stored entirely in memory, this can be done very efficiently.

Let us denote this estimate by rsample. Since there might be a point that is a
k-NN of q but is not in the sample, rsample will usually be larger than the real
k-NN-radius. If we knew how the radius changes with the sampling rate, we could
compensate for this change. We can use the query-independent radius estimate
dcutoff
nn (k) for this purpose. Similar to dcutoff

nn (k), we can calculate the k-NN radius
dcutoff

sample−nn(k) for the sample dataset. Note that both values can be precomputed
for a given dataset and sample.

Once dcutoff
nn (k) and dcutoff

sample−nn(k) are known, we also know the expected rate of
change in the NN-radius when moving from the sample to the full dataset, namely
dcutoff
nn (k)/dcutoff

sample−nn(k). The query dependent radius estimate rexpected is therefore

rexpected =
dcutoff
nn (k)

dcutoff
sample−nn(k)

· rsample . (3)

The quality of this query-dependent estimate is discussed in the next section.

5. Quality of the Query-dependent Radius Estimate

We first examine analytically the deviation of the radius estimate from the correct
NN-radius for uniform datasets (Sec. 5.1). We then show that similar numbers hold
for real datasets (Sec. 5.2).

5.1. Expected error for uniform data

In order to derive a formula for the expected error of rexpected, let us assume a
normalized dataspace. According to Belussi and Faloutsos,19 the average number
of neighbors k of a point within a region of regular shape and radius r̃ is then
given by

k = (N − 1) · vol(r̃)
D2
E ,

where vol(r̃) denotes the volume of the region with radius r̃. One the other hand,
we can use this formula to compute the expected query radius r̃ via some root

fWe assume the sample is obtained by randomly selecting N · σ points of the dataset.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 13

finding method. In that case, the value vol(r̃) has to denote the volume of the
query shape with radius r̃ after being cut off at the dataspace boundary. Details on
the computation of this volume can be found in Sec. 3.2.

Since D2 = E for uniform data, the above equation is equivalent to

k = (N − 1) · vol(r̃) .

The same holds for the sample, resulting in the following equation for the expected
sample radius r̃sample:

k = (N · σ − 1) · vol(r̃sample) .

Thus, we know the expected correct query radius for the full dataset and the sam-
ple. However, what is the expected value of rexpected? Since we assume uniformity,
D2 = D′2 and thereforeg

dnn(k)
dsample−nn(k)

≈
(
N · σ
N

) 1
D2

.

Therefore,

rexpected ≈ r̃sample · σ
1
D2 . (4)

The relative error of rexpected is then given as

rexpected − r̃
r̃

,

which is plotted in Fig. 5 for varying k (N = 100 000, E = 60). With increasing
k, the error of the radius estimate increases. However, it stays below 22% even for
a sampling rate of 1/1000. This shows that (at least for uniform data) our query-
dependent radius estimate is very close to the correct NN-radius. We can also see
that the relative error is always positive for uniform data, meaning that rexpected

overestimates the correct radius. Real data, however, can cause an underestimation
as we will see in the next section.

5.2. Measured error for real data

This section shows how the relative error of rexpected varies for the LANDSAT
dataset which contains more than a quarter million 60-dimensional points and is
highly clustered. Figure 6 shows that — similar to the uniform case — with in-
creasing k, the relative error of rexpected increases slightly. The same holds for the
sampling rate. The smaller the sample, the higher the relative error. However, two
differences can be noted compared to the uniform case of the last section. First, for
a sample rate of 1/100, the relative error drops below zero for k > 3. This means
that rexpected underestimates the real radius.

gFor simplicity, we use dnn here rather than dcutoff
nn . Note that the real expected error is therefore

lower than this calculation suggests.

January 10, 2003 16:38 WSPC/164-IJIG 00089

14 C. A. Lang & A. K. Singh

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r

(in
 %

)

Number of NNs

sigma=1/100
sigma=1/200
sigma=1/500

sigma=1/1000

Fig. 5. Rel. error of rexpected (analytical).

-10

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r

(in
 %

)

Number of NN

sigma=1/100
sigma=1/200
sigma=1/500

sigma=1/1000

Fig. 6. Rel. error of rexpected (LANDSAT).

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 15

The second difference that can be seen from the graphs is that the error is higher
for very small k and then drops quickly until it reaches a minimum. This can be
explained as follows. Since the data is clustered, the distances between data points
vary a lot (compared to uniform data). Since our queries are density-biased, the
distance of data points from the query point varies a lot as well. If k is large, the
effect of sampling is alleviated by the large number of points in the query range.
If k is small, sampling can cause rexpected to be much larger than the real radius
because the point distances have such a high variance. Even the compensation
via the fractal dimensionality cannot counteract this effect because it describes
the dataset globally, whereas this effect is local. As a comparison, the statically
computed radius dnn(k) bottomed out at about 400% relative error. This clearly
shows the advantage of query-dependent radius estimation.

6. Upper Bounding the NN-radius

In the previous sections, we saw how a query-dependent NN-radius estimate can
be obtained via fractal dimensionalities and sampling. However, since this estimate
may also underestimate the correct radius, its application can lead to false misses.
If this is not acceptable, as is the case in our upcoming applications (cf. Secs. 7 and
8), an upper bound on the radius has to be obtained. This section shows how a
close upper bound on the NN-radius can be obtained if an approximate NN-radius
is known and if the underlying index structure is page-based.

6.1. Upper bound computation

The basic idea behind the upper bound computation is shown in Fig. 7. Assume,
we are given the radius estimate as shown (labelled with “approx. NN-sphere”).
Furthermore assume that the index structure distributed the dataset (indicated as
dots) into four pages (labelled with A, B, C, and D). By reading all points from

q
approx. NN−sphere

upper bound on NN−sphere

A

D

C

B

x

y

Fig. 7. Upper Bound Computation.

January 10, 2003 16:38 WSPC/164-IJIG 00089

16 C. A. Lang & A. K. Singh

the pages that are intersected by the radius estimate (in this case, A, B, and C),
we can determine the closest point in these pages (labelled with x). The distance
to this point is an upper bound on the 1-NN radius (shown as “upper bound on
NN-sphere”). Note that it is not necessarily the smallest upper bound (as point y
shows).

Let us describe this estimation more formally now for arbitrary values of k. Let
P be the set of index pages intersected by the approximate k-NN-sphere. Let Ceff be
the effective capacity of each disk page. This is usually less than the page capacity
due to the reduced page utilization in index structures. If Ceff · |P | ≥ k, we can
simply pick q’s k closest points from the pages in P and calculate the smallest radius
that covers them. We will denote this second radius estimate by rupper. Obviously,
rupper is larger than the real radius since the corresponding query sphere centered
at q covers k points read from the pages, but not necessarily the k globally closest
ones. If Ceff · |P | < k, we pick the smallest distance between q and the points in the
data sample (which is kept in memory) as rupper.

6.2. Quality of the upper bound

In order to examine the tightness of rupper, we performed some experiments on real
data. Figure 8 shows the results for the LANDSAT dataset and an R-tree index
structure. The graph was obtained as follows. First, 500 random query points were

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r

(in
 %

)

Number of NN

sigma=1/100
sigma=1/200
sigma=1/500

Fig. 8. Relative error of rupper (LANDSAT dataset).

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 17

picked. For each query point q, we computed rupper as described above by choosing
rexpected to be the initial radius estimate. We then computed the relative error (the
amount of overestimation) of rupper and plotted the averages for varying k-values.
As can be seen, with increasing k, the error increases slightly but it stays overall
below 1.2%. This shows that the points read from the pages touched by the initial
radius estimate produce a very accurate upper bound.

7. Application 1: Accelerated k-NN Query Algorithm

In this section, we present the first application of our query-dependent radius esti-
mators. It aims at accelerating k-NN query processing by reducing the number of
random disk accesses.

7.1. The access optimal algorithm

Before going into the details, let us first revisit the optimal k-NN query algorithm
for page-based tree index structures by Hjaltason and Samet.1 Their algorithm
works as follows (cf. Fig. 9). First, a priority queue is initialized with the root page
of the tree (Step 1). This queue is sorted by the MINDIST between q and the page.
For a query q, an element p is removed from the queue whose MINDIST is closest
to q (Step 2). If this element was a point, it is reported as a NN (Step 4). Otherwise,
the element was a page. In this case, the page has to be fetched from disk and the
elements stored in it are sorted into the waiting queue by their MINDIST. If the
page is an inner page, the elements are typically pointers to child pages. If it is a
leaf page, the elements are data points.

We assume in the following that all levels of an index tree are stored in memory.
Or, in other words, only the leaf level pages have to be fetched from disk. This
means that Step (3) causes only disk I/O if p was a leaf page. From a disk access
point of view, the whole algorithm then reduces to the following: sort all leaf pages
by their MINDIST from q and fetch them from disk in that order while keeping a
list of the current k closest NNs found in the read pages. The algorithm terminates
as soon as the most distant NN in the list is closer to q than the next leaf page to be
read. Hjaltason and Samet proved that this algorithm is optimal in that it accesses

� � � � � � 	
 � � � � � � � � � � ! " # % ') * + + - /
0 1 3 4 1 3 5 6 7 7 8 9 ; <

> ? A B D F G H J H J L N O P R R S T U
V W X Z [\] ^ ` a b c e ^ c [f g i j k m o p r s r s

u v w x v v y z z { y } } ~ z � � � � � � � � � � � { � �
� � � � � � � � � � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ ¥ ¤ § ¨

© ¢ ª « © ® ¦ ¡ £ ° ® ± ¡ ª § ¦ ¢ ¡ ¢ ² ´ µ ´ µ ¶
· ¸ ¹ º ¼ ¾ ¿ À Á Â Ã ¿ Ä À ¿ Å Æ À ¼ Ç È Ê È Ë Ë Ì
Í Î Ï Ð Ñ Ò Ó Ó Ô Õ Ö Ø Ö Ø Ö Ù Ú Ø Û Ö Ü Ý Ô Û Ú Ù Þ ß Û à Ö Ø Õ á Ô Ö Ý â Ú Û Ú ã å æ Þ

Fig. 9. The access optimal k-NN query algorithm.

January 10, 2003 16:38 WSPC/164-IJIG 00089

18 C. A. Lang & A. K. Singh

a minimal number of pages, namely only the pages intersected by the k-NN query
sphere. We will refer to this optimality as access optimal.

It is clear that especially for high dimensional data, the pages close to q can be
scattered widely over the disk. This causes a large amount of seek operations during
the query processing. If all pages to be read during a NN query would be known
in advance, these expensive seeks could be avoided. We refer to an algorithm that
minimizes the overall response time as response time optimal algorithm. Our new
accelerated algorithm reduces the response time significantly by utilizing our new
radius estimators. As we will see, its performance is very close to a (hypothetical)
response time optimal k-NN query algorithm.

Before we discuss this new algorithm, we give the time complexity of the access
optimal algorithm for a single query:

costNN = L · (tseek + txfer + C · tcpu) + toutput

= L · tseek + L · txfer + L · C · tcpu + toutput (5)

where L denotes the number of leaf pages to be read, C denotes the number of
points in one page, and tseek, txfer, tcpu, and toutput denote the disk seek time, page
transfer time, CPU time for one distance calculation, and time to output the NNs,
respectively. This formula assumes that each page has to be fetched separately, for
the reason given above.

7.2. The new algorithm

This basic idea of our new k-NN query algorithm is as follows. For every incoming
NN-query, we compute rexpected (cf. Sec. 4) as a first estimate of its NN-query
radius. Using this estimate, we can perform a range query on the full dataset. Since
all pages are known in advance for range queries, the amount of seek operations
can be minimized by employing a specific page read scheduler. If the first estimate
was too large, at least k points were in the range, we can return the k closest ones
as the result set. If the first estimate was too small, with less than k points were in
the range, we need to increase the search radius and perform another range query.
Since we have already a first radius estimate, we can use rupper (cf. Sec. 6) as this
second estimate. Since rupper is an upper bound on the real radius, we read at least
k points during the second range query. Therefore, at most two range queries are
necessary to answer the k-NN query, resulting in a worst case cost of two linear
scans over a subset of the data pages (if an optimal page read scheduler is used).
Figure 10 gives the algorithm in more detail. Note that a simple modification yields
an approximate k-NN query algorithm with less I/O cost. Instead of performing a
second range query, we can stop the algorithm after Step (3) and simply report the
k closest points encountered during the first range query. As we saw in Sec. 5.2,
for typical applications, rexpected is already close to the real radius. Therefore, the
quality of the approximate NNs can be expected to be high.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 19

Input: Query point q, number of NNs k
Output: k NNs of q

(1) Perform a k-NN query on sample in memory;
this yields a k-NN-radius rsample.

(2) Let rexpected := rsample ·
dcutoff
nn (k)

dcutoff
sample−nn(k)

.

(3) Perform a range query with radius
rcutoff
expected on full dataset;

this results in a set R of data points and
a set P of index leaf pages accessed during the query.

(4) If |R| ≥ k, return the k closest points from R, stop.
(5) Otherwise (more NNs need to be found),

compute the k closest points stored in P and
calculate the smallest radius rupper enclosing them.

(6) Perform a modified range query around q
with radius rupper on full dataset;
this results in a set R′ of data points
and a set P ′ of index leaf pages
accessed during the query.

(7) Return the k closest points from R′, stop.

Fig. 10. The accelerated k-NN query algorithm.

Before being able to run these algorithms for a given dataset, we need to pre-
compute a sample of the dataset, the correlation fractal dimensionality, D2 and
D′2, of the full dataset and the sample dataset, respectively. This can be done in
O(N logN) time with the box counting algorithm as discussed in Sec. 3.1. Note
that this cost has to be paid only once and is therefore amortized over time.

The time complexity of the accelerated algorithm for a single query is

costAccNN =
|P |
B
· (tseek +B · txfer +B · C · tcpu)

+
|P ′|
B
· (tseek +B · txfer +B · C · tcpu) + toutput

=
|P |+ |P ′|

B
· tseek + (|P |+ |P ′|) · txfer + (|P |+ |P ′|) · C · tcpu + toutput ,

(6)

where B denotes the average number of pages that can be read as a bulk. In case the
radius estimation is error-free, we have |P |+ |P ′| = L. When comparing to Eq. 5,
it is clear that the cost savings stem from the reduced amount of seek operations
due to the bulk read operations.

Disk Page Read Strategy. Only Steps (3) and (6) of our accelerated k-NN
query algorithm induce disk I/O due to the two range queries. The range query
in Step (3) is a regular range query provided by the indexing system. The range
query in Step (6) is modified as follows. Since the k closest points from the pages P
are already known, this range query needs to read only the pages from P ′–P . Note

January 10, 2003 16:38 WSPC/164-IJIG 00089

20 C. A. Lang & A. K. Singh

that it is possible to perform Step (6) with a regular range query without affecting
the correctness of the algorithm but the modified version reduces the amount of
unnecessary page reads and thereby leads to lower I/O cost. In our experiments,
we make use of the heuristic suggested by Seeger et al.20 to minimize the I/O cost
for reading a set of disk pages during a range query execution.

7.3. Experimental results

In order to evaluate our accelerated k-NN-query algorithm, we performed experi-
ments for a large number of datasets. Here we present the results for a synthetic
(UNIFORMh) and a real dataset (LANDSAT). For each dataset we ran 100 k-NN
queries where k varied between 10 and 50 and we measured the amount of seeks
and page transfers. All queries are density-biased, i.e. query points are picked with
higher probability from a region with higher density. The sampling rate is always
1/100. For the underlying harddisk we assume a 20 MB/s transfer rate and an
average seek time of 10 ms. This, together with the measured seek and transfer
numbers, is then used to compute the average query response time. All experi-
ments were conducted on a prototype implementation.

We report here only on the results for the X-tree21 index structure (a discussion
on other index structures (such as R-tree22 and VA-file23) can be found in the tech-
nical report24). For comparison, we use the optimal NN-query algorithm proposed
by Hjaltason and Samet.1 The index page capacity is 8 KB and the upper part of
the index tree is kept in memory. Therefore, only leaf page accesses cause disk I/O.

In the next paragraphs, we compare the performance of the access optimal NN-
query algorithm with our accelerated version, a hypothetical algorithm with per-
fect radius estimator, and the linear scan. The hypothetical algorithm “ORACLE”
always picks the correct query radius for the first range query and reads therefore
always the minimal number of pages possible for our algorithm. It provides a lower
bound of our algorithm’s response time. The linear scan reads all pages in a linear
fashion and therefore requires no seek operations. It is therefore a good point of
reference for judging the impact of filtering out pages by our radius estimates.

Results for Synthetic Data. Figure 11 shows the results for the X-tree and 8-
dimensional uniform data. For each k-value, we show four I/O costs: for the access
optimal query algorithm (denoted by “Orig.”), for our accelerated query algorithm
(denoted by “Accel.”), for ORACLE (denoted by “Oracle”), and for the linear
scan (denoted by “Scan”). Each cost value is an average over 100 queries. Since
we use an elaborate bulkloading algorithm to build the tree, the page utilization is
high and no page overlaps occur. This improves the query performance drastically.
For 10-NN queries, the index is even faster than the linear scan. For larger k, the
performance deteriorates again and becomes worse than scanning. When using our
acceleration technique, the performance is improved even further, as can be seen in

hThe uniform dataset consists of 100 000 uniformly distributed 8-dimensional points.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 21

0

50

100

150

200

250

Orig. Accel.
(10 NN)

OracleScan Orig. Accel.
(20 NN)

OracleScan Orig. Accel.
(50 NN)

OracleScan

O
ve

ra
ll

qu
er

y
co

st
 (

in
 m

s)

Fig. 11. Overall query cost (UNIFORM).

the second bars. Compared to the original X-tree, we achieve speed-ups between 3
and 5. Additionally, the accelerated query algorithm is at least 3 times faster than
the linear scan.

Results for Real Data. The experimental results for the LANDSAT dataset can
be found in Fig. 12. Our accelerated query algorithm outperforms the well-tuned
X-tree index structure by a factor of 3–5. The reason is simple. Even though the
accelerated query algorithm needs to read more pages, it knows them in advance
and can read as many of them sequentially as necessary. In a way, it gets the best
of both worlds, the X-tree and the linear scan: it reads nearly as few pages as the
optimal NN-query algorithm of the X-tree, and it performs nearly as few seeks as
the linear scan.

8. Application 2: Accelerated Disk-based All-NN Query Algorithm

8.1. The block-nested-loops join algorithm

Assume we are given two point datasets, DS1 and DS2. For each point in DS1 we
want to determine its NN among all points in DS2. This problem can be easily
generalized to all-k-NN queries.

One straightforward way of answering such queries is by performing |DS1|
regular NN queries on DS2 (which may then be accelerated using our technique

January 10, 2003 16:38 WSPC/164-IJIG 00089

22 C. A. Lang & A. K. Singh

0

500

1000

1500

2000

2500

3000

Orig. Accel.
(10 NN)

OracleScan Orig. Accel.
(20 NN)

OracleScan Orig. Accel.
(30 NN)

OracleScan

O
ve

ra
ll

qu
er

y
co

st
 (

in
 m

s)

Fig. 12. Overall query cost (LANDSAT).

presented in the last section). However, this solution causes a high number of disk
seeks for high-dimensional datasets since typical caches are not large enough to store
common pages between queries. It would be beneficial to perform these operations
in bulks.

One way of achieving this is by utilizing a block-nested-loops join algorithm25

since the all-NN problem can be viewed as the problem of joiningDS1 and DS2 with
the join condition being σ(x, y) = “x has y as a NN” where x ∈ DS1 and y ∈ DS2.
The pseudocode for the block-nested-loops join algorithm is given in Fig. 13. The
algorithm consists mainly of two nested loops, one reading pages from DS1 and one
reading pages from DS2. These page reads are performed in a sequential fashion in

� � � � � �
 � � � � � � � � � � � � ! " � # % &
() + ,) + - . . / 0 1 2 4 4 6 8 : ; < = ? @ A B C E G H I K L

M N O P R T U V W X Y Z [] _ Z a b c e b Y g h i k m o q s t u v u w q x y { | x ~ � �
u v ~ x s � q � q { � � v u � � � � � � � � � �

� � � � � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ ª « « ¬ ® ¯ ° ® ± « ² ³ ´
² ¬ ° ¯ ± ¶ ® ¶ ® · ¸ ¹ ¬ ² º » ¼ ½ ¾ À Á Â Ã Ä

Å Æ Ç È ¾ É À Ê Â Ë Ë Ã Ì Í Î Â À Ï Ð ¾ Í Ñ Ò Ê Ñ Ò Ê Ð Â Ô Ö × Ø Ú Û Ü Ý Þ ß
à á â ã ä å Ú ä å æ æ Þ ç è é Û ê ê Ú è ì í å Þ ì í å î Ý ï ð ñ ó ô õ ö ÷ ø ù
ú û ü ý þ ÿ ô ù

Fig. 13. Block-nested-loops join algorithm.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 23

order to reduce disk seeks. We assume that a buffer of size M (in number of pages)
is provided. The algorithm fills the first half with DS1-pages and the second half
with DS2-pages. For each point in a DS1-page we store additionally its best NNs
so far. This information is updated in Step (3).

The time complexity of this algorithm is

costJoin =
L1

M/2
·
(
tseek1 +

M

2
· txfer1

+
L2

M/2
·
(
tseek2 +

M

2
· txfer2 +

M2

4
· C2 · tcpu

)
+
M

2
· toutput

)

= 2 · L1

M
· tseek1 + 4 · L1 · L2

M2
· tseek2 + L1 · txfer1

+ 2 · L1 · L2

M
· txfer2 + L1 · L2 · C2 · tcpu + L1 · toutput , (7)

where L1 and L2 denote the number of pages in DS1 and DS2, respectively. tseeki

and txferi denote the seek and transfer time of disk i.

8.2. The new algorithm

In this section, we show how our new radius estimators can be used to accelerate
the block-nested-loops join algorithm for answering all-NN queries. The basic idea
is as follows: instead of estimating the NN-radius for a single point, we estimate it
for all points in the DS1-pages stored in the buffer. Once we have calculated the
NN-radius-estimates for all points of a page of DS1, we can predict which pages of
DS2 have to be accessed in order to compute the join. This is where the I/O cost
is reduced significantly as compared to a block-nested-loops join algorithm which
accesses every page of DS2 for a page of DS1.

Let us discuss the new algorithm in more depth. It is given in Fig. 14. In Steps (1)
and (2), a so-called influence region Rexpected(P) is computed for every page P in
DS1. This can be seen as a generalization of the computation of rexpected for the
accelerated k-NN query algorithm. The influence region can be regarded as the
union of the expected NN-spheres of all points in P , as shown in Fig. 15. In this
example, page P contains three points. The influence region is shown as the shaded
area. Two of theDS2-pages (shown as dashed boxes) are intersected by P ’s influence
region and have to be retrieved in Step (4) of the algorithm. Page A would not be
retrieved at this time.

In case DS2-pages that have to be retrieved are less than M/2 pages apart
on disk, they can be read together as in Step (4). This helps reducing disk seeks.
In our implementation, we access the M/2 pages around the intersected DS2-page
in disk-placement order. Since most index structures try to place pages nearby on
the disk that are spatially close in the data space, pages stored before and after the

January 10, 2003 16:38 WSPC/164-IJIG 00089

24 C. A. Lang & A. K. Singh

Input: Dataset DS1, dataset DS2

Output: NNs of all q ∈ DS1 taken from DS2

(1) Scan DS1 in chunks of size M (whole buffer);
for each chunk of DS1-pages:

(2) Compute expected influence region Rexpected(P)
for each DS1-page P .

(3) Scan DS1 in chunks of size M/2 (half of the buffer);
for each chunk of DS1-pages:

(4) Read M/2 consecutive pages from DS2

that intersect at least one influence region
of the DS1-pages (fill other half of M);
for each chunk of DS2-pages:

(5) Update NNs for each point in the DS1-pages.
(6) Update Rexpected(P) for each DS1-page P .
(7) Read all pages (at most M/2 at a time)

of DS2 that intersect at least one influence
region of the DS1-pages (fill other half of M);
for each chunk of DS2-pages:

(8) Update NNs for each point in the DS1-pages.
(9) Output NNs for all points in the DS1-pages.
(10) Stop.

Fig. 14. Accelerated all-NN query algorithm.

PA

B

C

approx. NN−sphere

Fig. 15. Influence region of page P .

intersected page have a high probability to contain points that are also close by.
This leads to better updated estimates in Step (6) of the algorithm.

After M/2 DS2-pages were read in Step (4), the NN-information is updated in
Step (5) similar to the block-nested-loops join algorithm. Then the points found
in the M/2 DS2-pages are used to improve Rexpected(P) for each DS1-page in the
buffer. This can be seen as the equivalent to Step (5) of our accelerated k-NN query
algorithm. Similar to there, the updated Rexpected(P) represents an upper bound
on the correct influence region of P .

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 25

The updated Rexpected(P) is used in Step (7) to read the pages fromDS2 that are
intersected by this upper bound influence region. In the remainder of the algorithm,
the NN-info of all points in DS1-pages are updated and output once all DS2-pages
are processed.

An important observation is that the accelerated all-NN search algorithm can
never perform more than twice as many page accesses as the block-nested-loops join
algorithm. This can be seen as follows: in the worst case, all pages of DS2 are
accessed in Line (4) and again in Line (7), since Step (4) reads additional (possibly
unnecessary) pages that may be refetched in Step (7).

The overall time complexity of the new algorithm is

costAccJoin =
L1

M
· (tseek1 +M · txfer1 +M · C · S · tcpu) +

L1

M/2
·
(
tseek1 +

M

2

× txfer1 +
L′2
M/2

·
(
M/2
B
· tseek2 +

M

2
· txfer2 +

M2

4
· C2 · tcpu

)

+
L′′2
M/2

·
(
M/2
B
· tseek2 +

M

2
· txfer2 +

M2

4
· C2 · tcpu

)
+
M

2
· toutput

)

= 3 · L1

M
· tseek1 + 2 · L1

M
· L
′
2 + L′′2
B

· tseek2 + 2 · L1 · txfer1

+ 2 · L1

M
· (L′2 + L′′2) · txfer2 + L1 · (L′2 + L′′2) · C2 · tcpu + L1 · toutput ,

(8)

where S denotes the size of the sample used in Step (2) and L′2 and L′′2 denote the
average number of pages to be read from DS2 in Steps (4) and (7), respectively.

In order to compare Eq. 7 and Eq. 8, let us assume DS1 and DS2 are located
on the same type of disk, i.e. tseek1 = tseek2 and txfer1 = txfer2. Then the seek times
are

costseek
Join =

L1

M

(
2 + 4

L2

M

)
↔ costseek

AccJoin =
L1

M

(
3 + 2

L′2 + L′′2
B

)
.

Since the number of pages read as a bulk B is typically close to M and L′2+L′′2 � L2,
the seek time can be expected to drop.

The page transfer times are

costxfer
Join = L1

(
1 + 2

L2

M

)
↔ costxfer

AccJoin = L1

(
2 + 2

L′2 + L′′2
M

)
.

Again, since L′2 + L′′2 � L2, the transfer time can be expected to drop.
Finally, the time spent in distance calculations is

costcpu
Join = L1L2C

2 ↔ costcpu
AccJoin = L1(L′2 + L′′2)C2 .

With the same reasoning, this cost can be expected to drop as well.

January 10, 2003 16:38 WSPC/164-IJIG 00089

26 C. A. Lang & A. K. Singh

8.3. Experimental results

For experimental evaluation, we ran two experiments: on two-dimensional synthetic
uniform data, and on 60-dimensional real data. The uniform datasets consist of
10 000 points each and the real datasets consist of approximately 13 000 points
each extracted randomly from the LANDSAT dataset. In the case of joins, the
overall running times are not necessarily I/O-bound. Due to the high number of
distance computations required, the CPU cost becomes an important factor. Hence,
we include both costs in our comparisons. For the uniform data, our accelerated
join algorithm dropped the overall response time from about 4 minutes to less than
1 minute. In the LANDSAT case, the response time dropped from 150 minutes to
about 40 minutes. The buffer size M (which was varied between 3 and 25% of all
pages) had no noticeable impact on this drop. The results are shown in Figs. 16
and 17.

The largest percentage of the cost savings stems from the reduced number of dis-
tance computations performed by our new algorithm. For the lower-dimensional
data, only 1/5 of all distance computations have to be performed. For the higher-
dimensional data, only 1/4 of the computations are necessary. This shows that the
pruning caused by our influence region estimation is very effective. The I/O cost
is also reduced in both cases but since distance computations are very costly for
high-dimensional data, the algorithm becomes CPU-bound in such settings.

0

1

2

3

4

5

8 10 12 14 16 18 20 22 24 26

O
ve

ra
ll

co
st

 (
in

 m
in

ut
es

)

M (in % of pages)

block-nested-loops
acc. all-nn

Fig. 16. Overall query cost (UNIFORM).

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 27

0

50

100

150

200

0 5 10 15 20 25

O
ve

ra
ll

co
st

 (
in

 m
in

ut
es

)

M (in % of pages)

block-nested-loops
acc. all-nn

Fig. 17. Overall query cost (LANDSAT).

9. Conclusions

We showed in this paper how query-dependent query range estimates can be used to
accelerate two important query algorithms. As a major contribution, we introduced
the notion of query-dependent query range estimates and gave an algorithm for their
computation based on sampling. Our analysis indicates that the estimation error
for the expected radius is below 14% and that errors in the fractal dimensionality
estimation have only minor impact on the accuracy. For the upper bound estimate,
the observed error was even lower, namely below 1%.

In the experimental section, we introduced two new algorithms that we acceler-
ated using the estimates discussed in the first part of the paper: one for answering
k-NN queries, and one for answering all-NN queries. Our new k-NN query algo-
rithm accelerates a bulkloaded X-tree index structure by a factor of nearly five.
Even the VA-file, which does not cluster points in pages, benefits from our acceler-
ation. The all-NN-query algorithm we presented outperforms a block-nested-loops
join algorithm by a factor of 3–4. Surprisingly, our technique was able to accelerate
significantly query algorithms proposed as part of index structures.

We want to emphasize that our technique is not to be understood as an improved
X-tree or another index structure. It should rather be seen as a general technique
for accelerating existing indexing schemes.

January 10, 2003 16:38 WSPC/164-IJIG 00089

28 C. A. Lang & A. K. Singh

Acknowledgments

This work is partially supported by NSF under grants EIA-0080134, EIA-9986057,
IIS-9877142, ANI-0123985, and NSFIIS98-17432.

References

1. G. R. Hjaltason and H. Samet, “Ranking in spatial databases,” in Advances in Spatial
Databases — Fourth Int. Symp. (1995), pp. 83–95.

2. C. Faloutsos and I. Kamel, “Beyond uniformity and independence: Analysis of R-trees
using the concept of fractal dimension,” in Proc. ACM Symp. Principles of Database
Syst. (1994), pp. 4–13.

3. A. Papadopoulos and Y. Manolopoulos, “Performance of nearest neighbor queries in
R-trees,” in Proc. Int. Conf. Database Theory, Lecture Notes in Computer Science
1186, 394–408 (1997).

4. F. Korn, B.-U. Pagel and C. Faloutsos, “Deflating the dimensionality curse using
multiple fractal dimensions,” in Proc. Int. Conf. Data Engineering (2000).

5. C.-M. Chen and Yibei Ling, “A sampling-based estimator for top-k query,” in Proc.
Int. Conf. Data Engineering (2002).

6. S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel and J. Sander, “Independent
quantization: An index compression technique for high-dimensional data spaces,” in
Proc. Int. Conf. Data Engineering (2000).

7. P. Ciaccia and M. Patella, “Bulk loading the M-tree,” in 9th Australasian Database
Conference (1998), pp. 15–26.

8. Y. Theodoridis and T. K. Sellis, “A model for the prediction of R-tree performance,”
in Proc. ACM Symp. Principles of Database Systems (1996), pp. 161–171.

9. S. Acharya, V. Poosala and S. Ramaswamy, “Selectivity estimation in spatial
databases,” in Proc. ACM SIGMOD Int. Conf. Management of Data (1999),
pp. 13–24.

10. F. Korn, T. Johnson and H. V. Jagadish, “Range selectivity estimation for continuous
attributes,” in Proc. Int. Conf. Scientific and Statistical Database Management (1999),
pp. 244–253.

11. J. Jin, N. An and A. Sivasubramaniam, “Analyzing range queries on spatial data,”
in Proc. Int. Conf. Data Engineering (2000).

12. C. A. Lang and A. K. Singh, “Modeling high-dimensional index structures using
sampling,” in Proc. ACM SIGMOD Int. Conf. Management of Data (2001).

13. T. Brinkhoff, H. Kriegel and B. Seeger, “Efficient processing of spatial joins using
R-trees,” in Proc. ACM SIGMOD Int. Conf. Management of Data (1993).

14. Y.-W. Huang, N. Jing and E. A. Rundensteiner, “Spatial joins using r-trees: Breadth-
first traversal with global optimizations,” in Proc. Int. Conf. Very Large Data Bases
(1997), pp. 396–405.

15. N. Koudas and K. C. Sevcik, “High dimensional similarity joins: Algorithms and
performance evaluation,” in Proc. Int. Conf. Data Engineering (1998), pp. 466–475.

16. C. Böhm, B. Braunmüller, F. Krebs and H.-P. Kriegel, “Epsilon grid order: An al-
gorithm for the similarity join on massive high-dimensional data,” in Proc. ACM
SIGMOD Int. Conf. Management of Data (2001).

17. G. R. Hjaltason and H. Samet, “Incremental distance join algorithms for spa-
tial databases,” in Proc. ACM SIGMOD Int. Conf. Management of Data (1998),
pp. 237–248.

January 10, 2003 16:38 WSPC/164-IJIG 00089

Faster Similarity Search for Multimedia Data 29

18. B. Braunmüller, M. Ester, H.-P. Kriegel and J. Sander, “Efficiently supporting mul-
tiple similarity queries for mining in metric databases,” in Proc. Int. Conf. Data
Engineering (2000), pp. 256–267.

19. A. Belussi and C. Faloutsos, “Estimating the selectivity of spatial queries using the
‘correlation’ fractal dimension,” in Proc. Int. Conf. Very Large Data Bases (1995),
pp. 299–310.

20. B. Seeger, P.-Å. Larson and R. McFayden, “Reading a set of disk pages,” in Proc.
Int. Conf. Very Large Data Bases (1993), pp. 592–603.

21. S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An index structure for
high-dimensional data,” in Proc. Int. Conf. Very Large Data Bases (1996), pp. 28–39.

22. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proc.
ACM SIGMOD Int. Conf. Management of Data (1984), pp. 47–57.

23. R. Weber and S. Blott, “An approximation based data structure for similarity search,”
Technical Report 24, ESPRIT project HERMES (no. 9141), October 1997.

24. C. A. Lang and A. K. Singh, “Accelerating high-dimensional nearest neighbor
queries,” Technical Report CS-TR-0204, University of California at Santa Barbara,
January 2002.

25. R. Ramakrishnan and J. Gehrke, Database Management Systems (2nd Edition)
(McGraw-Hill, 2000).

Christian Lang received the Diploma in Computer Science
from the Technical University of Munich, Germany, in 1996.

In 1997, he joined the University of California at Santa
Barbara as a PhD student. His research interests are high-
dimensional indexing and performance prediction. He is a
student member of the ACM, ACM SIGMOD, and IEEE.

Ambuj Singh received a Masters in Computer Science from
Iowa State University in 1984 and a PhD in Computer Science
from the University of Texas in 1989.

He joined the University of California at Santa Barbara in
1989, where he is currently a Full Professor. His research interests
are in the areas of multimedia databases, distributed computing,
and bioinformatics.

Copyright of International Journal of Image & Graphics is the property of World Scientific Publishing

Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.

