
Volume 17 (1998 ), number 4 pp. 249–261 COMPUTER forumGRAPHICS

Programming Paradigms in an Object-Oriented
Multimedia Standard

D. J. Duke† and I. Herman‡

† Department of Computer Science, The University of York, Heslington, York, YO1 5DD, UK

‡ Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

Of the various programming paradigms in use today, object-orientation is probably the most successful in terms

of industrial take-up and application, particularly in the field of multimedia. It is therefore unsurprising that

this technology has been adopted by ISO/IEC JTC1/SC24 as the foundation for a forthcoming International

Standard for Multimedia, called PREMO. Two important design aims of PREMO are that it be distributable,

and that it provides a set of media-related services that can be extended in a disciplined way to support the

needs of future applications and problem domains. While key aspects of the object-oriented paradigm provide a

sound technical basis for achieving these aims, the need to balance extensibility and a high-level programming

interface against the realities of efficiency and ease of implementation in a distributed setting meant that the

task of synthesising a Standard from existing practice was non-trivial. Indeed, in order to meet the design

aims of PREMO is was found necessary to augment the basic object infrastructure with facilities and ideas

drawn from other programming paradigms, in particular concepts from constraint management and dataflow.

This paper describes the important trade-offs that have affected the development of PREMO and explains

how these are addressed through the use of specific programming paradigms.

Keywords: multimedia, object-oriented systems, extensibility, middleware, standards.

1. Introduction

The availability of the Internet as a viable basis for

developing distributed computing applications, and the

recent development of languages and systems (for ex-

ample Java and VRML) for utilising this resource are

bringing changes to the function, organisation, and de-

sign of the middleware systems that provide support for

graphics and multimedia applications. Comprehensive,

self contained standards such as GKS and PHIGS are

being augmented by systems that are designed specifi-

cally as a set of components that can be instantiated to

the needs of a given application domain, and can be ex-

tended systematically to support new application areas.

Early examples of this direction can be seen in work

on graphics systems such as Doré1 and, more recently,

OpenInventor2. In the case of multimedia, the work on

MADE3 or MET++4 can also be considered as typical

examples.

Despite the diversity of application areas, many of

these new systems share a common theme: the use of

object orientation as the underlying software architec-

ture or technology. Initially, this trend may have just

reflected the emergence of object-oriented design and

programming into general software development. How-

ever, it has been timely in that the concept of objects

with local state communicating via message passing pro-

vides good architectural support for the development of

distributed systems. When considering the design of the

next generation of graphics standards, object orienta-

tion was seen by ISO/IEC JTC1/SC24 (the ISO sub-

committee responsible for the development of graphics

and image processing standards) as both a necessary

and desirable foundation for making a system that was

extensible and distributable. The new standard, known

as PREMO, goes beyond previous work within SC24

(such as GKS and PHIGS) to encompass multimedia

applications, and with them, a host of technical issues

such as maintaining synchronisation within a distributed

context.

c© The Eurographics Association and Blackwell Publishers Ltd

1998. Published by Blackwell Publishers, 108 Cowley Road,

Oxford OX4 1JF, UK and 350 Main Street, Malden, MA

02148, USA. 249



250 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

In this paper we explain how PREMO utilises vari-

ous programming paradigms, including object-oriented

concepts, to provide a distributed and extensible en-

vironment for multimedia applications, balancing the

needs for efficiency and easy implementability against

the demands for a high level, portable application pro-

gramming interface. In the process, we identify some

important trade-offs that have to be made when us-

ing various programming paradigms, and explain the

rationale for the approach adopted by PREMO.

1.1. A Short Overview of PREMO

This section gives a very short overview of PREMO;

for a more detailed presentation the interested reader

should consult, for example, Herman et al.5†.
Today’s application developers needing to realize

high-level multimedia applications which go beyond the

level of multimedia authoring do not have an easy task.

There are only a few programming tools that allow an

application developer the freedom to create multimedia

effects based on a more general model than multimedia

document paradigms, and these tools are usually plat-

form specific. In any case, there is currently no available

ISO/IEC standard encompassing these requirements. A

standard in this area should focus primarily on the

presentation aspects of multimedia, and much less on

the coding, transfer, or hypermedia document aspects,

which are covered by a number of other ISO/IEC or

de-facto standards (for example, MPEG). It should also

concentrate on the programming tool side, and less on,

e.g., the (multimedia) document format side. These are

exactly the main concerns of PREMO.

It is quite natural that the initiative for a standardiza-

tion activity aiming at such a specification came from the

group which has traditionally concentrated on presen-

tation aspects over the past 15 years, namely ISO/IEC

JTC1/SC24 (Computer Graphics). Indeed, this is the

ISO subcommittee whose charter has been the develop-

ment of computer graphics and image processing stan-

dards in the past. The Graphical Kernel System was

the first standard for computer graphics published in

this area; it was followed by a series of complemen-

tary standards, addressing different areas of computer

graphics and image processing. Perhaps the best known

of these are PHIGS, PHIGS PLUS, and IPS (see, e.g.,

Arnold and Duce6 for an overview of all these stan-

dards). The subcommittee has later turned its attention

† The reader may also refer to the current draft of the

PREMO document itself, which is publicly available. The

World Wide Web site http://www.cwi.nl/Premo/ gives a

good starting point to navigate through and access all available

documents.

to presentation media in general as a way of augment-

ing traditional graphics applications with continuous

media such as audio, video, or still image facilities, in

an integrated manner. The need for a new generation of

standards for computer graphics emerged in the past 4–

5 years to answer the challenges raised by new graphics

techniques and programming environments and it is ex-

tremely fortunate that the review process to develop this

new generation of presentation environments coincided

with the emergence of multimedia. In consequence, a

synergistic effect can be capitalized on.

The JTC1 SC24 subcommittee recognised the need to

develop such a new line of standards. It also recognised

that any new presentation environment should include

more general multimedia effects to encompass the needs

of various application areas. To this end, a project was

started in SC24 for a new standard called PREMO

(Presentation Environment for Multimedia Objects) and

is now an ongoing activity in ISO/IEC JTC1 SC24

WG6. The subcommittee’s goal is to reach the stage of

a Draft International Standard in 1997.

The major features of PREMO can be briefly sum-

marised as follows.

• PREMO is a Presentation Environment. PREMO, as

well as the SC24 standards cited above, aims at pro-

viding a standard “programming” environment in a

very general sense. The aim is to offer a standard-

ised, hence conceptually portable, development envi-

ronment that helps to promote portable multimedia

applications. PREMO concentrates on the application

program interface to “presentation techniques”; this is

what primarily differentiates it from other multimedia

standardization projects.

• PREMO is aimed at a Multimedia presentation,

whereas earlier SC24 standards concentrated either

on synthetic graphics or image processing systems.

Multimedia is considered here in a very general sense;

high-level virtual reality environments, which mix real-

time 3D rendering techniques with sound, video, or

even tactile feedback, and their effects, are, for exam-

ple, within the scope of PREMO.

• PREMO is a framework. This means that the PREMO

specification does not provide all the possible object

types for making graphics or multimedia. Instead,

PREMO provides a general programming framework,

a sort of middleware, where various organisations or

applications may plug in their own specialised objects

with specific behaviour. The goal is to define those

object types which are at the basis of any multimedia

development environment, thereby ensuring interop-

erability.

Issues related to the various programming paradigms

in use in PREMO to achieve these goals are the main

topic of this paper.

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 251

2. Object-Orientation

2.1. The Object Model

From the outset it was decided that PREMO would be

defined in an object-oriented framework, spread across

a number of components which provide a hierarchy of

definitions and services.

To take such an approach seems to be an obvious

choice, and is highly motivated both by the demands of

industry and the advantages of object-oriented design.

However, the term ‘object-oriented’ is extremely loose,

various systems, languages, etc., adopt their own view

of what objects really are, what their capabilities are,

how they are created and destroyed, etc. When defining

an international standard, which must be ruthlessly pre-

cise, and independent of the specifics of any operating

system or programming language, a well defined object

model should be adopted. It was a somewhat unpleas-

ant surprise for the team developing PREMO that such

object-model did not exist; a lot of energy was spent

to define a proper model which encompasses the need

of a multimedia standard. To ensure a proper specifi-

cation, a separate activity on the formal specification

of this object model was also pursued; the results are

already published elsewhere7. Of course, the PREMO

object model does rely on existing systems. The model is

largely based on the OMG proposal though with signif-

icant modifications (see below) and with a more precise

specification.

A PREMO system consists of a collection of objects,

each with a local (internal) state, and an interface con-

sisting of a set of operations. Each object is an instance

of an object type, which defines the structure of its in-

stances. An object type can be defined as an extension to

one or more other object types through inheritance. An

important property of the model is that objects are never

accessed directly. Instead, a PREMO client requests a

facility called an “object factory” to generate an object

satisfying specific criteria, and if it is able to comply, the

factory will return a handle to the new object called an

object reference. All subsequent activities involving the

object is then done via the reference, for example in-

voking an operation on the object, or passing the object

as a parameter to another operation. This separation

of objects (i.e. physical storage) from their references is

vital in supporting the aim of distribution, as an object

reference can be used to encode both local address in-

formation and the location of a particular object across

a network. A consequence of this is that the PREMO

environment must provide support for activities, such

as invoking an operation on an object, which are often

taken for granted as part of an object model. In the case

of a remote object for example, an operation invocation

must be translated into an appropriate remote invoca-

tion mechanism. Such assumptions have a significant

impact on the binding of the PREMO specification to a

specific implementation model.

This object model is fairly traditional. It is also very

pragmatic in the sense that it includes, for efficiency

reasons, the notion of non-object (data) types, as is

the case with a number of object-oriented languages,

such as C++ or Java, and in contrast to “pure” object-

oriented models, such as Smalltalk. This pragmatism

was driven by the fact that a PREMO systems should be

implementable on various industry-wide environments,

for example in C++ or Ada95. This required some kind

of restrain in adopting various features, a restrain which

undeniably contrasted with the various research results

available in academic environments.

2.2. Activity, Distribution

In PREMO, a strong emphasis is placed in the model

on the ability of objects to be active. This means that

PREMO objects have, conceptually, their own thread

of control; objects can communicate with one another

through messages, i.e., through the operations defined

on the object types. Objects can become suspended ei-

ther by waiting for an operation invocation to return, or

by waiting on the arrival of an operation request. Con-

sequently, operations on objects serve as a vehicle to

synchronize various activities. Furthermore, operations

may be defined as synchronous, asynchronous, or sam-

pled (this latter is, essentially, an asynchronous operation

whose waiting queue is of length 1 only). Whether the

concurrent activity of active objects is realized through

separate hardware processors, through distribution over

a network, or through some multithreaded operating

system service, is oblivious to PREMO and is consid-

ered to be an implementation dependency. The empha-

sis on the activity of objects stems primarily from the

need for synchronization in multimedia environments

and forms the basis of the synchronization model in

PREMO. Using concurrency to achieve synchronization

in multimedia systems is not specific to PREMO. Other

models and systems have taken a similar approach (see,

for example,3 or8) and PREMO, whose task is to pro-

vide a synthesis for standardization, has obviously been

influenced by these models.

The initial vision for PREMO was that all objects

would potentially be distributable. However, this then re-

quires that all operations — creation, operation request,

etc. — involving an object are handled by a mechanism

in the PREMO environment. Such a mechanism im-

poses a heavy run-time overhead on the use of objects,

one which is untenable for applications like solid ge-

ometry renderers or ray-tracers that may have to create

hundreds of thousands of objects within tight real-time

constraints. It thus appears that a system like PREMO

requires at least two kinds of objects, ‘heavy-weight’ ob-

c© The Eurographics Association and Blackwell Publishers Ltd 1998



252 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

Figure 1: Top level of PREMO Object Type Hierarchy

jects that can be distributed, and ‘light–weight’ objects

that can be created and operated on cheaply, but for

which there is limited scope for distribution. PREMO

reflects these two requirements in the top of the sub-

type hierarchy, shown in Figure 1. All PREMO objects

are subtypes of PREMOObject, but only those objects

defined as subtypes of EnhancedPREMOOBject are dis-

tributable (and therefore heavyweight). And it is only

objects of this type or its subtypes that can provide ser-

vices to PREMO clients. Note that this distinction is very

often not done in various (distributed) object environ-

ments (like CORBA9) which usually tend to concentrate

only on those objects which are ‘visible’ over a network.

2.3. Interfaces and Types

PREMO emphasizes the difference between interface

and type. Although, with the widespread usage of Java,

this distinction becomes more accepted these days, it

was a somewhat unlucky effect of C++ to blur the

differences for a long time, except for the very well

informed users.

A practical consequence of this differentiation within

PREMO is the level of detail in the specification of vari-

ous objects. Indeed, the PREMO text itself is, essentially,

the specification of a large number of object types; if the

difference between interface and type were not enforced,

the PREMO standard should include all possible opera-

tions for all types. In other words, if an implementation

aims at being compliant with PREMO, but would see

the necessity to add new operations to a specific object,

this could be done only through subtyping, hence lead-

ing to a possible explosion of types. Instead, PREMO

defines the behaviour of object types, and defines those

and only those operations which are relevant for the

behaviour of an object in term of PREMO. In other

words, the set of operations described in PREMO may

very well form only a subset of all the operations avail-

able for an object in a real-life implementation.

2.4. Processor versus Data Types

A fundamental question that must be addressed within

any object oriented graphics or multimedia system con-

cerns the allocation of fundamental behaviour, such as

transformations and rendering, to object types within an

API. Two quite distinct approaches emerge. The first is

to attach behaviour to the object types that are affected

by that behaviour. For example, geometric objects and

other kinds of presentable media data can be defined

with a ‘render’ method, with the interpretation that such

an object can be requested to produce a rendering of

itself. Such an approach can be extended to collections

of presentable objects, and fits well with the concept of

an object as a container for data along with the oper-

ations that manipulate that data. The second approach

is to define objects whose principle purpose is to act

as information processors, and which receive the data

that they operate on as parameters to operation requests

or through some other communication mechanism. In

this case, a ‘renderer’ object would receive presentable

objects as input through some interface, and produce

a rendering of those objects via some output mecha-

nism. Separating operations from the data that they

manipulate may appear to violate a central tenant of

object-oriented design. However, it has three important

benefits for PREMO.

First, a direct and desired consequence of a distributed

model is that one model or data set may be rendered

by several processes working in parallel at various lo-

cations. It is difficult to see how this can be realised

efficiently in an architecture in which each model ob-

ject renders itself. Either such objects must be able to

support multiple concurrent threads internally, or any

object that is to be rendered must first be copied. In

contrast, treating renderers as a type of object means

that multiple renderers can be created (relatively) easily

to operate on a given database of model objects. This

database can either be shared by several renderers, or

there may be several copies of the data. Strategies for

managing the distribution, update, and access control

of data within such a system are well known, and thus

this system is rather more practical and flexible than the

alternative.

Second, there is a strong requirement that PREMO

be extensible, and this property is actually enhanced by

separating renderer functionality from the object types

that are rendered. To see why this should be so, suppose

that we have 2 type of renderer, R and S, and three

kinds of renderable object, say A, B and C. There are

two distinct ways of organising the design of this system,

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 253

Figure 2: Organising Data Types and Processes

as illustrated in Figure 2. The first (a) is to associate each

operation with the data object that it acts on, while the

second is to structure the design around the processes

that act on the data. Cook10 has used such a framework

to contrast object-oriented structures with abstract data

types by relating data constructors to data observers.

Here, the constructors are represented by object types,

while the observers are the processes that act on the

data.

Consider now the effect of extending the system shown

in Figure 2. Two kinds of extension can be identified:

(i) adding a new kind of renderer, and (ii) adding a

new kind of modelling object. Adding a new renderer

is relatively straightforward in case (b) as it involves

no modification of existing code, but more difficult in

case (a) as the code for the renderer must be distributed

across each of the existing modelling object types. The

existence of an inheritance hierarchy above the mod-

elling object types would not ameliorate this effort, as

the behaviour of the renderer may depend specifically

on the details local to each of the modelling object types.

For the same reason, adding a new modelling object type

is simpler in case (a) when compared to (b). Critically

however we would argue that it is more likely that a

PREMO system will be extended by new renderers, or

by new modelling object types and renderers specific to

that object type, than it would by just adding a new

modelling object type. For example, a PREMO system

might be extended with a component for constructive

solid geometry. This would introduce new modelling

primitives, and a renderer specifically designed for deal-

ing with those primitives.

The third benefit of adopting a ‘renderer as object’

architecture for PREMO is that it supports an approach

to application development based on interconnecting a

number of processing devices. Once such a network has

been defined, it can be used for a variety of data sets or

models, and can be readily modified. This approach is

already well established in the multimedia community,

see for example Gibbs and Tsichritzis8. In contrast, in an

architecture where modelling objects render themselves,

the control of processing and flow of data is encoded

within specific operations, making it difficult to develop

an application that can be modified or extended without

wholesale reprogramming of those operations.

The object model of PREMO has been developed to

support an architecture in which renderers and other de-

vices for processing media data are viewed as ‘resources’

that can be connected and combined to form a network

capable of meeting specific presentation requirements.

There are two fundamentally different approaches by

which such inter-connectivity can be realised. The first

of these is to provide a set of homogeneous building

blocks that are designed from the outset to interoperate.

A systematic way of achieving this goal is to design

all of the processing and data representations from the

ground up, within a common infrastructure. In the case

of PREMO, we would in effect need to provide a ‘ren-

derer construction toolkit’ so that for example a video

renderer and an audio renderer would have compatible

interfaces for specifying temporal properties of their be-

haviour. In practice however it would be unreasonable to

expect wholesale redevelopment of existing media tech-

nologies within the framework of PREMO. Therefore a

second approach has been adopted, in which PREMO

provides a superstructure within which suitably defined

media devices can be embedded and interconnected.

These devices may utilise their own interfaces and im-

plementation, provided that they conform to PREMO’s

basic requirements to enable interconnection and use.

2.5. Properties

Properties are used to store values with an object that

may be dynamically defined and are outside of the type

system. Properties are pairs of keys (i.e., strings) and a

sequence of values which are conceptually stored within

a PREMO object (to use another terminology, each

PREMO object has an associated dictionary). Opera-

tions are introduced to define, delete, and inquire values

from a sequence associated with a key. Properties can

be used to implement various naming mechanisms, store

information on the location of the object in a network,

c© The Eurographics Association and Blackwell Publishers Ltd 1998



254 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

create annotations on object instances, and play an es-

sential role in negotiation mechanism in PREMO (see

Section 3. below). The existence of some properties (i.e.,

the keys) may be stipulated by the standard, but clients

can attach new properties to objects at any time. Prop-

erties may also be declared as ‘retrieve only’.

Why using properties? The fundamental reason lies,

in fact, in the conservative nature of the PREMO object

model. Indeed, in PREMO, operations on a type are

defined statically, when defining (“declaring”) the object.

Once the object type has been defined, and an object

instance of that type is created, no new operation can

be added to that object instance dynamically.

On the other hand, it has been advocated elsewhere

that more dynamic object models should be used for

graphics or multimedia (see, e.g.,3 or 11). Indeed, the

use of delegation or, on a more “modest” level, a more

dynamic view of ob- jects like, for example, the ap-

proach adopted in Python12 (which allows the addition

of operations dynamically), would be more appropri-

ate for graphics and multimedia systems. These features

would play an important role, for example, in constraint

management, in the adaptability of objects, etc. While

we agree with this view, the experiences in the MADE

project3 have also shown that implementing such fea-

tures on the top of languages or environments which

are not prepared for such features represents a signif-

icant burden and leads to a loss of efficiency. And,

unfortunately, none of the widespread object-oriented

systems or languages (C++, OMG specifications, Java,

etc.) implement delegation or anything similar. As a

consequence, and after some discussions, the adoption

of such features was rejected for the development of

PREMO.

Properties aim at offering a replacement for such ad-

vanced features on a lower level. Although properties do

not allow adding new operations to an object instance,

the mechanism can at least be used to simulate adding

and manipulating new attributes (essentially, data) to

object instances. Obviously, implementation of proper-

ties do not represent a significant problem. The ex-

perience with the specification has also shown that the

dynamicity offered by properties seem to be quite appro-

priate for PREMO, some examples will be shown later

in the paper. Consequently, properties play a somewhat

less elegant, but very useful role in PREMO in increasing

the dynamic nature of object instances.

2.6. Language and Environment Binding

Although the PREMO standard makes extensive use of

object-oriented concepts, it does not mandate that an im-

plementation of the standard also uses this technology.

In principle, it should be possible to implement PREMO

within FORTRAN. However, for practical purposes, it

is likely that implementations will utilize object-oriented

programming technologies, and this raises some interest-

ing issues. There is a wide variation in the concepts and

facilities provided by languages that claim to be object-

oriented, and many of these contain at least some non-

trivial differences from the object model of PREMO. For

example, the description of PREMO uses multiple in-

heritance in a number of areas. For a binding to C++,

this presents no difficulties, as this language provides

this feature. A Java implementation is somewhat more

difficult in this respect, as the language does not sup-

port multiple inheritance of classes (object types); on the

other hand it does allow a class to implement more than

one interface. In this context, it would be necessary to

determine an implementation strategy in which particu-

lar functionalities of PREMO were defined as interfaces

rather than Java classes, at the possible cost of replicat-

ing code. Implementation in Smalltalk, which does not

support multiple inheritance of classes and which has

no concept of interface would be rather more difficult.

In fact, binding PREMO to a specific object-oriented

language is one half of the problem. The PREMO ob-

ject model requires that the environment of a PREMO

system provides certain services, for example facilities

to create objects and to invoke operations on remote

objects. Such services are not necessarily available in

a programming environment (Java and its core pack-

ages seem to be more complete in this respect), so in

addition to a language binding a PREMO implementa-

tion may need to provide an environment binding to a

broader framework. Thus a C++ binding would need to

be augmented, for example, by a binding to CORBA9.

It must be emphasized that these problems are not

inherent to the PREMO specification, but to the fact

that facilities provided by the so-called object-oriented

languages and programming environments are extremely

diverse, and this makes them very often conceptually

incompatible with one another, too. In other words, any

object-oriented system specification, which tries to be

language and environment independent (which is the

case for PREMO) would face similar problems.

3. Negotiations, Adaptability

PREMO does not include explicit management for gen-

eral constraints. This decision was not taken easily, and

was the result of long and sometimes passionate discus-

sions within the PREMO team. There is indeed a classic

tension between the general requirements of constraint

management and the essence of object-orientedness:

whereas the latter advocates information hiding, the for-

mer requires a complete knowledge of all the attributes

related to an object. It was recognised that there is no

widely accepted object model which would solve this

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 255

Figure 3: Type properties, capabilities, constraining properties

problem in a satisfactory manner an in general terms.

PREMO being an international standard, i.e., a platform

for general consensus, the development team has finally

decided not to include a fully general mechanism for

constraint management.

There are, however, some related areas which

PREMO does address, and which are absolutely nec-

essary in a multimedia system; these are described in

the present section. There is a general, underlying phi-

losophy adopted by PREMO: because of the diversity

of the field, PREMO does not include any specific mech-

anism, algorithm, etc., for, e.g., quality of service issues;

instead, PREMO offers the necessary “hooks” to im-

plement various policies, which are often related to a

specific application area.

The fundamental mechanism in PREMO is built upon

the general notion of properties, briefly described in Sec-

tion 2.5 already. Properties are the basic building blocks

for various configuration and negotiation mechanisms.

Such negotiations may be necessary to have, e.g., an op-

timal control over media flow, to control the quality of

service of various multimedia devices, to ensure proper

coding and decoding of media data when necessary, etc.

As a general principle, the parameters governing the be-

haviour of objects are described in terms of properties,

rather than attributes, if they may be subject to further,

dynamic negotiations.

PREMO defines a special subtype, called Property-

Constraint objects, which offers a set of additional fea-

tures centred around properties. Figure 3 gives a very

schematic view of the notions involved. The figure rep-

resents the range of values belonging to one property

key, whose existence is part of the object type specifi-

cation. The capability associated with this key describes

the possible range of values which may belong to this

key. This is a read-only information which belongs to a

specific type. An instance of this type may have a native

property value for this key, which describes the possible

range of values this instance can associate to this key.

Obviously, the native property value represents a subset

of the capability. Capabilities and native property values

give a dynamically accessible information on the possi-

ble behaviour of an object instance, which can be used

in negotiations procedures. PREMO stipulates that, al-

though the actual values of the property may be changed

through the invocation of the various property manage-

ment operations, it is always possible to access the native

property values, for all properties whose existence is de-

fined as part of the object type definition. Capabilities

and native property values are (retrieve only) properties

themselves, i.e., they do not introduce any new notion on

the object model level. (Note that capabilities could also

be defined as traditional object attributes; the choice is,

in this sense, arbitrary.)

PropertyConstraint objects also offers additional fa-

cilities to constraint the actual values associated to a

key within the range of the native property values of

the object. The constraintProperty operation, defined for

this type, allows a client to set the values associated to

a key, automatically checking whether the values repre-

sent a subset of the native property values of the object.

Finally, these objects have a select operation, which de-

termines an optimal range of values for a given key

within the range of the (possibly constrained) current

values. Note that the select operation involves an in-

ternal, semantic knowledge of the object, and specific

subtypes are supposed to provide an implementation for

this operation which reflect the specific features of the

object type.

A simple example will show how these notions op-

erate in practice. An audio object type may be defined

in the PREMO framework; this type may operate on

ulaw, alaw, and Macintosh sound formats. A property

is defined for the object, denoting the audio format to

c© The Eurographics Association and Blackwell Publishers Ltd 1998



256 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

be used; eventually, this property has to be set by the

user for a specific value.

A capability is assigned to this property, which lists

ulaw, alaw, and Macintosh. However, when an object is

instantiated, it may not operate on, say, a Macintosh

sound file, because the necessary hardware is not avail-

able. Consequently, the native property value for this key

will list ulaw and alaw only. A client may inquire this

and adapt its own behaviour to this possible choice. Fi-

nally, by calling the select operation, the client instructs

the audio object to set the audio format(s) which is the

best suited on a specific environment for this specific

instance (e.g., it may restrict the audio format to ulaw).

This property selection and negotiation mechanism

appears at various places in the PREMO specification

(actually, there are object types, for example the so-

called Format objects, whose sole purpose is to serve

as an interface for such mechanism!). Here are some

examples, defined in PREMO, which can be subjected

to a negotiation mechanism:

• object types a specific object factory may be able to

create;

• various video and audio encoding parameters and

formats;

• internet address ranges for distributed access;

• list of input and output primitives a graphical renderer

may accept and/or produce;

• quality of service requirements;

One object may have several properties, each of them

being subject of the negotiation procedure described

above. However, certain combinations of property values

may not be acceptable. As an example, audio sample size

and sample rates cannot be set independently from one

another. To make therefore the negotiation procedure

feasible, PropertyConstraint objects include yet another

property, called ValueSpaceNameK, which describe the

allowable combinations of other properties. To refer

to the same example, this property might include a

sequence like:

<< “SampleSize”, 8 >,< “SampleRate”, 8 >>,

<< “SampleSize”, 16 >< “SampleRate”, 40 >>

which would indicate the fact that a sample size and

rate pair of < 8, 8 > or < 16, 40 > are permissible but,

for example, a < 8, 40 > is not.

4. Processing Networks

PREMO is concerned with a range of media types, and

therefore abstracts away from the details of media pro-

cessing found, for example, in standards such as GKS

and PHIGS, and from the details of media data rep-

resentation defined for example by MPEG or MIDI.

Instead, media processing elements are viewed as “black

boxes” that can be interconnected through a high-level

interface to construct a network of such elements appro-

priate for a given application. This “dataflow” approach

is not new to PREMO, it appears in published ap-

proaches to multimedia systems (for example,8), and has

also been used in visualisation systems such as AVS

and IRIS Explorer to allow interactive construction of

applications from a component or module toolkit.

4.1. Multimedia System Services

One of the parts of PREMO, called the Multimedia

System Services, defines the building blocks to build

up processing networks. Figure 4 gives a very rough

overview of some of the notions defined in this part of

PREMO; it would of course go far beyond the scope

of this paper to give a detailed description of all the

objects involved.

The “nodes” in the dataflow network are defined to

be so called VirtualDevice objects. These objects have

“openings”, called ports, which act as input and output

for the virtual device. Each virtual device, though being

an object itself, is also an aggregate of several specialized

objects, all defined by PREMO. These objects allow

the client to set up and control the way these devices

operate. More specifically, each port has an attached

quality of service descriptor object and a format object;

these objects act as a depository of specialised property

values (e.g., to define the video or audio format which

is produced and/or accepted by a port). The client can

set these properties, and hence the properties of the

virtual device a whole, using the mechanism described

in Section 3. above. Using this mechanism, the client has

the possibility to set up specialised processing networks,

adapted to the task at hand.

Media stream flows among virtual devices; this flow is

controlled by separate constituent objects, called Stream-

Control. These objects act as a controlling point for a

very sophisticated, event-based synchronization mecha-

nism. This synchronisation mechanism is described else-

where, and the reader is invited to consult either13, or

the PREMO document itself for the details of the mul-

timedia synchronisation. For the purpose of this paper,

suffices it to say that the activity of objects, as referred

to in Section 2.2, plays a fundamental role in this mech-

anism.

There are other objects defined in the Multimedia

System Services, which aim at a better control of the full

processing network. For example, Virtual connections act

as and abstraction to set up specific networks; Groups

(see below) provide a single entry point for a group of

virtual devices. Note that all the objects can be spread

over a real network, i.e., they can form the basis for a

really distributed Multimedia environment.

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 257

Figure 4: Multimedia system services client interaction

Figure 5 contains an example of a small network. It

represents a video mixer combining input from a local

MPEG file and a remote camera, and displaying the

results on a local monitor. Processing is carried out by

objects whose type is derived from VirtualDevice. Media

data is communicated from one device to another via

streams, shown as thick lines in the diagram. Streams

are established and maintained by objects derived from

the VirtualConnection type; where a connection involves

processes running at different locations, a connection

adaptor may be required to mediate communication.

It is often convenient for clients to interact with a

single object, and PREMO provides a Group object type

to support management of a collection of devices and

connections. Groups are PREMO objects which control

a number of other virtual devices, and their respective

network. By default, the constituent devices remain hid-

den to the external client; instead, groups provide a

single entry point to stream control, as well as other ser-

vices. If using the basic group interface only, the client

does not have to know about the details, or indeed the

interfaces, of these constituent devices. Of course, this

restrictive approach is not always desirable; subtypes of

Groups may add additional operations which essentially

expose the object references of the constituent devices.

PREMO provides a number of object types that special-

ize Group (e.g., LogicalDevice), and, as the Group object

type is itself a subtype of VirtualDevice, objects involved

in processing multimedia streams can conveniently be

organized into hierarchies.

4.2. Rendering Networks

The Multimedia Systems Services described above pro-

vide the foundation for rendering within PREMO, which

is significantly more abstract than that found in earlier

ISO standards such as GKS and PHIGS. The wide range

of software available to today’s developer — including

implementations of the above Standards — means that

it is not sensible to attempt to provide a common in-

terface for graphics renderers, let alone for processing

components that involve other combinations of media

with their own concerns. Instead, the Modelling, Ren-

dering and Interaction (MRI) Component of PREMO

defines a collection of object types that are intended to

allow developers to interface modelling and rendering

and software to other devices via the MSS framework. In

a sense, the purpose of the MRI component is to provide

middleware “connectors” or “hooks” to link application

or domain-specific components to the system facilities.

It achieves this in two main ways:

• it provides a number of object types derived from

the VirtualDevice type of MSS that provide generic

functionality, and defines a minimum number of con-

straints and properties that a client may rely on when

negotiating the construction of a rendering network;

• it defines a hierarchy of object types for representing

the data (primitives) processed by MRI devices.

These points are expanded in the remainder of this

section.

c© The Eurographics Association and Blackwell Publishers Ltd 1998



258 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

Figure 5: A Small PREMO Application

Devices for a Modelling and Rendering Network

Modellers and renderers are defined as subtypes of the

VirtualDevice object type. This allows them to be in-

tegrated directly into a network of devices that may

include media–specific input and output devices as well

as more abstract processing nodes. An example of such

a network is shown in Figure 5. As virtual devices, mod-

ellers and renderers contain a number of ports that allow

either input or output of data in a particular format. A

subtype of the format object type, called MRI Format, is

defined for data streams that carry modelling and ren-

dering primitives. PREMO applications may specialize

this format object type to define the input and output

format of a renderer or modeller that can utilise a richer

collection of primitives.

Support for modeller–renderer networks is provided

through a number of specialisations of VirtualDevice.

These include the Scene and Synchronizer object types.

As PREMO supports distributed applications, there are

situations where multiple modellers and renderers may

be utilising a common set of primitives that defines some

presentation, either creating or modifying it, or render-

ing the set for presentation. To mediate the concurrent

activity of multiple readers and writers, PREMO pro-

vides a Scene object type as a form of virtual device

that can be located within a processing network. One

responsibility of a scene object is to provide concurrency

control to prevent interference. In this respect a scene

object is similar to a conventional database server, and in

keeping with the overall design philosophy of PREMO,

it is assumed that the environment of a PREMO system

will supply a suitable mechanism for controlling concur-

rent access, for example in the form of multi-granularity

locking.

In order to render a multimedia presentation it will at

some point be necessary to use media-specific devices.

Some object in a network has to be responsible for ren-

dering the primitives that will be used by such devices,

and where more than one media is in use, this involves

the renderer generating multiple output streams. The

data carried on these streams needs to be synchronised

to reflect any pattern of coordination required in the

presentation, represented for example by the TimeCom-

posite primitive discussed below. This means that some

object in a multimedia system has to be aware of the

primitives being processed and has to be able to manipu-

late the streams used by the renderer by placing suitable

synchronization elements on the streams. PREMO de-

fines an object type called Synchronizer to encapsulate

this functionality. Since this object type has to be aware

of a group of devices and configurations, it is defined

as an (indirect) subtype of the Group object type men-

tioned in Section 4.1. Specifically, it inherits from an

object type called LogicalDevice, which in turn inherits

from Group and VirtualDevice. This use of multiple in-

heritance means that a Synchronizer can coordinate the

behaviour of its sub-components using an interface that

allows the device to be integrated with other components

of a wider rendering network.

Primitives

PREMO cannot and does not attempt to describe a

closed set of primitives for modelling and rendering.

Instead, it defines a general, extensible framework that

provides a common basis for deriving primitive sets ap-

propriate to specific applications or renderer technolo-

gies. Modellers, for example, may use specific represen-

tations such as constructive solid geometry or NURBS

surfaces. Such techniques may require an enriched set

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 259

Figure 6: Three levels of the PREMO Primitive Hierarchy

of basic primitives. The aim of the primitive hierarchy

defined in this part is to provide a minimal common vo-

cabulary of structures that can be extended as needed.

Figure 6 provides an overview of this hierarchy; object

types written in italic are subtyped one level further in

the Standard.

Briefly, form primitives are those where the appear-

ance of the primitive is constructed by the renderer.

These include geometric primitives (polylines, curves

etc.), and audio primitives for speech and music. Modi-

fier primitives alter the presentation of forms, for exam-

ple visual primitives encompass shading, colour, texture

and material properties that affect (for example) the

appearance of geometric primitives. Forms and modi-

fiers are combined within structured primitives. An ag-

gregate is conceptually a set of primitives where some

members of the set may be interpreted in application

dependent ways; it is thus up to an application subtyp-

ing from Aggregate to impose a specific interpretation

on such combinations. Of particular importance, given

that PREMO is concerned with multimedia presenta-

tion, is the TimeComposite primitive and its subtypes

which allow a time-based presentation to be defined by

composing simpler fragments. Subtypes of TimeCom-

posite provide for sequential and parallel composition,

as well as choice between alternative presentations as

determined by the behaviour of a state machine. Ad-

ditional control over timing is achieved via temporal

modifiers, and subtypes of TimeComposite define events

that can be used within the PREMO event handling sys-

tem to monitor the progress of presentation. Reference

primitives enable the sharing of primitive hierarchies by

names that can be defined within structures, while Cap-

tured primitives allow the import of data encoded in

some format defined externally to PREMO.

Although some aspects of the PREMO primitive hier-

archy resemble those of object-oriented graphics systems

such as OpenInventor2, it must be remembered that the

PREMO hierarchy serves quite a different role from

that of models published in the literature or used in

implementations. PREMO is not a self-contained spec-

ification (let alone implementation) of a multi-media

system, but rather a common framework that can be

specialised to meet the requirements of a wide variety

of applications. In this context there is clearly no “best”

primitive hierarchy–different application areas or tech-

nologies will have different and sometimes contradictory

requirements. The approach of the PREMO Commit-

tee has been to synthesise a minimal framework that

builds on the facilities provided by PREMO, such as

negotiation and event handling, and which can then be

extended to suit specific needs.

5. Components

PREMO represents quite a large body of object type

specifications. Also, PREMO defines a framework, and

it is expected that other standard bodies and/or appli-

cation developers would add their own object types to

the ones already defined by PREMO. However, such

extensions may not want to make use of all object types

PREMO defines. This calls for a proper way of cluster-

ing meaningful subsets from the full body of PREMO

or related objects. Such a clustering may lead to unre-

solved type and service dependencies, if not done care-

fully enough. PREMO includes a set of formalism to

make this clustering process easier and trackable.

PREMO defines components and profiles. A compo-

nent in PREMO is a set of related object types that

comply with the PREMO Object Model. Components

organize these object in terms of profiles, whereby some

set of the types defined in the component are collected

together for a particular view of their usage. A pro-

file may be tailored towards a particular constituency

or application domain, for example. An example for a

component is the Multimedia System Services described

above.

A component may contain one or more profiles. The

specification of a profile makes explicit the dependen-

cies that the profile has with respect to other profiles

within its own component and with profiles defined in

other components. These dependencies between profiles

is expressed as follows.

• A profile P belonging to component A may depend

on profile Q of the same component if there are object

types in P that are either:

c© The Eurographics Association and Blackwell Publishers Ltd 1998



260 D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard

a) subtyped from object types defined within Q (type

dependency), or

b) whose behaviour depends on operations defined by

object types in Q (service dependency).

This form of dependency is referred to as internal

dependency.

• A profile P belonging to component A may depend

on profile R of component B if there are object types

in P that are either:

a) derived from other object types defined within R
(type dependency), or

b) whose behaviour depends on services provided by

object types defined within R (service dependency).

This form of dependency is referred to as external

dependency.

The various possible dependencies are non-exclusive;

a component profile may have internal and external

dependencies that may be in terms of both type and

service dependencies.

The specification of a profile also includes the list of

types which can be used to resolve type or service depen-

dencies by other profiles or by applications in general.

In other words, a profile specification may include:

• Types which may be subtypes by types in other pro-

files;

• Types which cannot be subtyped, but only their ser-

vices can be accessed.

A profile can thereby restrict the usage of a type to,

e.g., as a service provider only, i.e., the operations of

the type are available for operation requests, but no

subtyping of this type is possible.

The separation between service and type dependencies

is essential, albeit rarely seen in the literature or in sys-

tems. A proper notational conventions is also included

in the PREMO specification to describe these depen-

dencies. The profile specification of a PREMO compo-

nent makes provision for PREMO implementations to

offer automatic configuration mechanisms. Such mecha-

nisms may allow for an implementation of a component

and/or a profile to interoperate with other component

implementations.

6. Assessment and Conclusions

The design of an International Standard is a chal-

lenging process in which a synthesis of existing “best

practices” must be achieved while bearing in mind the

kind of future technical problems that the Standard

will have to address. It might seem that development

of PREMO would have been assisted by the maturing

of object-oriented technologies into mainstream devel-

opment methods and the opportunities offered by the

growth of the Internet and its supporting infrastruc-

ture. However, our experience has been that obtaining a

suitable foundation in the form of an object model for

PREMO was a major problem. Distributed multimedia

comes with technical issues such as lightweight versus

heavyweight objects and operation invocation that could

not be addressed adequately by any one object model

being proposed or developed. At another extreme, it was

difficult, particularly at early stages in the development

process, to identify what specific needs of the Standard

were best addressed by object types, or where alternative

solutions were feasible and desirable. A good example of

this is the extensive facilities for property and constraint

management, which provide (we believe) an effective

bridge between the object world of local states and in-

ternal control, and the world of inter–object constraints

and their external management.

Also, the dataflow model of devices and networks

provided by the multimedia system services and utilised

in the modelling and rendering component provides a

highly flexible framework for applications development

that abstracts away from the low-level interface issues of

the objects needed to support such a network. Our con-

clusion here are twofold. The first point is probably

unsurprising; while object-oriented technologies offer

useful and arguably powerful mechanisms for building

complex systems (for example inheritance and polymor-

phism), obtaining a well-defined object model appropri-

ate to the demands of a given application domain is a

non-trivial task — object-orientation is no substitute for

careful design. The second point is rather more subtle,

and may be more significant in the longer term. By

adopting the object-oriented paradigm from the outset

as the basis for PREMO, we found that we became

“locked” into an object-oriented way of thinking about

problems. The result was that the PREMO Committee

spent a considerable amount of time trying to develop

approaches and interfaces for negotiation and rendering

within an object-oriented framework before we began

to realise that solutions to these issues were best found

by thinking in quite different terms. Any programming

paradigm can become an intellectual straight-jacket that

can make it difficult to reach novel but effective alterna-

tives.

Returning to the object-oriented paradigm, another

important lesson learnt from the development of

PREMO is that it is no longer enough to develop a

language binding for an Application Programming In-

terface. Important features of the PREMO object model

rely on facilities that the environment of a PREMO ap-

plication is expected to provide, for example for the

creation and management of objects through an ob-

ject factory mechanism. Such facilities fall within the

scope of object model and object services proposals

such as OMG’s and JOSS series and CORBA, or the

various API specification for Java. Thus, in addition to

a language binding linking the types and services of a

c© The Eurographics Association and Blackwell Publishers Ltd 1998



D. J. Duke and I. Herman / Programming Paradigms in an Object-Oriented Multimedia Standard 261

Standard to a host language, there is also need for an

“Environment Binding” to define how requirements on

the environment in which an application will run should

be realised through the facilities provided by those var-

ious architectures.

Acknowledgment

PREMO is obviously the result of teamwork, and is the

outcome of a concentrated effort of the full PREMO

Rapporteur Group within ISO/IEC JTC1/SC24. The

authors would like to acknowledge the participation of

members of this Rapporteur Group.

The original ideas behind the Multimedia System Ser-

vices have been developed by the Interactive Multimedia

Association (IMA) which then donated their specifica-

tion to ISO. The original IMA document was adapted

to PREMO by one of the authors (I.H.) and Jim Van

Loo (Sun Micro-systems), and have been revised later

by the full Rapporteur Group.

Finally, a large portion of the work presented in this

paper has been carried out under the auspices of the

ERCIM Computer Graphics Network, funded under the

European Communities CEC HCM Programme. The

authors would like to acknowledge the participation

of members of this programme, and particularly those

involved in Task 1.

References

1. M. Kaplan, “The Design of the Dore System”, In

Advances in Object-Oriented Graphics I, E.H. Blake

and P. Wißkirchen (Eds), Eurographic Seminar

Series, Springer Verlag, 1991.

2. J. Wernecke, The Inventor Mentor, Addison Wesley,

1994.

3. I. Herman, G.J. Reynolds, and J. Davy: “MADE:

A Multimedia Application development environ-

ment”. In Proc. of the IEEE International Confer-

ence on Multimedia Computing and Systems, Boston,

L.A. Belady, S.M. Stevens, and R. Steinmetz (Eds.),

IEEE CS Press 1994.

4. P. Ackermann, “Direct Manipulation of Tempo-

ral Structures in a Multimedia Application Frame-

work”, In Proceedings of the ACM Multimedia’94

Conference, D. Ferrari (Ed), ACM Press, 1994.

5. I. Herman, G.J. Reynolds, and J. Van Loo:

“PREMO: An emerging standard for multimedia.

Part I: Overview and Framework”, In IEEE Multi-

Media, 3, pp. 83–89, 1996.

6. D.B. Arnold and D.A. Duce, ISO Standards for

Computer Graphics: The First Generation, Butter-

worths, 1990.

7. D.A. Duce, D.J. Duke, P.J.W. ten Hagen, I. Her-

man, and G.J. Reynolds: “Formal Methods in the

Development of PREMO”. In Computer Standards

& Interfaces, 17, pp. 491–509, 1995.

8. S.J. Gibbs and D.C. Tsichritzis, Multimedia Pro-

gramming, Addison-Wesley, ACM Press series, 1995.

9. R. Otte, P. Patrick, M. Roy, Understanding CORBA,

Prentice Hall, 1996.

10. W.R. Cook, “Object-Oriented Programming Ver-

sus Abstract Data Types”, in: Foundations of

Object-Oriented Languages: Proceedings of REX

School/Workshop, J.W. de Bakker, W.P. de Roever,

and G. Rozenberg (Eds), Volume 489 of Lecture

Notes in Computer Science, pp. 151–178, Springer

Verlag, 1990.

11. D. Brookshire Conner and A. van Dam, “Shar-

ing between graphical objects using delegation”, in:

object-oriented Programming for Graphics, C. Laffra,

E.H. Blake, V. de May, X. Pintado (Eds), Focus on

Computer Graphics Series, Springer Verlag, 1995.

12. A. Watters, G. van Rossum, and J.C. Ahlstrom,

Internet Programming in Python, M&T Books, 1996.

13. I. Herman, N. Correia, D.A. Duce, D.J. Duke, G.J.

Reynolds, and J. Van Loo, “A Standard Model

for Multimedia Synchronization: PREMO Syn-

chronization Objects”, In Multimedia Systems, to

appear in 4, 1997.

c© The Eurographics Association and Blackwell Publishers Ltd 1998



Copyright of Computer Graphics Forum is the property of Wiley-Blackwell and its content may not be copied

or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


