Journal of High Speed Networks 7 (1998) 229-257 229
10S Press

QoS-aware resource management for
distributed multimedia applicatiohs

Klara Nahrstedt, Hao-hua CHwand Srinivas Narayan

Department of Computer Science, University of lllinois at Urbana Champaign, IL, USA
E-mail: {klara,h-chu3,srnaraya}@cs.uiuc.edu

Abstract. The ability of operating system and network infrastructure to provide end-to-end quality of service (QoS) guarantees in multimedia

is a major acceptance factor for various distributed multimedia applications due to the temporal audio-visual and sensory information in these
applications. Our constraints on the end-to-end guarantees are (1) QoS should be achieved on a general-purpose platform with a real-time
extension support, and (2) QoS should be application-controllable.

In order to achieve the users’ acceptance requirements and to satisfy our constraints on the multimedia systems, we need a QoS-compliant
resource management which supp@sS negotiationadmissionand reservationmechanisms in an integrated and accessible way. In this
paper we presentr@ew resource modeind atime-variant QoS managementhich are the major components of the QoS-compliant resource
management. The resource model incorporatesetmirce scheduleand a new component, thesource brokerwhich provides negotiation,
admission and reservation capabilities for sharing resources such as CPU, network or memory corresponding to requested QoS. The resource
brokers are intermediary resource managers; when combined with the resource schedulers, they provide a more predictable and finer granularity
control of resources to the applications during the end-to-end multimedia communication than what is available in current general-purpose
networked systems.

Furthermore, this paper presents the QoS-aware resource management model called QualNteniaddeamiddlewareits design, im-
plementation, results, tradeoffs, and experiences. There are trade-offs when comparing our QualMan QoS-aware resource management in
middleware and other QoS-supporting resource management solutions in kernel space. The advantage of QualMan is that it is flexible and
scalable on a general-purpose workstation or PC. The disadvantage is the lack of very fine QoS granularity, which is only possible if supports
are built inside the kernel.

Our overall experience with QualMan design and experiments show that (1) the resource model in QualMan design is very scalable to
different types of shared resources and platforms, and it allows a uniform view to embed the QoS inside distributed resource management;
(2) the design and implementation of QualMan is easily portable; (3) the good results for QoS guarantees such as jitter, synchronization skew,
and end-to-end delay, can be achieved for various distributed multimedia applications.

1. Introduction

With the temporal audio-visual and sensory information in various distributed multimedia applications, the pro-
vision of end-to-end quality of service (QoS) guarantesea major acceptance factor for these applications. For
example, multimedia applications such as video-conferencing require boenddd-end delayith a minimal
jitter for meaningful audio and video communication. Video-on-Demand applications require mijitienahnd
loss rateto accomplish a good viewing quality of retrieved movie. Figure 1 shows a distributed multimedia system
environment where we consider the end-to-end QoS issues.

The environment consists of general-purpose workstations and PCs equipped with multimedia devices such as
video cameras, microphones, and speakers. Our assumption about the general-purpose operating systems in these
end-points is that they suppasgal-time extensionwith mechanisms such as priority scheduling and memory

*Corresponding author: Hao-hua Chu, DCL 3313, 1304 West Spring field Ave., Urbana, IL 61801, USA. Tel.: +1 217 333 1515; E-mail:
h-chu3@cs.uiuc.edu.

1This work was supported by the NSF Career Award under the agreement number NSF CCR 96-23867 and the NSF CISE Infrastructure
grant under the agreement number NSF CDA 96-24396.

0926-6801/98/$8.00Q] 1998 — 10S Press. All rights reserved

230 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

Multimedia Workstation Multimedia Workstation
CMERLTORERMDE 308 .
System Architecture ERB-TO-END QoS System Architecture
GUARANTEES l
' oo p Application Level S - Applicalion Level
N4
N
% System Level System Level
4 Operating System
(Operating System (CP g o
Copimmion "
Network Level Gateway Network:evel

\Qﬂ -

ATM Netwoyk

Fast Ethernet

Multimedia PC

Multimedia Workstation

Fig. 1. The end-to-end scenario of distributed multimedia applications.

pinning, which are now available in most of the UNIX platforms and Windows NT platforms. The multimedia
end-points are connected via local area networks such as ATM (Asynchronous Transfer Mode) and Fast Ethernet,
which are currently widely available in academia and industry. One important issue about this general-purpose
environment is that not all components along the end-to-end path (e.g., from video retrieval at the server work-
station to video display at the client PC) have QoS support. For example, ATM network provides a QoS support
(bandwidth reservation), but the end-points (workstations, PCs) do not have any specific support of QoS (the RT
extensions are necessary, but not sufficient for QoS support). Our goal is to presénianat the end-points of

the end-to-end multimedia communication path which (1) contributes to end-to-end guarantees, and (2) allows the
applications to access and control the end-to-end QoS parameters. We assume in this framework that the underlying
network (e.g., ATM) has some capability of QoS provision such as bandwidth reservation and enforcement.

To achieve this goal, we utilize and build on our experience, knowledge and lessons learned during the de-
sign and experiments with the end-point OMEGA architecture and QoS Brokerage [31,32]. OMEGA architecture
consisted of the QoS Broker, a centralized end-point entity for handling QoS at the edges of the network, and end-
to-end communication protocols using resources negotiated by the broker. The QoS broker entity was integrating
QoS translation, negotiation, admission control for every end-point resource, and computation of a static scheduler,
considering functional dependencies of the application. These functions were performed during the connection es-
tablishment phase. The enforcement of QoS relied only on usage of real-time priorities under the assumption that
the application is well behaved, and the network is lightly loaded. Research around OMEGA architecture concen-

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 231

trated on QoS management and not on resource management. OMEGA did not provide any explicit reservation,
enforcement, or adaptation mechanisms in case of QoS violation or degradation due to misbehaved applications or
heavy load on networks.

The lessons learned from OMEGA showed us that QoS management is only a part of the end-to-end QoS
solution and we need a powerful QoS-aware resource management when we want to provide end-to-end QoS
guarantees. This leads us to new design, services, protocols and other significant changes in comparison to the
our previous work within the QoS Broker and OMEGA architecture research: (1) We split the functionality of the
QoS Broker in the OMEGA architecture and distributed the individual QoS functions such as resource admission
control and resource negotiation closer to the resource management. This distributed approach allows us provision
of scalable solutions because different types of applications (local, remote) can be efficiently supported; hence not
every resource is always involved. (2) We left the central QoS broker at the end-point with translation functionality,
and support for application QoS negotiation. (3) We introduced a coordination protocol for reservation requests
into the QoS Broker for reservation deadlock prevention during the resource reservation phase. At this point it is
important to mention that this protocol evolved due to the step going from the centralized QoS brokerage approach
to the distributed resource brokerage approach. In OMEGA architecture, the QoS Broker had all the information
about the individual QoS and resource requests; hence could make immediate decisions about resource availability.
In our new design, the QoS broker must communicate with the underlying resource management entities to obtain
the resource availability and make the final reservation decision for the user. (4) We designed and embedded
reservation, monitoring, enforcement and partial adaptation mechanisms into our resource management entities so
that QoS guarantees can be properly enforced in case of misbehaved applications or heavy loaded CPU/network.
(5) We designed the new QoS-aware resource management platform as a middleware in the user space which can
be used independently by any application (local or remote) to receive QoS guarantees. The first design of OMEGA
was not done with such an independence in mind. (6) OMEGA provided only GUI (Graphical User Interface) API
for QoS specification, where our new platform allows either GUI, command-line or system-based APIs for QoS
specification and access to QoS services.

Our approach is to provide a distributed and QoS-aware resource management platform in fdoawaide
middlewarebetween the applications and the actual general-purpose operating system. Our new platform, called
QualMan consists of a set of resource servers using a new resource model and a robust time-variant QoS manage-
ment, accessible to any application. The resource model incorporates, in addition to a resource scheduler, a new
component, called theesource brokerwhich provides QoS, negotiation, admission, and reservation capabilities
for sharing resources such as CPU, network, or memory according to QoS requirements. The resource brokers are
intermediary resource managers which provide, together with resource schedulers, a more predictable and finer
granularity control of resources to the applications during the end-to-end multimedia communication than what is
accessible in current general-purpose networked systems.

There are trade-offs when comparing our QualMan QoS-aware resource management in middleware and other
QoS-supporting resource management solutions in kernel spacadvastageis that QualMan platform iflex-
ible, andscalableat a general-purpose workstation or PC any time the end-point should be used for distributed
multimedia applications. It is flexible because it allows the user to load and configure its general-purpose envi-
ronment into a multimedia-supporting environment. The user starts the middleware and uses the APl (Application
Programming Interface) which allows the user to access and control the QoS offered by the middleware. It is scal-
able because it allows to provide QoS guarantees for local applications such as local MPEG players, or distributed
applications such as Video-on-demand. The application requests from QualMan either CPU reservation only, or
CPU and memory reservation only, or CPU, memory and network reservation all together, depending on the type
of application. Thaelisadvantageis the lack of very fine QoS granularity, which is particularly visible in the provi-
sion of timing constraints. The reason is that in order to achieve flexibility and load-ability for any platforms, there
are no changes in the kernel. Hence the timing quality has lower resolution than if some of the algorithms were
embedded in the kernel itself, where we would have access to much finer clock resolution. However, our achieved
timing control is sufficient for multimedia applications and our results show that the middleware support provides
much better temporal quality support than any application could achieve running on top of a general-purpose
environment without our middleware.

232 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

In this paper we will presents the QoS and resource model as well as the placement of the QualMan architecture
in the overall multimedia communication architecture in Section 2. This conceptual section will be followed by
the description of individual elements of the QualMan architecture. Section 3 describes the CPU server, Section 4
presents the memory server, and Section 5 discusses the communication server. Section 6 presents the API to our
QoS-aware resource management and other implementation details. Section 7 describes the results and experiences
with the QualMan architecture. Section 8 discusses the related work. Section 9 concludes the paper.

2. QoS-aware resource management architecture

To achieve an end-to-end quality of service (QoS) along multimedia communication paths for distributed mul-
timedia applications, we need to provide services and protocols in the end-points and networks which understand
what quality of service is and how to map this quality into the required resource allocation. Furthermore, the un-
derlying resource management must have services and protocols which know how to negotiate, admit, reserve, and
enforce requested resource allocation according to requested QoS requirements.

In this section, we will present our QoS and resource model which will provide the basis for the QoS-aware
resource management architecture (QualMan). Based on those models, we will give an overview of the QualMan
architecture and its placement in the end-to-end multimedia communication architecture.

2.1. QoS model

We consider parameterization of the QoS because it allows us to provide quality-controllable services. We
will consider adeterministic specificationf parameters, where the QoS parameters will be represented by a
real number at a certain timg i.e., QoS : T — R whereT is a time domain representing the lifetime of a
service andR is the domain of real numbers. The overall quality of service will be specified either by a single
value, by a pair of value such 8%.Smin andQoSmax Or by a triple of value such as best val)eSmax average
value QoSave and worst valugoSmin. We will use thesingle valueQoSave Or thepair value (QoSmin, Q0Smax)
specification in our service and protocol design. Particularly, the pair value specification will allow us to define
range representation withcceptable quality region@QoSmin < QoS(t) < QoSmax) andunacceptable quality
regions(QoS(t) < QoSmin) as shown in Fig. 2.

There are many possible QoS parameters such as visual tracking precision, image distortion, packet loss rate,
jitter of arriving frames, synchronization skew, and others. They can be classified from different aspects. One
aspect we are considering is according to the layered multimedia communication architecture which consists of
four main layers: users, application, system, and network layers [30]. If we assume this type of end-point layering,
then we can separate QoS imgerceptual Qo&e.g., TV quality of video)application QoSe.g., 20 frames per
second video)system Qo%e.g., 50 ms period cycle) antetwork QoSe.g., 16 Mbps bandwidth) classes. This
classification allows each layer to specify its own quality parameters. However, this classification also requires
translations at the boundaries between individual layers [32]. Some examples of application and system QoS
parameters for MPEG-compressed video streams are shown in Table 1.

In this paper we consider tleystem QoS parametesach as the CPU QoS, memory QoS, and communication
QoS parameters when discussing the QualMan, the QoS-aware resource management platform. Furthermore, our
focus will be on controllingime-variant QoS parametesuich as théitter (J4) of arriving frames within a con-
tinuous media stream, which implicitly influencgschronization skegsync4) between two or more continuous
streams, andnd-to-end delayF 4) between two end-points because they have the most significant impact on the
acceptance of distributed multimedia applications.

2.2. Resource model

To provide QoS, each of the shared resources at the end-points must be modeled autonomously enough to
provide its own QoS control as well as being able to adapt to possible occurrences of non-deterministic system

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 233

Representation of QoS parameters

8
<
=
@

30fps 5
=

15 fps

1 fps

80x40 360x240 640x480 Resolution

Fig. 2. Range Representation of QoS Parameters. The figure shows two quality parassetkitsonof a video frame K -axis) andrame rate

of a video streamY(-axis). The user/application specifies that receiving video frame rate of 1fps or beloadseptabl@ven if the resolution

of the frame is very good. This specification determines the unacceptable region. Similarly, the user/application might specify that a video with
a very small resolution below 8% 40 pixels is not useful and we get another unacceptable region. The region above 1 fpsad@ pixels

defines the acceptable region. The upper right corner of the acceptable region is cut off which is determined by the maximal boundaries of the
bare computer hardware/architecture. In our example, the hardware architecture cannot provide 30 fps with the resoluti@0 @#els.

changes/overruns on general-purpose systems. We extend the shared resource model with the brokerage func-
tionality as shown in Fig. 3. This general model allows us to provideiform viewat any shared resource in a
distributed multimedia system with QoS requiremétiftie uniform resource view then allows for development of
feasible heuristics algorithms to solve the distributed resource allocation problem which is otherwise NP-complete
problem [1]. We provide piecewise solutions at individual resource servers such as algorithms for resource reser-
vation and enforcement, and reservation protocols and coordination within communication protocols integrating
the distributed resource servers in an end-to-end computing and communication environment.

The access to a shared resource is based aliéim#/server model

The general model of thdient consists of two main parts: tlidient brokerand theclient processThe client bro-
ker requests and negotiates with the resource broker during the establishment or adaptation phase of a multimedia
communication connection. The client broker specifies deg)@tlies (Q0Save OF {Q0Smin, Q0Smax)) parameters.
The client process utilizes negotiated resources during the processing/transmission phase.

The general model of theerverprovides equivalent services for controlling the time-variant QoS parameters:
jitter (J), synchronization skewSync), end-to-end delayH) and their adaptation to the clients requests. Upon
the brokerage request, the client broker and resource broker negotiate/renegQiecantractoetween the
client and server. The resource broker performs admission services to make decisions about resource availability.
Note that in order for the resource broker to perform admission control, it must have the knowledge about the
amount of resource requested (e.g., processing time of a process/thread/task). If the client does not know the
amount requested, then it can acquire this information througprtiteng servicd27] done at the beginning of
the application negotiation phase. This service determines statistical average of the requested resource amount
and stores it in oS profile The client relies on and provides these values to the resource broker for admission
control. Theresource scheduleonsists of two parts: the resource controller and the resource workaedhece
controller is invoked to control theesource workerThe controller gets th€oS contractwhich includes not
only the parameters, but also a feasible scheduling policy satisfying timing and event flow control of resource
usage. The resource broker communicates the information to the resource controlleomisaat profile Once

2Note, that in our previous work within OMEGA architecture we did not have this uniform resource model.

234 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

Table 1
Application and system QoS parameters (examples)
QoS type Specification QoS parameter Symbol
Sample size My
Application Processing Sample sizE P, B) ML, ME ME
QoS requirements Sample rate R4
Number of frames per GOP G
Compression pattern Gr,Gp,Gp
Original size of GOP Ma
Processing size of GOP M,
Degradation factor D
Communication End-to-end delay Ea
Synchronization Skew Synca
Jitter Ja
System CPU Computation time C
QoS Cycle time T
CPU Utilization U
Memory Memory request Memyeq
Packet size My
Communication Requested packet rate Ry
Requested bandwidth Bn
End-to-end delay ENn
CLIENT
Request for Request for
Resource Work Resource Brokerage

V4 ~
response
(QoS guaranteed. request response request
or QoS degradalion)’ (event) (QoS contract) event,QoS-spec)
a

Fmmmooooo / "‘% “““““““““ : \‘

i T

i R R) deal profile |

1 - Timing Control: /\ Negotiation/ :
[I N g f : Renegotiation :
i'i'; e : H SRS RS AR AR
= - Event Control : (degradati&m notificationj -

' =1 : : : Admission
2 — |
-] :

i 2 | Resource : Resource

1 2| Controller : Broker

L3 |

| A \l/ ’I\ :

i |

i 1

1 Resource Worker '

E (Scheduler) E SERVER
1 i

Shared Resource

Fig. 3. Resource Model with corresponding services. The client/server model for access to a resource is extended by the brokerage functionality
which provides QoS negotiation, admission, and reservation capabilities.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 235

the controller has the initial information, it takes over and issues appropriate schedulableaitiits resource

worker according to the control policy. Furthermore, the resource controller is responsible for QoS monitoring and
possible adaptation if short-term QoS variations occur. Larger QoS variations are communicated to the resource
broker which decides further processing according to rules specified by the client.

Timing and event scheduling control within the resource controller provide control for the jitter and synchro-
nization skew. They are derived from continuous media QoS requirements, and from client’s program specifying
timing and other events during the lifetime of a client (parsing of client's program during the pre-processing
phase) The timing and event graphs are a general representation of resource access behavior and they allow the
resource servers to make predictions of application behavior, hence they provide customized scheduling, which
leads to the capability of QoS provision. Figure 4 shows an example of an event and time flow control.

The monitoring and adaptation between the resource controller and worker create a closed feedback loop which
provides a basic functionality for the adaptation capability.

L T T T T T T T O T T T S A B T I B NN NN RN NN RN RN RN RN RN RN RN RN NN RN RN RN RN RN RN NN RN NN NAR AN

Event Flow Control :

Timing Flow Control

_____ @ Start timer

N send signal N

\[t(send_tac) = 20ms

start timer

Condition tvl=0ms

send signal

Condition t(recv_tac) = 10ms

send signal

t(send_vid)=33ms)

stop timer

,,*{ t2 = 1000 ms

Stop timer

IR RN RN RN RN RN R NN RN RN RN RN RN RN RN R RN RN RN RN RN RN RN RN RN RN RN N AR RRNN]

T

Fig. 4. Local event and time flow control. The solid lines represent the transitions from one state to another within the individual flow control.
The dashed lines represent the time signaling of a corresponding event.

3Schedulable units are packets, scheduled in the network, processes, scheduled by the operating system, or disk blocks scheduled by the disk
controller.

4Current design and implementation of QualMan derives the timing and event scheduling control from continuous media QoS requirements
only.

236 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications
2.3. QualMan within multimedia communication architecture

The above described resource model has implications for the overall multimedia communication architecture.
We can apply this model to each layer of the end-system (application, system, and network) where individual
brokers and resource controllers communicate with each other and create an integrated end-to-end solution (see
Fig. 5). The network brokers and network protocols provide the lowest level of QoS provision. They are responsible
for the low level end-to-end network quality guarantees. The resource brokers and resource schedulers in the system
level provide control of local end-point resources such as CPU, memory, and disk as well as communication entry
points to the networking environment. The application broker and scheduler can handle application-specific quality
control and respond to the results of the lower level resource allocation.

In our further refinement of the end-point architecture, the system layer will be divided in@uii&lan mid-
dleware(our QoS-aware resource management platform) and thea®ierneshown in Fig. 5. The middleware
can interface with the application level through #pplication-system interfaagsing either theapplication QoS
API, or through thesystem QoS APThe middleware itself consists adsource server§CPU, memory, commu-
nication, and disk). In this paper we will discuss the resource sérdesign, implementation, and their results as
well as on the system QoS API.

1 1
! Application Application| |
1 Controller !
! (Application Broker :
: Management) I
! |
1 I
II}PE"_‘C_:_“P'_‘ Levd . oo i
,'.._,,.'..f.f.féf.f.f.f.f.ff '''''' é ________ !
: 1
I System QoS API Application QoS API - QoS Broker |
|
((((((((.
I'l CPUServer | Mem. Server | Disk Server Comm. Server| o,
1 =
]
1 Broker Broker Broker Broker S = :
I TE
; Control Control Control Control = o
! I
P ———— T
1
1

General-Purpose OS with RT Extensions |

:

1
Network X
Controller Network :
1

1

1

1

1

1

(Connection Broker
Management)

Fig. 5. Multimedia communication architecture with a detailed view on system layer-middleware.

5We will concentrate on CPU, memory and communication servers, because these are currently the most significant components in our
system. The disk is local, hence the CPU and memory control of accessing the files on the disk are sufficient to achieve good access times to
the disk. However, we are working on a more elaborate disk server in case the disk resides remotely.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 237

Brokerage Initiator Brokerage Initiatee

L SN 47\

5

T \\ AN I peghested <

t N ! résgrved

' reserved ! res yved ~
regerved restrved oo Ve N

' \ N resepved ; CPU N

Y N i ~
i A N ; i R. s
. ’
Mem. | | CPU . ;| Mem.
R. R, . R
< 4
« 4

allogated

allobated Net. allocated

allocated R.

Fig. 6. Resource reservation and allocation graph comprising a deadlock situation at the broker initiatee site.

Before we go into the details of the individual resource servers of the QoS-aware resource management, it is im-

portant to point out the complexity of ttagplication QoS APinterface between the application and system layers.

The interface is implemented by tk@S brokerand it incorporates several functionalities such adridueslation

between the application QoS and system QoS parametgstiationprotocols between the individual resource
servers at the local site and the remote site,r@sdurce reservation coordinatidn avoid/detect deadlocks. The
translation service allows each domain (application or system) to express the QoS parameters in its own language.
The negotiation protocol at this level needs to implement negotiation between the QoS broker and the resource
brokers, as well as negotiation between the distributed QoS brokers to get the results of negotiation/reservation of
resources at the local and remote sites. The resource reservation coordination needs to coordinate the reservation
of resources so that deadlock can be avoided (apply Banker’s algorithm [34] to request and reservation edges) or
it can be detected and resolved. Figure 6 shows a possible deadlock scenario between Ppaesses where

P has reserved disk resource and waits for CPU reservationPahds allocated CPU resource, but waits for

disk resource which is contracted®. The resource coordination needs to rely on robust policisatisfysome
reservations in case of resource contention arfibtd resources for committed reservations. Due to the limit on

the length of this paper, we will omit a detailed description of this interface and refer the reader to our papers [15,
29,32].

In summary, the QoS broker provides an integrated and automated translation when accessing QoS-aware re-
source management. Our final goal is to make the QoS broker together with the underlying QGANR&A-
compliant This functionality will allow users to achieve end-to-end QoS guarantees within the CORBA frame-
work.

3. CPU server

The CPU servérprovides a QoS control to the application over the shared CPU resource. It differentiates during
its processing amongaiting real-time (RT) process&ghich wait to be scheduledgctive RT processasghich are

SEarly version of the CPU server was published in IDMS *97 proceeding [7].

238 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

currently scheduled, anttme sharing (TS) processebhe passive and active RT processes are scheduled by the
CPU server, and the TS processes are scheduled by the UNIX scheduler. The CPU server architecture is modeled
closely according to the resource model described in Section 2, and it contains three major components — the
resource brokerthedispatch tableand thedispatcher The dispatcher is equivalent to the resource scheduler and

its two parts (controller and worker), as shown in Fig. 3. They are integrated into a single entity in the current
CPU server. The reason is that the timing and event control in the current CPU server consists of periodic timer
interrupts at the boundaries of constant size time slots. Each component is described in details in the following
subsections. In addition, we descrim@bing/profilingwhich is used to provide a good estimate of task processing

time used by the reservation.

3.1. Broker

The resource broker receives requests from client RT processes (client’s broker). It performs the admission
control test) """ ,(C;)/(T;) < 1, whereC; is the execution time, arifj; is the period (cycle time) of thah client
process. This determines whether a new client process can be scheduled. If it is schedulable, the broker will put
the RT process into the waiting RT process pool by changing it to the waiting priority. The broker also computes a
new schedule based on a desirable scheduling algorithm, the new schedule is writtetigpdtwh table

The broker process is a root daemon process running at a normal dynamic priority. It can be started at the system
boot time, like any other network and file system daemons. It will wake up when the new client request arrives.
The broker needs to be a root process so that it can change processes into the fixed RT priority. The broker process
does not perform the actual dispatching of the RT processes, instead it will fork a separate relidgateher
process. The reason is that the admission and schedulability test in the broker may have variable computation time,
hence it may affect the timing of dispatching. The admission and schedulability test do not need to be done in real
time; as a result, the broker runs at a dynamic priority. The separation of RT dispatchinglisghtcheprocess
and theschedulability tesin the TSbrokerprocess is an essential feature that allows loigpatcherandbroker
to do on-line computation without compromising the precision of RT processes dispatching.

The client RT processes must start their processing at the TS dynamic priority level. The broker and the dis-
patcher will change them into the fixed RT priority when they are accepted and dispatched. This is an improvement
over the current UNIX environment, because our scheme allows any user to run processes at the fixed priority in a
fair and secure manner.

3.2. Dispatch table

The dispatch tablds a shared memory object which theokerwrites the computed schedule to and ths-
patcherreads from in order to know how to dispatch RT processes. It is locked inside memory for efficient reading
and writing. The dispatch table contains a repeattivle frameof slots, each slot corresponds to a time slice of
CPU time. Each slot can be assigned to a RT process pid, a group of cooperating RT process pids, or be free which
means yielding the control to the UNIX TS scheduler to schedule any TS processes. Let us consider the example
in Table 2. The repeatabiine framefor all accepted RT client processes is 40 €D (1721, T773,774,773), and it
contains 4 time slots of 10 ms each. The sample dispatch table is a result of a rate-monotonic (RM) schedule with
the process pid 721 geriod = 20 ms execution time= 10 ms, and process pid 77B874/775 atperiod = 40 ms,

Table 2
A sample dispatch table
Slot number Time Process PID
0 0-10 ms 721

1 10-20ms 773774775
2 20-30ms 721
3 30-40ms free

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 239

execution time= 10 ms. There is one free slot, which means 10 ms out of every 40 ms of CPU is allocated to the
TS processes.

The minimum number of free slots is maintained by the broker to provide a fair share of CPU time to the
TS processes. In Table 2, 25% (10 ms out of 40 ms) of the CPU is guaranteed to the TS processes. The site
administrator can adjust the TS percentage value to be what is considered fair. For example, if the computer is used
heavily for RT applications, the TS percentage can be set to a small number, and vice versa.

3.3. Dispatcher

Thedispatchelis a periodic server (process) running at the highest possible fixed priority. The dispatcher process
is created by the broker and it is killed when there are no RT processes to be scheduled in the system. When there
are only TS processes running, the system has no processing overhead associated with the RT server.

The dispatcher contains the shared memory dispatch table and a pointer to the next dispatch slot. At the beginning
of the next dispatch slot, a periodic RT timer signals the dispatcher to schedule the next RT process. The length
of time to switch from the end of one slot to the start of the next one is calledispatch latencyThe dispatch
latency is the scheduling overhead which should be kept at a minimal value.

The dispatcher is based on the following priority scheduling [17]. The dispatcher runs at the highest possible
fixed-priority, the waiting RT process waits its scheduling turn at the lowest possible fixed-priority (called the
waiting priority), and the active RT process runs at the 2nd highest fixed-priority (called running priority). The
priority structure is shown in Table 3. The dispatcher wakes up periodically to dispatch the RT processes by moving
them between the waiting and the running priority; during the other time, it just sleeps. When the dispatcher sleeps,
the RT process at the running priority executes. When no RT processes exists, the TS processes with dynamic
priorities execute using the fair time sharing scheduler of UNIX. This provides a simple mechanism to do RT
scheduling in UNIX. It also has many desirable properties which other approaches sucp@séssor capacity
reserveg24] do not provide: (1) It requires no modification to the existing UXIPOSIX.4 kernels. The scheduling
process can be implemented as an user-level application. (2) It has very low computation overhead. (3) It provides
the flexibility to implement any scheduling algorithms in the scheduler, e.g., rate monotonic, earliest deadline, or
the hierarchical CPU algorithms.

We will demonstrate the scheduling policy of the dispatcher using the following example. Let us consider the
dispatch table in Table 2 with time slot starting at 10 ms. The dispatcher is moving from slot O to slot 1, and
the following steps are taken: (1) The periodic RT timer wakes up the dispatcher process, and the process 721 is
preempted (1 context switch). (2) The dispatcher changes the process 721 to the waiting priority and processes
773/774/775to the running RT priority (4 system calls to set priority). (3) The dispatcher puts itself to sleep, and
one of the processes 7/7/B874/775 is scheduled (1 context switch).

The program code segment that corresponds to the above steps is executed repeatedly, and is locked into memory
to avoid costly page faults. The dispatch latency can be bounded by the time to do 2 context switches and (the
maximum number of processes in any 2 adjacent slots) set-priority system calls.

In our real time programming model, we require the RT process to mark the end of its execution within a given
period using our yield() API call. The yield() call generates an event to the dispatcher. Like the signal from the
periodic timer, the event wakes up the dispatcher to make a new scheduling decision. We define apdecess

Table 3
Priority scheduling structure

Priority Process
RT class highest Dispatcher

2nd highest Running RT process
TS class Any TS processes
RT class lowest Waiting RT processes

240 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

within a period as a state in which the process finishes before using up all its reserved slots. It is detected when the
dispatcher receives the yielding event from the RT process prior to the end of its reserved slots. When a process
underrun occurs, the dispatcher will assign its remaining reserved slots to TS processes. At the start of its next
period, the under-running process will be scheduled again by the dispatcher in its reserved slots.

We define a processverrunwithin a period as a state in which the process does not finish after using all its
reserved slot. It is detected when the dispatcher does not receive the yielding event from the RT process at the
end of its reserved slots. When a process overrun occurs, the dispatcher will not allow the over-running process
to consume more time slots. Instead the RT process is demoted as a TS priority process until the start of its next
period. Since the dispatcher will not allow any RT processes to use more than their reserved slots, the reserved
processing time of the RT process is guaranteed and protected from potential overruns of other RT processes.

Our scheduler allows the application to query the amount of processing time that it has consumed in its current
period and its previous period. The application will know if it is having underrun or overrun. If the application is
experiencing constant overruns or underruns, it can re-negotiate to increase or decrease its reservation so that its
reserved processing time matches its actual consumed processing time.

3.4. RT clients and probing/profiling

Our client’s system QoS request has a form of QoS specificgienind = 7', CPU utilization in percentage-
U, whereU = C/T x 100%. For example, the specificatidii & 100 ms,U = 40%) means that 40 ms out of
every 100 ms is reserved for this RT process. The QoS specification can be generalized to be in a form of a time
graph as shown in Fig. 7.

Given that our CPU server can provide a scheduling mechanism to guarantee processing time through a reserva-
tion, the application programmers still face the formidable task of figuring out exactly how much processing time
C'to submit in a reservation. Since the application is usually written to be platform independent, it can be compiled
and run on a variety of hardware platforms and operating systems. Hence, it is impossible to hard-codé€ a fixed
value into the program. For example, the average processing time to decode one MPEG frame differs significantly
between a SUN Sparc 10 machine and a much faster SUN Ultra Sparc machine.

Probing allows the client applications to get an accurate estimation of how much processing time to reserve,
prior to making a reservation. During the probing phase, we run a few iterations of the application with no CPU
reservation and we measure the actual CPU usage. At the end of the probing phase, we compute the average
usage time from the measurements as our probed processing time. The processing time is then recQuigd in a
profile associated with the application running on that particular hardware platform. For example, we may have
a profile callednpeg_decoder.profile with the following entries: (platform= Ultra-1, resolution= 352 x 240,

C = 40 ms), and (platform=- SPARCstation-10, resolutioa 352 x 240,C = 80 ms). With the probed values in
the profile, the client application can compute the CPU utilizalios C/T to make the reservation.

The computation of the periodl is as follows: YR4 (e.g.,Ra = 40 frames per second video player has a
period of I' = 25 ms). There is a restriction on the lower bound of the period size, which cannot be smaller than
the resolution of the system periodic timer. Smaller period leads to smaller time slice, which may result in higher
number of context switchings and inefficient CPU utilization.

C C

i

T T

Fig. 7. Time graph.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 241
4. Memory server

The execution time of client’s RT process also depends on the state of memory contention and the resulting
number of page faults. We designethamory brokewhere the RT process can reserve memory prior to their RT
execution.

The memory server consists of theokerand thememory scheduleaccording to the resource model in Fig. 3.

The memory server is a root process that can be started at the system boot up time. It is initialized with a parameter
calledglobal_reservewhich is the maximum amount of pinned memory (in bytes) that the server can allocate to
RT processes. Thglobal_reserveshould be chosen carefully so that it does not starve the TS processes and the
kernel. The server waits for requests from RT processes.

The RT process begins with the reservation phase. It contacts the memory broker to try to estaklisbrg
reservewith a specified amount of memory request in bytes. The reserve should be an estimated amount of the
pinned memory that the process needs in order to satisfy its timing requirement. It should include all its text,
data, and shared segments. Once the memory broker receives the request, it performs the following admission
test: Memyreq < Memayail 1.€., Memreq + Zle Memac;, < Memgiopresv 10 check that the incoming request

for memory reservél/ emeq, added to the already accepted memory rese@§§l Memacg, does not exceed

the global_reserve Memgiob_resw If the admission test succeeds, the memory broker returns a reserve id
(rsv_id)tothe process, and it creates an entry in its tatde (d , Memacg. The process should then lock its
text segment using the reserve rsv_id.

During (or prior to) the execution phase, the process can send the memory controller a (eyuékt
size) to acquire the pinned memory allocation (exgalloc()). Once the request is received, the server
checks whether there is enough reserve to satisfy this request. If so, it degigasebytes of memory from
the reservesv_id . The server then allocates the pinned memory in the forshafed memoryo the process.

The server creates a shared memory segmesizef usingshmid = shmget(key, size) and locks it
usingshmctl(shmid, SHM_LOCK) . The shared memory key is then passed to the process which attaches the
shared memory segment into its address space.

When the process wants to free its pinned memory, it detaches the shared memory segment and sends a request
containing the shared memory key to the memory server. Then the server destroys the share memory segment and
increases the corresponding memory reserve.

We choose not to apply the probing and adaptation in our memory server because the application programmer
can usually determine the actual amount of memory the process needs throughout its runtime. However, we do
allow the process to increase or decrease the amount of its memory reservation, but there is no system initiated
monitor and adaptation as in the case of CPU reservation.

4.1. Relation between processes and memory reserves

The relationship between the memory reserves and processes can be many to many. A process can establish
multiple reserves to protect memory usage among various parts of the same program. For example, a distributed
video playback application can assign separate reserves for its display, decoded, and network buffers. It will restrict
the growth of some buffers that use pinned memory. Multiple processes can also share the same reserve. For
example, a distributed video playback application may require services from the network, decoder, or display
processes (or modules/drivers) which can charge their memory usage to the application’s reserve.

The underlying shared memory implementation also helps to eliminate the copying overhead when various
processes need to pass data around. Consider a network module that assembles packets into frames and passes
the frames to the decoder process. The network module and the decoder process can establish a joint memory
reservation and create a common shared memory region. The network module charges the reserve for every new
frame it uses, the decoder process gets the frames through the shared memory region without copying.

242 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

4.2. Limitations

There are several limitations in our shared memory implementation of the the memaory reserve. The first one is
that the memory reserve covers only the text and data segments, but not the stack segment. We have found that it
is difficult to monitor and manage the stack segment without modifications inside the kernel. In a typical program,
its stack segment is usually much smaller than its text or data segments. Therefore, it is unlikely that the stack
segment will get swapped out.

The second limitation is with the data allocation in the linked/shared library. Users can not modify the data
allocations in the linked libraries (e.g., X library) to call our memory reserve routines. These data segments in
these libraries are not pinned nor accounted for in the reservation.

We have chosen the shared memory implementation because it can be done at the “user-level” and without
modifications in the kernel. These limitations can be overcome with another choice of implementation which
involves modifications to the virtual memory system. However, this would mean a defeat of the desired loadable
capability which our current middleware has.

5. Communication server

Similarly to the CPU and memory servers, t@mmunication serveronsists of two components according to
the resource model in Fig. 3: ttoemmunication brokemvhich admits and negotiates the network QoS and the
multimedia-efficient transport protocol (METR)hich enforces the communication QoS at the end-points and
propagates the ATM QoS parameters/guarantees to the higher communication layers.

5.1. Communication broker

The communication broker is a management daemon which in conjunction with the transport protocol pro-
vides QoS guarantees required by the distributed multimedia application. The broker performs service registration,
admission control, negotiation, connection setup, monitoring and adaptation as follows:

5.1.1. Service registration
The multimedia application (RT client) is required to register with the communication broker and to specify a
name identification, the type of data being transmitted, and the quality parameters requested from the connections.
The parameters which the communication broker needs from the RT client for further decision making are the
peak, mean, and burst bandwidiBi,eakx Bmean Bours), Sizeof the application protocol data unit (APDWY 4, end-
to-end delayF 4, specification of data flowither simplex or duplexgliability enforcement either total or partial,
andtimeoutdurationt,, which specifies how long to wait for a PDU or for an acknowledgment in our reliability
mechanism. The broker tabulates these information and sets up a message channel for future communications with
the RT client (application). This channel is used to inform the RT client of incoming connections, as well as to
send messages about upgrading or degrading the requested communication QoS.

5.1.2. Admission control and negotiation

Once the application specifies its communication QoS parameters at the time of connection setup, the broker
performs checks to verify that the parameters can be guaranteed. The admission control mechanism, using an
admission condition, decides if the requested QoS can be met or suggests a lower achievable value. The commu-
nication broker performs admission on bandwidth availability and end-to-end delays.

For communicatiofandwidth availability the admission condition Ele Bace, + Breq < Brr, whereBjyeg
is the accepted bandwidth for ti connection and,eq is the requested bandwidth of the new connecfion.

"The bandwidth actually represents the bandwidth specification calculated from the application stream characteristics plus the header over-
heads coming from the transport protocol and from the AATIM layers. The reason is that th8z; bound is the bandwidth achieved at
the ATM layer. The achieved bandwidth in the user space is possible to determine, but it depends on the actual CPU load and CPU bandwidth
availability for communication activities in the end-point. Hence it is not a reliable upper-bound.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 243

Table 4
EEDs for different APDU sizes

APDU size (kb) EED (ms)

20 8
50 17
80 21
110 28
140 35
170 39
200 48
230 56

The end-to-end delagepends on a number of factors such as the application PDU size, load on the network,
loads on the end hosts, and the bandwidth reserved for the connection. Admission control for end-to-end delay
is performed using arofiling schemeA QoS profile of the end-to-end delays for various APDU sizes is created
(measured off-line) and used as the séed.

When the user supplies the APDU size and an end-to-end delay requirement, the APDU size is matched with the
closest larger size in the table, and the end-to-end delay value specified is checked against the value in the profile.
If the user specified value is greater than the value in the profile, the network admission control is passed.

For theCPU bandwidth and memory availability METP, the communication broker contacts the CPU and
memory servers. The communication broker needs to have information about the processigitichsize)M 4
corresponding to the processing of APDUs in the transport tasks (e.g., segmentation of APDUs to TPDUs, header
creation, movement of PDUs) in METP. The peribdf the transport tasks is derived from the frame r&Ate
The broker gets the siz&/4 from the user who knows the size of the APDU to be sent out. The processing
time C of APDUs within transport tasks is acquired by the probing service as discussed in Section 3. During
the CPU probing time, the CPU broker monitors the processing times of the transport tasks and stores them in a
corresponding QoS profile. The processing time includes the time of METP tasks after receiving APDU by METP
to send the segmented TPDUs in a burst edery= 1/R4. The communication broker reads the QoS profile of
the processing time and uses the information to get reservation from the CPU broker for the transport tasks.

5.1.3. Connection setup

Connection setup includes negotiation between the communication brokers of remote entities. When the nego-
tiation is done, the connection is established using the ATM API for setup of its VC and QoS parameters. The
connection setup request to the communication server is initiated from the RT client (application). The connec-
tion setup protocol is shown in Fig. 8 and includes admission and negotiation services at each node (see [26] for
details).

The communication broker holds a table with connections and reserved/accepted QoS parameters. The number
of supported connections at the end system is bounded by the available CPU and network bandwidth. Once the
connections are admitted, the CPU server takes over the connection scheduling. The CPU and bandwidth allocation
are guaranteed, and the CPU server allows for timely switching among individual connections. Note that the
connections are not multiplexed at the METP level because the QoS of individual connections would be lost
from the multiplexing [11]. Hence, each connection has its own CPU reservation. The multiplexing of different
connections occurs at the ATM level in the device which is out of the CPU server responsibility. Hence, the proper
CPU reservation for transport tasks processing individual connections will enforce timely traffic shaping into the
ATM device as well as reception of data out of the ATM device.

8This profile is strongly platform dependent. Table 4 shows measurement using oySPARC 10 platform and we use the table as an
example to show the profiling concept.

244 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

Machine A Machine B Recei !
Sender eceiver
(Initiator) Broker Broker (Initiatee)'

1
RegisterService

OpenConnection

OpenConnection

AcceptedRequest

AcceptedRequest -

ListenForConnection

Fig. 8. Connection setup protocol.

We also provide a possibility gfartial acceptanc&hen the initiatee does not have available requested resources
for end-to-end delay provision, and it sends back a messageaitially fulfilled content (only bandwidth guaran-
tees are given). The initiator of the QoS connection decides if this is sufficient. If this is théoras®mnmessage
is sent back to the initiatee, and a connection opens at the initiatee side with degraded quality.

The third possibility is to send outraject requestnessage when bandwidth and EED tests are both violated.
When that happens, the initiator must wait until the requested resources become available again.

5.1.4. Monitoring and adaptation

Monitoring and adaptation are needed in order to allow upgrading and degrading in the quality of connections.
A monitoring thread examines the amount of available resources whenever a connection is closed. It checks if the
freed resources can be used to satisfy any partially fulfilled connections. When such a connection is identified, the
monitoring thread sends a message to its application over the register channel and informs it about the possible
upgrade.

5.2. Multimedia-efficient transport protocol

The communication server includes a thin layer of transport service support. For support of jitter and other
temporal QoS requirements, this multimedia-efficient transport extension requests an appropriate amount of CPU
bandwidth and memory from the CPU and memory servers so that its transport tasks can move and process TPDUs
in a predictable fashion. Furthermore, this protocol expands the native ATM mode (AAL API) to provide efficient
reliability capability which is not provided by the AAL layer and enforces optimal movement of data through the
transport extension.

The architecture of the transport layer is depicted in Fig. 9. The protocol is described in two sections for the
sending side and the receiving side.

5.2.1. Send protocol

The application data is segmented into TPDUSs. The size of the TPDU is configurable. Each TPDU has a header
section and a data section. In traditional transport layers, memory for the TPDUs is allocated afresh in kernel space
and the application data is copied into the newly created TPDUs, which contain additional space for headers. In our
transport layer, a simple but efficient scheme is used to achieeecacopy sendabove the device driver level).
Since memory for the data has already been allocated by the application, the same memory can be used to store the
headers too. The basic idea is to locate the beginning of each TPDU in the application chunk and to overwrite the
preceding bytes with the header of the TPDU. Those few bytes are backed up beforehand and can be accessed if
the previous TPDU needs to be retransmitted. This scheme avoids a copy of the entire application chunk. The size

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 245

TRANSPORT LAYER
/
! Timestamp Recv
List Queue

Recv
Thread

T

Application| _C/\> Applicationy

1
\

Retry \ Recv

Thread \ Thread
\/ ATM Network

Fig. 9. Components of the transport layer.

of the header is usually small compared to the size of the data in the PAD\Jive an example, the maximum
amount of data that can be sent in one TPDU is 64 kilobytes and the size of the header is a fixed 24 bytes.
The sending side functions as follows :

1)

)

®3)

The sending function locates the beginning of each TPDU and overwrites the preceding bytes with the
header of the TPDU. The TPDU thus formed is transmitted. Information about each transmitted TPDU is
stored in a list. This list is used to retrieve information if any TPDU needs to be retransmitted. The informa-
tion stored includes: (a) the location of the TPDU within the APDU; (b) the time-stamp corresponding to
the sending time of the TPDU; (c) the size of the TPDU; and (d) statistical information such as the number
of retransmissions.

After all PDUs in the APDU have been transmitted once, the sending side waits for a response from the
receiver. The response could be one of the following:g@up positive acknowledgment (GPACKY

(b) group negative acknowledgment (GNACK)

When a timeoutt,) occurs, the sending side checks to see if all the TPDUs in APDU have been acknowl-
edged. If there are unacknowledged TPDUSs, there are two possible scenarios: (a) the pessimistic scenario is
that all unacknowledged TPDUs were lost during the transmission, and they all need to be retransmitted, or
(b) the optimistic scenario is that some or all of the TPDUs reached the receiver, but the acknowledgment
sent by the receiver was lost. In order to save time and bandwidth, the transport layer first assumes the opti-
mistic scenario and retransmits only the first unacknowledged TPDU. If the TPDU has reached the receiver
along with some or all of the other TPDUs, the receiver sends out a GPACK. A GPACK contains a pair of
sequence numbers defining a range of TPDUs which have reached the receiver. On receiving a GPACK, all
TPDUs in the range specified by the GPACK are removed from the list of unacknowledged TPDUs. How-
ever, if there is no response from the receiver to the first retransmission, the pessimistic scenario is assumed
and all unacknowledged timed-out PDUs are retransmitted.

9There are tradeoffs using this scheme. The advantage is that if APDU size is large, then large chunks of APDU payload are not copied. The
overhead is the additional list of APDU parts which were overwritten by the transport headers for retransmission purposes. This overhead is
small and this method is efficient if the APDUPDU size is large in comparison to the TPDU header. In case that the APBRU sizes
are small in comparison to the header, the overhead of copying parts is equal or larger when comparing to copying of the APDU payload to
transport layer space.

246 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

This technique of optimized retransmission improves the performance of the transport layer. The idea is similar
to the SMART technique [14] mentioned previously. The difference is that in our scheme there is no concept
of a cumulative acknowledgment as in SMART. Also, in SMART retransmission, the selective retransmission is
based only on the NACKSs sent by the receiver and there is no scheme to perform optimized retransmissions when
timeouts occur. Our scheme is more elaborate in the way it performs timeout-triggered retransmissions.

5.2.2. Receive protocol

The receiving side takes care of receiving the TPDUs and reassembles them into the chunks required by the
RT client. The data is visualized as a stream of TPDUs. So, the chunks sent out by the sending side can differ in
size from the chunks read by the receiving side. Support for such a feature requires information about application
chunks to be included in each TPDU. The receiving side functions as follows: (1) A receiving function receives
TPDUs and inserts them into the correct position in a receiving queue. The receiving queue is ordered in ascending
order of sequence numbers. Every TPDU also contains information about the application chunk it belongs to.
This information is extracted and stored in a separate list. (2) If any data PDUs are missing in the sequence, the
receiving function sends a GNACK to the sender. The GNACK carries two sequence numbers specifying the range
of sequence numbers in which PDUs are missing. (3) If any duplicate PDUs are received, a GPACK is sent to
the sender. The GPACK contains the lowest and highest acknowledged TPDU sequence numbers in the APDU
with no unacknowledged TPDUs between them. This serves as an acknowledgment for either part or the whole
of the APDU depending on the situation. (4) The receiving function determines the TPDUs to be retrieved using
the application chunk information. The selected TPDUs are removed from the receiving queue and copied to their
correct positions in the application memory. (5) If the transport layer is in the real-time mode and all TPDUs
corresponding to one application chunk have not been received before it is time to receive the next chunk, the
receiving function returns with whatever data has been received so far. If any TPDU belonging to the current
application chunk arrives later, it is discarded.

5.2.3. Configurability

The transport layer has the following dynamically configurable featureR€liability: The transport layer can
operate in two modes —tatally reliable mode and gartially reliable mode. (2)Detachable descriptorCurrent
transport layers are tightly coupled to the system file descriptord#BWU size The size of the TPDU can be
configured dynamically.

5.2.4. Real-time features
The transport protocol possesses some real-time features designed with multimedia transmission in mind. These
features can be activated by configuring the transport layer to run in its real-time mode. The features include:

— Sender-side Timed-out-data Discatfla sendoperation takes longer than its allotted time, the sending side
discards future data till it catches up with the timer. This is done in anticipation of a discard on the receive
side. Since data arriving late is anyway discarded by the receiving side, the sending side saves bandwidth by
avoiding transmission of the late data and instead transmits future data before its time in an attempt to perform
a time-saving operation.

— Dynamic timer adjustmenBoth thesendand thereceiveoperations use timers in order to provide real-time
guarantees to the application. These timers are used for retransmission in the casseodtbgeration,
and acceptance or rejection of data in teeiveoperation. As mentioned previously, the actual delay value
depends on the load on the network. Hence it is necessary to dynamically tune the timeout value in order to
achieve better throughput. The transport layer updates its timeout value using a simple averaging scheme. The
timeout is set to the average of the current timeout value and the current application TPDU round-trip time.
It is found that this scheme of timer adjustment reduces retransmissions and increases throughput without
significant degradation of the QoS parameters.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 247
6. Implementation
6.1. Specific issues about CPU server

We have implemented our server architecture on a single processor Sun Sparc 10 running Solaris 2.5 Operating
System. The Solaris Operating System has a default global priority range (0-159), 0 the least importance. There
are 3 priority classes: RT class, System class, and TS class. The RT class contains fixed priority range (0-59),
which maps to the global priority range (100-159). The dispatcher’s priority is 59, the running priority is 58, and
the waiting priority is 0. The waiting priority O needs to be mapped to the lowest global priority 0, and it must be
lower than any TS priorities. This can be done by compiling a new RT priority RbleDPTBLinside the kernel.

The changing priority is done by using theocntl() system call. Its average cost is measured as;k75
The average dispatch latency (2 context switch pridcntl()) is measured as 1 ms. The interval timer is
implemented usingetitimer() . We set the time slot to be 10 ms. The overhead comes up to be 10%, which
is acceptable. The CPU broker implements a rate monotonic (RM) scheduling algorithm to generate the dispatch
table.

6.2. Specific issues about memory server

In modern computer architecture, the memory hierarchy consists of 3 levels in decreasing order of access time
— Cache (1st level and 2nd level), Physical Memory, and Disk. The penalty for a cache miss (2nd level) is in the
range of 30—200 clock cycles (100s ns) [33]. As long as the cache miss ratio falls into a consistent range throughout
a process execution, it has little impact on the on-time performance of the soft RT processes. Therefore, we do not
provide any cache management or guarantee. However, the penalty for a virtual memory (physical memory) miss
is in the range of 700 000—6 000 000 clock cycles (10s of ms) [33]. For a software video decoder/encoder running
at 30 frames per second (or 33 ms per frame), a few virtual memory misses might lead to the loss of several frames.

In UNIX, each process has its own virtual address space. Within its virtual address space, a process memory
is divided into several segments: text, stack, data, shared libraries, shared memory, or memory map. The text
segment contains the program binaries. The stack segment contains the execution stack. The data segment contains
the process data (e.g., malloc()).

Note that in C++, memory allocation for a new class object is done implicit through the constructor call (e.g.,
new CLASSNAME). In such cases, the memory allocation does not go throudesar.alloc() API call and
hence it is not pinned.

6.3. Specific issues about communication server

We have implemented our communication server in an integrated fashion with the underlying ATM network,
CPU, and memory servers. The communication server runs on SPARC 10 machines. The SPARC 10 machines
have been installed FORE SBA-200E ATM adaptor cards, which are connected to a FORE ASX-200 switch. The
switch is configured with 16 ports and with 155 Mbps capacity per port.

The bandwidth overhead of our METP is measured to be around 20%, which includes the ATM cell header
overhead (853 bytes), AAL MTU header overhead, and our Transport Layer PDU header. This means that if
the application requests a connection with, e.g., 10 Mbps user-level bandivalthcommunication broker will
reserve a connection with 10 Mbps120% = 12 Mbps of mean bandwidfean allocation. Furthermore, our
implementation integrates the peak and burst bandwidth into one parameter, the peak bandwidth, because our
ATM adaptor card does not support thg,s; parameter whereas the ATM standard has specification for it. This
means that, if considering the above example, the peak bandjdihis set to be an additional 5 Mbps on top

10This is an average bandwidth which considers an average size of the APDUs among the various frame sizes in the stream.

248 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

45 T T T T T T T T

Transport Protocol -e—
Fore AAL3/4 -+--
40 ,#\\ 1

35 i
30 |
25

20 -

Achieved bandwidth (mbps)

1
0 5 10 15 20 25 30 35 40 45 50
Reserved bandwidth (mbps)

0 1 1 1 1

Fig. 10. Reserved bandwidth (excluding overhead) vs achieved bandwidth.

of the mean bandwidth (12 Mbps 5 Mbps= 17 Mbps)** The acknowledgment connection (reverse connection)
is also established for sending acknowledgment information from the receiver back to the sender, its bandwidth is
set to be one fifth of the forward connection’s bandwidth.

We have measured and plotted two throughput performances, one using our transport protocol and the other
one using the Fore AALB4 socket, for the achieved bandwidth vs the reserved bandwidth as shown in Fig. 10.
The reserved bandwidth is the user-level mean bandwidth that the application specifies to the communication
broker. Using the formula given above, the communication broker adds various overhead to derive the ATM-level
mean and peak bandwidth for reservation. The maximum achievable user-level bandwidth for the METP protocol is
measured to be around 30 Mbps, which is far below the ATM standard of 155 Mbps. However, the low performance
of the METP is caused by the poor performance of the underlying FORE AAl&/er which has a maximum
performance of only 40 to 45 Mbps. As shown in the graph, when the reserved bandwidth is less than 30 Mbps,
the METP can provide good guarantees with the achieved bandwidth meeting the reserved bandwidth.

7. Experiments and results

The testbed where our implementation and experiments are running consists of two Sparc 10 workstations under
Solaris 2.5.1 which are connected via ATM fore networks as shown in Fig. 11. The experiments are designed to
show that with QualMan framework, end-to-end QoS requirements for bounded jitter, synchronization skew, and
end-to-end delay for distributed multiple applications can be provided under additional load sharing the resources
such as CPU, memory, and network bandwidth.

7.1. Results for CPU and memory servers

We have performed a number of experiments with the CPU server on a single processor Sparc 10 workstation
running Solaris 2.5.1 OS with 32 Mb of physical memory. The first experiment (CPU-Experiment-1) consists

11The 5 Mbps corresponds to the overhead under the following assumptions: (1) all video frames transmitted over the connections are |
frames B! = Mi * R4), and (2) our METP protocol segments APDU into a set of TPDUs which may create a burst bandwidth over a short
period of time, and this burst bandwidth may be larger than the mean band®gt or BL.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 249

Video Server Video Client
SUN Sparc 10 SUN Sparc 10
Fore ATM Adaptor Card Fore ATM Adaptor Card

Fore ATM Switch

Fig. 11. Experimental setup.

of the mixture of the following four frequently used applications running concurrently. The first application is a
RT mpeg_play program, the later three applications are TS background programs. (1) The Berkeley mpeg_play
program (version 2.3) plays the TV cartoon Simpsons mpeg file at 10 frames per second (fps). (2) The gcc compiler
compiles the Berkeley mpeg_play code. (3) A compute program calculates the sin and cos table using the infinite
series formula. (4) A memory intensive program that copies mpeg frames in a ring of buffers.

Figure 12 shows the measurement of intra-frame time on the mpeg_play program under the above specified
load. Figure 12a shows the result under the normal TS UNIX scheduler without our server. Figure 12b shows the
result of the 10 fps mpeg_play program with 70% CPU reserved every 100 ms. Using the UNIX TS scheduling,
noticeable jittel? over 200 ms (equivalent to 2 frames time) occurs frequently — 91 times out of the 650 frames
(65 s). The largest jitter is about 450 ms (over 4 frames time), which is clearly unacceptable. Using our server,
noticeable jitter over 200 ms does not occur at all.

The second experiment (CPU-Experiment-2) consists of two mpeg_play programs that play the same TV cartoon
Simpsons at 8 fps and 4 fps. The set of background TS jobs are the same as in CPU-Experiment-1. Figures 12c and
12d show the measurements of intra-frame time on the two mpeg_ play programs. Figure 12c¢ shows the result under
normal TS UNIX scheduler without our CPU server. Figure 12d shows the result for the 8 fps mpeg_play program
with 60% CPU reserved every 125 ms, and for the 4 fps mpeg_play program with CPU 30% CPU reserved every
250 ms. Using the UNIX TS scheduling, noticeable jitter over 250 ms (equivalent to 2 frames time) for the 8 fps
mpeg_play program occurs frequently at 106 times out of 650 frames (65 s), and the largest jitter is around 650 ms
(4 framestime) which is unacceptable. The 4 fps mpeg_play program exhibits noticeable jitter over 250 ms (1 frame
time) 16 times. Using our server, noticeable jitter over 250 ms do not occur for both 8 fps and 4 fps mpeg_play
programs. We have tested other video clips (e.g., a lecture video clip and an animation clip), and we have found
similar behavior.

We have also tested our memory server together with the CPU server under the same system setup as in the CPU-
only experiments in the previous subsection. The memory server is configured with a 10 Mb of global_reserve, out
of 32 Mb of physical memory, serving potentially multiple mpeg_play programs. The mpeg_play program makes
the same CPU reservation and establishes a memory reservation of 3 Mb. The results are similar to the CPU server
only experiments with a marginal improvement in average jitter as shown in Table 5.

7.2. Results for integrated CPU, memory, and communication servers

We have tested our communication server together with the CPU and the memory servers. The network experi-
ment uses two machines, one acting as a sender and the other one as a receiver. The ATM network configuration
is described in the previous section. Except for the additional network support, the machines are of the same
configuration as in the previous experiments.

The communication server experiment runs a video server program on one machine and potentially several client
video programs running on other machines. The video server program forks a child server process to service each
client, and the server’s child process retrieves a requested MPEG stream and sends the compressed video frames

12jitter is computed afntra-frame time— period (100 ms)

250 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

via METP protocol. The video client mpeg_play program is built on top of the Berkeley mpeg_play program, with
modifications to read data from our RT transport protocol instead of a file. The client program mpeg_play performs
the same decoding and displaying as in the original Berkeley mpeg_play program.

In the first experiment (CPU-MEM-COMM-Experiment 1), the mpeg_play server and client mpeg_play pro-
grams are running concurrently with the same mixture of background TS programs on both the server and the
client machines at 10 fps. Figure 13a has the client and server programs without any resource reservation. Fig-
ure 13b has the client program with reservation (CP180%, 100 ms; memory- 3 Mb; net= 1 Mbps) and the
server program with reservation (CRt 40%, 100 ms; memory- 3 Mb; net= 1 Mbps). Without any resource
reservation, noticeable jitter over 200 ms occurs frequently at 49 times. The largest jitter is about 450 ms. With
resource reservation, noticeable jitter over 200 ms does not occur.

The second experiment (CPU-MEM-COMM-Experiment-2) consists of two concurrent mpeg_play clients and
servers at 6 fps and 3 fps. Figure 13c has the client and server programs without any resource reservation. Fig-
ure 13c has the 6 fps client with reservation (CRWB0%, 166 ms; memory: 3 Mb; net= 0.6 Mbps) and server
with reservation (CPU= 24%, 166 ms; memory- 3 Mb; net= 0.6 Mbps), and the 3 fps client with reservation
(CPU = 30%, 333 ms; memory= 3 Mb; net = 0.3 Mbps) and server reservation at (CRU12%, 333 ms;

T T
10fps —— 10fps —

Intra-frame time in ms
s
S
S
Intra-frame time in ms
s
S
3

um‘m‘\ “‘ “

L
o 100 200 300 400 700 o 100 200 300 400 500 600 700
Frame Numbe Frame Number

(a) (b)

T
afps — 4fps —
8fps - 8fps -

Intra-frame time in ms
Intra-frame time in ms
s
5]

3

(c) (d)

Fig. 12. Intra-frame time measurement for the mpeg_play program with and without the CPU server.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 251

memory= 3 Mb; net= 0.3 Mbps). Without any resource reservation, noticeable jitter over 333 ms for the 6 fps
client mpeg_play program occurs frequently at 30 times; however jitter for the 3 fps client mpeg_play program
occurs less frequently because it consumes little resources at this low rate. With resource reservation, jitter stays
within 20 ms range for the 6 fps client mpeg_play program and within 30 ms range for the 3 fps client mpeg_play
program.

We now summarize the performance results on the mpeg_play (client mpeg_play) program under various degree
of resource reservation in Table 5. The comparison metric is average jitter in ms.

Table 5
Summary of performance results on the mpeg_play program
Resource reserve One stream (10 fps) ~ Two streayfsf(B) Two streams (@ fps)
None 93.85ms 136.411i82.32ms *
CPU 4.46 ms 19.30 /$.49 ms *
CPU/memory 3.94ms 8.42 fi2.40 ms *
CPU/memory/network 6.06 ms * 13.57 yi20.01 ms
800 T T T T T T 800 T T T T T T
10fps —— 10fps ——
700 1 700 4
600 1 600 | 4
g2 500 q 2 500 4
o 400 A o 400 | -
\ 5
‘_% 300 | ‘ B ‘é 300 B
I ‘
I
200 “ ‘ “‘ | ‘ ! | ‘ “ it “ 4 200 | q
| | A \‘ i i
0 o 5‘0 11‘)0 15'0 2L‘)0 25'0 3LI)0 350 0 o 1('!0 2;0 3('!0 4;0 5('!0 6;0 700
Frame Number Frame Number
(a) (b)
800 T T T T T T 800 T T T T T T
3fps —— 3fps ——
6fps ——— 6fps ———
700 1 700 4

Intra-frame time in ms
Intra-frame time in ms

o 100 200 31

00 500 600 700 o 100 200 3

00 El 400 500 600 700
Frame Number

00
Frame Number

(c) (d)

Fig. 13. Intra-frame time measurement for the client and server mpeg_play programs with and without CPU, memory, and network servers.

252 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

Since the MPEG stream is compressed into low bandwidth, which is not a good stress test on our transport
subsystem, we have performed additional set of experiments with the video server sending uncompressed video
frames to potentially multiple clients at a much higher bandwidth using METP. Each uncompressed video frame is
of fixed size 200 kb. The first experiment (CPU-COMM-Experiment-1) involves a single client program requesting
video frames at 10 fps (16 Mbps) from a server program. The same mixture of TS background programs as
described in Section 7.1 run concurrently with the video server and client programs on both the server and client
machines. We measure the intra-frame time of the uncompressed video frame at the client side. Figure 14a has the
client and server programs without any resource reservation. Figure 14b has the client program with reservation
(CPU = 40%, 100 ms; net= 16 Mbps) and the server program with reservation (CP30%, 100 ms; net
16 Mbps). Jitter over 100 ms (one frame time) under no resource reservation occurs frequently 64 times; whereas
it does not occur under the resource reservation.

The second experiment (CPU-COMM-Experiment-2) consists of two concurrent clients that request video
frames at 10 fps (16 Mbps) and 5 fps (8 Mbps). Again the same mixture of TS background programs run con-
currently with the video server and client programs on both the server and client machines. Figure 14c has the
client and server programs without any resource reservation. Figure 14d has the 10 fps client program with reser-

T T
10 fps 10 fps —

Intra-frame time in ms
Intra-frame time in ms
N
@

S

(a) (b)

T T
5fps — 5fps —
, 10 fps - 10 fps -
| 1 L 1
i
i
i

Intra-frame time in ms
Intra-frame time in ms
N
@

S

(c) (d)

Fig. 14. Intra-frame time measurement for the client and server uncompressed video programs with and without resource reservation.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 253

vation (CPU= 40%, 100 ms; net 16 Mbps), the 10 fps server program with reservation (GPB0%, 100 ms;

net= 16 Mbps), and the 5 fps client program with reservation (CR20%, 200 ms; net= 8 Mbps) and the

5 fps server program with reservation (CRU15%, 200 ms; net= 8 Mbps). Noticeable jitter over 200 ms (two
frames time) for the 10 fps client occurs frequently 35 times under no resource reservation; whereas it does not
occur under resource reservation.

Due the limit of the processing power (CPU bandwidth) on the Sparc 10 machine, we cannot run as many
concurrent MPEG streams as we would like. The bottleneck is in the software MPEG decoding which takes a
significant amount of processing time. However, our solution is perfectly scalable to support multiple streams
when we have a faster processor or with a hardware MPEG decoder.

7.3. Synchronization results

We have also testdib synchronizatiorusing our communication servers together with the CPU and the memory
server on two SUN Ultra-1 workstations. The video and audio streams are decoded and transported using separate
processes and network channels.

The video clip we used in our testbed is MPEG video with a resolution of>3220 pixels and a recording
rate of 7 fps. The audio clip is also MPEG compressed with a recording rate of 20 samples per second. The first
experiment runs without any background traffic. The CPU server reserves 20% every 50 ms to the audio/video
servers and clients. The memory server starts with/5 serving the audio/video client processes. Figure 15a
illustrates skew measurements at the client site. The result shows that the skew is not only in the desirable range
of lip synchronization £80, 80) ms [35], but most (99%) of the skew results are in the more limited range
(—10, 10) ms with an average skew 0®8 ms and standard deviation 0003 ms. The positive skew value
represents the case when audio is ahead of video and the negative skew value for the case when video is ahead of
audio.

The second experiment adds a second video stream from server to client with no CPU and memory reservation
on both server and client sides as a background load. This additional video stream is also MPEG with a resolution
of 352 x 240 pixels and a recording rate of 20 frames per second. It imposes not only network load as a background
traffic, but also processor load on both server and client sides. The result from the second experiment, shown in
Fig. 15b, presents the average skew 4f54ms and standard deviation aD03 ms. 991% of the skew values are
within the range {10, 10) ms. The result shows that our QoS-aware resource management delivers QoS guarantees
to a VOD application with the presence of network and OS loads. Actually this is exactly what we expect from a
system with resource reservations and performance guarantees.

without-cross-traffic —— with-cross-traffic ——

Skew in ms
Skew in ms

.
0 100 200 300 400 600 700 800 900 1000 0 100 200 300 400 600 700 800 900 1000
F

500
Frame Number

(a) (b)

Fig. 15. Reservation-based synchronization skew results. Figure 15a shows the synchronization skew without cross traffic. Figure 15b shows
the synchronization skew with cross traffic.

254 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

8. Related work
8.1. QoS framework

The current existing QoS systems either allow to access and control (1) network QoS such as the Lancaster QoS
system [6], or OMEGA end-point system [32], or (2) CPU QoS parameters such as Nemesis [18], Real-Time Mach
‘reserve’ [19].

8.2. CPU scheduling

The area of accommodating scheduling of soft RT applications on the current UNIX platforms was addressed
by several groups. The RT Mach [24] implementsRiiecessor Capacity Reservalsstraction for the RT threads,
it contains a reservation mechanism and provides guarantees. A recent [19] version supports adaptation in the
form of dynamic quality and policies. The Adaptive Rate-Controlled Scheduler [39] is based on a modification
of the virtual clock (VC) algorithm. Each RT process specifies a reserve rate used in the VC algorithm. The
scheduler provides rate adaptation that gradually adjusts the reserve rate of the RT process according to its usage
rate. Hierarchical CPU Scheduler [12] partitions the processor resource into hierarchical classes, e.g., RT or Best-
Effort classes. Each class is designed a suitable scheduler to meet the class, and the classes are scheduled by the
Start-time Fair Queuing algorithm. Similar concept can be found in [20] which applies it further to a hard RT
system in open system environment. SMART [28] allows RT processes to specify timing constraints, and it uses
upcalls to notify the RT processes of constraint violations. It is still based on TS concept of proportional sharing,
and offers no guarantees. The real time upcall [13] contains an event handler that is registered with the kernel and
it is invoked for a specified execution time periodically. The Rialto system [21] also allows RT processes to specify
timing constraints and continuous periodic reservations, and it provides guarantees to them. The soft real time
server [7] supports periodic reservations with guarantees, it is based on the rate monotonic scheduling algorithm
and the priority dispatch mechanism proposed by the URsched [17].

8.3. Memory

The SUN Solaris Operating System provides a set of system calls that allow a process to lock certain regions
of its address space in physical memory [22]. Tileck(addr, len), munlock(addr, len) system
calls lock or unlock for the address space rediaddr ~ addr+len] . The mlockall(), munlock-
all() locks or unlocks all the segments in the address space in physical memopjo€kép) system call
locks or unlocks the text or data segments in memory.
Lynx Operating System [36] supports theority thresholdin its Demand-Paged Virtual Memorganagement.
TS processes running at priority lower than ginerity threshold will get swapped out, while RT processes running
at higher priority will not.

8.4. Multimedia communication protocols

Over the last couple of years, there was a number of fast and real-time transport protocols for multimedia
transmission, considering network QoS management. Examples are ST-II [37], Tenet Protocol Suite [2,4], Lan-
caster Transport Subsystem [5,6], Heidelberg Transport Subsystem [8—10,38], Native ATM Protocol Stack [16],
User Space TCP implementation [13], OMEGA architecture [25], and QoS architecture for Internet Integrated
Services [3]. Because of our ATM consideration for the communication server, to provide a multimedia-efficient
transport protocol which will bring out the QoS guarantees provided by the ATM network to the application, we
will compare from the above list of the protocols related work only transport subsystems which rely on ATM
networks or influenced our METP design.

The Native ATM protocol stackL6] is a novel protocol stack which (1) is optimized specifically to work well
over an ATM network running on PC platform; (2) attempts to provide QoS independent of the operating system

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 255

environment, which is possible due to the PC’s OS specifics; (3) exploits services of an underlying AALS5 layer;
(4) uses a new retransmission scheme SMART (Simple Method to Aid ReTransmissions) [14], which performs sig-
nificantly better; and (5) provides reliable and unreliable data delivery with a choice of feedback and leaky-bucket
flow control. This framework is implemented and optimized for a PC environment where part of the transport
protocol resides in the kernel. Therefore, this protocol differs from our goal to design a loadable communication
server as part of the middleware, which means to have the framework operate in the user-space. However, we ap-
plied several lessons learned from this protocol stack, and we expanded its functionality of reliability protocols as
mentioned in Section 5.

The User Space TCP implementation [13] project is a novel attempt to provide support for multimedia pro-
cessing using existing protocols instead of designing new protocols. It uses an operating system feature called
Real-Time Upcallgo provide QoS guarantees to networked applications. It (1) provides zero-copy operation
based on shared User-Kernel memory, and using off-the-shelf adaptors; (2) eliminates all concurrency control
operations in the critical protocol processing path; (3) avoids virtual memory operations during network I/O; and
(4) uses the least amount of system calls and context switches. The changes to support upcalls were done in kernel
which again differs from our objective for loadable communication server. Similarly to native ATM protocol stack,
we applied their lessons learned to our protocol functions to optimize our performance.

The OMEGA architecture [32] is an end-point architecture which extends network QoS services towards the
applications. OMEGA consists of tHgoS Brokey end-point QoS management entity for handling QoS at the
edges of the network, arehd-to-end real-time communication protocaking resources according to the deal
negotiated by the broker [297.

The Real Time ChanngR3] is another novel approach in providing a communication subsystem with QoS
guarantees. It implements an UDP-like transport protocol using #tenel on the Motorola 68040 chip. Each
RT channel is served by a periodic RT thread (called channel handler) which runs its protocol stack. The channel
handler threads are scheduled by an EDF scheduler. The RT channel has a QoS reserve specification in the form
of maximum message size, maximum message rate, and maximum burst size. From these parameters, the required
memory and CPU time for the channel handler is computed and allocated. The EDF scheduler provides overload
protection, which is similar to the concept of overrun protection for the CPU. The real time channel cannot cause
other well-behaved real channels to violate their deadline by sending more bandwidth than it has reserved.

9. Conclusion

In this paper we presented a resource management which allows the applications to specify QoS parameters
in terms of CPU, memory and communication QoS parameters, and therefore to control the resource allocation
according to the quality desired by the application. We pointed out that in order to give an application such control,
the resource management needs to be extended with brokerage and reservation capabilities. Our new resource
model for shared resources includes the resource broker, which provides negotiation, admission, and reservation
capabilities over the shared resource. It is an important assistant to the resource scheduler to achieve predictable
performance and to improve the quality guarantees to the application.

This model is especially beneficial to multimedia distributed applications which have timing constraints during
the processing and communication of continuous media. We showed through numerous experiments and results
that the integrated system layer architecture, QualMan, consisting of CPU, memory, and communication servers,
is feasible. These servers are implemented as loadable middleware on a general purpose platform which supports
real-time extensions. Our results have shown that QualMan provides acceptable and desirable end-to-end QoS
guarantees for various multimedia applications such as the MPEG player and video-on-demand application. Per-
ceptually, it makes a huge difference in user acceptance if one watches the display of jitter-full video streams vs
smoothed streams.

13Note that OMEGA does not include CPU, memory, and communication QoS mechanisms for their enforcement, as it is the case in
QualMan. OMEGA concentrates on QoS brokerage and negotiation algorithms to setup QoS.

256 K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications

Overall, our experiments with QualMan showed that it is easily scalable and portable to different platform.
We are currently running this framework on the SGI and Windows NT platforms, in addition to the SUN plat-
form. Applications such as tele-microscopy, tele-robotics, and video one demand are using QualMan for their QoS
provision.

References

[1] J. Blazewicz, W. Cellary, R. Slowinski and J. WeglaBtheduling under Resource Constraints — Deterministic Mpdels 7, Baltzer
Science Publishers, 1986.

[2] A. Banerjea, D. Ferrari, B.A. Mah, M. Moran, D.C. Verma and H. Zhang, The tenet real-time protocol suite: design, implementation and
experiencesACM Transaction on Networking(1) (1996), 1-10.

[3] T. Barzilai, D. Kandlur, A. Mehra and D. Saha, Design and implementation of an RSVP-based QoS architecture for integrated services
Internet,|EEE JSAC(1998) (to appear).

[4] A. Banerjea and B. Mah, The real-time channel administration protocoRrid: International Workshop on Network and Operating
System for Digital Audio and Videbleidelberg, Germany, 1991.

[5] A. Campbell, A quality of service architecture, PhD thesis, Lancaster University, Lancaster, England, 1996.

[6] A. Campbell, G. Coulson and D. Hutchison, A multimedia enhanced transport service in a quality of service architeaNoesinop
on Network and Operating System Support for Digital Audio and Videol'88caster, England, 1993.

[7] H. Chu and K. Nahrstedt, A soft real time server in UNIX operating systeniDidtS '97 (European Workshop on Interactive Distributed
Multimedia Systems)997.

[8] L. Delgrossi, Ch. Halstrick, D. Hehmann, R.G. Herrtwich, O. Krone, J. Sandvoss and C. Vogt, Media scaling for audiovisual communi-
cation with the Heidelberg transport system, Technical Report, 43.9305, IBM ENC Heidelberg, Heidelberg, Germany, 1993.

[9] L. Delgrossi, R.G. Herrtwich and F.O. Hoffmann, An implementation of ST-II for the Heidelberg transport systemetworking
Research and Experienég1994).

[10] L. Delgrossi, R.G. Herrtwich, C. Vogt and L.C. Wolf, Reservation protocols for internetworks: a comparison of ST-1l and RSVP, Technical
Report, 43.9315, IBM European Networking Center, Heidelberg Germany, 1993.
[11] D. Feldmeier, Multiplexing issues in communication systemSiCOMM 1990.

[12] P. Goyal, X. Guo and H. Vin, A hierarchical CPU scheduler for multimedia operating systededand USENIX Symposiun on Operating
System Design and Implementatid®96.

[13] R. Gopalakrishnan and G.M. Parulkar, Efficient user space protocol implementation with QoS guarantees using real-time upcalls, Tech-
nical Report, Department of Computer Science, Washington University, St Louis, 1996.

[14] S. Keshav and S.P. Morgan, SMART retransmission: performance with random losses and ovedN&D@OM '97, 1997.

[15] K. Kim and K. Nahrstedt, QoS translation and admission control for MPEG vide&thntFIP International Workshop on Quality of
Service 1997.

[16] S. Keshav and H. Saran, Semantics and implementation of a native-mode ATM protocol stack, Internal Technical Memo, AT&T Bell
Laboratories, Murray Hill, NJ, 1995.

[17] J. Kamada, M. Yuhara and E. Ono, User-level realtime scheduler exploiting Kernel-level fixed priority schedMeittimedia Japan
1996.

[18] I.M. Leslie, D. McAuley, R. Balc, T. Roscoe, P. Barham, D. Evers, R. Fairbairns and E. Hyden, The design and implementation of
an operating system to support distributed multimedia applicati&ts Journal on Selected Areas in Communicati@ré7) (1996),
1280-1297.

[19] Ch. Lee, R. Rajkumar and C. Mercer, Experiences with processor reservation and dynamic QoS in real-time H&dh Multimedia
Systems '96Hiroshima, Japan, 1996.

[20] Z.Deng, J.W.-S. Liu and J. Sun, Dynamic scheduling of hard real-time applications in open system environfwet, fithe Real-Time
Systems Symposiua996.

[21] M. Rosu, M.B. Jones and D. Rosu, CPU and time constraints: efficient, predictable scheduling of independent actiRittes,ahthe
16th ACM Symposium on Operating Systems Principles (SOSPL8g7.

[22] Sun MicrosystemsSolaris 2.5 Manual AnswerBop8un Microsystems, Inc., 1994.

[23] A. Mehra, A. Indiresan and K. Shin, Structuring communication software for quality-of-service guaranté&scirof 17th Real-Time
Systems Symposiua996.

[24] C.W. Mercer, S. Savage and H. Tokuda, Processor capacity reserves: operating system support for multimedia applid&ties, in:
International Conference on Multimedia Computing and Systése4.

K. Nahrstedt et al. / QoS-aware resource management for distributed multimedia applications 257

[25] K. Nahrstedt, An architecture for end-to-end Quality of Service provision and its experimental validation, PhD thesis, University of
Pennsylvania, 1995.

[26] S. Narayan, Multimedia efficient and QoS-aware transport subsystem for ATM networks, Technical Report, Department of Computer
Science, University of lllinois at Urbana-Champaign, 1997.

[27] K. Nahrstedt, A. Hossain and S. Kang, A probe-based algorithm for QoS specification and adaptefimg. iof 4th IFIP Workshop on
Quality of ServicegParis, France, 1996, pp. 89—-100.

[28] J. Nieh and M.S. Lam, SMART UNIX SVR4 support for multimedia applications Pirac. of the IEEE International Conference on
Multimedia Computing and Systen@ttawa, Canada, 1997.

[29] K. Nahrstedt and J.M. Smith, The QoS broK&EE Multimedia2(1) (1995), 53-67.
[30] K. Nahrstedt and R. Steinmetz, Resource management in networked multimedia SISBEENSOMPUTERMay, 1995, 52—-63.

[31] K. Nahrstedt and J. Smith, End-point resource admission control for remote control multimedia applicatil#SEiMultimedia Sys-
tems Hiroshima, Japan, 1996.

[32] K. Nahrstedt and J.M. Smith, Design, implementation and experiences of the OMEGA end-point architeEiaréSAC, Special Issue
on Distributed Multimedia Systems and Technolbdf7) (1996), 1263-1279.

[33] D. Patterson and H. Hennes§omputer Architecture: a Qualitative Approadiiorgan Kaufmann, 1996.

[34] A. Silberschatz and P.B. Galvi@perating System Concep#sddison-Wesley, 1994.

[35] R. Steinmetz and K. Nahrstedfjultimedia:Computing, Communications and ApplicatioReentice Hall, 1995.

[36] Lynx Real-Time Systems, LynxOS, Hard Real-Time OS Features and Capabilities, http://www.Lynx.com/products/ds_lynxos.html, 1997.

[37] C. Topolocic, Experimental Internet stream protocol, Version 2 (ST II), Internet Network Working Group, RFC 1190, 1990.

[38] C. Vogt, R.G. Herrtwich and R. Nagarajan, HeiRAT: the Heidelberg resource administration technique, design philosophy and goals, in:
Proc. of Conference on Communication in Distributed Systéfiimchen, Germany, 1992. Also publishedriformatik Aktuel Springer.

[39] D. Yau and S.S. Lam, Adaptive rate-controlled scheduling for multimedia application&CM: Multimedia Conference '9@oston,
MA, 1996.

