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Abstract: The authors address the problem of providing fair multimedia quality-of-service (QoS)
in IEEE 802.11 distributed co-ordination function-based wireless local area networks in the infra-
structure mode where mobile hosts experience heterogeneous channel conditions due to mobility
and fading effects. It was observed that unequal link qualities can pose significant unfairness of
channel sharing, which may thereby lead to the degradation of multimedia QoS performed in
adverse conditions. A cross-layer adaptation scheme that provides fair QoS by online adjusting
the multidimensional medium access control layer backoff parameters in accordance with the
application-layer QoS requirements as well as the physical-layer channel conditions was proposed.
The solution is based on an optimisation approach, which utilises neural networks to learn the
cross-layer function. Simulation results demonstrate that the proposed adaptation scheme can
tackle heterogeneous channel conditions and random joining (or leaving) of hosts to achieve fair
QoS in terms of throughput and packet delay.

1 Introduction

With the popularity of IEEE 802.11 based wireless local
area networks (WLAN) capable of providing high data
rates ranging from 1 Mbps up to 54 Mbps, the demands of
multimedia services for mobile users are growing. Various
kinds of multimedia applications such as streaming video,
Internet phone and net meeting, require differentiated
quality-of-service (QoS) guarantees because of their differ-
entiated traffic types. Thus, the provision of QoS in 802.11
medium access control (MAC) becomes increasingly
important. Most of current 802.11 MAC employ distributed
co-ordination function (DCF) [1], a random access protocol
based on a carrier sense multiple access with collision
avoidance (CSMA/CA), on account of its distributed
nature for the simplicity of implementation [2]. To
provide multimedia services in such contention-based net-
works, fairness is of particular concern because the QoS
performed essentially depends on the sharing of trans-
mission mediums among users.
The fairness of IEEE 802.11 DCF has been largely inves-

tigated in previous works [2–14]. The study reported by
Koksal et al. [3] shows that 802.11 DCF presents short-term
unfairness of channel sharing due to the backoff protocol in
CSMA/CA, which can therefore make a significant impact
on delay-sensitive applications like real-time audio and
streaming video [3]. However, Berger-Sabbatel et al. [4]

provided a contrary perception that DCF indeed presents
pretty fine fairness. They argued that the confusion of fair-
ness problems in the previous work [3] is as a result of ana-
lysing the behaviour of CSMA/CA protocol specific to
Wavelan system [15] instead of that characterised in
802.11 standards. Actually, the two access methods present
a significant difference between them: the Wavelan CSMA/
CA protocol executes exponential backoff when the channel
is sensed busy, whereas 802.11 protocol does that only
when a collision is experienced. Although the analysis of
Berger-Sabbatel et al. [4] is rather consistent with the beha-
viour of present 802.11 protocol; however, the conclusion is
valid only under the assumption of homogeneous link qual-
ities among hosts, which may be impractical. In fact, hosts
in WLANs commonly experience different signal qualities,
especially in an indoor environment, that hosts close to the
access point (AP) have a line-of-sight signal whereas those
obstructed by physical objects experience much degraded
signal quality. To cope with dynamic channel conditions
to provide a good transmission quality, for example an
acceptable level of bit error rate (BER), 802.11 standards
on physical layer (PHY) [1] support a link adaptation mech-
anism, which dynamically selects one modulation and
coding scheme (MCS) such that BER of the selected
MCS with the highest data rate is within the prescribed per-
formance bound. If all hosts have the same BERs, their
throughputs will be equal regardless of their transmission
rates [6]. This phenomenon is so called ‘performance
anomaly’ [5]. However, even with a link adaptation mech-
anism, the link qualities among hosts will not likely be the
same at most of the time since the MCS available are
limited, which may therefore cause the unfairness of
throughput sharing among hosts.
To demonstrate the significant impact of heterogeneous

link qualities on fairness, we have conducted a simulation
scenario of error-prone channels (Ecs) as shown in
Section 2. The numerical results show that unequal link
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qualities among hosts can pose severe unfairness of channel
sharing. For example, the average throughput variation
between hosts in an error-free condition and those with a
BER of 2 � 1025 can be as large as 48%. Such unfairness
behaviour can degrade the QoS performed in adverse
channel conditions.
The objective of this work is to provide fair multimedia

QoS for hosts under heterogeneous channel conditions in
802.11 DCF-based WLANs. In this paper which substan-
tially extends our previous work [16], we present a cross-
layer adaptive scheme that determines the multidimensional
MAC-layer parameters based on PHY-layer channel con-
ditions as well as the application-layer QoS requirements,
for example the desired level of throughput or the tolerable
bound of delay. Neural networks are used to learn the cross-
layer correlation between the parameters adopted and QoS
performed under time-varying channel conditions. We
explore a cost–reward function to quantify the overall
QoS performance, and then use the nonlinear correlation
learned with neural networks to evaluate the gradient of
this cost–reward function with respect to each parameter
by means of a back-propagation manner. The multidimen-
sional parameters can therefore be jointly determined for
achieving fair QoS in terms of minimising the cost–
reward function. We have applied this neural network-based
learning technique for providing weighted QoS in 802.11e
enhanced distributed co-ordination function (EDCF) [17]
by adjusting the initial window size and arbitrary inter
frame space (AIFS) [18].
We focus on the transmission scenario that the participat-

ing hosts are with similar real-time services of equal access
priorities in an infrastructure mode. Three simulation scen-
arios are conducted to evaluate the effectiveness of our
adaptation scheme. The results demonstrate that our
scheme can tackle a variety of channel conditions and the
dynamic participation or departure of hosts to provide fair
multimedia QoS in terms of both throughput and packet
delay. The remainder of this paper is organised as
follows. Section 2 presents numerical results to show the
performance variation due to heterogeneous channel con-
ditions. Section 3 formalises the addressed problem and pre-
sents our adaptive algorithm as a solution. In Section 4, we
construct simulation scenarios to evaluate the effectiveness
of the proposed scheme. Section 5 draws the conclusions.

2 Unequal channel sharing in heterogeneous
channel conditions

In this section, we conduct simulations to explore the
unequal channel sharing due to heterogeneous channel con-
ditions and its impact on multimedia QoS. We provide
numerical results in both cases of hosts transmitting at an
equal data rate and at different rates with a link adaptation
mechanism. Consider K hosts in an infrastructure 802.11b
WLAN environment. Assume each host transmits a satu-
rated data traffic (i.e. always has a packet to send) to AP.
Assume that half of the hosts, named ideal-channel (IC)
hosts, are always in an IC condition; the others, named
EC hosts, are initially in an ideal condition and later
suffer from the channel degradation with an average BER

level of BEREC when moving away from AP. The system
parameters are shown in Table 1.
In the first experiment, all hosts use the same MCS and

transmit at the data rate of 1 Mbps. The saturated through-
puts of an IC or EC host are shown in Table 2. It is
shown that when all the hosts are initially in an ideal con-
dition (BEREC ¼ 0), their throughputs are equal. When
BEREC later deteriorates to 2 � 1025 and 4 � 1025 sequen-
tially, the performance variation between an IC and EC host
is gradually enlarged. Assume there are ten hosts with each
one demanding the throughput of 64 kbps for meeting its
own QoS. If all the hosts are in an IC condition, the through-
put of each host is 80 kbps as shown in Table 2 and thus
QoS is assured. However, if the link qualities of EC hosts
deteriorate with BER of 2 � 1025, their throughputs de-
grade to 56 kbps and can no more meet the required QoS.
In the meanwhile, the throughputs of IC hosts increase to
94 kbps, much exceeding the demand. The performance
difference between these two groups of hosts becomes as
large as 47.5% (38 kbps/80 kbps ¼ 47.5%).
In the second experiment, IC hosts transmit at the data

rate of 11 Mbps while EC hosts transmit at 1 Mbps.
Table 3 shows the result of saturated throughputs.
Initially, when IC and EC hosts are in an IC condition,
they have equal throughput lower than 1 Mbps. This
phenomenon is so called ‘performance anomaly’ [5]
meaning that if some hosts transmit at a lower data rate,
the throughput of others at higher rates will be degraded
below the level of the lower rate. However, when BEREC

deteriorates later, it is shown that the throughput-based fair-
ness (i.e. performance anomaly) gradually fades away. For
example, when there are an IC and EC hosts with BEREC

equal to 4 � 1025 in the network, the throughput of the
EC host is degraded to 0.507 Mbps while that of the IC
host is increased to 1.295 Mbps beyond the range of
1 Mbps.
The performance variation arises as a result of the follow-

ing facts. Due to its higher BER, an EC host averagely
experiences more retries to succeed a transmission than an

Table 1: System parameters

Payload ¼ 1023 bytes MAC header ¼ 28 bytes Initial window size ¼ 32 Maximum window size ¼ 1024

Slot time ¼ 20 us PHY header ¼ 24 bytes DIFS ¼ 50 us Window increasing factor ¼ 2

Propagation delay ¼1 us ACK ¼ 38 bytes SIFS ¼ 10 us Maximum retry limit ¼ 5

Table 2: In the first experiment, the saturated
throughput of an IC and EC hosts, respectively, against
the number of hosts varying with the BER level of EC
hosts

The number of hosts: K

2 4 6 8 10

The saturated throughput of an

IC host (kbps)

BER ¼ 0 436 211 137 100 80

BEREC ¼ 2 � 1025 494 244 160 118 94

BEREC ¼ 4 � 1025 565 280 184 135 107

The saturated throughput of an

EC host (kbps)

BER ¼ 0 436 211 137 100 80

BEREC ¼ 2 � 1025 319 152 97 71 56

BEREC ¼ 4 � 1025 219 107 37 49 38
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IC host does. When a retransmission is performed, accord-
ing to CSMA/CA protocol, the backoff window will be
increased exponentially until the retries reach a certain
limit. Thus, an EC host would averagely adopt a larger
backoff timer and then has less chance to access the
channel. From our numerical results, it is also demonstrated
that 802.11 CSMA/CA can only present fairness of channel
usage on the condition of homogeneous link qualities; the
presence of heterogeneous channel conditions can pose sig-
nificant unfairness to hosts at either an equal data rate or
different rates with a link adaptation mechanism due to
the reason of limited MCSs available.

3 Proposed cross-layer adaptive algorithm using
neural networks

Based on the above observation, it is shown that fair QoS
cannot be achieved by the approach of fixed parameters in
a varying heterogeneous wireless environment. In this
section, we formalise this problem as an optimisation
problem and present our solution of a cross-layer adaptation
scheme. For illustration, we use throughput for the QoS
indicator and the backoff parameters for the adaptable argu-
ments, which consist of initial window size, window
increasing factor and maximum retry limit.

3.1 Problem description

Consider K hosts with each one transmitting a real-time
traffic flow. To host i, the throughput for satisfying QoS is
given as T_THRi; the initial window size, window increas-
ing factor and maximum retry limit adopted is CWi,min, si,
and Li,retry, respectively; the throughput is Ti. Since the
achievable throughput of a given host is affected by the par-
ameters adopted of its own as well as other hosts, the overall
throughputs performed of the K hosts are then modelled as a
correlation function f(.) associated with the joint setting of
parameters. That is

(T1,T2, . . . , TK ) ¼ f (CW1,min,s1, L1,retry

. . . ,CWK, min,sK , LK,retry)
(1)

The optimal parameters can be chosen by minimising a
cost–reward function such that the overall throughputs
are close to the prescribed QoS levels. The cost–reward

function, CQoS is defined as

CQoS ¼
XK

i¼1

(Ti � T THRi)
2

T THRi

(2)

where the denominator T_THRi is utilised to normalise the
difference between the achievable throughput and the corre-
sponding QoS requirement. CQoS will be minimised if the
channel is fairly shared in proportion to T_THRi.
To minimise CQoS, each backoff parameter is iteratively

updated based on the gradient of CQoS with respect to
itself. To calculate the gradient, the knowledge of f (�) is
needed. However, f (�) strongly depends on the character-
istics of communication environments such as the collision
probability among hosts and the link quality of each host.
For example, if some hosts experience link quality degra-
dation, the channel sharing of them as well as that of
other hosts will be influenced, leading to a skewed sharing
of overall throughputs. Hence f (�) is a nonlinear, compli-
cated and time-variant function, which is rather difficult to
be depicted with analytical formulas [19]. We are thus
motivated to exploit neural networks (NN) to model the
function f (�). Then the learned f̂ (�) is utilised to evaluate
the gradient of CQoS with respect to each parameter by the
technique of the back-propagation manner. The function
modelling stage and parameter determining stage of our
adaptation scheme will be discussed in the following
subsections.

3.2 Learning the nonlinear function

We exploit the multilayer perceptron (MLP) to model the
correlation function between the backoff parameters and
corresponding throughputs, f (�). The nonlinear and feed-
forward MLP is capable of learning f (�) adaptively in a
supervised manner [20], and can approximate it to an arbi-
trary degree of the accuracy [21]. Fig. 1 shows the architec-
ture of the exploited MLP (indicated as ‘the original NN for
modelling the nonlinear function’ inside the dotted line). It
consists of 3K-x-K sensory units at the input layer, hidden
layer and output layer, respectively, to model the nonlinear
function from 3K backoff parameters to the corresponding
K throughputs. The output of the ith neuron at the lth layer
can be described as

ui(l) ¼
XNl�1

j¼1

vij(l )aj(l � 1)þ ui(l ) (3)

ai(l) ¼ h(ui(l)) 1 � i � Nl; l ¼ 1, 2 (4)

Table 3: In the second experiment, the saturated
throughput of an IC and EC hosts, respectively, against
the number of hosts varying with the BER level of EC
hosts

The number of hosts: K

2 6 8 9 10

The saturated throughput of an

IC host with 11 Mbps (kbps)

BER ¼ 0 779 379 246 181 142

BEREC ¼ 2 � 1025 978 491 325 241 190

BEREC ¼ 4 � 1025 1295 656 433 319 250

The saturated throughput of an

EC host with 1 Mbps (kbps)

BER ¼ 0 779 379 246 181 142

BEREC ¼ 2 � 1025 637 309 200 147 115

BEREC ¼ 4 � 1025 507 246 159 116 91

Fig. 1 Exploited neural network architecture
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where Nl is the number of neurons at the lth layer; ui(l) and
ai(l ) are correspondingly the activation and output values of
the ith neuron at the lth layer. The input units are rep-
resented by ai(0) and the output units by ai(2). vij(l)
refers to the weight connecting the output of the jth
neuron at the (l – 1)th layer to the activation of the ith
neuron at the lth layer. ui(l) refers to the bias associated
with the ith neuron at the lth layer. The transfer function
h(�) is sigmoid at the hidden layer and linear at the output
layer.
The nonlinear function f (�) can be modelled with MLP by

recursively adjusting vij(l) and ui(l) to minimise mean
squares error (MSE) between the performed throughput,
Ti and actual outputs, ai(2). That is

E ¼
1

2

XM

m¼1

XK

i¼1

�
T
(m)
i � a

(m)
i (2)

�2
(5)

where M is the number of teacher patterns. The learning
procedure of MLP in details can be found in [20].

3.3 Adaptively determining the backoff
parameters

Here we denote parameter i of the nth adaptation as bi
(n). The

gradient learning formula to minimise CQoS with respect to
bi
(n) is

b
(nþ1)
i ¼ b

(n)
i þ Db

(n)
i (6)

Db
(n)
i ¼ �m@CQoS=@b

(n)
i , 1 � i � 3K (7)

where m is the adjusting rate. To evaluate the gradient of
CQoS with respect to bi, we add a virtual input layer
ai(21) and a virtual weight layer vwi under ai(0). The
extending architecture is shown in Fig. 1 (indicated as
‘the extending NN for determining the backoff par-
ameters’). The virtual weight vwi is set with the backoff par-
ameter, bi. By adding the virtual input layer and virtual
weights, we can separately model f (�) in the original NN
and thus utilise the learned f̂ (�) to evaluate the gradient of
CQoS in the extending networks.
All the units in the virtual input layer ai(21) are set to 1,

and the transferring function at the input layer ai(0) is linear.
That is ai

(n)(0) ¼ bi
(n). Thus, the problem of evaluating the

minus gradient of CQoS for minimising CQoS with respect
to bi

(n) is equivalent to that with respect to ai
(n)(0). To

compute the minus gradient of CQoS with respect to
ai
(n)(0), �@CQoS=@a

(n)
i (0), a chain-rule technique is utilised

� @CQoS=@a
(n)
i (0) ¼ l

(n)
i (1)

�
@a(n)i (1)=@a(n)i (0)

�
(8)

where l
(n)
i (l) is defined as the minus gradient of CQoS with

respect to ai
(n)(l): l

(n)
i (l ) ; �@CQoS=@a

(n)
i (l ). By means of

the back-propagation and chain-rule methods, l
(n)
i (l ) can

be derived with the knowledge of l
(n)
i (l þ 1) from the

upper layer

l
(n)
i (l ) ¼

XNlþ1

j¼1

l
(n)
j (l þ 1)h0

�
uj(l þ 1)

�
wji(l þ 1) (9)

In particular, the minus gradient of CQoS with respect to the
output layer, l

(n)
i (2) can be derived from the cost–reward

function as shown in (2). Therefore l
(n)
i (l) can be succes-

sively derived in the order of l ¼ 2, 1 and 0. Since the
value of ai

(n)(0) is equal to bi
(n), (6) becomes

b
(nþ1)
i ¼ b

(n)
i þ ml

(n)
i (0) (10)

From (10), the multidimensional backoff parameters
b
(nþ1)
1 . . .b

(nþ1)
3K for minimising CQoS can be determined

concurrently.

3.4 Alternatively modelling the function and
determining parameters

New backoff parameters are therefore applied into the
system. In order to learn f (�) in current wireless environ-
ments, the training data will be updated with the recent
used backoff parameters and the corresponding throughputs.
In a recursive manner, this algorithm models the nonlinear
function and adjusts the backoff parameters for optimising
the overall QoS in terms of minimising CQoS. It is notice-
able that in this paper, we particularly focus on the
WLAN with limited (or just adequate) resources available
to satisfy overall QoS requirements and then perform our
adaptation scheme to achieve QoS fairness. In case that
the network resources available are sufficient (e.g. by
using an admission control scheme to limit the amount of
hosts) and all the participating nodes can meet their require-
ments, our adaptive mechanism need not perform any
action. Accordingly, our adaptation mechanism will act
only on the premise that some hosts cannot meet their
requirements due to the imbalance resource usage among
hosts, and the resources available are adequate to satisfy
overall QoS requirements.
This adaptation mechanism works in a centralised sense,

and thus is designed for an infrastructure 802.11 WLAN and
performed at AP. At the run time, AP will request the
associated hosts to send packets indicating their QoS
requirements, for example the requirements for the lowest
QoS and high-fidelity QoS. According to the network capa-
bility, AP will select adequate levels for the cost–reward
function (i.e. determines T_THRi described in (2). By
logging the information about payload size and packet
arrival timestamp from successfully received packets over
a sample time periodically, AP can evaluate QoS achievable
by factors such as throughput and packet delay of each
associated host. With the information of achievable QoS
needed for the training data and cost–reward function, AP
can therefore centrally model the nonlinear function and
adjust backoff parameters alternatively. Whenever the par-
ameters are adjusted, AP will send packets to notify the
associated hosts of their new parameters.

3.5 Dynamic NN architecture for hosts departing
from or joining in the network

In Section 3.4 we illustrated this adaptation mechanism
using the example of a fixed NN architecture, that is a con-
stant amount of hosts. However, hosts in wireless environ-
ments can randomly join in or depart from a network,
which introduces the need of a flexible NN architecture to
accommodate the situation. For this purpose, we devise a
dynamic NN scheme similar to the optimal brain damage
(OBD) [22]. OBD can remove unimportant weights from
NN to optimise both network complexity and training set
error [22]. In a similar manner, we disable or enable some

Fig. 2 Dynamic NN architecture
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NN components in accordance with the current network
topology. When some hosts leave the network, their associ-
ated weights and input/output neurons will therefore be set
to 0 fixedly. If hosts join in, some NN components will be
activated corresponding to the current network topology.
Fig. 2 shows the example of a dynamic NN architecture
for two or three participating hosts. In case of three hosts,
all NN components are active to model the function and
adjust parameters. If one host departs away from the net-
work later, its weights and input/output neurons (indicated
as red dotted lines) will therefore be set to 0 fixedly, result-
ing in an equivalent architecture for only two hosts. With
such a dynamic NN architecture, our adaptation framework
works well in time-varying wireless environments.

3.6 Properties of this adaptation framework
applied in 802.11 WLAN environments

As mentioned in Section 3.4, the achievable QoS needed for
the training data is evaluated by means of a measurement-
based approach. Thus, in order to learn the nonlinear func-
tion f (�) that accurately reflects the rapidly changing
channel conditions, the sample time of measurements
should be less than the channel coherence time, that is the
time period within which the wireless channel characteristic
can be regarded unchanged. At a mobile speed of 1 m/s
(nearly the walking speed) in IEEE 802.11b WLANs with
the centre frequency of 2.4 GHz, the channel coherence
time is about 120 ms [23]. As for the measuring time
period, it can be regarded as multiple numbers of packet
transmissions which depend on many factors including
transmission data rate, payload size, packet collision rate,
and so on. Consider an 802.11b WLAN with the capacity
of 1 Mbps in which each host transmits a saturated traffic
flow of about 1000-bytes payload size. If there are no
more than five contending hosts (2–5 hosts), the typical
value of the MAC frame transmission time ranges from
10 to 50 ms [24, 25]. That is the coherence time of 802.11
wireless channels is generally on the order of multiple
packet transmission times [23]. This fact indicates that
using the measurement-based approach for obtaining train-
ing data has the potential to learn the nonlinear function
accurately reflecting the varying 802.11 channels.
The computing speed of NN is also of particular concern

for applying this adaptation framework in rapidly varying
wireless environments. Today, NN can be implemented
with field-programmable gate array (FPGA) chips for com-
bining the flexibility of software solutions (e.g. the dynamic
NN scheme aforementioned) and the efficiency of hardware
computing [26]. Such a hardware approach can offer sol-
utions quite quickly, may be in a few microseconds [27].
Thus the hardware-based implementation for the proposed
NN-based adaptation framework could be a promising
approach to varying 802.11 WLAN environments.

4 Experimental results

In this section, we show the simulation results to
demonstrate that our approach can effectively provide fair
multimedia QoS in varying heterogeneous WLAN environ-
ments. We examine three representative scenarios as
follows in our simulations.
Scenario I: hosts with heterogeneous channel conditions

that transmit at an equal data rate (using the same MCS).
Scenario II: hosts with heterogeneous channel conditions

that transmit at unequal data rates with a link adaptation
mechanism (different MCS used).

Scenario III: hosts depart from or join in the network.
For each scenario, we assume an IEEE 802.11b infra-

structure WLAN in which each participating host transmits
one saturated video streaming with a fixed payload size of
1023 bytes through AP to the corresponding receiver.
Assume the throughput requirements of this video appli-
cation for the high fidelity and the lowest quality are at
least 320 and 160 kbps, respectively. We compare the pro-
posed adaptive scheme with IEEE 802.11 DCF protocol,
which adopts fixed backoff parameters with the initial
window size of 32, window increasing factor of 2 and
maximum retry limit of 5 [1]. The other system parameters
used are shown in Table 1. For our adaptive algorithm, the
adaptation space of initial window size is from 8 to 64,
window increasing factor from 1.1 to 4 and maximum
retry limit from 1 to 10. The parameter, T_THRi, for the
cost–reward function is set to the requirement level for
the lowest QoS (160 kbps) or high-fidelity QoS (320 Kbps)
depending on the network capacity.
We use the well-known Gilbert-Elliott two-state discrete

Markov model [28] to model time-varying channels. In this
model, the channel condition could be either ‘bad’ or
‘good’. The time of the channel staying in the bad and
good states are exponentially distributed with rates mb and
mg, respectively. Thus the state transition probability from
‘bad’ state to ‘good’ state, pb,g is mb/(mgþ mb) and that
from ‘good’ state to ‘bad’ state, pg,b is mg/(mgþ mb). The
values of pb,g and pg,b indicate the statistic of wireless
channel conditions. For instance, the values of pb,g near 1
(0) implies that the channel state is good (bad) in most
cases. This model is commonly used for modelling fading
channels such as the Rayleigh channel [29]. For the simu-
lation we assume that BER in the ‘good’ state is 1 � 1027

and 1 � 1024 in ‘bad’ state. The hosts in the network are
assumed composed of IC and EC hosts. IC hosts are with
the parameter pb,g of 1, that is always in the ‘good’ state
with a BER of 1 � 1027, while EC hosts are with pb,g
with lower values depending on simulation scenarios.

4.1 Scenario I: hosts with the same MCS in
heterogeneous channel conditions

The simulation set-up for this scenario assumes two IC
hosts and two EC hosts in the network. EC hosts are
assumed with pb,g of 0.8 (the corresponding average
BER is about 2 � 1025) initially, and later suffer from
channel degradation with pb,g of 0.6 (the corresponding
average BER is about 4 � 1025) when they move away
from AP. This experimental scenario is set up such that
the network capacity is sufficient for all users with the
lowest requirements, 160 kbps. The parameter T_THRi is
accordingly set to 160 kbps. To clearly show the result of
throughputs with respect to IC and EC hosts, we use the fol-
lowing simplified NN architecture consistent with our
design goal. The input space consists of six components
which are three backoff parameters for IC and EC hosts,
respectively. The output space consists of two components,
which are the throughputs achievable of IC and EC hosts
separately. six hidden nodes are used. Therefore the
network topology consists of 6-6-2 nodes from the input
to the output layer. In the function modelling stage, we
use an online learning strategy, that is the NN is updated
when a new training data is available. The NN weights
and biases are adjusted till the MSE falls below 1�1026

or the training epochs are over 1000 times. In the parameter
determining stage, the parameters are updated with the
adjusting rate m of 0.1.
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Fig. 3 presents the level of MSE varying with the adap-
tation sequences, that is the numbers of the parameters are
adjusted. It is shown that MSE continues to decrease
mostly when NN can learn the function gradually.
Although the communication environment changes (as the
parameter pb,g of EC hosts becomes 0.6) during the
sequence of 11, MSE rises immediately due to the
changes of the nonlinear function. With the learning capa-
bility of NN and the up-to-date teacher data, MSE decreases
rapidly after the adaptation sequence of 15. The results
demonstrate that our adaptive algorithm can model the real-
time communication system under varying heterogeneous
channel conditions.
Fig. 4 presents the saturated throughputs for IC and EC

hosts with 802.11 DCF and the proposed adaptation
scheme, respectively. It is shown that our approach achieves
not only much better fairness but also a significant improve-
ment of QoS. With 802.11 DCF, the throughput of an EC
host is 151.7 kbps initially and down to 104 kbps as the
communication environment deteriorates; both are below
the minimum QoS requirement (160 kbps). The QoS degra-
dation of EC hosts is posed by a skewed channel sharing
because of using fixed parameters in heterogeneous
channel conditions.
With the proposed adaptation scheme, the fairness of

channel sharing is improved significantly such that the
achievable throughput of EC hosts can progressively meet
the QoS requirement. It is shown in Fig. 4 that the through-
put of EC hosts drops before the adaptation sequence of five
because the gradient of the cost–reward function is not
well-evaluated yet due to limited teacher patterns. While
the gradient is evaluated rather accurately with more
teacher patterns latter, the throughputs of IC and EC hosts
are almost equal (193 kbps) after the sequence of seven,
which are better than the QoS requirement level. When
BER of EC hosts deteriorates later, the backoff parameters
adjusted earlier cease to be effective in the present con-
dition. Consequently, the throughput of EC host degrades

to 131.5 kbps and can no more satisfy QoS requirement.
With the proposed algorithm online learning the current
function and adjusting parameters, the throughputs of IC
and EC hosts are almost equal (176 kbps) after the sequence
of 16 which again meets the required QoS. The results
demonstrate that our adaptation scheme can effectively
tackle a variety of channel conditions, providing fair multi-
media QoS for hosts with the same data rates.

4.2 Scenario II: hosts with different data rates in
heterogeneous channel conditions

Now we examine the proposed adaptation mechanism using
the scenario that hosts transmit at unequal data rates with a
link adaptation mechanism. The simulation set-up of this
scenario is similar to that of Scenario I. In particular, here
IC hosts are assumed to transmit at the data rate of
1 Mbps while EC hosts at 11 Mbps. Because of the higher
network capacity, the parameter T_THRi of the cost–
reward function is set as the high-fidelity level of QoS,
320 kbps.
Fig. 5 presents the experimental results of saturated

throughput. With 802.11 DCF, it is shown the achievable
throughput of EC host with 11 Mbps is even lower than
that of an IC host with 1 Mbps. The reason is as follows:
when the participating hosts’ link qualities and packet
lengths are similar, CSMA/CA protocol provides
throughput-based fairness regardless of their transmission
rates [6] (referred to the phenomenon of ‘performance
anomaly’ [5]). Thus, if the hosts at higher data rates experi-
ence worse channel conditions (such like EC hosts), the
throughputs can even be less than that of the hosts at
lower rates with better channels (such like IC hosts). We
also find in Fig. 5 that EC hosts cannot meet the QoS
requirement of high fidelity, while IC hosts exceed the
requirement. The results demonstrate that the unbalanced
throughput is caused by heterogeneous link qualities
rather than unequal data rates.
With the proposed adaptation scheme, the throughput of

an EC host can be progressively improved and then meet the
QoS requirement. Eventually, the throughputs of IC and EC
hosts are close to each other, both satisfying high-fidelity
QoS. In addition, the aggregated throughput is increased
from 1.2 to 1.46 Mbps on average because our adaptation
scheme provides more transmission opportunities for EC
hosts with higher data rates. From the results shown in
Sections 4.1 and 4.2, it is demonstrated that under a
variety of channel conditions, our adaptation scheme can
effectively provide fair multimedia QoS for hosts at either

Fig. 3 MSE varying with the adaptation sequence

Fig. 4 In Scenario I, the saturated throughput of an IC and EC
hosts with 802.11 DCF and the proposed adaptive scheme,
respectively

Fig. 5 In Scenario II, the saturated throughput of an IC and EC
hosts with 802.11 DCF and the proposed adaptive scheme,
respectively

IET Commun., Vol. 1, No. 5, October 2007 863



equal data rates or different rates with a link adaptation
mechanism.

4.3 Scenario III: hosts departing from or joining in
the network

Now we examine the effectiveness of the proposed adaptive
scheme using the scenarios of hosts departing from and
joining in the network. In both scenarios, EC hosts are
assumed with the parameter pb,g of 0.6. In the departing
scenario, there are two IC hosts and one EC host in the
network at first, and one IC host departs later. In the
joining scenario, there are an IC host and an EC host in
the network and later one more EC host joins in. For the
simplicity of illustration in both scenarios we denote node
1 as the IC host staying on, node 2 as the EC host staying
on, and node 3 as the IC (or EC) host departing away
from (joining in) the network. The parameter T_THRi of
the cost–reward function is set to be 160 kbps (the require-
ment of the lowest QoS) in case of three hosts existing and
320 kbps (the requirement of high-fidelity QoS) in case of
two hosts.

4.3.1 Hosts departing from the network: The simu-
lation results of the host departing scenario are presented
in Fig. 6. While the number of hosts is 3, the throughputs
of node 1, node 2 and node 3 are 246 kbps (33%),
257 kbps (34%) and 244 kbps (33%) around the adaptation
sequence of ten individually. When node 3 departs away at
the sequence of 11, the throughputs achievable for node 1
and node 2 simultaneously increase to 352 kbps (49%)
and 368 kbps (51%), respectively, which still present
equal share of channel usage. The fairness is kept at this
moment since the parameters achieving fair QoS for three
hosts is still effective for the two staying-on hosts.
Afterward, this algorithm performs adaptation correspond-
ing to only node 1 and node 2 by using the dynamic NN
architecture. It is shown that the throughputs of the two
hosts are almost unchanged with time. The results demon-
strate that when some hosts depart away from wireless
environments, the proposed adaptive scheme can automati-
cally provide fair QoS among staying-on hosts.

4.3.2 Hosts joining in the network: The simulation
results of host joining scenario are shown in Fig. 7. When
the number of hosts is two, the throughputs of node 1 and
node 2 are 365 kbps (50%) and 359 kbps (50%) around
the adaptation sequence of ten individually. When node 3
joins in the network around the sequence of 11, the

throughputs for node 1, node 2 and node 3 simultaneously
become 328 kbps (46%), 278 kbps (39%) and 106 kbps
(15%) correspondingly. The fairness deteriorates at this
moment such that node 1 meets high-fidelity QoS,
whereas node 2 only meets the lowest QoS and node 3
even cannot meet the lowest QoS. The parameters achieving
fair QoS for node 1 and node 2 cease to be effective at this
moment since node 3 uses 802.11 DCF default parameters.
After NN gradually learns the new knowledge and adjust
parameters, it is shown that the throughputs of node 1,
node 2 and node 3 become 232 kbps (35%), 224 kbps
(33%) and 215 kbps (32%), respectively, around the
sequence of 20, presenting the fairness of QoS among
hosts again. Therefore all the three hosts can meet the
requirement of the lowest QoS. The results demonstrate
that when some hosts join in wireless environments, the pro-
posed adaptive scheme can automatically provide the fair-
ness of QoS among hosts.

4.4 Fair QoS in terms of packet delay

Finally, we use Scenario I to illustrate that fair QoS in terms
of packet delay can also be achieved with the same tech-
nique. Each video streaming is assumed with the delay
bound of 50 ms for a smooth playback. Here this proposed
adaptation framework use packet delay as QoS indicator.
The simulation result is presented in Fig. 8, similar to
what shown in Fig. 4, that with 802.11 DCF, an IC host
has better channel usage beyond the requirement (its
packet delay is further lower than 50 ms) whereas an EC
host cannot meet the requirement. With the proposed
scheme, the performance variation is gradually narrowed

Fig. 6 In Scenario III that the number of participating hosts
decreases from 3 to 2, the saturated throughput of each host
using the proposed adaptive scheme

Fig. 7 In Scenario III that the number of participating hosts
increases from 2 to 3, the saturated throughput of each host
using the proposed adaptive scheme

Fig. 8 In Scenario I, the saturated packet delay of an IC and EC
hosts with 802.11 DCF and the proposed adaptive scheme,
respectively
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such that both IC and EC hosts can satisfy QoS requirement.
It is shown that our proposed adaptation scheme can
effectively provide the fairness of QoS in terms of both
throughput and packet delay under a variety of channel
conditions.

5 Conclusion

In this paper, we investigate the fairness of multimedia QoS
in heterogeneous WLAN environments. We have observed
that unequal link qualities among hosts can cause severe
unfairness of channel sharing, which thereby leads to the
degradation of QoS in adverse conditions. To provide fair
channel shares, this paper proposes a cross-layer adaptive
algorithm which dynamically adjusts MAC-layer backoff
parameters based on the application-layer QoS require-
ments as well as PHY-layer channel conditions. Our sol-
ution is provided with an optimisation approach, which
utilises NN to learn the cross-layer function. The simulation
results illustrate that under a variety of channel conditions
and host amounts, our adaptive scheme can provide fair
QoS in terms of both throughput and packet delay.
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