
12 communications of the acm | december 2012 | vol. 55 | no. 12

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

Mark Guzdial
“Why Don’t Languages
Support Multimedia
All the Way Down?”
http://cacm.acm.org/
blogs/blog-cacm/109917
June 22, 2011

Donald Knuth gave the keynote talk
at ITICSE 2003 on “Bottom-Up Educa-
tion.” He argued that the hallmark of
thinking like a computer scientist was
being able to shift levels of abstrac-
tion, from the highest levels of appli-
cation, all the way down to the bits,
if necessary. He was arguing for his
MMIX processor, but the same argu-
ment can be made in lots of different
pedagogical contexts.

That’s really what Barbara Ericson
and I are doing in our Media Computa-
tion approach to introductory comput-
ing. Students today use digital media
every day. They recognize the manipu-
lation of media as a relevant and useful
activity. In our approach, we teach stu-
dents to manipulate digital sounds at

in Java. I have also been able to con-
struct our Media Computation exam-
ples in Squeak as well. Jennifer Burg
has shown how easily it can be done in
C. Then that’s really about it.

Our publisher has encouraged us
to look into using Media Computation
with other languages, especially Py-
thon 3.0. And that’s where we run into
problems. We can manipulate pixels;
in fact, Nick Parlante at Stanford has
started teaching JavaScript using Me-
dia Computation with pixel-level ma-
nipulations. A recent review of audio
packages for Python shows that none of
them support sample-level manipula-
tions cross-platform. I have been able
to write small examples in PyGame, but
there are some significant bugs in that
package. For example, if you open up a
sound that is not CD quality, PyGame
“re-samples” the sound, so a sound
that you open and save back out might
double in size. If you care about the
byte level, it is disconcerting for more
of them to appear without warning.

I have found no packages that let
me do pixel- and sample-level manipu-
lations in other languages. There is a
book on learning Haskell with multi-
media, but it is all at the highest level
of abstraction. I have tried to find such
supports for Scheme, but the only au-
dio package I have found allows you to
play sounds, but you still can’t access
the samples in those sounds. It’s frus-
trating because, if a language or library
supports playing the sounds, then
those samples are somewhere there in
memory. Let us at them!

Now, I’ll bet there are libraries for

the sample level and digital pictures at
the pixel level. They can then write sim-
ple loops to create Photoshop-like ef-
fects, like flipping an image or remov-
ing red eye, or to create digital sound
effects, like creating an echo, splicing,
or reversing sounds. Manipulating pix-
els and samples is fun and easy— we’ve
shown that it’s a CS1-level activity. It’s
another case of manipulating the low-
est-levels of abstraction to create an ef-
fect at the application level.

The problem is finding languages
and libraries that support this level of
access and manipulation. Sure, lots
of languages can show pictures and
play sounds, but that’s getting stuck
at Knuth’s highest level of abstraction.
How many languages and libraries,
even those aimed at students, let you
shift levels of abstraction with media?

Barbara and I wrote our books in
Python and Java by cheating. Java does
support shifting levels of abstraction.
We chose a version of Python, Jython,
that lets us reuse the classes we wrote

Levels of Abstraction;
Pre-Teens and
Career Choices
Mark Guzdial writes about the need for programming
languages to support multimedia at all levels.
Judy Robertson shares insights about 12-year-old students’
lack of understanding about computer science.

doi:10.1145/2380656.2380660			 http://cacm.acm.org/blogs/blog-cacm

blog@cacm

december 2012 | vol. 55 | no. 12 | communications of the acm 13

manipulating pixels of images and
samples of sounds in many of these
languages, but my experience suggests
that they’re not obvious, not easy to
find. Why not? Don’t we think that Don-
ald Knuth is right, and it really is impor-
tant for CS students to be able to get all
the way down easily and obviously to
understand how to build it all back up?

There is an argument that real appli-
cation developers don’t typically work
at that level. Video game programmers
leave the pixel and sample manipula-
tions to the gaming engine. Most ap-
plication developers just want to show
pictures and play sounds and videos.
But that doesn’t excuse not providing
access for students. Learning is a con-
scious process. It’s so much easier to
be conscious about things we can see.
How do you study something that you
can’t see, that you can’t manipulate?
How do you learn samples and pixels
if they’re always hidden inside some
library or engine? Sure, it’s possible
to learn things that are invisible, but it
works much better if they are visible,
accessible, and malleable.

Media is something that I care
about, but I wonder if it’s an instance
of a larger problem. It’s important for
students to shift levels of abstraction.
How well do our languages for students
support shifting levels of abstraction;
that is, being able to see everything
from the application level down to the
bytes? And if they don’t, we should be
asking, “Why not?”

Judy Robertson
“Foggy Futures: The
Confused Computing
Career Aspirations of
12-Year-Olds”
�http://cacm.acm.org/
blogs/blog-cacm/115085
July 25, 2011

Can you remember what it was like to
be 12 years old and have an infinity of
possible careers in front of you? What
made you choose computing? Was it a
positive choice, or did you drift into it?
I have been thinking about this today
because I have been listening to record-
ings of interviews with 12-year-old boys
and girls about their attitudes to com-
puting, and their future career choices.

I chose computing because it was
difficult. I wanted the challenge. I dis-
tinctly remember trying to work out

how to write a sorting algorithm as I
trudged along my morning newspaper
delivery route. Naturally because it was
so hard it seemed the obvious thing to
want to do with my life. (Go figure!) Back
in those days, computers weren’t part of
everyday life. My exposure to computing
was from learning to program at school,
and from watching my dad type expert
systems code from the back of a book
into an Amstrad word processor.

But now, children’s exposure to
computing is ubiquitous and centered
around the use of computers rather
than more fundamental computer
science concepts. In our recent inter-
views with 12-year-olds who had just
completed a game-making project, we
asked them about what they under-
stood by the term “computing.” It be-
came clear that their understandings
were partly related to the label for the
subject on the timetable, such as “ICT,”
“Information Technology,” or “Com-
puting Studies.” None of the classes
were labeled “Computer Science.”

When asked what they might ex-
pect to do in a computing class, the
children typically told us about using
applications: spreadsheets, databases,
PowerPoint, Word, and sound record-
ing packages. The “Internet” was often
featured, in the sense of learning to use
Internet-based applications safely and
effectively. They thought that in a com-
puting class they might learn how to
use computers in general, and learn to
use programs they had not come across
before. A couple of students mentioned
learning about what computers can do,
and what parts are inside them. Oddly,
no one mentioned that they would ex-
pect to study the fundamental proper-
ties of computation, or the patterns for
effective software design.

In terms of future careers, the stu-
dents often explained that while they
thought computing was an important
aspect of many lines of work, it was not

something they wished to focus on. A
boy who wanted to be a pilot mentioned
that “there are a lot of computers in
that. You have to login when you’re go-
ing out and log out and your computer’s
inside the plane.” A girl who wanted to
be a doctor conceded that she would
learn computing if it were necessary to
do the job. Worryingly, a couple of the
girls had misconceptions about how
programming might fit into careers:

Girl A: “To be an optician or a vet,
you have to use the computer quite a
lot for that.”

Girl B: “Programming and stuff.”
Girl A: “To be an optician you have

to program what it is, know what it is,
certain parts. Like what’s wrong, how
they can help and stuff.”

Interviewer: “Have you done any
programming yet in school?”

Girl A: “I don’t know.”
Girl B: “We did. We did our own pro-

gram. ‘My computer of the future,’ that
was a programming project.”

Girl A: “We know that programming
is like typing and stuff.”

Girl B: “Is it?”
Girl A: “So I believe....”
Typing? Opticians? This calls into

question an attitude questionnaire I
recently used that included a perfectly
reasonable-seeming question about
how much the respondent enjoyed pro-
gramming. The results may not be very
reliable if some of the kids think pro-
gramming is merely typing.

This brings me to a broader point
about computer science education. With
many excellent initiatives to encourage
students to study computing under way,
we are going to need to evaluate their ef-
fectiveness. To do so, we need surveys
that reliably and validly uncover chang-
es in attitudes to computing. But such
instruments will need to be designed
very carefully if there is such a mismatch
between researchers’ and students’
understanding of basic terms such as
“computing” and “programming.” Per-
haps vocabulary development needs to
be part of the computer science educa-
tion itself. We need to clearly articulate
to pre-teens what computer science is,
as well as why it is so important.	

Mark Guzdial is a professor at the Georgia Institute of
Technology. Judy Robertson is a lecturer at Heriot-Watt
University.

© 2012 ACM 0001-0782/12/12

Judy Robertson

“I chose computing
because it
was difficult.”

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

