
January 20, 2003 17:22 WSPC/164-IJIG 00093

International Journal of Image and Graphics
Vol. 3, No. 1 (2003) 95–117
c© World Scientific Publishing Company

MINIMIZING LATENCY AND JITTER FOR
LARGE-SCALE MULTIMEDIA REPOSITORIES

THROUGH PREFIX CACHING

SUNIL PRABHAKAR∗ and RAHUL CHARI†

Department of Computer Sciences, Purdue University, West Lafayette
IN 47907, USA

∗sunil@cs.purdue.edu
†rahul@cs.purdue.edu

Received 15 August 2002
Revised 15 October 2002

Multimedia data poses challenges for efficient storage and retrieval due to its large size
and playback timing requirements. For applications that store very large volumes of
multimedia data, hierarchical storage offers a scalable and economical alternative to
store data on magnetic disks. In a hierarchical storage architecture data is stored on a
tape or optical disk based tertiary storage layer with the secondary storage disks serving
as a cache or buffer. Due to the need for swapping media on drives, retrieving multimedia
data from tertiary storage can potentially result in large delays before playback (startup
latency) begins as well as during playback (jitter). In this paper we address the important
problem of reducing startup latency and jitter for very large multimedia repositories.
We propose that secondary storage should not be used as a cache in the traditional
manner — instead, most of the secondary storage should be used to permanently store
partial objects. Furthermore, replication is employed at the tertiary storage level to avoid
expensive media switching. In particular, we show that by saving the initial segments of
documents permanently on secondary storage, and replicating them on tertiary storage,
startup latency can be significantly reduced. Since we are effectively reducing the amount
of secondary storage available for buffering the data from tertiary storage, an increase
in jitter may be expected. However, our results show that the technique also reduces
jitter, in contrast to the expected behavior. Our technique exploits the pattern of data

access. Advance knowledge of the access pattern is helpful, but not essential. Lack of this
information or changes in access patterns are handled through adaptive techniques. Our
study addresses both single- and multiple-user scenarios. Our results show that startup
latency can be reduced by as much as 75% and jitter practically eliminated through the
use of these techniques.

Keywords: Prefix caching; tertiary storage; multimedia placement.

1. Introduction

Multimedia data poses challenges for efficient storage and retrieval due to its large
size and playback timing constraints. Consequently the problem of multimedia stor-
age has received significant attention from the research community. Due to the need

95



January 20, 2003 17:22 WSPC/164-IJIG 00093

96 S. Prabhakar & R. Chari

for efficient retrieval, the research has focussed chiefly on magnetic disk technology.
The falling cost per megabyte for disk storage has made it possible to store data for
many applications on disk. However, for applications that need to store very large
amounts of data, storing only on magnetic disks is still too expensive. Examples of
such applications include telemedicine, online multimedia manuals, and television
broadcast for which the storage requirements can easily exceed several tens of ter-
abytes. For example, a small sample of video and image data from the MedInstitute
in Indianapolis constitutes 200 GB of data. The total requirements for storage are
well over ten terabytes and will continue to grow as more patient data is collected
in digital format. Even though the cost of disk storage has dropped significantly,
and will likely continue to do so in the future, the storage requirements are also
growing at a similar pace. The desire to store in digital format very high quality
medical multimedia data for all patients, and automatically captured high quality
images of the universe25 are examples of applications with ever-growing storage
needs. Such large volumes of data are typically stored on tertiary storage such as
automated tape libraries26 or CD/DVD jukeboxes.18 Even with the availability of
a large amount of disk space, the use of tertiary storage allows cheap scalability to
even larger data volumes.

Tertiary storage offers much cheaper storage than magnetic disks. This is
achieved through a large number of cheap media sharing a small number of ex-
pensive drives. On the flip side, data access on tertiary storage can suffer from
large latencies if media need to be swapped on drives or tape needs to be rewound.
Typical access times for magnetic disks are on the order of milliseconds whereas
the access time for magnetic tapes can vary from a few milliseconds to a minute or
more. If the tape holding the requested data is not loaded on a drive, it is necessary
to rewind a currently loaded tape, eject it, place it back on the rack, pick up the
requested tape, load it, and seek to the appropriate location before data transfer
can begin. These operations are very slow due to the mechanical motion required.
It should be noted that the streaming rate for tertiary storage is comparable to
that of disks, however the latency for random access can be very much higher.

Large delays in accessing data can result in high startup latency (time that
elapses between the submission of the request and the beginning of the retrieval) or
jitter (delays in data after playback has begun). In order to reduce startup latency
and jitter, careful management of storage is essential. This is especially important
when multiple users access the repository concurrently. In this paper we present
novel techniques for the efficient management of large volumes of multimedia doc-
uments on secondary and tertiary storage. Due to the large amount of data to be
stored, data primarily resides on tertiary storage. The disks that make up the sec-
ondary storage layer typically serve as a cache. Data that is retrieved from tertiary
storage is temporarily stored on disk. A replacement policy such as Least Recently
Used (LRU) or Least Frequently Used (LFU) is typically used to make room for
the new data.

We propose that secondary storage should not be used as a cache in the tradi-
tional sense — instead, most of the secondary storage should be used to permanently



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 97

save parts of multimedia documents or objects. At the tertiary storage level, we pro-
pose the use of replication to avoid expensive media switching. In particular, we
show that by saving the initial segments of documents permanently on secondary
storage, and replicating them on tertiary storage, the startup latency can be signif-
icantly reduced. Since we are effectively reducing the amount of secondary storage
available for buffering the data from tertiary storage, an increase in jitter may be
expected. However, we show that our technique reduces jitter in contrast to the
expected behavior. Although advance knowledge of the access pattern is helpful, it
is not essential for our techniques. We show how the observed access patterns can
be used to determine and tune the placement.

The rest of the paper is organized as follows. In Sec. 2 we summarize the related
work. Section 3 presents our new approaches for disk caching and tertiary place-
ment. A description of the system model is presented in Sec. 4. Section 5 gives the
details of experimental results and Sec. 6 concludes the paper.

2. Related Work

Although the issue of storing multimedia data on tertiary storage has been ad-
dressed by several researchers, the problem of reducing startup latency and jitter
in a multi-user setting has not been studied. For example, Chervenak et al.2,3 have
investigated the use of tertiary storage in video-on-demand applications. A cache
replacement technique for managing secondary storage buffers when multimedia ob-
jects are stored on tertiary storage has been developed by Ghandeharizadeh et al.9

The study is limited to a single-user, single-disk personal computer system. In Sec. 5
we show that their scheme is not effective in a multi-user, multi-disk system — giv-
ing poorer performance than a simple LFU cache replacement scheme. The use of
a pipelining mechanism that avoids the need for complete materialization of an
object on disk before initializing playback is presented in Ref. 8. The basic idea is
to divide an object into multiple slices and overlap the retrieval of one slice with
the playback of the previous slice. This reduces latency delays during playback but
does not reduce the startup delay. This technique can be applied orthogonally to
our technique to reduce jitter (note that in our experiments we find that jitter is
negligible with our replication scheme). In order to mask network latency and loss,
prefix caching of the initial segments of multimedia streams at proxy servers has
been proposed.23 The study addresses network issues such as workload smoothing
through caching for multimedia data. The problems of latency and jitter for the
retrieval of data at the server are not addressed.

Storing video on hierarchical storage has also been studied in Refs. 28 and 29.
The study addresses I/O bandwidth issues at the various levels of the storage hier-
archy. The problems of high startup latency for access to tertiary storage and jitter
are not addressed. Scheduling schemes for tertiary storage libraries are discussed in
Refs. 7, 11, 17 and 20 — any of these techniques can be applied in conjunction with
our research to further improve performance. In Ref. 14 a prefetching algorithm
based upon Markov-chain prediction of access is developed. Placement schemes



January 20, 2003 17:22 WSPC/164-IJIG 00093

98 S. Prabhakar & R. Chari

for data on tertiary storage libraries have been proposed based upon independent
document access probabilities and no replication.4,27 Optimal arrangement of car-
tridges and file-partitioning schemes for carousel-type systems are investigated in
Ref. 24. Placement schemes for data on optical disks are developed in Ref. 6. Both
these studies do not address the issues of multimedia data. We show that the use of
replication can significantly reduce the need for expensive switching of media on
tertiary storage resulting in significant improvements. The cost of replication on
tertiary storage is minimal. Models of tape systems and tertiary storage system
parameters can be found in Refs. 10 and 13.

3. Hot Objects and Prefix Caching

In this study we address the problem of multimedia storage not only for individual
objects but also for multimedia documents that are composed by sharing a collection
of objects. In this section we first explain the nature of multimedia documents. This
is followed by a description of the proposed prefix caching, and tertiary placement
schemes. Finally, a discussion of adaptive placement is presented.

3.1. Multimedia documents

An example of a multimedia document is an online technical manual consisting of
images, video, and audio clips. Similarly, a news report consisting of a sequence of
several stories with clips is another example. A document specifies the layout of the
multimedia objects as well as the timing relationships between them. For example
a video segment is played after a previous video or animation is completed. Several
approaches for describing multimedia documents have been developed including
graph models, Petri-Net models, and object-oriented models.1,15 An example of a
Petri-Net description is shown in Fig. 1. The document begins with the display
of video1 followed by the simultaneous display of video2 and audio2, followed by
video3. The objects that make up the documents can be shared among multiple
documents. The document may not be stored as a single object, rather it can
be composed dynamically from its constituent objects at the time that it is to

Video
1

Audio 2

Video 2

Video 3

Time

Fig. 1. Example of a document.



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 99

be retrieved. In order to playback a document, the physical objects that make up
the document need to be retrieved in the order that they appear in the document.
For ease of exposition, we will present the discussion in terms of documents in the
remainder of the paper. However it should be noted that the ideas discussed are
equally applicable to repositories that do not have the notion of documents.

Information about the access patterns for multimedia data is a very important
input for efficient storage and retrieval of data. Popularity of documents can be
captured simply by the probability of access. In addition to direct access to docu-
ments (such as by identifying the document directly), users may access documents
based upon links from other documents (e.g. HTML documents with links to other
documents, or hyperlinks between manual pages). Such access is also very common
in a browsing scenario whereby users simply follow links of interest. A user would
typically begin by accessing a document and then possibly following some number
of interesting links. If none of the links in the document are interesting, the user
may access a document not connected by links from the current document.

A Browsing Graph (BG)16 can be used to capture such access patterns. The
browsing graph consists of labeled nodes and labeled edges. Each node represents
a document and the label of the node gives the probability that the node will be
accessed independent of the previously visited document. A directed edge between
two nodes represents a link from one document to the other and the edge label
gives the probability that the edge would be followed. The sum of the probability
of all edges going out of a document is not necessarily 1.0, since it is possible that
none of the edges will be followed. This model is similar to that used by the Google
search engine for assigning weights to documents in the world-wide-web.12

3.2. Hot prefixes and disk caching

Due to the large volume, data resides primarily on tertiary storage. Typically, the
disks are used as a cache to temporarily hold data after it has been retrieved from
tertiary storage. The disks also act as a buffer for holding data that is to be played
later. When the disk cache is full, documents need to be replaced in order to make
room for newly requested ones. A document replacement policy such as LRU or
LFU can be used to choose which documents to replace. These policies however,
are not well suited for multimedia documents. In Ref. 9 a cache replacement policy
is proposed for caching continuous media data on secondary storage. Instead of
replacing entire objects, the tail ends of objects are replaced from the disk cache
when space is needed.

We propose an alternative use of the secondary storage. The total disk space is
divided into two sets — the HOT CACHE and the BUFFER. The buffer is used
as above to temporarily store data that has been retrieved from tertiary storage. A
replacement policy such as LFU is used to manage the buffer. The hot cache is used
to permanently hold a special subset of objects: those having a high temperature or
HOT OBJECTS. In the context of documents, an object refers to each multimedia



January 20, 2003 17:22 WSPC/164-IJIG 00093

100 S. Prabhakar & R. Chari

component that makes up the document, e.g. a video or audio clip. The ideas can be
easily applied even if no documents are defined on the objects. For large multimedia
objects, only a subset (prefix) of the object needs to be stored on disk. The entire
object is stored on tape. Thus only the prefixes of hot objects would be stored in
the HOT CACHE.

The intuition behind permanently saving hot objects in disk is to mask the
high access latency of tertiary storage. A request for a document can suffer a large
startup latency if the document is not available on disk. Due to the large size
of documents, it is not possible to save most documents on disk. The high startup
latency can be masked by having only a small initial portion of the document stored
on disk. When the document is requested, playback can begin immediately from
disk with very little delay. Concurrently, the document is retrieved from tertiary
storage. The playback of the portion of the document saved on disk overlaps with
the access latency before the requested document can be read from tertiary storage.

The “heat” of an object is determined using prior information about the access
of the objects. This could simply be the observed frequency of access of each docu-
ment. Given the probability of access of each document, we can compute the heat
of an object as the sum of the access probabilities of all documents that contain
the object. However, for the purposes of hot caching, we only want to save on disk
those objects that occur early in the document. Therefore an object’s heat is calcu-
lated as the sum of access probabilities of only those documents in which it occurs
early. An object is considered to occur early in a document if it lies within the
initial segment of the document. The initial segment, or DELTA, can be defined as
a fixed amount of time, or as a fixed fraction of the document’s total playing time.
Delta is a parameter that can be modeled to suit a system based on its resources.
In theory it is possible to use a different value of DELTA for different objects of
different classes of objects. However, the main purpose of caching the DELTA pre-
fix is to mask the latency of tertiary storage access. This latency is dominated by
the exchange of media and seek times. Hence it is likely to be relatively constant
and independent of the nature of the data items or the workload. For this reason,
we propose the use of a constant value of DELTA governed by the nature of the
tertiary storage system and disks. In Sec. 5 we consider the choice of DELTA as
a fraction of the length of an object (i.e. the length of the prefixes for objects are
chosen to be proportional to their entire length). From the results we see that a
single choice of DELTA gives similar results to the variable choice alternative. For
the case of individual multimedia objects with no notion of documents, only the
initial DELTA segment of the object is saved on disk. The “heat” of an object is
simply the cumulative access to the object.

In the proposed scheme, the heat of each object is calculated as explained above.
The hot cache is then filled with prefixes of objects in the order of their heat,
beginning with the hottest. An important point is that objects that are shared
by several documents are saved only once in the hot cache. The fraction of disk
storage reserved for hot objects is denoted by B. The remainder of the storage is



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 101

used as a buffer between secondary and tertiary storage. Any of the traditional
cache management schemes can be used to manage this buffer.

3.3. Tertiary storage placement

Tertiary storage is characterized by cheap storage with high access latency. The
goal of placement on tertiary storage is to reduce latency. The major component
of latency is the time for switching media on drives. In Ref. 27 it is shown that a
placement whereby the objects are placed sequentially in decreasing order of their
access probabilities is optimal. This result, however, is based upon the assumption
that objects are accessed independently. This assumption is not true in practice.
The access is based upon documents, not independent objects. The popularity of
an object is determined by the access to all documents in which the object is
contained. Thus it is possible if we follow the placement of Ref. 27, that the objects
for documents get distributed among multiple media resulting in extremely poor
performance due to multiple switches.

We avoid this problem by ensuring that the access of a document incurs at
most a single media switch. This is achieved by the replication of objects. Instead
of saving a single copy of each object on tertiary storage, we replicate objects so that
a complete document is stored on a single medium. Thus each object is replicated as
many times as the number of documents it occurs in. Replication on tertiary storage
has a low overhead because storage is cheap. Note that on secondary storage, there
is no replication of objects. The entire set of objects needed for a document can
now be found placed together on a single medium. Of course, multiple documents
can be stored on the same medium. In fact, we use the algorithm of Ref. 27 to
determine which documents to place on which media using the access probability of
documents. Documents are placed in decreasing order of their access probabilities.

3.4. Adaptive placement

A key component of the proposed storage management schemes is the knowledge
of the access pattern. Although it is useful to know this a priori, it is not critical to
the success of the proposed approach. Such information can easily be gathered from
the system by keeping track of document requests. Based upon the observed access
pattern, the choice of hot objects can be altered accordingly. In Sec. 5 we show
the effectiveness of this adaptive placement in response to changes in the access
pattern. In the complete absence of access information, the placement can begin
with an initial guess for the hot objects followed by progressive refinement as user
requests are serviced.

4. System Model

The model of our system is shown in Fig. 2. The functionality of each module and
its relationship with the other modules in the system is explained below. Every



January 20, 2003 17:22 WSPC/164-IJIG 00093

102 S. Prabhakar & R. Chari

Disk Fetch
Unit

Tertiary
Lookup
Module

Disk Lookup
Module

Main Module
determine

composition of
document

Tertiary
Fetch Unit

Scheduler:
Examine
Requests

Prepare
input for

scheduler
Disk Layout

Read/Write

Write to
buffer

Info on tertiary
objects

Physical Object List

Info on
Disk

Objects

Lookup for change
in buffer layout

Update buffer
info after write

Not in
Disk?

Buffer
Manager

Fig. 2. Block diagram of system.

request for a document is decomposed into requests for the component objects.
The Disk Lookup module performs a lookup of all the objects currently residing on
disk to determine if any of the requested physical objects are presently in secondary
storage. This includes objects in the hot cache as well as those in the buffers. Note
that the disk buffer handles objects and not documents. Thus it is possible that
some objects are retained in the buffer while other objects from the same document
are replaced. Based on the results of the disk lookup, all the objects not found on
disk are searched for in tertiary storage. The Tertiary Lookup module determines
the location of the requested objects on tape. The information about the location
of the constituent objects on disk and tertiary storage is passed on to the Scheduler.

The scheduler orders the requests for fetching the objects into main memory in
the order of their occurrence in the document. This is done taking into consider-
ation the buffer space available. Each user has an allocated buffer space in main
memory to hold the requested objects before they are sent on to the network. As



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 103

objects are fetched into main memory, the buffer space allotted to the correspond-
ing user decreases. Unavailability of buffer space results in the request being kept
on hold until an object from the same document is played and the space occupied
by that object is released. The scheduler also takes into account the time at which
an object is required during the playback using a delay estimation module. The
delay estimation module takes into consideration the current status of the system
resources and produces an estimate of the time required to fetch the data from disc
and tapes.

The request is sent to a drive chosen on the basis of the request queue on each
drive. If the required tape is already loaded and is currently in use, the estimation
module does not factor in the load time but estimates the delay based on the length
of the queue for the tape and the size of each waiting request. The playing of the
requested document is delayed until the data that is readily available from disk can
mask the fetch time of the data from tertiary storage. Delaying the start increases
the startup latency but reduces jitter that would be observed if there is a break
between the consumption of data on disk and the arrival of data from tertiary
storage. On completion of the delay estimation, the scheduler sends the requests to
the Disk Fetch unit and the Tertiary Fetch unit.

The Buffer Manager keeps track of the data stored on the buffer disks and
also the amount of space available to buffer data from tertiary storage. The buffer
manager uses an LFU policy for object replacement from the buffers. Once the data
is available in main memory it is ready to be sent to the user over the network.
The system assumes the availability of a fixed bandwidth network connection out
of the server. Based on the playing time of each object and its size, the bandwidth
requirement for that object is determined. If sufficient bandwidth is available the
object is transmitted. Otherwise, the playback of the document is delayed until
sufficient bandwidth is available.

5. Experimental Results

In this section we demonstrate the effectiveness of prefix caching and replication
towards reducing startup latency and jitter. The results are based upon a detailed
CSIM22 simulation model of the system described above. The disk specifications
for the model are based on the HP 97560 disk drive.21 The tape library is modeled
on the Exabyte EXB-480 tape library configured with Exabyte Mammoth drives.5

Further details of the tape simulator can be found in Ref. 19. The secondary storage
is configured with 20 disks each of capacity 2 GB, giving a total of 40 GB of disk
storage. The division of the disk storage into hot prefix cache and buffer is achieved
by dedicating entire disks to either of the two uses. The tertiary storage component
is modeled on a robotic tape library with four Exabyte drives. Some of the im-
portant parameters for the disks and tape simulation are provided in Table 1. The
experiments were conducted on a synthetic collection of 10 000 multimedia objects
of average size 100 Megabytes and a playback rate of 8 MB/s. The tape library is



January 20, 2003 17:22 WSPC/164-IJIG 00093

104 S. Prabhakar & R. Chari

Table 1. Table of parameters.

Parameter Value(s) Meaning

DISK SIMULATION PARAMETERS

ROT SPEED 4002 Rotational speed RPM
SEC SIZE 512 Size of sector in bytes
SEC TR 72 No. of sectors per track

CYLINDERS 1962 No. of cylinders
TR CYL 19 No. of tracks per cylinder
TRKSKEW 8 Track skew in sectors
CYSKEW 18 Cylinder skew in sectors
CNTRL TIME 1.2 Controller overhead (ms)
CAPACITY 2 GB Disk storage capacity

TAPE SIMULATION PARAMETERS

RWD OVHD 0.0083 seconds Rewind Overhead
SEEK OVHD 0.0083 seconds Seconds
SEEK SPEED (RWD SPEED) 103 (103) MB/s Tape seek (rewind) rate
EJECT TIME 2 seconds
LOAD TIME 4 seconds Time to load a tape on a drive
PICK TIME 1 second Time for robot to grab a tape
PUT TIME 1 second Time for robot to drop a tape
MOVE TIME 1 second Time for robot to move
XFER SPEED 3.0 MB/s Tape transfer speed
NUM TAPES 1000 Total number of tapes

TAPE CAP 10 GB Tape cartridge capacity
Num of Drives 4

configured with 1000 tapes each of size 10 GB, giving a total of 10 TB of tertiary
storage. It should be noted that the capacity of each disk is deliberately chosen
to be small compared to the currently available disk drives. This is done to com-
pensate for the small number of multimedia objects considered in the experiments.
Experiments with larger numbers of objects took too long to complete. Therefore
the amount of disk or cache capacity was reduced accordingly. In practice, larger
disks would be used for caching larger volumes of tertiary-resident data.

The set of documents and the access pattern is generated as follows. The num-
ber of component objects in each document is chosen from a uniform distribution
between 3 and 20. The corresponding number of objects are chosen following the
access probability of the objects. Since we are dealing with multimedia objects,
the access probability of objects follows a Zipf distribution. The document access
probabilities are also assigned following a Zipf distribution. In order to capture
the effects of links between documents, we introduce the notion of edges between
documents. To determine the edges, the documents are divided into clusters. The
number of documents in a cluster is uniformly distributed between 2 and 20. Some
(5%) of the documents are considered to be outliers that do not belong to any
cluster. For each document, a death probability, pd, is picked uniformly distributed
between 0.05 and 0.2. This is the probability that the user does not follow any



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 105

of the links from this document. Edges to other documents within the cluster are
created and assigned probabilities that are uniformly distributed so as to add to
1− pd.

It is important to note that although the access pattern is an input to the
placement algorithm, it is not crucial that this pattern is accurate. As we have
mentioned earlier, if the access pattern is unknown or changes after the placement,
the system can adapt to the observed access pattern by adjusting which objects get
placed in the hot cache. Experimental evidence to support this claim is presented
in Sec. 5.7.

Based upon the structure of the documents, and their access probabilities a
placement of data on tertiary and secondary storage is generated. In each exper-
iment, we run multiple concurrent streams of requests, each corresponding to a
different user. Each stream begins by requesting a starting document following the
access probability for the documents. As soon as this document is retrieved, the
user chooses to either follow one of the edges or to pick another document following
the document access probabilities. This choice is based upon the edge probabilities
and the death probability of the currently accessed document. In each test we first
warm up the caches by running 1000 requests. Following this, we run another 1000
requests based upon which we compute the average startup latency or average jitter
as observed by the requests.

In the following experiments we study the performance of prefix caching and the
impact of the following parameters: DELTA, the number of hot object versus buffer
disks, the number of simultaneous users in the system, the available network band-
width, and the access pattern. The performance of the PIRATE cache replacement
scheme designed for a single-user, single-disk environment is also presented.

5.1. Impact of hot object caching

We begin by studying the effectiveness of the hot object technique in reducing
the startup latency. Fig. 3 shows the average latency as the number of concurrent
users is varied for three different choices of DELTA (the size of the “prefix”). The
graph for DELTA = 0 represents the performance for no hot object caching where
all disks are used as buffers. The other two graphs show the performance with hot
object caching for DELTA equal to 5% and 15% of the total time of each document
(i.e. an object is considered to be in the prefix of the document if it occurs within
the first 5% or 15% of the document). The number of users was varied from 1 to 10.
As can be seen from the graph, the prefix caching considerably reduces the startup
delay. The difference in performance between the 5% and 15% values of DELTA is
not significant. The number of cache disks was maintained at 8 and the number of
buffer disks was 12. The alternative choice of DELTA as a fixed amount of time
was also studied. Figure 4 shows the results for DELTA as 100 seconds and 150
seconds. Similar results are seen, except that these values are not as effective as
the 5% or 15% choices for DELTA. This is easily explained by the fact that with



January 20, 2003 17:22 WSPC/164-IJIG 00093

106 S. Prabhakar & R. Chari

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Number of Simultaneous Users

Delta=0
Delta=5%

Delta=15%

Fig. 3. Startup latency for DELTA as percentage.

200

220

240

260

280

300

320

340

360

380

400

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Number of Simultaneous Users

Delta=0
Delta=100secs
Delta=150secs

Fig. 4. Startup latency for DELTA as time.



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 107

DELTA = 5%, the corresponding average value in seconds is about 250. For the
remainder of the experiments, we fix DELTA to be 150 seconds, unless specified
otherwise.

5.2. Impact on jitter

While a reduction in the average startup latency due to hot object caching is not
unexpected, the impact on jitter is not obvious. By designating some of the disks
as hot object disks we effectively reduce the number of disks available as buffers for
saving data fetched from tertiary storage. This reduction could adversely affect the
jitter. Figures 5 and 6 show the average jitter observed for the same settings as the
above experiments. We see that for both choices of DELTA, the observed jitter is in
fact lower than that without hot object caching. In fact, there is no observed jitter
with hot object caching. The combination of hot objects caching and replication
of objects on tertiary storage is the primary reason for this reduction. Under our
scheme the playback of a document is not started until the disk resident objects
for the objects can completely mask the latency of bringing the document onto a
drive in the tape. Once this happens, the entire document is retrieved from tape in
a sequential read resulting in no jitter. Note that startup latency could be further
reduced as the cost of some increase in jitter if we begin the playback of disk resident
components earlier without regards to completely masking the tertiary latency.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 J
itt

er
 (

se
c)

Number of Simultaneous Users

Delta=0
Delta=100
Delta=150

Fig. 5. Average jitter for DELTA as time.



January 20, 2003 17:22 WSPC/164-IJIG 00093

108 S. Prabhakar & R. Chari

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 J
itt

er
 (

se
c)

Number of Simultaneous Users

Delta=0
Delta=5%

Delta=15%

Fig. 6. Average jitter for DELTA as percentage.

5.3. Comparison to PIRATE

The Partial Replacement Technique (PIRATE) cache management scheme pro-
posed in Ref. 9 is specially designed for the management of multimedia objects
on a secondary and tertiary storage hierarchy. The PIRATE scheme is developed
and tested for a single user environment with a single buffer disk. In order to test
the performance of this scheme for the multi-user, multi-disk environment, it was
necessary to adapt the scheme.

In our implementation of PIRATE, we choose the granularity of replacement
as blocks of size equal to tape blocks. The original scheme proposes that each
object be divided up into fixed sized units called blocks. The replacement occurs
in block units. Since we need to migrate the scheme to a set of disks rather than
a single disk, the choice of the disk becomes a factor that comes into play. The
original scheme takes into consideration the frequency of access, called the “heat”,
to choose victims. We also use the same parameter to choose a victim. We scan
through the disk resident objects and choose the object having the lowest access
value as the victim. This victim determines our choice of the disk that will provide
the set of victims to be partially replaced to accommodate the incoming object.
This may not be the best choice because in an environment with multiple disks
the objects are scattered across the buffers and the frequency of access of a single
object may not be a sufficient indication of the nature of the objects on that disk.



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 109

Another approach could be to determine the average access frequency of objects
in each disk and choose the disk having the lowest average frequency of access of
objects. Then we select replacement objects from this disk. However this would
involve considerable overhead in the presence of a number of disks. So with our
choice of the disk storing the LFU object, the objects on the disk are scanned to
select victims. Victims are selected in ascending order of access frequency starting
with the least frequently accessed object and the tail-end block of each victim is
replaced. The notion of “slice” in the original PIRATE algorithm is taken to be a
set of 10 blocks. If the disk resident portion of the object is less than 10 blocks then
that object is not a candidate for replacement.

While servicing user requests, if the scheduler detects a request to an object
that is partially a disk resident, then a fetch for the remaining portion of the object
from the tape is scheduled as a fetch consecutive to the fetch from disk. The tape
placement is considered and the fetch start position on tape is calculated from the
start of the entire object and the portion resident on disk. Since the documents on
tape are stored in full replication, there may be multiple occurrences of the same
object on tape. A bad selection of the object from tape can result in the overhead
of unloading and loading of a new tape. To avoid this we use the document ID as a
parameter in addition to the object ID to select the current tape. This increases the
probability of selecting a tape that is already loaded or one that will be required
to be loaded for other accesses too.

310

315

320

325

330

335

340

345

350

200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Number of Requests

LFU (Delta=0)
Pirate

Fig. 7. Performance of PIRATE versus LFU.



January 20, 2003 17:22 WSPC/164-IJIG 00093

110 S. Prabhakar & R. Chari

In Fig. 7 the average startup latency of the PIRATE replacement scheme versus
the simple LFU replacement is presented. The experiment is conducted with ten
concurrent users. The results for varying numbers of requests is shown. Surprisingly,
we find that even for as few as 600 requests, the PIRATE scheme does not outper-
form the simple LFU scheme. This is in contrast to the results presented in Ref. 9 for
a single user environment. The poor performance of PIRATE can be traced to the
increased tertiary storage accesses as the number of requests increases. Since with
increased requests it is necessary to replace objects on disk, PIRATE replaces small
sections of several objects instead of replacing entire objects. Consequently, most
objects in the cache are incomplete resulting in the need to access tertiary storage
for the remainder, no matter how small it is. As the number of objects accessed
increases, the performance degrades even more. Since the PIRATE scheme did not
perform better than LFU, it will clearly give poor performance as compared to our
hot object caching scheme too. Consequently, no direct comparison is necessary.

5.4. Number of hot prefix disks

The fraction of disks used for hot object caching is an important parameter. In
this experiment we study the impact of this parameter. Figure 8 shows the average
startup latency as the fraction of disks used as hot cache buffers in increased.
Initially, as the number of hot object disks is increased, there is a reduction in the

200

220

240

260

280

300

320

340

360

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 S
ta

rt
up

 la
te

nc
y 

(s
ec

)

Number of Disks for Hot Prefixes

Total Disks = 20

Fig. 8. Impact of number of hot cache disks, (B).



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 111

average latency due to the benefit of latency masking. However, as we go beyond
14 disks, the latency begins to increase again. This increase is due to the greatly
reduced amount of space available for buffering leading to delays. From the graph
we see that a choice of 14 out of a total of 20 disks is optimal for caching hot
objects.

5.5. Choice of DELTA

In this experiment we study the impact of DELTA for different numbers of hot
cache disks. Figure 9 shows the average latency as a function of DELTA. The value
of DELTA is varied from 0 to 250 in steps of 50. The number of simultaneous users
in the system was maintained at 10. Three sets of graphs are shown for the number
of hot cache disks as 8, 12, and 15. The plot shows that with the increase in the
value of DELTA there is a considerable decrease in the startup delay. This can be
attributed to the fact that with a larger DELTA the number of objects cached in
the hot cache increases resulting in larger document prefixes being available for fast
retrieval and transmission. We can see that the performance for different choices
of hot cache disks is very similar with respect to DELTA. Thus DELTA can be
chosen independently. If the number of disks is hot cache disks is chosen to be 15
(as suggested by the previous experiment), a choice of DELTA to be around 250
seconds gives good performance.

180

200

220

240

260

280

300

320

340

40 60 80 100 120 140 160 180 200 220 240 260

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Delta (sec)

prefix disks =8
prefix disks =12
prefix disks =15

Fig. 9. Impact of DELTA.



January 20, 2003 17:22 WSPC/164-IJIG 00093

112 S. Prabhakar & R. Chari

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Bandwidth Available (MB/s)

Delta=0
Delta=5%

Fig. 10. Impact of available network bandwidth.

5.6. Network bandwidth

In this experiment the impact of the available total network bandwidth available
for transmission is studied. The bandwidth was varied from 1 MB/s to 10 MB/s —
which is a reasonable value for a 10/100 Ethernet node. The number of simultaneous
users in the system was maintained at 10. Figure 10 shows the startup latency as
a function of the bandwidth. As expected, for low bandwidth, the latency is very
high as the network becomes a bottleneck. However with an increase in the total
bandwidth available, the latency drops sharply. Clearly for larger numbers of users,
the 10 MB/s bandwidth will be inadequate. We can safely assume that with a
Gigabit Ethernet, the network will not be a bottleneck even for larger numbers
of users.

5.7. Adapting to variations in access pattern

In the preceding experiments it is assumed that the access probabilities of docu-
ments are known a priori. Based upon this information, the hot cache placement is
determined. We now investigate the impact of variations in the access pattern and
also the ability of the adaptive placement scheme to adjust to these variations. We
begin by considering a drastic change in the access pattern. In Fig. 11 the average
latency is plotted against DELTA, and is shown as the access pattern is changed
randomly. We observe that there is an increase in the access latency as a result of



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 113

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Delta (sec)

Original Access Pattern
Randomized Access Pattern

Fig. 11. Impact of random changes in browsing graph.

165

170

175

180

185

190

195

200

0 10 20 30 40 50

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Percentage change in edge probabilities

Original Access Pattern
Modified Access Pattern

Fig. 12. Impact of changes in edge probabilities.



January 20, 2003 17:22 WSPC/164-IJIG 00093

114 S. Prabhakar & R. Chari

150

160

170

180

190

200

210

220

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
ta

rt
up

 L
at

en
cy

 (
se

c)

Percentage change in node probabilities

Original Access Pattern
Modified Access Pattern

Fig. 13. Impact of changes in node probabilities.

the change. However, it is interesting to note that even with a very different access
pattern than the one used to determine the placement, the use of hot object caching
is effective in reducing latency.

In Figs. 12 and 13 we study the impact of limited random changes in the docu-
ment access probabilities and the edge probabilities respectively. In each experiment
the placement is generated based on an initial access pattern. Next, a random sub-
set of 10% of the nodes (edges) are chosen and their probabilities are altered by
10%, 20%, etc. The performance is tested using this altered access pattern. The
frequency of access to documents based on this altered graph is captured and a
new placement is made based only on these observed frequencies (with no other
knowledge of the changed access pattern). Using this adapted placement, the per-
formance is again measured. This is repeated for varying degrees of changes from
the original access pattern.

In each graph we observe that by adapting to the observed pattern of access,
we are able to reduce the latency. It is interesting to note that the increase in the
latency is not large, even with a 50% change in the probabilities.

6. Conclusion

In this paper we address the important problem of reducing startup latency and
jitter for very large multimedia document repositories. The study explores a multi-
user, multi-disk environment. To the best of our knowledge, this is the first study to



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 115

explore these issues. We proposed the use of a large portion of the secondary storage
as a permanent store for document prefixes in contrast to its customary use as a
buffer. We also propose the use of replication on tertiary storage to avoid expensive
media exchanges. The effectiveness of these approaches in reducing both startup
latency and jitter is shown through extensive experimentation using a detailed sim-
ulator. The hot prefix placement scheme is also shown to adapt easily to variations
in the access parameters. In our experiments the startup latency is reduced by as
much as 75% and jitter is practically eliminated. Our results show that by reserving
a large portion of the disk cache for the prefixes of the hottest objects, we are able
to achieve very significant improvements in startup latency. Moreover, despite the
reduction in available disk buffers, there is no increase in jitter due to replication
on tertiary storage.

Acknowledgements

This work was supported by NSF CAREER grant No. IIS-9985019, and NSF Grant
0010044-CCR.

References

1. E. Bertino and E. Ferrari, “Temporal synchronization models for multimedia data,”
Trans. Knowledge and Data Engineering 10(4), (1998).

2. A. L. Chervenak, “Challenges for tertiary storage in multimedia servers,” Parallel
Computing J. 24(1), 157–176 (1998).

3. A. L. Chervenak, D. A. Patterson, and R. H. Katz, “Storage systems for movies-
on-demand video servers,” In Proc. Fourteenth IEEE Symp. Mass Storage Syst. (Los
Alamitos, CA, September 1995) pp. 246–256.

4. Stavros Christodoulakis, Peter Triantafillou, and Fenia Zioga, “Principles of optimally
placing data in tertiary storage libraries,” In VLDB’97, Proc. 23rd Int. Conf. Very
Large Data Bases August 25–29, 1997, Athens, Greece (Morgan Kaufmann, 1997)
pp. 236–245.

5. Exabyte. Products. http://www.Exabyte.CO M:80/Products/ (October 1996).
6. D. A. Ford and S. Christodoulakis, “Optimizing random reterievals from clv for-

mat optical disks,” In Proce. Int. Conf. Very Large Data Bases (Barcelona, Spain,
September 1991) pp. 413–422.

7. C. Georgiadis, P. Triantafillou, and C. Faloutsos, “Scheduling and performance of
robotic tape libraries in video server environments,” Tech. Rep. (Multimedia Systems
Institute of Crete (MUSIC), Technical University of Crete, Crete, Greece, 1997).

8. S. Ghandeharizadeh, A. Dashti, and C. Shahabi, “Pipelining mechanism to minimize
the latency time in hierarchical multimedia storage managers,” Computer Commun.
18, 170–184 (March 1995).

9. S. Ghandeharizadeh and C. Shahabi, “On multimedia repositories, personal comput-
ers, and hierarchical storage systems,” In Proc. ACM Int. Conf. Multimedia (1994).

10. B. K. Hillyer and A. Silberschatz, “On the modeling and performance characteristics
of a serpentine tape,” In SIGMETRICS (Canada, 1996) pp. 170–179.

11. B. K. Hillyer and A. Silberschatz, “Random I/O scheduling in online tertiary storage,”
In Proc. ACM SIGMOD Int. Conf. Management of Data (Canada, 1996).



January 20, 2003 17:22 WSPC/164-IJIG 00093

116 S. Prabhakar & R. Chari

12. Urs Hölzle, “Google: Fun with linux and clustering,” Seminar (Purdue University,
September 2001).

13. T. Johnson and E. L. Miller, “Performance measurements of tertiary storage devices,”
In VLDB’98, Proc. 24th Int. Conf. Very Large Data Bases, August 24–27, 1998, New
York City, New York, USA, eds. A. Gupta, O. Shmueli, and J. Widom (Morgan
Kaufmann, 1998) pp. 50–61.

14. Achim Kraiss and Gerhard Weikum, “Vertical data migration in large near-line doc-
ument archives based on Markov-chain predictions,” In VLDB’97, Proc. 23rd Int.
Conf. Very Large Data Bases, August 25–29, 1997, Athens, Greece, eds. M. Jarke,
M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
(Morgan Kaufmann, 1997) pp. 246–255.

15. Y.-M. Kwon, E. Ferrari, and E. Bertino, “Modeling spatio-temporal constraints for
multimedia objects,” Knowledge and Data Engineering (1999).

16. T. D. C. Little and A. Ghafoor, “Synchronization and storage models for multimedia
objects,” J. Selected Areas in Commun. 8(3), 413–4237 (1990).

17. S. More, S. Muthukrishnan, and E. Shriver, “Efficiently sequencing tape resident
jobs,” In Proc. ACM Symp. Principles of Database Syst. (1999).

18. Powerfile. Products. http://www.dvdchanger.com (June 2001).
19. S. Prabhakar, “An overview of current tertiary storage technology and research,”

Master’s thesis (University of California, Santa Barbara, 1998).
20. S. Prabhakar, D. Agrawal, A. El Abbadi, and A. Singh, “Scheduling tertiary I/O

in database applications,” In Proc. 8th Int. Workshop on Database and Expert Syst.
Appl. (Toulouse, France, September 1997) pp. 722–727.

21. C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,” IEEE Com-
puter 27(3), 17–28 (March 1994).

22. H. D. Schwetman, “CSIM: A C-based, process-oriented simulation language,” In Proc.
1986 Winter Simulation Conf. (December 1986) pp. 387–396.

23. S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,”
In Proc. Infocomm (1999).

24. S. Seshadri, D. Rotem, and A. Segev, “Optimal arrangements of cartridges in carousel
type mass storage systems,” The Computer Journal 37(10), 873–887 (1994).

25. A. S. Slazay, P. Z. Kunst, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner, “De-
signing and mining multi-terabyte astronomy archives: The sloan digital sky survey,”
In Proc. ACM SIGMOD Int. Conf. Management of Data (Dallas, Texas, May 2000)
pp. 451–462.

26. StorageTek. Automatic tape libraries. http://www.storagetek.com/products/tape
(June 2001).

27. P. Triantafillou, S. Christodoulakis, and C. Georgiadis, “Optimal data placement on
disks: A comprehensive solution for different technologies,” Tech. Rep. (Multimedia
Systems Institute of Crete (MUSIC), Technical University of Crete, Crete, Greece,
1996).

28. P. Triantafillou and T. Papadakis, “Exploiting tertiary storage for performance im-
provement in video-on-demand servers,” Tech. Rep. (Multimedia Systems Institute of
Crete (MUSIC), Technical University of Crete, Crete, Greece, 1998).

29. P. Triantafillou and T. Papadakis, “On-demand data elevation in hierarchical multi-
media storage servers,” In VLDB’97, Proc. 23rd Int. Conf. Very Large Data Bases
August 25–29, 1997, Athens, Greece (Morgan Kaufmann, 1997) pp. 226–235.



January 20, 2003 17:22 WSPC/164-IJIG 00093

Minimizing Latency and Jitter for Large-scale Multimedia Repositories 117

Sunil Prabhakar is an Assistant Professor of the Department of
Computer Sciences at Purdue University. He received his Bach-
elor of Technology in Electrical Engineering from the Indian
Institute of Technology, Delhi in 1990, and his MS. and PhD
in Computer Science from the University of California, Santa
Barbara in 1998.

Dr. Prabhakar’s research interests are in large-scale data
management, parallel and multimedia databases, and digital wa-

termarking. His research has been supported by NSF, Microsoft Corp., IBM Corp.,
and the Center for Education and Research in Information Assurance and Security
(CERIAS) at Purdue University.

Dr. Prabhakar is a recepient of the NSF CAREER award. He is a member of
the Editorial Board for the Journal of Database Management and a member of the
IEEE and ACM.

Rahul Chari holds a Masters degree in Computer Science from
Purdue University. At Purdue University, he has worked closely
with Professor Sunil Prabhakar in the area of Multimedia data
caching and retrieval. He is currently working for Andiamo Sys-
tems Inc. as a Software Design engineer in the area of Storage
Area Networks (SAN switching). His current interests lie in the
areas of volume management and virtualized storage systems.





Copyright of International Journal of Image & Graphics is the property of World Scientific Publishing

Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.


