
112 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

research highlights

DOI:10.1145/2830508

NoDB: Efficient Query Execution
on Raw Data Files
By loannis Alagiannis, Renata Borovica-Gajic, Miguel Branco, Stratos Idreos, and Anastasia Ailamaki

Abstract
As data collections become larger and larger, users are faced
with increasing bottlenecks in their data analysis. More data
means more time to prepare and to load the data into the
database before executing the desired queries. Many appli-
cations already avoid using database systems, for example,
scientific data analysis and social networks, due to the com-
plexity and the increased data-to-query time, that is, the
time between getting the data and retrieving its first useful
results. For many applications data collections keep grow-
ing fast, even on a daily basis, and this data deluge will only
increase in the future, where it is expected to have much
more data than what we can move or store, let alone analyze.

We here present the design and roadmap of a new par-
adigm in database systems, called NoDB, which do not
require data loading while still maintaining the whole
feature set of a modern database system. In particular, we
show how to make raw data files a first-class citizen, fully
integrated with the query engine. Through our design and
lessons learned by implementing the NoDB philosophy
over a modern Database Management Systems (DBMS), we
discuss the fundamental limitations as well as the strong
opportunities that such a research path brings. We identify
performance bottlenecks specific for in situ processing,
namely the repeated parsing and tokenizing overhead and
the expensive data type conversion. To address these prob-
lems, we introduce an adaptive indexing mechanism that
maintains positional information to provide efficient access
to raw data files, together with a flexible caching structure.
We conclude that NoDB systems are feasible to design and
implement over modern DBMS, bringing an unprecedented
positive effect in usability and performance.

1. INTRODUCTION
We are in the era of data deluge, where the amount of gener-
ated data outgrows the capabilities of query processing tech-
nology. Many emerging applications, from social networks
to scientific experiments, are representative examples of this
deluge, where the rate at which data is produced exceeds any
past experience. Scientific disciplines such as astronomy
are soon expected to collect multiple Terabytes of data on a
daily basis. Similarly, web-based businesses such as social
networks or web log analysis are already confronted with
a growing stream of large data inputs. Therefore, there is
a clear need for efficient big data processing to enable the
evolution of businesses and sciences to the new era of data
deluge.

Motivation. Although Database Management Systems
(DBMS) remain overall the predominant data analysis

technology, they are rarely used for emerging applica-
tions. This is largely due to the complexity involved; there
is a significant initialization cost in loading data and pre-
paring the database system for queries. For example, a
scientist needs to quickly examine a few Terabytes of new
data in search of certain properties. Even though only a
few attributes might be relevant for the task, the entire
data must first be loaded inside the database. Besides
being a significant time investment, it is also important
to consider the extra computing resources required for a
full load and its side-effects with respect to energy con-
sumption and economical sustainability.

Instead of using database systems, emerging applica-
tions rely on custom solutions that usually miss important
database features. For instance, declarative queries, schema
evolution and complete isolation from the internal repre-
sentation of data are rarely present. There are a wide variety
of competing approaches but users remain exposed to many
low-level details and must work close to the physical level
to obtain adequate performance and scalability. A growing
part of the database community recognizes the need for sig-
nificant and fundamental changes to database design, rang-
ing from low-level architectural redesigns to changes in the
way users interact with the system.2, 5, 8, 9, 12, 14, 16, 17, 21

The NoDB philosophy. We recognize this new need, which
is a direct consequence of the data deluge, and describe the
roadmap toward NoDB, a new database design philosophy
that we believe will come to define how future database sys-
tems are designed. The goal of the NoDB philosophy is to
make database systems more accessible to the user by elimi-
nating major bottlenecks of current state-of-the-art technol-
ogy that increases the data-to-query time. The data-to-query
time is of critical importance as it defines the moment when
a database system becomes usable and thus useful. There
are, however, fundamental processes in modern database
architectures that represent a major bottleneck for data-to-
query time. The NoDB philosophy changes the way a user
interacts with a database system by eliminating one of the
most important bottlenecks, that is, data loading. We advo-
cate querying over raw data, in situ (i.e., in its original place)
as the principal way to manage data in a database and we
propose to redesign the query processing layers of database
systems to incrementally and adaptively query raw data files
in situ, while automatically creating and refining auxiliary
structures to speed-up future queries.

The original version of this paper was published in
Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data (Scottsdale, Arizona, USA).

http://doi.acm.org/10.1145/2830508

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 113

Adaptive data loads. We originally introduced the idea
of adaptive data loading in an earlier vision paper.9 The cur-
rent paper makes numerous and significant contributions,
toward demonstrating the feasibility and the potential of
that vision. Using a mature and complete implementation
over a modern DBMS, we identify and overcome fundamen-
tal limitations in NoDB systems. Most importantly, we show
how to make raw files first-class citizens without sacrific-
ing query performance. We also introduce several innova-
tive techniques such as selective parsing, adaptive indexing
structures that operate on the raw files, caching techniques,
and statistics collection over raw files. Overall, we describe
how to exploit current relational databases to conform to
the NoDB philosophy while identifying limitations and
opportunities in the process.

Contributions. Our contributions are as follows:

•	 We convert a traditional relational database (PostgreSQL)
into a NoDB system (PostgresRaw), and discover that
the main bottlenecks are the repeated access and pars-
ing of raw files. Therefore, we design an innovative
adaptive indexing mechanism that makes the trip back
to the raw files efficient.

•	 We demonstrate that the query response time of a
NoDB system can be competitive with a traditional
DBMS, even without prior data loading.

•	 We show that NoDB systems provide quick access to the
data under a variety of workloads. PostgresRaw query
performance improves adaptively as it processes addi-
tional queries and it quickly matches or outperforms
traditional DBMS, including MySQL and PostgreSQL.

•	 We describe opportunities with the NoDB philosophy,
as well as challenges such a research path brings.

2. QUERYING RAW DATA
In this section, we introduce the NoDB philosophy. For ease
of presentation, we first discuss a straw-man approach to
in situ querying, where every query relies exclusively on raw
files for query processing. Then, we address the weaknesses
of the straw-man approach by introducing the core concepts
of NoDB that enable efficient access to raw data.

Typical storage and execution. A row-store DBMS organizes
data in the form of tuples, stored sequentially one tuple after the
other in the form of slotted pages. Each page contains a collec-
tion of tuples as well as additional metadata information to help
in-page navigation. These pages are created during the loading
process. Before being able to submit queries, the data must first
be loaded, which transforms it from the raw format to the data-
base page format. During query processing the system brings
pages into memory and processes the tuples. In order to create
proper query plans, that is, to decide the operators and their
order of execution, an optimizer is used, which exploits previ-
ously collected statistics about the data. A query plan can be seen
as a tree where each node is a relational operator and each leaf
corresponds to a data access method. The access methods define
how the system accesses the tuples. Each tuple is then passed
one-by-one through the operators of a query plan. The NoDB
philosophy needs to be integrated with the afore-mentioned
design for efficient and adaptive query execution.

2.1. Straightforward approaches
We describe two straightforward ways to directly query
raw data files. The first approach is to simply run the load-
ing procedure whenever a relevant query arrives: when a
query referring to table R arrives, only then load table R, and
immediately evaluate the query over the loaded data. Data
may be loaded into temporary tables that are discarded after
processing the query, or it may be loaded into persistent
tables stored on disk. These approaches however, signifi-
cantly penalize the first query, since creating the complete
table before evaluating the query implies that the same data
needs to be accessed twice, once for loading and once for
query evaluation.

A better approach is to tightly integrate the raw file
accesses with the query execution. This is accomplished by
enriching the leaf operators of the query plans, for example,
the scan operator, with the ability to access raw data files.
Therefore, the scan operator tokenizes and parses a raw file
on-the-fly, creates the tuples and passes them to the remain-
ing of the query plan. The key difference is that data parsing
and processing occur in a pipelined fashion, that is, the raw
file is read from disk in chunks and once a tuple or a group
of tuples is produced, the scan immediately passes those
tuples upstream.

Both straw-man techniques require that the proper
schema be known a priori; the user needs to declare the
schema and mark all tables as in situ tables. Other than
that, both techniques represent a straightforward imple-
mentation of in situ query processing; they do not require
significant new technology other than a careful integration
of existing loading procedures with query processing.

Limitations of straightforward approaches. The approaches
discussed here are similar to the external files function-
ality offered by modern database systems such as Oracle
and MySQL. Such solutions are not viable for extensive
and repeated query processing. For example, if data is not
kept in persistent tables, then every future query needs to
perform loading from scratch, which is a major overhead.
Materializing loaded data into persistent tables however,
forces a single query to incur all loading costs. Therefore,
such approaches are only viable if a user needs to fire few
queries.

Neither straw-man technique allows the implementation
of important database systems functionality. In particu-
lar, given that data is not loaded, there is no mechanism to
exploit indexing; modern database systems do not support
indexes on raw data. Without index support, query plans for
straw-man techniques rely only on full scans, incurring a
significant performance degradation compared to a DBMS
with loaded data and indexes. In addition, the optimizer
cannot exploit any statistics, since statistics in a modern
DBMS are created only after data is loaded. The lack of sta-
tistics and indexing means that straw-man techniques do
not provide query processing performance comparable to a
modern DBMS and any time gained by skipping data load-
ing is lost after only a few queries.

Even though in situ features, such as external files, are
important for the users, current implementations are far
from the NoDB vision of providing an instant gateway to the

research highlights

114 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

data, without losing the performance advantages achieved
by modern DBMS.

2.2. The NoDB philosophy
The NoDB philosophy aims to provide in situ access with
query processing performance that is competitive with a
database system operating over previously loaded data. In
other words, the vision is to completely shed the loading
costs, while achieving or improving the query processing
performance of a traditional DBMS. Such performance char-
acteristics make the DBMS usable and flexible; a user may
only think about the kind of queries to pose and not about
setting up the system in advance and going through all the
initialization steps that are necessary today.

The design we propose in this work takes significant steps
in identifying and eliminating or greatly minimizing initial-
ization and query processing costs that are unique for in situ
systems. The target behavior is visualized in Figure 1. It illus-
trates an important aspect of the NoDB philosophy; even
though individual queries may take longer to respond than
in a traditional system, the data-to-query time is reduced,
because there is no need to load and prepare data in advance
or to fine tune the system when different queries arrive. In
addition, performance improves gradually as a function of
the number of queries processed.

New challenges of NoDB systems. The main bottleneck
of in situ query processing is the access to raw data. The
costs involved in raw data access significantly degrade
query performance. In a traditional DBMS, parsing raw
data files is more expensive than accessing database pages.
The NoDB philosophy aims at making raw data a first-class
citizen, integrating raw data access in an abstract way into
the query processing layer, allowing query processing with-
out a priori loading. However, a NoDB system can only be
useful and attractive in practice if it achieves performance
levels comparable to a modern DBMS. Therefore, the main
challenge for a NoDB system is to minimize the cost of
accessing raw data.

From a high level point of view, we distinguish between
two directions; the first one aims at minimizing the cost of
raw data access through the careful design of data struc-
tures that can speed-up such accesses; the second one aims
at selectively eliminating the need for raw data access by
careful caching and scheduling raw data accesses. The final

grand challenge is to come up with a seamless design that
integrates such features into a modern DBMS.

3. POSTGRESRAW: BUILDING NoDB IN POSTGRESQL
In this section, we discuss the design of our NoDB proto-
type, called PostgresRaw, implemented by modifying the
open-source DBMS PostgreSQL. We show how to minimize
parsing and tokenizing costs within a row-store engine via
selective and adaptive parsing actions. In addition, we pres-
ent a novel raw file indexing structure that adaptively main-
tains positional information to speed-up future accesses
on raw files. Finally, we present caching and exploitation of
statistics in PostgresRaw. The ideas described in this section
can be used as guidelines for turning modern row-stores
into NoDB systems.

In the remaining of this section we assume that raw data
is stored in comma-separated value (CSV) files. Comma-
separated value files as textual files are challenging for
an in situ engine, considering the high conversion cost to
binary format and the fact that fields may be variable length.
Nonetheless, being a common data source, they present an
ideal use case for PostgresRaw.

3.1. On-the-fly parsing
We first discuss aspects related to on-the-fly raw file pars-
ing and essential features such as selective parsing and
tuple formation. We later describe the core PostgresRaw
components.

Query plans in PostgresRaw. When a query submitted
to PostgresRaw references relational tables that are not
yet loaded, PostgresRaw needs to access the respective raw
file(s). PostgresRaw overrides the scan operator with the
ability to access raw data files directly, while the remain-
ing query plan, generated by the optimizer, works without
changes compared to a conventional DBMS.

Parsing and tokenizing raw data. Every time a query needs
to access raw data, PostgresRaw has to perform parsing and
tokenization. In a typical CSV structure, each CSV file repre-
sents a relational table, each row in the CSV file represents
a tuple of a table and each entry in a row represents an attri-
bute value of the tuple. During parsing, PostgresRaw needs
first to identify each tuple, or row in the raw file. Once all
tuples have been identified, PostgresRaw must then search
for the delimiter separating different values and transform
those characters into their proper binary values. Overall,
these extra parsing and tokenizing actions represent a signif-
icant overhead inherent to in situ query processing; a typical
DBMS performs all these steps at loading time and directly
reads binary database pages during query processing.

Selective tokenizing. PostgresRaw reduces the tokeniz-
ing costs by opportunistically aborting tokenizing tuples as
soon as the required attributes for a query have been found.
This occurs at a per tuple basis. Given that CSV files are orga-
nized in a row-by-row basis, selective tokenizing does not
bring any I/O benefits; nonetheless, it significantly reduces
the CPU processing costs.

Selective parsing. In addition to selective tokenizing,
PostgresRaw also employs selective parsing to further reduce
raw access costs. PostgresRaw transforms to binary only the

R
es

po
ns

e
ti

m
e

DBMS with
external files

DBMS NoDB

Q1

Q2

Q3

Q4

Load

Q1

Q2
Q3
Q4

Q1
Q2
Q3
Q4

Figure 1. Improving user interaction with NoDB.

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 115

PostgresRaw learns as much information as possible dur-
ing each query. For instance, it does not keep maps only for
the attributes requested in the query, but also for attributes
tokenized along the way; for example, if a query requires
attributes in positions 10 and 15, all positions from 1 to 15
may be kept.

Storage format. The dynamic nature of the positional
map requires a physical organization that is easy to update
and incurs low cost during query execution. To achieve effi-
cient reads and writes, the PostgresRaw positional map is
implemented as a collection of chunks, partitioned verti-
cally and horizontally. Each chunk fits comfortably in the
CPU caches, allowing PostgresRaw to efficiently acquire all
information regarding several attributes and tuples with a
single access. The map can also be extended by adding more
chunks either vertically (i.e., adding positional information
about more tuples of already partially indexed attributes) or
horizontally (i.e., adding positional information about cur-
rently non-indexed attributes). Figure 2 shows an example
of a positional map, where the attributes do not necessar-
ily appear in the map in the same order as in the raw file.
The positional map does not mirror the raw file. Instead,
it adapts to the workload, keeping in the same chunk attri-
butes accessed together during query processing.

Exploiting the positional map. The information con-
tained in the positional map can be used to jump to the
exact position of the file or as close as possible. For example,
if a query is looking for the 9th attribute of a file, while the
map contains information for the 4th and the 8th attribute,
PostgresRaw uses the positional map to jump to the 8th
attribute and parse it until it finds the 9th attribute.

Maintenance. The positional map is an auxiliary struc-
ture and may be dropped fully or partly at any time without
any lost of critical information; the next query simply starts
rebuilding the map from scratch. PostgresRaw assigns a
storage threshold for the size of the positional map such
that the map fits comfortably in memory. Once the storage
threshold is reached, PostgresRaw drops parts of the map to
ensure it is always within the threshold limits.

Adaptive behavior. The positional map is an adaptive
data structure that continuously indexes positions based

values required to answer the query. For example, if a query
requests the 4th and 8th attribute of a given file and the
query contains a selection on the 4th attribute. PostgresRaw
with selective parsing converts all values of the 4th attribute
to binary but delays the binary transformation of the 8th
attribute, until it knows that the given tuple qualifies.

Selective tuple formation. To fully capitalize on selective
parsing and tokenizing, PostgresRaw also applies selective
tuple formation. Tuples are not fully composed but only con-
tain the attributes required for a given query. In PostgresRaw,
tuples are only created after the select operator, that is, after
knowing which tuples qualify.

Overall selective tokenizing, parsing, and tuple forma-
tion help to significantly minimize the on-the-fly processing
costs, since PostgresRaw parses only what is necessary to
produce query answers.

3.2. Indexing
Even with selective tokenizing, parsing and tuple formation,
the cost of accessing raw data is still significant. This section
introduces an auxiliary structure that allows PostgresRaw to
compete with a DBMS with previously loaded data. This aux-
iliary structure is a positional map, and forms a core compo-
nent of PostgresRaw.

Adaptive positional map. We introduce the adaptive posi-
tional map to reduce parsing and tokenizing costs. It main-
tains low level metadata information on the structure of the
flat file, which is used to navigate and retrieve raw data faster.
This metadata information refers to positions of attributes
in the raw file. For example, if a query needs an attribute
X that is not loaded, then PostgresRaw can exploit this meta-
data information that describes the position of X in the raw
file and jump directly to the correct position without having
to perform expensive tokenizing steps to find X.

Map population. The positional map is created on-the-
fly during query processing, continuously adapting to que-
ries. Initially, the positional map is empty. As queries arrive,
PostgresRaw adaptively and continuously augments the
positional map. The map is populated during the token-
izing phase, that is, while tokenizing the raw file for the
current query, PostgresRaw adds information to the map.

Raw file

Tuple 1 a1, a2, a3, a4, a5, a6, a7, ..., an
a1, a2, a3, a4, a5, a6, a7, ..., an
a1, a2, a3, a4, a5, a6, a7, ..., an
a1, a2, a3, a4, a5, a6, a7, ..., an
a1, a2, a3, a4, a5, a6, a7, ..., an
a1, a2, a3, a4, a5, a6, a7, ..., an

...

Tuple 2

Tuple 6

.

.

.

p4, p7

Positional map

p4, p7

p4, p7

p4, p7

p4, p7

p4, p7

p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5

p4, p7 p2, p5

Positional map

Tuple 1

Tuple 2

Tuple 6

.

.

.

after Query 1 on a4,a7 after Query 2 on a2,a5

Figure 2. An example of indexing raw files with positional map.

research highlights

116 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

on the most recent queries. This includes requested attri-
butes as well as patterns, or combinations, in which those
attributes are used. As the workload evolves, some attri-
butes may no longer be relevant and are dropped by a least
recently used (LRU) policy. Similarly, combinations of attri-
butes used in the same query, which are also stored together,
may be dropped to give space for storing new combinations.
Populating the map with new combinations is decided
during pre-fetching, depending on where the requested
attributes are located on the current map. The distance
that triggers indexing of a new attribute combination is a
PostgresRaw parameter. In our prototype, the default setting
is that if all requested attributes for a query belong in differ-
ent chunks, then the new combination is indexed.

3.3. Caching
The positional map allows for efficient access of raw files.
An alternative and complementary direction is to avoid raw
file access altogether. Therefore, PostgresRaw also contains
a cache that temporarily holds previously accessed data, for
example, a previously accessed attribute or even parts of
an attribute. If the attribute is requested by future queries,
PostgresRaw will read it directly from the cache.

The cache holds binary data and is populated on-the-fly
during query processing. To minimize the parsing costs and
to maintain the adaptive behavior of PostgresRaw, caching
does not force additional data to be parsed, that is, only the
requested attributes for the current query are transformed
to binary. The cache follows the format of the positional map
such that it is easy to integrate it in the PostgresRaw query
flow, allowing queries to seamlessly exploit both the cache
and the positional map in the same query plan. The size of
the cache is a parameter than can be tuned depending on
the resources. PostgresRaw follows the LRU policy to drop
and populate the cache. Overall, the PostgresRaw cache can
be seen as the place holder for adaptively loaded data.

3.4. Statistics
Optimizers rely on statistics to create good query plans.
Most important plan choices depend on the selectivity esti-
mation that helps ordering operators such as joins. Creating
statistics in modern databases, however, is only possible
after data is loaded.

We extend the PostgresRaw scan operator to create statis-
tics on-the-fly. We carefully invoke the native statistics rou-
tines of the DBMS, providing it with a sample of the data.
Statistics are then stored and are exploited in the same way
as in conventional DBMS. In order to minimize the overhead
of creating statistics during query processing, PostgresRaw
creates statistics only on requested attributes, that is, only
on attributes that PostgresRaw needs to read and which are
required by at least the current query.

On-the-fly creation of statistics brings a small overhead on
the PostgresRaw scan operator, while allowing PostgresRaw
to implement high-quality query execution plans.

4. EXPERIMENTAL EVALUATION
In this section, we present an experimental analysis of
PostgresRaw. PostgresRaw is implemented on top of

PostgreSQL 9.0, thus the direct comparison between the
two systems is important to understand the impact of in
situ querying. We have to point out that PostgresRaw is
highly affected by any performance bottlenecks present in
PostgreSQL, since they share the same query engine.

All experiments are conducted in a Sun X4140 server with
2× Quad-Core AMD Opteron processor (64 bit), 2.7 GHz,
512KB L1 cache, 2MB L2 cache and 6MB L3 cache, 32GB
RAM, 4× 250GB 10,000 RPM SATA disks (RAID-0) and using
Ubuntu 9.04.

The experiments presented in this section, use a raw data
file of 11GB, containing 7.5 × 106 tuples. Each tuple contains
150 attributes with integers distributed randomly in the
range [0–109).

4.1. Positional map
Impact. The first experiment investigates the impact of

the positional map. In particular, we investigate how the
behavior of PostgresRaw is affected as the map is popu-
lated dynamically with positional information based on the
workload.

The set up of the experiment is as follows. We create a
random set of queries accessing a subset of the attributes
found in the raw file. We refer to queries as random, because
they may ask for any attribute. Each query asks for 10 ran-
dom attributes and retrieves all the rows of the file. We mea-
sure the average time PostgresRaw needs in order to process
all queries with a varying storage capacity for the positional
map, from 14.3MB up to 2.1GB.

The results are shown in Figure 3. The impact of the
positional map is significant as it eventually improves
response times by more than a factor of 2. In addition,
performance improves rapidly, not requiring the maxi-
mum capacity. With little less than the 1/4 of the point-
ers (260 million positions) collected, execution time is
already only 15% from the full indexed case. After 3/4 of
the pointers are collected, response time remains con-
stant even though the workload is random. Therefore,
PostgresRaw does not need to maintain positional infor-
mation for the complete raw file, thereby saving signifi-
cant storage and access costs, without compromising
performance.

Scalability. The next experiment investigates the scal-
ability of PostgresRaw when exploiting the positional
map. The set up is the same as in the previous experiment
with the difference that this time the file size is increased
gradually from 2GB to 92GB. We use two ways to increase

0
0 200 400 600 800 1000 1200

10
20
30
40
50

E
xe

cu
ti

on
 ti

m
e

(s
)

Pointers (in millions)

Figure 3. Effect of the number of pointers in the positional map.

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 117

query. When the cache and the positional map are enabled
the second query is 82–88% faster than the first. The Baseline
variation improves slightly mainly due to file system caching
and from there on it provides constant performance, which
is not competitive with the other variations; every query
needs to scan the raw file without any help from indexing
and caching.

When only the positional map is used, the first few que-
ries collect metadata information, improving future attri-
bute retrieval by minimizing the parsing and tokenizing
costs. The rest of the queries benefit from this informa-
tion, demonstrating improved and stable performance.
The positional map allows PostgresRaw to navigate as close
as possible to the required attributes, which is important
particularly when a parse the raw file, which increases the
overall execution time (3–5 times in this example). Figure 5
shows that the combined effects of the positional map and
caching achieve the best performance; PostgresRaw PM+C
outperforms all other approaches across the entire query
sequence.

4.3. Adapting to workload changes
In this experiment, we demonstrate that PostgresRaw
progressively and transparently adapts to changes in the
workload. We use the same raw file as in the previous experi-
ments but the query sequence is expanded to 250 queries.
Each query again refers to five random attributes of the file.
The query sequence is divided into five epochs and in each
epoch we execute 50 different queries. All queries within the
same epoch focus on a given part of the raw file. The maxi-
mum size of the cache is limited to 2.8GB, while the posi-
tional map does not exceed 715MB.

Figure 6 depicts the results, separating each epoch with
vertical lines at positions 50, 100, . . ., 200. The graph plots
both the response time for each query in the sequence and
how the size of the PostgresRaw cache evolves as queries are
evaluated.

During the first epoch, queries refer to columns 1–50.
The cache and the positional map are initially empty.
After executing 32 queries all data in this part of the file
is cached; the cache does not increase and performance
remains stable. In the second epoch, queries retrieve
data between columns 51–100. Performance fluctuates
as some queries can fully exploit the cache and have
faster response times while others need to go back to

the file size; first, by adding more attributes to the file
and second, by appending more rows to the file. In the
first case, queries remain the same as before. In the sec-
ond case, queries incrementally access more attributes as
we increase the file size. We ensure that for every case we
compare, queries perform similar I/O and computation
actions. We allow unlimited storage space for the posi-
tional map. Nevertheless, we store only positions accessed
by the most recent queries.

Figure 4 depicts the results. For both cases we observe
linear scalability; PostgresRaw exploits the positional
map to nicely scale as raw files grow both vertically and
horizontally.

4.2. Positional maps and caching
This experiment investigates the behavior of
PostgresRaw when exploiting both the positional map
and caching or only one of them. We create 50 queries,
where each query randomly accesses five columns and
all the rows of the raw file. We study four variations. The
first one, called Baseline, does not use positional maps
or caching, representing the behavior of PostgresRaw as
if it were a straw-man external files implementation. The
second variation, called PostgresRaw PM, uses only the
positional map while the third, called PostgresRaw C,
uses only the cache and an additional minimal map with
positional information for the end of lines. The final ver-
sion, called PostgresRaw PM+C, combines all previous
techniques.

Figure 5 plots the response time for each query. Since
there is no a priori knowledge to exploit, all PostgresRaw
variations need to touch the raw file to extract the needed
data for the first query; thus, they all show similar perfor-
mance. Performance improves drastically as of the second

0

50

100

1
0 50 100 150 200 250

10

100

C
ac

he
 u

sa
ge

 (
%

)

E
xe

cu
ti

on
 ti

m
e

(s
)

Query sequence

Cache utilization
Execution time

Figure 6. Adapting to changes in the workload.

1

10

100

0 10 20 30 40 50

E
xe

cu
ti

on
 ti

m
e

(s
)

Query sequence

PostgresRaw PM+C PostgresRaw PM
PostgresRaw C Baseline

Figure 5. Effect of the positional map and caching.

0
0 20 40 60 80 100

100

200

300

400

E
xe

cu
ti

on
 ti

m
e

(s
)

File size (GB)

Vary #tuples
Vary #attributes

Figure 4. Scalability of the positional map.

research highlights

118 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

the file. After the second epoch, the cache is full and all
queries enjoy good performance. During the third epoch,
we launch a random set of queries requesting columns
between 1 and 100, that is, the same regions used in the
previous epochs. Since PostgresRaw has built a complete
cache of this region, no I/O or parsing is required. In the
fourth epoch, queries ask for columns 75–125, that is, half
of the queries hit previously explored areas and half of the
queries hit new regions. PostgresRaw uses a LRU replace-
ment policy in its cache and drops previously cached data
to accommodate the new requests. During the last epoch,
the workload slightly shifts to the region of columns
85–135. PostgresRaw needs to replace parts of its cache
while parts of the requested data are retrieved from the file
by exploiting the positional map.

Overall, we observe that PostgresRaw gracefully adapts to
the changes of the workload. In every epoch, PostgresRaw
quickly adapts, adjusting and populating its cache and the
positional maps, automatically stabilizing to good perfor-
mance levels. Additionally, the maintenance of the cache
and the positional map do not add significant overhead to
query execution.

4.4. PostgresRaw versus other DBMS
In our next experiment, we demonstrate the behavior
of PostgresRaw against state-of-the-art DBMS. We com-
pare MySQL (5.5.13), DBMS X (a commercial system) and
PostgreSQL against PostgresRaw with positional maps and
caching enabled. MySQL and DBMS X offer “external files”
functionality, which enables direct querying over raw files.
Therefore, for MySQL and DBMS X we include two sets of
performance results; (a) using external files, and (b) using
previously loaded data. For queries over loaded data we also
report the time required to load the data; our goal is to show
the overall data-to-query time.

We study the cumulative time needed to run a sequence
of queries with each system. We use a sequence of nine que-
ries where we also vary selectivity and projectivity. All queries
have one selection predicate and then project and run aggre-
gations on the rest of the attributes. The first query requires
all attributes and accesses all rows of the file. This is the
worst case for PostgresRaw since we have to pay the whole
cost of populating the positional map and the cache up
front. The next four queries are the same with the difference
that they access fewer rows at steps of 20% at a time. Then,
the final four queries are again similar to the first query with

the difference that they refer to fewer attributes at steps of
20% at a time.

Figure 7 shows the results. PostgresRaw achieves the
best overall performance. It is competitive with DBMS X
and MySQL for this sequence of queries. External files in
MySQL (CSV Engine) and DBMS X are significantly slower
than querying over loaded data or PostgresRaw, since each
query repeatedly scans the entire file. Conventional wisdom
indicates that the overhead inherent to in situ querying is
problematic. This is indeed the case for straightforward in
situ techniques such as external files. Nonetheless, these
results show that the in situ overhead is not a bottleneck
if we apply more advanced techniques that amortize the
overhead across a sequence of queries, allowing for quick
access to the data. Compared to PostgreSQL, PostgresRaw
shows a significant advantage (25.75% in this case) even
though it uses the same query engine. PostgreSQL is 53%
slower than DBMS X if we consider the query execution
time (without the loading costs). PostgresRaw, on the
other hand, manages to be 6% faster than DBMS X even
though it uses the same engine as PostgreSQL; by avoid-
ing the loading costs, PostgresRaw has already answered
the first four queries when DBMS X starts processing the
first query.

Overall, PostgresRaw shows that it is feasible to amor-
tize the overheads inherent to in situ querying over a
sequence of queries, making an in situ system competitive
with a conventional DBMS without requiring a priori data
loading.

4.5. Statistics in PostgresRaw
In our final experiment, we demonstrate the behavior of
PostgresRaw when statistics are created on-the-fly during
query processing. We use four instances of TPC-H decision
support benchmark Query 1. We compare two versions of
PostgresRaw. The first one generates statistics on-the-fly in
an adaptive way, while the second one does not generate or
exploit statistics at all.

Figure 8 shows the response times when running all
four queries. The first query uses the same plan in both
versions of PostgresRaw and initializes the positional
map and the caching as well. Collecting statistics adds
an additional overhead of 4.5 s in the execution time of
the first query. PostgresRaw analyzes and creates statis-
tics only for the attributes required for the current query.
After the first query, the rest of the queries have different

0

500

1000

1500

2000

2500

3000

MySQL CSV Engine
MySQL

DBMS X PostgreSQL PostgresRaw
PM + CX

DBMS X
w/ external files

E
xe

cu
ti

on
 ti

m
e

(s
)

Q9 Q8
Q7 Q6
Q5 Q4
Q3 Q2
Q1 Load

1671 s

˜5971 s

656 s

2357 s

831 s
617 s

Figure 7. Comparing the performance of PostgresRaw with other DBMS.

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 119

behavior even though they follow the same query tem-
plate. In the PostgresRaw version with statistics support,
queries run three times faster in comparison with the ver-
sion without statistics. By examining the query plans, we
notice that the optimizer selects a different set of opera-
tors and changes the ordering of operators in PostgresRaw
with statistics which explains the improvement in perfor-
mance. Generating the statistics on-the-fly adds only a
small overhead, while it significantly improves query plan
selection.

5. IN SITU QUERYING: TRADE-OFFS
In situ querying, although desirable in theory, is thought
to be prohibitive in practice. Executing queries directly
over raw data files incurs additional overhead to the execu-
tion, when compared to query execution over previously
loaded data. Nonetheless, our PostgresRaw implementa-
tion demonstrates that auxiliary structures reduce the
time to access raw data files and amortize the overhead
across a sequence of queries. In situ query execution, how-
ever, introduces a new set of trade-offs, which require fur-
ther analysis:

Data type conversion. For ASCII files, PostgresRaw must
convert the data into its proper type, for example, from
string to integer. Conventional DBMS perform this conver-
sion only once at loading time. To alleviate the data type
conversion overhead, PostgresRaw only converts the attri-
butes in the tuple that are actually needed to answer a query.
Nonetheless, data type conversion is not always an over-
head: if a raw data file consists of variable-length strings,
then PostgresRaw over CSV files is actually faster than a
conventional DBMS because there is no need to convert data
nor create secondary copies when loading data into a DBMS.
Different data types, however, affect NoDB performance in
different ways and should be taken into account when decid-
ing which data to cache.

File size versus database size. Loading data into a DBMS
creates a second copy of the data. This copy can be stored
in an optimized manner: for example, integers stored in
a database page (in binary) likely take less space than in
ASCII. Nonetheless, there are cases where a second copy
does not imply less data. Variable-sized data stored in
fixed-size fields usually takes more space in a database
page rather than in its raw form. Therefore, depending
on the workload, in situ engines can benefit from keeping
data in its raw form.

Complex database schemas. Database Management
Systems support complex database schemas with large
number of tables and columns within a table. Nonetheless,
complex schemas usually require a database administrator
(DBA) to tune vendor-specific configuration settings. For
instance, a commercial DBMS we tested does not allow
a row to be split across pages; if there are many columns
within a table, or columns have large fields, the DBA must
manually increase the page size, buffer pool and table
space. These configurations are not straightforward and
are also subjected to additional limitations: for example,
pages must also have a minimum number of rows. In addi-
tion, larger tuples cause unpredictable behavior due to the
use of slotted pages in the DBMS.

Types of data analysis. Current DBMS are best suited to
manage data that is loaded only once or rarely in an incre-
mental fashion, with well-known and rarely changing
workloads. DBMS require physical design steps for best
performance, such as creating indexes, which are time-
consuming tasks. In situ databases, however, are more suited
for users that need to explore data without having to load
entire datasets. Users should be willing to pay a penalty dur-
ing the early queries, as long as they do not need to create
data loading scripts. In situ databases are also useful when
there are large datasets but users need to frequently analyze
small subsets of the data; such scenarios are increasingly
common.

Integration with external tools. Database Management
Systems are designed to be the main repository for the data,
which makes the integration of DBMS data with external
tools inherently hard. Techniques such as ODBC, stored
procedures and user-defined functions aim to facilitate the
interaction with data stored on the DBMS. Nonetheless,
none of these techniques is fully satisfactory and in fact, this
is a common complaint of scientific users, who have large
repositories of legacy code that operates against raw data
files. Migrating and reimplementing these tools in a DBMS
would be difficult and likely require vendor-specific hooks.
The NoDB philosophy significantly facilitates such data
integration, since users may continue to rely on their legacy
code in parallel to systems such as PostgresRaw.

Database independence. Database Management Systems
store data in database pages using proprietary and vendor-
specific formats. The DBMS has complete ownership over
the data, which is a cause of concern for some users. The
NoDB philosophy, however, achieves database indepen-
dence, since the data files remain the main data repository.

6. OPPORTUNITIES
The NoDB philosophy drastically and fundamentally rede-
fines the way database systems are designed. It requires
revisiting well-established assumptions and implementa-
tion techniques, while also enabling new opportunities,
which are discussed in this section.

Flexible storage. NoDB systems do not require a priori
loading, which implies no need for a priori decisions on
how data is physically organized during loading. Data that
is adaptively loaded can be cached in memory or written to
disk in a format that enables faster access. Data compression

Figure 8. Execution time as PostgresRaw generates statistics.

0
Q1_a Q1_b Q1_c Q1_d

50

100

150

E
xe

cu
ti

on
 ti

m
e

(s
)

Query sequence

w/ statistics

w/o statistics

research highlights

120 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

can also be applied, where beneficial. Deciding the proper
storage layout is an open research question. Rows, columns,
and hybrids all have comparative advantages and disadvan-
tages. Nevertheless, a NoDB system benefits from avoiding
to choose in advance. Physical layout decisions can be done
online, and change overtime as the workload changes.3

Adaptive indexing. The NoDB philosophy brings new
opportunities toward achieving fully autonomous database
systems, that is, systems that require zero initialization
and administration. Recent efforts in database cracking
and adaptive indexing7, 10, 11, 13 demonstrate the potential
for incrementally building and refining indexes without
requiring an administrator to tune the system, or know-
ing the workload. Still, though, all data has to be loaded
up front, forcing a delay in data-to-query time. We envision
that adaptive indexing can be exploited and enhanced for
NoDB systems.

Auto-tuning tools. In this paper, we have considered the
hard case of zero a priori idle time or workload knowledge.
Traditional systems assume “infinite” idle time and knowl-
edge to perform all necessary initialization steps. In many
cases, though, the reality can be somewhere in between. For
example, there might be some idle time but not enough to
load all data. Auto-tuning tools for NoDB systems, given a
budget of idle time and workload knowledge, can exploit
idle time to load and index as much of the relevant data. The
rest of the data remains unloaded and unindexed until rele-
vant queries arrive. A NoDB tuning tool should consider raw
data access costs, I/O costs in addition to the typical query
workload based parameters. The NoDB philosophy brings
new opportunities in exploiting every single bit of idle time
or workload knowledge.

Information integration. Another major opportunity
with the NoDB vision is the potential to query multiple dif-
ferent data sources and formats. NoDB systems can adopt
format-specific plugins to handle different raw data file
formats. Implementing these plugins in a reusable manner
requires applying data integration techniques but may also
require the development of new techniques, so that com-
monalities between formats are determined and reused.
Additionally, supporting different file formats also requires
the development of hybrid query processing techniques,
or even adding support for multiple data models (e.g., for
array data).

File system interface. Another interesting opportunity
that comes with NoDB is that of bridging the gap between
file systems and databases. Unlike traditional database sys-
tems, data in NoDB systems is always stored in file systems,
such as NTFS or ext4. This provides NoDB the opportunity to
intercept file system calls and gradually create auxiliary data
structures that speed-up future queries.

7. RELATED WORK
The NoDB philosophy draws inspiration from several
decades of research on database technology and it is related
to a plethora of research topics. We briefly discuss related
work in this section.

Auto-tuning. The NoDB philosophy advocates for mini-
mizing or eliminating the data-to-query time, which is also

the goal of auto-tuning tools. Every major database vendor
offers offline indexing features, where an auto-tuning tool
performs offline analysis to determine the proper physical
design for a specific workload.1, 6, 18, 22 More recently, these
ideas have been extended to support online indexing,4, 20
hence removing the need to know the workload in advance.
These techniques are a significant step forward, but still
require all data to be loaded in advance.

Adaptive indexing. Database cracking and adaptive
indexing introduce the notion of incrementally refining the
physical design by following and matching the workload
patterns.7, 10, 11, 13 This shares the adaptive goal of the NoDB
philosophy, where each query is seen as an advice on how to
refine indexes. Nonetheless, similarly to the previous case,
existing adaptive indexing techniques also require all data
to be loaded up front.

External files. Most modern DBMS offer the ability to
query data files directly with SQL, that is, without loading.
External files, however, can only access raw data with no
support for database features such as DML operations,
indexes or statistics and require every query to access the
entire data file, as if no other query did so in the past. In
practice, this functionality is used to facilitate data load-
ing tasks and not for querying. NoDB systems, however,
provide incremental data loading, on-the-fly index cre-
ation and caching to assist future queries and drastically
improve performance.

Information extraction. Information extraction tech-
niques have been extended to provide direct access to raw
text data,15 similarly to external files. The difference from
external files is that raw data access relies on information
extraction techniques instead of directly parsing raw data
files. These efforts are motivated by the need to bridge mul-
tiple different data formats and make them accessible via
SQL, usually by relying on wrappers.19

8. CONCLUSION
Very large data processing is increasingly becoming a neces-
sity for modern applications in businesses and in sciences.
For state-of-the-art database systems, the incoming data
deluge is a problem. In this paper, we introduce a database
design philosophy that turns the data deluge into a tremen-
dous opportunity for database systems. It requires drastic
changes to existing query processing technology but elimi-
nates one of the most fundamental bottlenecks present in
classical database systems for the past 40 years, that is, the
data loading overhead. Until now, it has not been possible to
exploit database technology until data is fully loaded. NoDB
systems permanently remove this restriction by enabling in
situ querying.

This article described the NoDB philosophy, identifies
problems, solutions and opportunities. It also describes
the transformation of a modern row-store, PostgreSQL,
into a NoDB prototype system, which we call PostgresRaw.
Experiments on PostgresRaw demonstrate competitive per-
formance with traditional DBMS. PostgresRaw, however,
does not require any previous assumptions about which
data to load, how to load it or which physical design steps
to perform before querying the data. Instead, it accesses the

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 121

raw data files adaptively and incrementally, allowing users
to explore new data quickly and improving the usability of
database systems.

The NoDB philosophy does not stop here however.
We describe open issues and research challenges for the
database community at large. We expect that address-
ing these new challenges will enable a new generation of
database systems that serve the needs of modern applica-
tions and users.�

databases. In ICDE (2008), 636–645.
16.	 Kersten, M., Idreos, S., Manegold, S.,

Liarou, E. The researcher’s guide to
the data deluge: Querying a scientific
database in just a few seconds. In
PVLDB. Volume 4 (2011), 1474–1477.

17.	 Nandi, A., Jagadish, H.V. Guided
interaction: Rethinking the query-
result paradigm. In PVLDB. Volume 4
(2011), 1466–1469.

18.	 Papadomanolakis, S., Ailamaki, A.
AutoPart: Automating schema
design for large scientific databases
using data partitioning. In SSDBM
(2004), 383–392.

19.	 Roth, M.T., Schwarz, P. Don’t scrap
it, wrap it! A wrapper architecture

for legacy data sources. In VLDB
(1997), 266–275.

20.	 Schnaitter, K., Abiteboul, S., Milo, T.,
Polyzotis, N. COLT: Continuous
on-line tuning. In SIGMOD (2006),
793–795.

21.	 Stonebraker, M., Becla, J., DeWitt, D.,
Lim, K.-T., Maier, D., Ratzesberger, O.,
Zdonik, S. Requirements for science
data bases and SciDB. In CIDR
(2009).

22.	 Zilio, D., Rao, J., Lightstone, S.,
Lohman, G., Storm, A., Garcia-
Arellano, C., Fadden, S. DB2 design
advisor: Integrated automatic
physical database. In VLDB (2004).

References
	 1.	 Agrawal, S., Chaudhuri, S., Kollar, L.,

Marathe, A., Narasayya, V., Syamala, M.
Database tuning advisor for
Microsoft SQL server 2005. In VLDB
(2004), 1110–1121.

	 2.	 Ailamaki, A., Kantere, V., Dash, D.
Managing scientific data. Commun.
ACM 53 (2010), 68–78.

	 3.	 Alagiannis, I., Idreos, S., Ailamaki, A.
H2O: A hands-free adaptive store. In
SIGMOD (2014), 1103–1114.

	 4.	 Bruno, N., Chaudhuri, S. To tune or not
to tune? A lightweight physical design
alerter. In VLDB (2006), 499–510.

	 5.	 Cohen, J., Dolan, B., Dunlap, M.,
Hellerstein, J., Welton, C. MAD skills:
New analysis practices for big data.
PVLDB 2 (2009), 1481–1492.

	 6.	 Dash, D., Polyzotis, N., Ailamaki, A.
CoPhy: A scalable, portable, and
interactive index advisor for large
workloads. PVLDB 4 (2011), 362–372.

	 7.	 Graefe, G., Kuno, H. Self-selecting,
self-tuning, incrementally optimized
indexes. In EDBT (2010), 371–381.

	 8.	 Gray, J., Liu, D., Nieto-Santisteban, M.,

Szalay, A., DeWitt, D., Heber, G.
Scientific data management in the
coming decade. SIGMOD Rec. 34
(2005), 34–41.

	 9.	 Idreos, S., Alagiannis, I., Johnson, R.,
Ailamaki, A. Here are my data files.
Here are my queries. Where are my
results? In CIDR (2011).

10.	 Idreos, S., Kersten, M., Manegold, S.
Database cracking. In CIDR (2007).

11.	 Idreos, S., Kersten, M., Manegold, S.
Self-organizing tuple reconstruction
in column-stores. In SIGMOD (2009),
297–308.

12.	 Idreos, S., Liarou, E. dbTouch: Analytics
at your fingertips. In CIDR (2013).

13.	 Idreos, S., Manegold, S., Kuno, H.,
Graefe, G. Merging what’s cracked,
cracking what’s merged: Adaptive
indexing in main-memory column-
stores. PVLDB 4 (2011), 586–597.

14.	 Jagadish, H.V., Chapman, A., Elkiss, A.,
Jayapandian, M., Li, Y., Nandi, A., Yu, C.
Making database systems usable. In
SIGMOD (2007), 13–24.

15.	 Jain, A., Doan, A., Gravano, L.
Optimizing SQL queries over text

loannis Alagiannis, Renata Borovica-
Gajic, Miguel Branco, and Anastasia
Ailamaki ({ioannis.alagiannis, renata.
borovica, miguel.branco, anastasia.
ailamaki}@epfl.ch), École Polytechnique
Fédérale de Lausanne, Lausanne,
Switzerland.

Stratos Idreos (stratos@seas.harvard.
edu), Harvard University, Cambridge, MA.

© 2015 ACM 0001-0782/15/12 $15.00

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

