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This paper proposes a system-level design methodology for efficient exploration of pa-
rameterized multimedia architecture. The purpose is to find a near-optimal configura-
tion, as far as possible, without performing exhaustive analysis of the design space. This
is done through synergistic integration of two independent methodologies, first of which
is the multi-stage dynamic optimization based on parameters clustering and sparsing,
while the second one being a quick performance estimation through sampled-data simu-
lation of target multimedia application. The experimental results with mediabench show
speedup ranging from 186.4 to 339.8, while the corresponding error-to-global optimum
ranges from 14.8% to 16.4%.
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1. Introduction

The demand for high-performance real-time application is increasing due to the

growth of computing power and user’s desire to new and better applications. One

of the representative applications is the multimedia domain. Multimedia now de-

fines a significant portion of the computing market, and this is expected to grow

considerably. As described in Ref. 1, for the complex applications like multimedia

ones, more flexibility is required to accommodate design errors and specification

changes, which may happen at the later design stages. Since an ASIC is specially

designed for one behavior, it is difficult to make changes at later stage. In such a sit-

uation, ASIP offers a required flexibility at lower cost than general programmable

processors. Therefore, we adopted an ASIP as a research target for multimedia

processors.

One of the major problems in developing ASIP is that it may result in de-

lay for time-to-market because of large overheads in designing instruction set,

special hardware modules, developing compiler, debugger, and so on. Therefore,

frameworks for supporting rapid development of ASIP are crucial for multimedia
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systems design. A recent innovation addressing this problem is an embedded soft

core, a general-purpose processor which has parameterizable components such as

Tensilica,2 ArcCores3 and HP.4 Although this parameterized ASIP approach can

reduce the design overhead significantly, an exhaustive search of the optimal val-

ues of a large number of parameters are still very time-consuming. For example, a

full search of 20 parameters, each with three alternatives, leads to about 35 billion

configurations. This kind of problem is well known as the combinatorial explosion

problem in the global optimization research field.5

To rapidly find a near-optimal configuration from such a large parametric design

space, this paper proposes a very efficient search technique. This is done through in-

tegrating two independent methodologies synergistically, first of which is the multi-

stage dynamic optimization based on parameters clustering, while the second one

being a quick performance estimation through sampled-data simulation.

Previous work towards finding globally (sub)optimal configurations for parame-

terized architectures include Refs. 6 and 7. The goal of Ref. 6 is to find a sub-optimal

configuration for energy-delay product of a memory hierarchy without performing

an exhaustive analysis of a parameters space. It applied separate optimization for an

instruction cache and a data cache which were assumed to be almost independent

of each other. This paper reported a large optimization speedup with respect to

full search and the found solution has about 10% distance from the true optimum.

The main restriction of this work is that it was only applied to a very simple and

modular cache sub-system. Therefore, the quality of the found solution is question-

able if the method is applied to more general and complex design parameters in a

practical situation.

On the contrary, Ref. 7 provided correct pareto-optimal configurations by ex-

ploiting parameter dependency. This paper showed a significant speedup against

the full search when many architectural parameters are independent, as in the case

of simple parameterized system-on-chip design. However, if parameters are highly

interdependent as in the case of ASIP, this approach inevitably reduces to almost

a full-search algorithm, as will be described later. The proposed methodology is

an extension of these previous works for achieving large speedup and finding ac-

ceptably good configuration, so that it can be employed across various processor

architectures including ASIC and SoC as well as ASIP for multimedia.

Among several choices of architecture for targeting high-performance and

real-time multimedia applications, we selected the superscalar architecture as

a research vehicle for several reasons. Firstly, it is still one of the most pop-

ular and verified processor architecture frequently used for high-performance

applications. Secondly, there comes out lots of variant architecture solving lim-

itations of traditional superscalar architecture so that the proposed framework

can be extended to be used even in the future.8,9 Thirdly, we could verify our

idea very quickly and convincingly with the most famous and stable research-

purpose SimpleScalar tool-set,10 which supports the parameterized superscalar

architecture.
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The rest of the paper is organized as follows: Sec. 2 describes the dynamic pro-

gramming approach for rapid search of near-optimal configurations, while Sec. 3

proposes a weighted PD-graph based optimization scheme. Section 4 reviews the

estimation scheme11 focusing on characteristics relevant to this paper, and Sec. 5

shows the seamless integration of these two techniques. After showing the experi-

mental results in Sec. 6, we conclude in Sec. 7.

2. Dynamic Programming Approach to ASIP Synthesis

Dynamic programming12 is a mathematical procedure designed primarily to

improve the computational efficiency of mathematical programming problems by

decomposing into smaller sub-problems. The usual application of dynamic pro-

gramming entails breaking down the problem into stages at which the decisions

take place and finding a recurrence relation that takes us backward from one stage

to the previous stage. Before formulating our problems with dynamic programming,

let us review key idea of parameter dependency.7

2.1. Parameter dependency

A parameter pj is dependent on the parameter pi, if and only if the changing of

value pi affects the optimal value of pj . Otherwise, a parameter pj is independent

of the parameter pi. Figure 1 shows an example of parameter p2 being dependent

upon p1 (1(a)), and one that p4 being independent of p3 (1(b)). Every mapping

(vi, vj) in this figure represents the optimal value of pj , given the value of pi as

vi, is vj . The parameter dependency graph, abbreviated as PD-graph, is a directed

graph in which a node represents the parameter while an edge represents the depen-

dency between two parameters. Therefore, this graph is a collection of parameter

dependencies for all combinations of parameters. Following the definition of the
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Fig. 1. Parameter dependency.
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Fig. 2. Clustering PD-graph for dynamic programming.

parameter dependency, we can determine the optimization sequence for a given

PD-graph.

• An edge from node pi to pj indicates that the optimal configuration of pj should

be calculated only after the optimal configuration of pi is computed.

• More generally, a path from pi to pj indicates that the optimal configuration of

all the nodes from pi to pj , residing on the path, are calculated, in that order.

• If there is an edge from pi to pj and an edge from pj to pi, the optimal configu-

ration of parameters pi and pj must be calculated simultaneously.

• More generally, a path from pi to pj and back to pi, which forms a cycle, indicates

that the optimal configuration of all the parameters on the cycle need to be

calculated simultaneously.

The first two cases show the example of the multi-stage optimization by which

the number of calculations is reduced, while last two show the full-search case.

2.2. PD-graph-based dynamic programming

To apply the dynamic programming scheme for a given PD-graph, a cluster is

defined as maximal strongly connected sub-components of a PD-graph. After all

the clusters of the PD-graph are found, these are topologically ordered for correct

optimization sequence as shown in Fig. 2. It is easy to observe that there can be

no cycles between clusters due to its definition. As a result, the tree composed of

clusters make it easy to employ dynamic programming. Followings are some formal

notations regarding to the dynamic programming.

Definition 1. Parameter dependency function

pd : P ×P → {0, 1} is a parameter dependency function such that pd(p1, p2) = 1 if

there is a dependency from p1 to p2, and pd(p1, p2) = 0 otherwise.
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Definition 2. Parent function

parent : P → 2P is a function such that

for pj ∈ P , parent(pj) = {pi|pd(pi, pj) = 1 ∧ pi ∈ P}.

The parent function for a parameter, say pj , is a set of parameters pi that affects

the optimal value of pj .

The stages shown in Fig. 2, for dynamic programming, are determined by the

topology of the clusters as follows.

Definition 3. Stage function

stage : C → N is a function such that returns the stage number for any cluster of

a given PD-graph, where C is a set of clusters of a given PD-graph, and N is a set

of natural numbers.

stage(ci) =

{

0 , if parent(ci) = ∅ ,

max{stage(cj)|cj ∈ parent(ci)} + 1 , otherwise ,

where the parent function is a cluster-version of Definition 2.

Definition 4. Cluster-optimum configuration

A cluster-optimum configuration for a cluster ci ∈ C, notated as c∗i =

(p∗i1, p
∗

i2, . . . , p
∗

in), is defined to be the best configuration to which any other config-

uration (pi1, pi2, . . . , pin) is inferior in terms of the performance metric value, where

parameter pij , j = 1, . . . , n is a member of the cluster ci.

Definition 5. Optimal state

An optimal state, also called stage-optimum configuration for a stage si ∈ S, no-

tated as s∗i = c∗1|c
∗

2| · · · |c
∗

n is a concatenation of all cluster-optimum configuration,

where stage(ci) are same.

Definition 6. Global-optimum configuration

A global-optimum configuration notated as g∗ = c∗1|c
∗

2| · · · |c
∗

n is a concatenation of

all cluster-optimum configuration.

To obtain the global-optimum configuration from each cluster-optimum, it is im-

portant to keep the optimization sequence. The recurrence relation between stages

is that the optimal state of ith stage s∗i can go back far to that of jth stage, s∗j , where

j = min{stage(cj)|cj ∈ ∪ parent(ci) ∧ stage(ci) = i}. To make things simpler, we

only need to calculate the cluster-optimum configuration in the order of increasing

stages to find the global-optimum. Equation (1) shows the speedup obtained by

applying this multi-stage dynamic programming scheme.

SpeedupMS =

∏#clusters

i=0 Fi
∑#clusters

i=0 Fi

, (1)

where the subscript MS means multi-stage.

In this equation, the term Fi denotes the number of simulations required for

full-search of all configurations within cluster ci. This is also the speedup provided
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by the previous work,7 called PDO — Parameter Dependency based Optimization,

against full-search over all parameters of the PD-graph without clustering. The

problem in terms of the achievable speedup with this PDO approach is that the

speedup rapidly decreases as the number of clusters decreases, i.e., each cluster has

lots of parameters, since the term Fi rapidly increases. Therefore, when the target

architecture has highly inter-dependent parameters, we cannot expect large speedup

with this approach. Furthermore, it is difficult and time-consuming to construct a

correct PD-graph. More specifically, it is difficult to verify that a parameter being

independent of the other due to the completeness problem. Moreover, a problem

caused by defining strict parameter dependency is that only one exceptional case

of a parameter being dependent upon another declares the dependency. Therefore,

it may become practically unuseful, especially for complex architecture, because

the resultant PD-graph would be so dense that many parameters form a cycle, i.e.,

cluster.

The proposed idea for increasing speedup of Eq. (1) is two-fold. First idea is to

increase number of clusters by weighting all arcs in the PD-graph and eliminating

arcs of weak strength to make the PD-graph sparser than original one. Second idea

is to decrease the Fi term by conducting sampled-data simulation rather than full-

data one. These two ideas are more specifically described in the next two section,

respectively.

3. Weighted PD-Graph and Sparsing

This section describes the natural extension of the conventional PD-graph that can

be helpful to solve the practical problems mentioned before. As previously said, the

extension is done through attaching every arc of the PD-graph real value ranging

from 0 to 1. Some formal definitions and notations are shown below.

Definition 7. Context function

context : P × P → C is a function such that

for any pi, pj ∈ P that satisfies pi → pj , context(pi, pj) = parent(pj) − {pi}.

Simply said, a context is a set of all parent parameters that affects the optimal

value of pj except for pi.

Definition 8. Weighted PD-graph: wPDG

A weighted PD-graph is a directed graph, wPDG = (V, A, w) where

V : A set of vertices representing architectural parameters

A: A set of arcs such that (vi, vj) ∈ A if and only if pd(vi, vj) = 1.

w : A → (0, 1]. A weighting function that is associated to every arc in the graph

such that w(vi, vj) represents the probability of pd(vi, vj) = 1.

Figure 3 explains the concept of weight for parameter dependency with context.

The point here is that the parameter pj may be dependent on pi or not depending on

what values are assigned to each parameter ck ∈ context(pi, pj) = {c1, c2, . . . , cn}.
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Fig. 3. Weight of parameter dependency defined by context.
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Fig. 4. Overall optimization flow.

This is because parameters of context(pi, pj) also affect the optimal value of pj as

well as pi.

Then, the weight wij representing the strength of parameter dependency pi →

pj is determined empirically through large number of experiments with a set of

representative benchmarks in pre-characteristic phase of Fig. 4

wij =
#(pi → pj)

context size
,

where #(pi → pj) denotes the number of occurrences of pd(pi, pj) = 1 and

context size = c1 × c2 × · · · cn denotes the total number of alternatives for context

configuration. Note that, if there is only one parent for pj , say pi, context(pi, pj) =

∅. In this case, wij reduces to simply 1 or 0 according to pj depending on pi.

Now we can describe the overall optimization flow as shown in Fig. 4. The

proposed optimization procedure is a two-phase approach: (1) pre-characterization

phase at which representative PD-graph is obtained with a set of representative

benchmarks, e.g., mediabench for multimedia and communications; (2) optimiza-

tion phase at which near-optimal configuration for target application is found by

sparsing the representative PD-graph and employing CPI estimation scheme.
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Note that this optimization procedure is based on an assumption that PD-

graph for target application is similar to the representative PD-graph obtained at

pre-characterization phase. This means that weight distribution is preserved across

the applications, if they have similar characteristics as in the case of different ap-

plications of same multimedia domain. We will justify this assumption with the

experimental results in Sec. 6.

3.1. Sparsing weighted PD-graph

The representative PD-graph is obtained at pre-characterization phase by merging

a set of weighted PD-graphs {wPDG1, wPDG2, . . . , wPDGn} corresponding to

the set of representative applications {app1, app2, . . . , appn}. The sparsing criterion

in Fig. 4 specifies the condition with which the representative PD-graph is made

sparse. There may be different kinds of sparsing criteria depending on the underly-

ing sparsing algorithm, and this is one of the factors that affects the overall speedup

and accuracy. We selected a simple sparsing criterion, called tolerance factor, that

specifies the threshold with which all arcs having smaller weight are eliminated.

The effect of such elimination is to increase the number of clusters as shown in the

left part of Fig. 6. In this example, let us assume that the tolerance factor is larger

than the weight of arc (p4, p3), which is w5, and smaller than those of all other

arcs in the PD-graph. Note that the original cluster encompassing parameters p1 to

p5 is divided into two clusters cluster1 = {p1, p2, p3} and cluster2 = {p4, p5} with

the elimination of the arc (p4, p3). In this way, PD-graph sparsing contributes the

overall optimization speedup.

4. CPI Estimation for Multimedia Applications

Our recent work on the cycle counts estimation is described in detail in Ref. 11.

After briefly describing the overall characteristics of this approach, we will focus

on the part relevant to the integration with wPDG-based dynamic optimization.

Reference 11 proposed a very accurate and relatively fast method of estimating

cycle counts of target applications to rapidly find architecture parameters that

satisfy user-provided real-time constraints. Furthermore, by giving a tight upper

bound on the estimation error, user can convince himself of the estimation result.

The proposed method is based on an assumption that the program structure

does not change even though the architecture configuration changes. This assump-

tion holds for our framework thanks to the nature of the run-time instruction

scheduling feature of superscalar architecture. In other words, there is no need

to recompile the benchmark program even when the parameters’ values change.

Furthermore, the number of each basic block being visited remains constant across

parameter value change because the control flow of the program does not depend on

the machine configuration. To summarize, the number of execution counts for each

block is architecture-independent information. On the contrary, cycle counts taken

for executing each basic block is surely architecture-dependent. For example, cycle
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Table 1. Experimental results of the proposed estimation scheme.

Desired error 5% 10% 20%

avg. avg. avg.
Exec. time error error error

Apps. loops (%) # loops speedup (%) speedup (%) speedup (%)

JPEG 98.44 278 3.63 1.61 3.78 1.72 4.00 2.14
GSM 96.97 27 1.22 0.63 9.92 1.67 15.04 1.16
G.721 99.78 10 436.6 0.72 505.08 1.50 667.43 2.89
RASTA 91.84 108 4.09 0.29 5.87 0.85 5.98 2.1
EPIC 98.07 183 8.16 0.84 29.49 0.97 34.07 1.9
ADPCM 98.87 1 64.88 0.72 70.77 1.87 77.85 6.55

Average 86.1 0.8 104.15 1.43 134.06 2.79

counts taken for executing each basic block varies with the change of parameters,

such as the number of functional units, branch prediction strategy, decode/issue

width, and so on.

The speedup comes from the fact that we need only one full-simulation to obtain

the architecture-independent information instead of conducting simulation when-

ever parameters change. Moreover, we can reduce the simulation time in obtaining

architecture-dependent ones through sampled-data simulation with a little loss of

accuracy. The experimental results with Mediabench13 show 86 times of speedup

against full data simulation with 0.8% estimation error on average, if the desired

error bound is set to 5%. When we set the desired error bound to 20%, speedup in-

creases to 134 with 2.8% estimation error on average.

Finally, there is a popular saying that most programs spend 90% of their execu-

tion time in 10% of the code.14 While the actual percentages may vary, it is often

the case that a small fraction of a program accounts for most of the running time,

especially, a loop that contains no other loop is called an inner loop. These loops

make execution of the same basic block over and over again. Therefore, we need not

repeatedly simulate the same basic blocks again and again to obtain the execution

cycle counts of basic blocks. In general, it can be obtained with negligible error by

sampled data simulation, as our experimental results show.

It should be noted that multimedia applications are naturally more loop-

intensive than general application. This fact implies that we can obtain signifi-

cantly accurate estimated values with small-sized sampled-data. Table 1 shows the

resultant speedup and statistics about loops for every application of mediabench.

4.1. Adaptive sample size determination

Since sampled-data size is closely related to the speedup and estimation error,

sample size determination strategy is important. As the size of the sample gets

larger, the estimation error is reduced with the sacrifice of speedup. Moreover,

the size of sample satisfying the desired error bound is different depending on
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Fig. 5. Adaptive sample size determination.

applications. Therefore, we propose an efficient heuristic to determine the sample

data size. We define the sample size set as follows:

S = {Sk|0 < k < N, Sk−1 < Sk},

Sk: size of kth sample data,

N : number of admissible sample data.

First of all, designer need to prepare the sample size set which is divided into

equal space or user-defined. For example, if there is a 512-KB input data, a designer

can divide it into equal space with 0.1 KB. In this case, the number of element be-

comes 5120 in the sample size set. However, for some application such as EPIC,

the sample size must be in the power of two. In this case, designer needs to prepare

only feasible sampled-data set. After this sampled-data set is given, we use binary

search to determine best-fit size of sample data through the design space explo-

ration. Figure 5 shows the estimation flow incorporating the sample-size decision

process. Initially, left is assigned to be the smallest sample size while right assigned

to be the largest sample size. Meanwhile, the user provides a desired tolerable error

about estimation result.

Note that the purpose of this procedure is trying to make the sample size con-

verge to the best-fit one, as soon as possible, where the speedup is maximized while

maintaining the estimation error under the desired bound. This can be practically
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important because even a single target application would require lots of simulations

by changing the parameter configuration, in which case the gross speedup over

the design space exploration would be largely dependent upon the chosen size of

sampled-data.

During design space exploration, the sample size will decrease by reducing right

to middle, if the worst-case error of the estimation result satisfies the desired error.

We can then use half of the previous sample size to estimate the total execution

cycles. Finally, the size of sample data will converge to specific size when right equals

to left. From then on, this sample size is fixed to explore design space. However, if

the desired error is not satisfied on a particular processor configuration, we recover

left and right to the most recent values that satisfied the desired error.

4.2. Sample factor and estimation error bound

A sample-data size determined by the above procedure is used to calculate the

speedup in terms of simulation time for one configuration. Sample factor is defined

as the ratio of number of committed instructions between them, because it is the

number of instructions that directly affects the simulation time.

sample factor =
NCIsample

NCIoriginal

, (2)

where NCI is abbreviation for the number of committed instructions.

As briefly mentioned before, one of the key benefits of the proposed estimation

scheme is that it provides a tight bound for the actual CPI value, and the tightness

of the bound can be controlled by the user’s desired error bound. In other words,

we can obtain the interval for a given configuration in which the actual CPI value

resides. Therefore, we can safely use the reported bound to compare any pair of

configurations to decide which one is superior/inferior to another. The detailed

schemes of calculating the bounds are omitted, but interested user can refer Ref. 11.

5. Embedding Estimation Scheme into PD-Graph

This section describes the overall optimization method wherein the proposed es-

timation scheme is exploited to find the cluster-wise optimum configuration. The

process of finding optimum configuration involves lots of comparison between every

pair of possible configurations, in which the estimation results are used. As previ-

ously described, the estimation results on the CPI is of the form (min, max), and

there arise two distinct cases comparing two configurations, as shown in the right

side of Fig. 6.

The first case is that two intervals do not overlap. In this case, we can tell which

configuration is inferior/superior to the other, implying that sampled-data simula-

tion suffices for the comparison. On the contrary, the second case shows that the in-

tervals overlap which requires full-simulation for correct comparison. The key point

here is that the proposed estimation scheme generally provides tight bound for the
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Fig. 6. Interval-based comparison with estimation results.

interval with relatively short sampled-data size. This means that (1) full-data sim-

ulation is not often required, and (2) the time required for sample-data simulation

is much shorter than full-data one. These two desired properties are synergistic

in terms of speedup against conventional full-search with full-data simulation in

obtaining near-optimal configurations for the target application. The benefit is ef-

fectively reduce, the required number of full-data simulations as following equation

says.

• effective # of full simulation = # of overlapping cases + sample factor * # of

nonoverlapping cases.

For example, if the # of full-data simulation is 1000 and there were 100 cases

of overlapping in comparing configurations with sample factor of 10%, then the

effective # of full simulation reduces to 100 + 0.1 ∗ 900 = 190, which leads to

speedup over five times. It is remarkable that such a speedup-effect is multiplied

with the speedup resulting from wPDG-based dynamic programming.

6. Experimental Results

As previously mentioned, we used the Simplescalar simulator framework10 to evalu-

ate the speedup and accuracy of the proposed algorithm. We selected Mediabench13

as target applications because it is most popular and well-organized benchmarks

for various media applications, ranging from signal and image processing to cryp-

tography. This experiment used the cycle-per-instruction (CPI) as a performance
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Table 2. Selected simplescalar parameters.

Parameter Range

mem:lat (9, 1) or (9, 2)
mem:width 8, 16
res:memport 1, 2, 4
fetch:ifqsize 2, 4, 8
decode:width 2, 4, 8
issue:width 2, 4, 8
commit:width 2, 4
fetch:mplat 1, 2, 3
ruu:size 4, 8, 16
lsq:size 4, 16
Num. of alternatives 11664

metric assuming the situation the designer wants to find a high-performance con-

figuration as soon as possible. Since considering whole parametric design space of

the Simplescalar simulator is not possible for the experiment with available com-

putation facility, we selected ten important parameters affecting the performance

characteristics. These parameters with their admissible range of values are shown

in Table 2.

Figure 7 shows a representative PD-graph for gsm application, with its sparsed

version together. The representative PD-graph was obtained by merging six

weighted PD-graphs out of seven applications in the mediabench suite. The only one

application excluded in making the representative PD-graph at pre-characterization

phase is the very gsm application. The dotted lines represent the arcs eliminated,

by sparsing the original PD-graph, with tolerance factor of 1.0%. In other words,

the weights of the dotted lines are smaller than 0.01. Note that the remaining sub-

graph after eliminating the dotted arcs is sparsed PD-graph for gsm application.

We can observe in this figure that the number of clusters increased from 1 to 4

by sparsing. Four shaded nodes in the figure represent three clusters, while the

remaining (unshaded) nodes form the largest cluster as follows:

• 1st cluster = {fetch:mplat},

• 2nd cluster = {commit:width},

• 3rd cluster = {ruu:size, lsq:size},

• 4th cluster = {mem:lat, mem:width, issue:width, decode:width, fetch:ifqsize,

res:memport}.

Table 3 shows the experimental results after the proposed optimization algo-

rithm was applied. The 2nd to 4th column and 6th to 8th column shows the result

when the tolerance factor is set to 0%, 1%, and 2%, respectively. Since all applica-

tions equally have five rows of same information, the first five row is explained.

• # clusters : number of clusters after sparsing the original PD-graph with corre-

sponding tolerance factor,
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Table 3. Optimization results with mediabench.

adpcm 0% 1% 2% jpeg 0% 1% 2%

# clusters 1 5 6 1 4 6

rank 0 590 561 0 720 720
(5.1%) (4.8%) (6.2%)

est. optimal 0.682 0.6818 0.5546
(22.2%) (22.1%) (17.6%)

speedup 18.2 153.4 303.9 8 99.1 297.6

s factor 0.042 b, w 0.53,1.21 0.12 b, w 0.45, 1.05

epic 0% 1% 2% pegwit 0% 1% 2%

# clusters 1 5 8 1 7 9

rank 0 864 0 0 650 1310
(7.4%) (5.6%) (11.2%)

est. optimal 0.5762 0.6513 0.682
(17.8%) (8.0%) (10.9%)

speedup 47.3 382.6 767 1 266.3 459.2

s factor 0.016 b, w 0.47, 1.04 0.8 b, w 0.56, 1.65

g.721 0% 1% 2% rasta 0% 1% 2%

# clusters 1 5 6 1 5 7

rank 0 0 0 0 3178 4278
(27.2%) (36.7%)

est. optimal 0.828 0.8526
(41.7%) (45.7%)

speedup 71.9 228.5 333 11.3 130.8 395.4

s factor 0.0008 b, w 0.53, 1.17 0.0625 b, w 0.57, 1.19

gsm 0% 1% 2%

# clusters 1 4 8

rank 0 452 455
(3.9%)

est. optimal 0.5883 0.5884
(7.4%) (7.4%)

speedup 1.6 44.3 478

s factor 0.6 b, w 0.54, 1.15

• rank : the rank of the found solution after optimization procedure is finished

(among 11 664 configurations),

• est. optimal : the estimated optimal value reported by the proposed optimization

algorithm,

• speedup: speedup against full search with full-data simulation,

• s factor : sample factor for the application (ratio of sampled-data simulation to

full-data one),
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Table 4. Averaged results for mediabench.

tolerance (%) avg. speedup avg. ranking (%) opt. distance (%)

0 22.8 0 0

1 186.4 7.9 16.4

2 339.8 9 14.8

• (b, w): abbreviation for (best, worst) meaning best and worst CPI value for the

application, obtained with full-data simulation with full search (done only for

evaluating the accuracy of the proposed algorithm).

The % within blank in the table represents the normalized value by 100. Several

interesting facts can be observed from this table.

(1) # of clusters increased rapidly with tolerance factor,

(2) the speedup increased with tolerance factor in a similar pattern,

(3) all applications have found the global optimum configuration without sparsing

(tolerance factor of zero),

(4) Without sparsing and sampling, there would be no speedup at all in applying

the optimization. This is the major restriction of the previous work7 when

applied to complex core.

Table 4 is a summarized version of Table 3 in which the speedup and accuracy

is averaged for all applications. In this table, it is remarkable that the result with

tolerance of 2% is better than that with 1% for all aspects. This implies the fact

that the proposed algorithm needs to be enhanced for best expected results, which

is one of our on-going researches.

7. Conclusions

This paper proposed a system-level design methodology for efficient exploration of

the parameterized ASIP. This is done through synergistic integration of two in-

dependent methodologies, first of which is the multi-stage optimization based on

weighted parameter dependency, while the second one being a quick performance

estimation through sampled-data simulation. The experimental results with medi-

abench applications show speedup ranging from 186.4 to 339.8 with corresponding

distance-to-optimum values ranging from 14.8% to 16.4%. Although the experiment

was done on somewhat general superscalar architecture provided by SimpleScalar

environment, it is expected that the presented methodology can be applied to the

multimedia-specific architecture without any change of the basic idea. Further works

include experiments on a carefully designed multimedia-specific core offering vari-

ations for the special addressing mode, address generation unit, special functional

unit, and so on. Another work is to integrate the energy estimation capability into

the proposed framework.
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