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Abstract: Modality conversion currently emerges as an important issue in universal multimedia
access. The decision on modality conversion is affected by various factors, such as terminal
capability, user preferences, surrounding environment, etc. Here, modality conversion under the
constraint of connection bitrate is considered. Intuitively, when content scaling cannot provide the
acceptable QoS, modality conversion may be a good choice to deliver an appropriate quality. From
the QoS point of view, two important questions in modality conversion are: ‘at what resource
constraint point should a change of modality occur?’ and ‘what is the destination modality?’
That is, knowing the conversion boundaries between modalities is crucial for a seamless modality
conversion. In this paper, a systematic approach to help answer these questions is presented.

1 Introduction

Universal multimedia access (UMA) is currently a new
trend in multimedia communications. A UMA system
adapts rich multimedia contents to various constraints of
terminals and networks, while providing the best possible
quality to the user. In practice, quality of service (QoS)
management can be done at both the network level and
application level [1]. This paper is concerned with the
application level, where content adaptation is an important
solution to provide the QoS support. Additionally, the
quality in our work is evaluated by a measure that is
consistent with human perception; it is not evaluated by
traditional physical (objective) measures such as bit error
rate or signal-to-noise ratio. In the literature, this kind of
quality of service is sometimes called ‘quality of experi-
ence’ or ‘perceived quality of service’ [2].

Content adaptation has two major aspects: one is modality
conversion (also called transmoding), that converts the content
from one modality to a different modality; and the other is
content scaling, that changes the amount of resource (and so
the quality) of the content without converting its modality.
Most research on content adaptation has so far dealt with
content scaling [3, 4]. However, modality conversion
currently appears to be an important issue in UMA [5–7].

The modality concept of multimedia content is actually
quite broad. It can be considered from human senses (visual,
auditory, tactile, etc.), which have been tackled for a long
time in the field of human-computer interfaces (HCI).
Modalities can be derived also from different modes of
content coding (e.g. video, image, graphics for visual
sense). Even different coding formats (e.g. GIF, JPEG) for

images are sometimes referred to as modalities or sub-
modalities.

There are various conditions that may affect the decision
on modality conversion. They can be grouped into four main
factors: 1) the modality-presenting capability, which is the
support to display certain modalities. This factor can be
determined from the characteristics of a terminal (e.g. text-
only pager) or the surrounding environment (e.g. a too noisy
place); 2) the user preference, which shows the user’s levels
of interest in different modalities; 3) the resource constraints
of terminals or networks, such as the connection bitrate, or
the memory size available for the requested contents; 4) the
semantics of the content itself. For instance, between a news
video and a ballet video, the provider would be more willing
to convert the former to a stream of text.

The emergence of MPEG standards, especially MPEG-7
and MPEG-21, facilitates the realisation of UMA systems in
an interoperable manner. MPEG-7 [8] defines several
classification schemes (CS) to describe various modalities
(e.g. ContentCS, GraphicsCodingCS, etc). MPEG-7 also
has many tools to describe the semantics (e.g. genres) of
multimedia contents. MPEG-21 digital item adaptation
(DIA) provides various usage environment description tools
to help determine the set of supported modalities, the
conversion preference tool to specify user preference on
modalities, and the universal constraints description tool to
define the (resource) constraints of the adaptation [9].

Currently, modality conversion is mostly carried out when
some modality is not supported (e.g. [10]). In this paper,
modality conversion is considered mainly in terms of the
resource constraint factor. Intuitively, given some resource
constraint, the provider may (down)scale the contents to
meet the constraint. However, in some cases, the quality of
the scaled content is unacceptable or not as good as that of a
substitute of a different modality. A possible solution for this
problem is to convert the contents into other modalities. For
example, when the connection bitrate is too low, sending a
sequence of ‘important’ images would be more appropriate
than streaming a scaled video of low quality. This is a typical
case of video-to-image conversion.

From the QoS point-of-view, the two most important
questions for modality conversion are: ‘at what resource
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constraint point should occur a change of modality?’ and,
‘what is the destination modality?’

The first question means that at some point, content
scaling in the current modality may be no longer effective
and another modality will be selected. The second question
is clear itself. In this paper, we present a systematic
approach to answer these two questions. In order to find the
conversion boundaries between modalities, we represent the
relationship between the resource and content values
(quality) of different modalities using the overlapped
content value (OCV) model [5]. However, establishing
realistic OCV models is not easy. The main challenge is
how to measure the subjective content value when the
content is variously scaled and converted. To this end, we
present a subjective method to evaluate the content value,
which helps us understand the dependency of content value
on resource and modalities. As to the composition of the
content value, we identify two key quality aspects: the
perceptual quality and the semantic quality. The former
refers to a user’s satisfaction in perceiving the content,
regardless of what information the content contains; the
latter refers to the amount of information the user obtains
from the content, regardless of how the content is presented.
Also, we consider computational methods to estimate the
content value, which can be used instead of the time-
consuming subjective method.

2 Modelling modality conversion for UMA

The process of content scaling can be represented by a ‘rate-
quality’ curve, which shows the quality of a scaled content
according to the bitrate (or any resource in general). A recent
trend in UMA is to use this rate-quality curve as the
metadata to automate content scaling [3, 4]. MPEG-21 DIA
provides several description tools (AdaptationQoS) for this
type of modelling [9]. Usually, the rate-quality curve is
obtained for a particular modality because each modality
has its own characteristics. Extending this concept, we
introduce the overlapped content value (OCV) model to
represent conceptually both content scaling and modality
conversion in [5].

An OCV model consists of the rate-quality curves of
different modalities (called modality curves) to show the
relationship between content values of different modalities.
Figure 1 shows an example OCV model of a video
content, which consists of video, image, audio, and text
curves. The modality curves, provided either manually or
automatically, are normally non-decreasing and saturate
when the amount of a resource is large enough. We can see
that the intersection points of the modality curves represent
the conversion boundaries among modalities. Actually, a
modality curve is specific to the scaling operation employed
(e.g. reducing spatial=temporal resolutions, requantising, or
any combination of these). That is, there may be multiple
operation curves for each modality, corresponding to

different scaling operations. For simplicity, just one curve
is drawn for each modality, representing the scaling
operation selected for the session.

Let VMjðRÞ denote the rate-quality curve of modality j of
a content, j ¼ 1 . . . J, where J is the number of modalities of
the content; R is the amount of resource. VMjðRÞ � 08j.
Also let wj denote the scale factor of modality j. The content
value function, which is the convex hull of the modality
curves in the OCV model, can be written as follows:

V ¼ maxfwj � VMjðRÞj j ¼ 1 . . . Jg ð1Þ

By the proper estimation of content value for different
modalities, we can put the modality curves into an OCV
model. When the content values of some modalities are
measured elsewhere using some different scoring scales
(e.g. from 0 to 10 or from 0 to 100), the scale factors can be
used to map the content values into a common scale.
Figure 2 shows the final content value function and the
conversion boundaries of the content. Based on this model,
we can quantitatively make the decision on modality
conversion in addition to content scaling, to maintain an
acceptable quality. As mentioned, building the OCV model
is a not a simple task owing to the challenge of quantifying
the subjective content value. In the following Section, we
study the evaluation of content value within the context of
content adaptation.

3 Content value evaluation

3.1 Aspects of content value

It is commonly agreed that multimedia quality has a
multidimensional nature and that key quality dimen-
sions=aspects should be identified for the application in
use [11]. With video content scaling, the quality is normally
evaluated by some measures that show the perceptual
satisfaction of scaled video. In the case of video-to-image
conversion, some semantic scores, representing the
understandability of the key-frame set, are often mentioned
[12, 13]. In some extreme cases, dance video converted to
text for example, it is obviously not the perceptual quality,
but the amount of conveyed semantics that really counts.

For content adaptation, we contend that the content value
consists of both the perceptual quality (PQ) and the
semantic quality (SQ). Although one may say that PQ
already includes SQ, the separation is necessary because
when PQ is reduced (e.g. lower frame rate), SQ may remain
unchanged [14]. Even when PQ is nearly zero (e.g. the
above video-to-text conversion), the value of SQ may still
be acceptable. We then propose the composition of content
value as follows:

V ¼ s� PQþ ð1 � sÞ � SQ ð2Þ
where s is the weight of PQ, 0 � s � 1; s can be assigned by
the provider depending on the particular applications.Fig. 1 Overlapped content value model of video content

Fig. 2 The final content value function of video content
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In general, if the information itself is more important than
the perceptual satisfaction, then the weight of SQ should be
higher than that of PQ. We assume that an average user in a
normal situation would need SQ and PQ in an equal manner.
So, as default, we let the value of s be 0.5. In the following
Sections, the evaluations of SQ and PQ will be presented.

3.2 Subjective method

The quality can be represented by some ‘physical’
measures, e.g. PSNR. However, users are the ultimate
judges of the quality. In this Section, we present a practical
procedure to evaluate the two above quality measures of the
adapted contents.

Owing to the fact that the content value depends on many
quality dimensions, we should clearly instruct the subjects
so that every subject pays similar attention to the contents,
thus guaranteeing a stable evaluation.

We are interested in the quality (both semantic and
perceptual) of the adapted (or test) version of the content
compared to the original one. Therefore, each time during
the test, the subject should be presented with two content
versions, the original and then the adapted one, so that the
subject can give the score to the adapted version with
respect to the original one. This feature is similar to the
degradation category rating (DCR) method specified in
ITU-T Rec. P.910 [15].

As for the measures of quality, with every adapted
version, we ask the subjects to give two scores, one for the
‘understanding’ (i.e. semantic quality) and one for the
perceptual quality. The understanding score is explained as
the perceived amount of information conveyed by the
version, regardless of how the version is presented, while
the perceptual quality is defined as the satisfaction of the
subject while perceiving the version, regardless of what
information is conveyed. Each score will take an integer
value in a Likert-style ten-point scale, from 0 to 9 [16]. For
‘understanding’, a score of 9 means that the adapted version
shows sufficiently the original semantics, whereas a score of
0 means that the adapted version has totally different
semantics compared to the original. For perceptual quality,
a score of 9 means that the adapted version has the same
presentation quality as the original, while a score of 0 means
a very annoying and=or totally different presentation.

On the scoring scale, we only have the explanations at
the two ends (0 and 9). There are no descriptions for
the intermediate levels because such labels could not be
conceptually equal and may even mislead the subjects [11].
The score range from 0 to 9 is selected because with
modality conversion and content scaling, the quality levels
can vary widely, and it is easier for people to evaluate the
quality using a ten-point scoring scale.

The final score for each content test version is the mean
score of all subjects. The inter-subject reliability of the test
is checked using confidence intervals as specified in ITU-R
Rec. BT.500 [17].

The subjective evaluation is of high importance because
it can be applied to various cases of different modalities and
contents. It is the key tool to obtain the OCV model in our
work. However, subjective tests are expensive and time-
consuming, so computational methods used to estimate the
quality have long been an interesting research topic.

3.3 Computational methods

It is expected that the computational evaluations for various
modalities would be very different. In this Section, we focus
on video and image modalities that are the most popular in
practice. It should be noted that, the actual object of

the adaptation in this part is a video shot, which has been
segmented in advance.

3.3.1 Computational estimation of perceptual
quality: PSNR has been a popular objective quality
measure for a long time. In [7], we use PSNR for the PQ of
video modality and implicitly suppose that it is representa-
tive of the content value. However, the problem is that the
PSNR measure is not well correlated to human evaluation
[18–21], especially with the case of digital video where
blockiness and blurriness artifacts are very common. The
human evaluation of perceptual quality is normally
measured by the mean opinion score (MOS), which is
obtained by subjective tests [15]. Recently, there has been a
significant amount of work that deals with estimating the
‘objective MOS’, where the human judgment on quality is
modelled by exploiting knowledge about the human visual
system (HVS). An estimation method of objective MOS is
referenced [18, 19] if the method compares the adapted
version with the original one, and non-referenced [20, 21] if
the method just considers the artifacts in the adapted version
without comparing to the original. Current objective MOSs
are shown to be much more consistent with subjective
evaluation than the PSNR measure [18–21].

In this paper, the objective MOS proposed in [18, 19] is
used instead of PSNR to measure the PQ of video and image
modalities. This method is referenced, thus it is suitable for
obtaining the quality of the adapted version with respect to
the original. The basic procedure of this estimation method
is as follows. First, some quality features, which are
significant to human perception (e.g. edges, contrast,
temporal activity, etc.), are extracted and enhanced by
some perceptual filters. The quality features of the adapted
version are compared to those of the original version to
obtain a set of quality parameters that are indicative of
perceptual quality changes. These quality parameters are
then used to ‘deduce’ a quality score of the adapted version
using some quality models that emulate the HVS functions
(e.g. visual masking, error pooling, etc.) [18]. We find that
the quality model that incorporates both temporal and
spatial quality features has the highest accuracy. The reason
is that, in our experiment, the video is scaled widely in both
the temporal and spatial domains. The formula used to
compute the estimated distortion is given as follows [19]:

VQM ¼� 0:2097 � si loss

þ 0:5969 � hv loss

þ 0:2483 � hv gain

þ 0:0192 � chroma spread

� 2:3416 � si gain

þ 0:0431 � ct ati gain

þ 0:0076 � chroma extreme ð3Þ

where VQM (video quality metric) is the estimated
distortion, 0 � VQM � 1; si loss is the quality parameter
that detects a decrease of spatial information; hv loss is the
quality parameter that detects a shift of edges from
horizontal and vertical orientations to diagonal orientations;
hv gain detects a shift of edges from diagonal orientations to
horizontal and vertical orientations; chroma spread detects
changes in the colour sample distribution; si gain detects
the quality improvements that result from edge sharpening
or enhancements; ct ati gain is the product of the contrast
feature and the temporal information feature; and chroma
extreme detects severe localised colour impairments [19].
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The detailed descriptions and computations of these quality
parameters can be found in [18, 19].

Then, the value of PQ, measured on the 0-9 scoring scale,
is mapped from VQM as follows:

PQ ¼ 9 � ð1 � VQMÞ ð4Þ

3.3.2 Computational estimation of semantic
quality: In contrast to PQ, the computation of SQ has
been studied very little in the literature We denote SQimage

and SQvideo the semantic qualities of image and video
modalities. Without loss of generality, in this Section, these
qualities are normalised in the range [0,1]. It should be again
noted that we are interested in the quality of an adapted
version compared to the original version, not to a different
content (e.g. a sport video compared to a music video).

For video-to-image conversion, some key-frame extrac-
tion methods can be applied in order to get a sequence of
‘important’ images from the original video (shot). Each
image has the same quality as the corresponding frame in
the original video. The images are said to be ‘important’
because they are selected based on some semantically
salient features, e.g. motion activity, colour, etc.
The extraction methods assign to each image sequence
(i.e. a set of key-frames) a ‘semantic distortion’ D, ranging
from 0 to infinity [12, 13]. Each extraction method has its
own way to compute D. The extraction method of [12],
which will be used in our experiment, computes D as
follows. First, a semantically salient content feature vector
showing the instant temporal activity is computed at each
timestamp (i.e. for each frame in the original video). There
is a wide range of possible content features, such as the
intensity variance or the histogram of each frame [12]. In
our experiments, the MPEG-7 scalable colour descriptor is
used as the content feature. Then, D is defined as the sum of
the content feature differences, taken over all timestamps,
between a given image sequence and the full sequence (i.e.
the original video). Here, for an image sequence, the key-
frames are repeated to fill the ‘empty’ timestamps. In
principle, among the image sequences of the same number
of images, the sequence having the smallest D is the
extracted (or selected) sequence.
SQimage is actually the semantic quality of an image

sequence (also called an image version) compared to the
original video. We represent SQimage according to D as
follows:

SQimage ¼
1

1 þ a� D
ð5Þ

where a is a constant that controls the slope of the function;
a depends on content characteristics and on the way D is
computed.

As to the semantic quality of video modality, in [22], the
authors propose an importance value for a video object
based on the product of motion activity and spatial
complexity. In [23], the utility of a video shot is defined
as the product of the shot’s spatial complexity and duration.
Generally, the SQvideo of an adapted video version,
compared to the original version, is composed of temporal
semantic quality (SQ

temporal
video ) and spatial semantic quality

(SQ
spatial
video ), which are respectively affected by temporal and

spatial content scaling operations [Note 1]. For example,
SQ

temporal
video will be reduced if some frames are dropped

(i.e. scaling in the temporal domain), and SQ
spatial
video will

be reduced if the quantisation parameter is increased
(i.e. scaling in the spatial domain). In an extreme case,
when the degradation in the spatial domain is too severe,
e.g. all spatial details are lost, both SQ

spatial
video and SQvideo

would approach zero. Similarly, when the degradation in the
temporal domain is too severe, SQ

temporal
video and SQvideo would

also approach zero. So, SQvideo can be combined from
SQ

temporal
video and SQ

spatial
video as follows:

SQvideo ¼ SQ
temporal
video � SQ

spatial
video ð6Þ

SQ
temporal
video is reduced if frame dropping is used for content

scaling, so similar to SQimage, the value of SQ
temporal
video can be

represented by (5). Here, the frames to be dropped are not
determined by the image extraction method, but by the
frame dropping policy of a video transcoder (e.g. dropping
all B frames, or dropping all B and P frames); the
computation of D is still the same.

Alternatively, if only requantisation is applied for content
scaling in the spatial domain, we can assume that SQ

spatial
video is

affected mainly by the quantisation parameter q. Generally,
the relationship of SQ

spatial
video and q has the S-shape [24],

where the quality usually reaches its maximum value
when q approaches 1 and its minimum value when q
approaches 31. Figure 3 shows an example of the
relationship between SQ

spatial
video and q for the ‘foreman’

video encoded in MPEG-4 format (simple profile). Note that
in this Figure, the value of q is varied but the original frame
rate is fixed. Basically, the S-shape can be represented by
different analytical forms, of which one possibility is the
well-known logistic function [17]:

SQ
spatial
video ¼ bþ 1 � b

1 þ ec�ðq�dÞ ð7Þ

where b is the minimum value of SQ
spatial
video , b � SQ

spatial
video � 1,

0 � b � 1; the flexion point of the curve is at q ¼ d; and c
controls the slope of the curve.

In contrast to these analytical model-based methods, the
utility estimation in [4] tries to classify the video shots,
using some content features, into a number of classes. Each
class has a regression model mapping content features to
utility, which can be obtained by a machine learning
approach. This method is general for different application
domains, but it is complex and has been checked with the
PSNR measure only. In our experiments, the analytical
model-based methods will be employed.

Fig. 3 Example of relationship between subjective SQ
spatial
video and q

for the foreman video

The sample data show 6 pairs of (SQ
spatial
video , q), where q takes the values of 5,

10, 15, 20, 25, and 30. The curve is the logistic function (7) fitted to the
sample data

Note 1: In our work, content scaling in the spatial domain is limited to
requantisation, i.e. excluding spatial resolution scaling.
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4 Experiments

In this Section, we will explore the possibilities of modality
conversion for some streaming contents The operations of
content scaling and modality conversion in our experiment
are carried out offline. For a given original content, a
number of adapted versions of different modalities are
produced and stored in advance. Given a bitrate constraint,
the adaptation system will select a version having appro-
priate quality and modality to send to the user. For this
purpose, the OCV models of the content, consisting of
different modality curves, are first obtained using the
subjective method. The obtained models are used to help
answer the two basic questions raised in Section 1. Then, a
case study, in which we apply the computational methods to
estimate the content value of video and image modalities, is
considered.

4.1 Subjective experiments

4.1.1 Experimental setup: We have three orig-
inal contents. The first content is a landscape video
consisting of 240 frames (without audio channel) extracted
from the Lascaux stream of the MPEG-7 database.
The second content is the foreman video (without audio
channel) consisting of 300 frames. These two contents,
originally encoded in MPEG-4 format, have a luminance
frame size of 176 � 144 (QCIF), quantisation parameter
q ¼ 10, GOP structure of M ¼ 3 and N ¼ 15, and a frame
rate of 25 fps. The third content, an audiovisual (i.e. ‘audio-
video’, denoted as AV) clip extracted from the eye-exam
stream of the MPEG-7 database, is educational content
consisting of both audio and video channels. The video
channel, consisting of 330 frames, is encoded in the same
manner as the above content, except that its luminance
frame size is 256 � 174. The original audio channel is
encoded at 24kbits using the XingMPEGw encoder [25].
Some sample frames extracted from these three contents
are shown in Fig. 4.

For the first and second contents, to obtain the adapted video
versions, the original videos are scaled using a combination
of frame-dropping and requantisation. Image sequences are
obtained as the key-frames of the original video using the
method in [12]. The scaling operation for the image
modality is essentially to limit the number of images.
Extracted images are encoded in the JPEG format such that
their qualities are the same as the I-frames of the original
video. Text, which is the description of the original content,
is created manually. There is only one text version because
its bitrate is very small. Audio content is created as the
speech from the text. Then the XingMPEGw encoder is used
to produce two audio versions having bitrates of 24kbits and
8kbits respectively (using MPEG-2 audio layer 2 format).
All test versions of these two contents, together with their
modalities and bitrates, are listed in Table 1.

As for the third content, the adapted AV versions are
produced by scaling the video channel in the same way as
the previous two examples. Then, image sequences are
extracted and combined with the original audio channel to
create the ‘audio-image’ (AI) versions. That is, the audio
channel is kept intact in AV and AI versions. The audio
versions are obtained from the audio channel of the original
content. And a text version is produced as the script of the
teacher’s voice in the audio channel. All test versions of the
educational content are listed in Table 2.

The test versions are presented on a 20Prime Apple Cinema
LCD Monitor, at a resolution of 1280 � 768 and with
progressive display. The colour of the monitor background
is set to 50% grey.

Eighteen non-expert subjects were recruited to participate
in the experiments. All subjects have normal colour vision,
normal visual acuity or wear corrective glasses. The tests are
carried out based on the procedure presented in Section 3.2.
The instructions and explanation of the quality scores
are provided in written form. The subjects are asked to
pay equal attention to the temporal and spatial domains.
The semantics of the original content includes both
the spatial details and the temporal changes in the scene.

Fig. 4 Extracted sample images

a Landscape content
b Foreman content
c Educational content
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Before testing, some examples are displayed to the subjects
so they can understand the adaptation range. During the real
test, the test versions are shown randomly, so the subjects
are not biased by a priori knowledge of presentation
ordering.

4.1.2 Results and analysis: The screening of
subjects is carried out according to ITU-R Rec. BT.500
[17]. The result is that no subjects have been rejected. Then,
the mean quality scores and the associated 95% confidence
intervals are calculated. Figure 5 shows the perceptual and
semantic quality curves for different modalities of the
contents. The final OCV models, obtained by averaging PQ
and SQ (i.e. s ¼ 0:5 for all modalities), are shown in Fig. 6.
Note that the maximum content value is 9.

We see that the relationship of SQ and PQ, in which SQ is
always higher than or equal to PQ, is quite consistent
(Fig. 5). This is perhaps due to the fact that the users use
their experience in reasoning and understanding; a small
clue of information in a degraded presentation may be
enough for the users’ understanding. Especially, the PQ of
text modality is nearly zero; however, its SQ is quite
significant. That is, in a critical application (e.g. very low
bandwidth communication) where the semantics is the most
important thing, the conversion to text is really helpful.
Although having the same information, the good audio
version has a little higher SQ and PQ than the text version.
The reason is that, for users to perceive and catch the
content, listening is more comfortable than reading.

The 95% confidence intervals of quality scores for
different modalities (averaged for both landscape and
foreman contents) are given in Fig. 7. The overall average
value of the confidence intervals is �0:473 on the 0–9 scale
(equivalent to �5:26 on the 0–100 scale). This result is good
compared to other tests for video streaming over the Internet
[20] and wireless networks [21], in which the average
confidence interval is from �7:8 to �8:5 on the 0–100
scale. With the educational content, the overall average
value of the confidence intervals is �0:433 on the 0–9 scale.
The results of confidence intervals show a good agreement
between subjects. That means the tests are reliable, and also
PQ and SQ are all meaningful to the users. However, as seen
in Fig. 7, SQ usually has a larger confidence interval than
PQ, that means giving semantic scores is more difficult than
giving perceptual scores. We also see that the confidence
intervals (i.e. score variances) corresponding to converted
modalities are usually higher than those of the original
modality, except the case of the PQ of text and audio where
subjects usually give a score of 0 or 1 on the 0–9 scoring
scale. This finding implies that the increased variations of

Table 1: List of test versions and their characteristics for the landscape and foreman contents

Bitrate (kbit=s)

No. Modality Landscape Foreman Description

1 Video 80.00 119.33 Original video, q ¼ 10, f ¼ 25 fps

2 Video 45.78 71.33 Dropping all B frames, q ¼ 10, f ¼ 8:3 fps

3 Video 26.63 32.67 Dropping all B and P frames, q ¼ 10, f ¼ 1:7 fps

4 Video 13.36 26.33 Dropping all B frames, q ¼ 30, f ¼ 8:3 fps

5 Video 7.5 11.33 Dropping all B and P frames, q ¼ 30, f ¼ 1:7 fps

6 Image 53.33 52.27 Sequence of 32 images, q ¼ 10

7 Image 26.67 26.14 Sequence of 16 images, q ¼ 10

8 Image 13.33 13.07 Sequence of 8 images, q ¼ 10

9 Image 6.67 6.53 Sequence of 4 images, q ¼ 10

10 Image 1.66 1.63 Sequence of 1 image, q ¼ 10

11 Text 0.5 0.5 A stream of explanatory text

12 Audio 24 24 Explanatory speech with high quality

13 Audio 8 8 Explanatory speech with low quality

The first version is the original. The other versions are adapted versions, each has a certain modality, bitrate, and coding parameters. Note: f is the

frame rate

Table 2: List of test versions and their characteristics for
the educational content

No. Modality

Bitrate

(kbps) Description

1 AV 264.73 AV with original audio and video,

q ¼ 10, f ¼ 25 fps

2 AV 157.82 AV with scaled video (dropping all

B frames, q ¼ 10, f ¼ 8:3 fps)

3 AV 91.64 AV with scaled video (dropping

all B and P frames, q ¼ 10,

f ¼ 1:7 fps)

4 AV 72.73 AV with scaled video (drop all B

frames, q ¼ 30, f ¼ 8:3 fps)

5 AV 48.73 AV with scaled video (dropping

all B and P frames, q ¼ 30,

f ¼ 1:7 fps)

6 AI 124.07 AI with scaled image sequence

(32 images, q ¼ 10)

7 AI 74.04 AI with scaled image sequence

(16 images, q ¼ 10)

8 AI 49.02 AI with scaled image sequence

(8 images, q ¼ 10)

9 AI 36.51 AI with scaled image sequence

(4 images, q ¼ 10)

10 AI 27.13 AI with scaled image sequence

(1 image, q ¼ 10)

11 Audio 24 Original audio channel

12 Audio 8 Scaled audio with low quality

13 Text 0.5 Textual script of the speech

in audio channel

The first version is the original. The other versions are adapted versions,

each has a certain modality, bitrate, and coding parameters. Note: AV

means ‘audio-video’, AI means ‘audio-image’, and f is the frame rate
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subjective quality owing to modality conversion should be
considered in content adaptation.

From the final OCV model of the landscape content
(Fig. 6a), we find that the conversion point between video
and image modalities is at 23 kbits and the conversion point
between image and text is at 1.7 kbits. There is no
conversion point related to audio modality because its
content value is similar to that of text while its bitrate
is rather high. The obtained OCV model confirms that
modality conversion, specifically video-to-image and
image-to-text, is useful for this video content. A similar
phenomenon can be found with the foreman content
(Fig. 6b). The difference between these two contents is
that the foreman video has a little higher motion activity,
then the bitrates of scaled video versions of the foreman
video are higher than those of the landscape video. And thus
the conversion point of video-to-image is rather high, at
about 32 kbits.

As for the educational content (Fig. 6c), we see that,
depending on the bitrate constraint, the original AV
modality can be converted to either AI, audio, or text
modalities. Also we see that the combination of an audio

channel with either a low quality video channel or a
sequence of several images (even just a single image) gives
a rather good content value, compared to the audio
modality. This is actually a phenomenon of the cross-
modal influence, resulting in a synergy between the element
modalities, which makes the quality of a combined modality
(e.g. audiovisual) much higher than that of an element
modality (e.g. audio only or video only) [26].

4.2 Case study using computational methods

Now we use the computational methods to obtain the
perceptual quality and semantic quality for video and image
modalities. The landscape and foreman videos are again
used in this Section.

The PQ of scaled video versions, compared to the original
version, is obtained as the objective MOS using (4). This
objective MOS has been verified extensively and high
reliability has been reported [18, 19]. The PQ of image
sequences is obtained in the same way as a video version.
Yet, image sequences need preprocessing such that they can
be treated as a video. Specifically, key-frames of an image

Fig. 5 Quality curves of different modalities for the three contents

a Landscape
b Foreman
c Educational
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sequence are repeated to build a new sequence, of which the
‘frame-rate’ is the same as the original video. This new
sequence is then compared to the original video to get the
objective MOS.

The SQ of image modality is computed using (5).
Image sequences (i.e. image versions) are extracted from

the original video using the method in [12]. The
parameter a of each content is estimated by fitting the
function, using the mean square error criterion, to some
empirical training data. For the landscape video, the

Fig. 6 Final modality curves in OCV models for the three contents

s ¼ 0:5 for all modalities
a Landscape
b Foreman
c Educational

Fig. 7 Confidence intervals of perceptual and semantic qualities
with different modalities

The results are averaged for the landscape and foreman videos. The overall
average confidence interval is �0:473 on the 0–9 scale

Fig. 8 Semantic qualities of image modality for the landscape
content: estimated scores against subjective scores
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training data are five (D, SQimage) pairs corresponding to
the five image versions listed in Table 1. The obtained
value of a is 0.0023. In Fig. 8, the estimated SQimage

values are checked against subjective SQimage values for a
set of 20 image sequences extracted from the landscape
video. The numbers of images of these sequences take the
even integer values in the range from 2 to 48, except the
values 4, 8, 16, and 32 (corresponding to the sequences of
4, 8, 16, and 32 images that are used in the subjective

test). The subjective SQimage values of these 20 image
sequences are obtained from a separate subjective test.
The resulting Pearson correlation between the estimated
scores and the subjective scores is 0.97. Note that the SQ
obtained by (5) has a maximum value of 1, thus we need
to rescale this quality into the 0–9 scoring scale of the
subjective test using the scale factor of 9. Similarly, with
the foreman video, the value of a is 0.0063 and the
corresponding Pearson correlation is 0.98.

Fig. 9 Comparison of subjective and estimated qualities for landscape content and Foreman content. The quality curves of video and image
modalities are separated for the purpose of clarity

a, b Landscape content
c, d Foreman content
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The SQ of video modality is computed using (6). First,
SQ

temporal
video is estimated using (5) as the above (i.e. using the

same a for both video and image modalities), with D
computed for the frame-dropped video versions (specifi-
cally, all B frame dropped and all B and P frame dropped
versions). Second, SQ

spatial
video is computed using the logistic

function (7). The curve in Fig. 3 shows an example of the
logistic function fitted to the subjective data of the foreman
video, where b ¼ 0:72, c ¼ 0:33, and d ¼ 22:6. The overall
SQ of video modality is then computed as the product of (5)
and (7). Suppose that to scale the video content, we can vary
q with 5 levels (namely 10, 15, 20, 25, 30) and change the
frame-dropping with 3 levels (namely no-dropping, B frame
dropping, B and P frame dropping). Then we have totally 15
video versions, which is, in our experience, enough for
selecting an appropriate video version in practical cases.
The Pearson correlation of the estimated SQvideo with the
subjective SQvideo is calculated over the set of these 15 video
versions, and the resulting correlation is 0.95. For the
landscape content, the corresponding values are b ¼ 0:64,
c ¼ 0:31, d ¼ 20:9, and the Pearson correlation is 0.96.
These correlation results mean the estimated SQvideo is
suitable to replace the subjective SQvideo.

Finally, the estimated quality curves of the landscape and
foreman videos are shown together with the subjective
counterparts in Fig. 9. For the purpose of clear comparison,
the video quality curves and image quality curves are
depicted separately. We see that the estimated qualities are
consistent with the subjective qualities.

The above experiments show that modality conversion is
a good choice to widen the range of QoS control for UMA.
Furthermore, the subjective method and computational
methods to evaluate the content value can effectively help
to build realistic OCV models, which are used to make
decisions on modality conversion.

It should be noted that, similar to the rate-quality curves
[3, 4], the OCV model is applicable to both offline and
online adaptations. That is, the model can describe not only
some pre-transcoded versions (offline case) but also the
potential scaling operations for a content (online case).
In the online case, approximation can be used to estimate the
content value of potential content versions. For example,
the formulation of the semantic quality of image modality is
built analytically based on 5 sample points (5 image
versions), but this formulation can be used to estimate the
quality of other image versions, including the potential
versions.

5 Related work

In addition to the constraints of modality-presenting
capability and resource, modality conversion can be studied
from some other perspectives. In [5], we show how the user
preference on conversion can be specified efficiently and
then, based on a conceptual OCV model, we propose a way
to incorporate the preference into the adaptation process.
In the context of HCI, the modality selection (conversion) is
also studied with respect to different device types [27].
In one sense, this can be considered as one case of modality
conversion according to the user preference, where users
have different preferences when using different devices.
Additionally, semantics analysis would give many useful
hints to modality conversion [28]. The cross-modal
influence on the overall (e.g. audiovisual) quality, as well
as on individual channel (e.g. audio or visual) quality, is also
an important semantics-related issue (e.g. [26]). However,
research on this issue is still at the initial stage. Currently,
there is also some related work that employs metadata

to automate the conversion process between specific
modalities=formats [29, 30].

There is also some work studying multidimensional
subjective quality. In [14, 31], video quality is evaluated
with different frame rates. The users’ satisfaction (i.e. PQ) is
obtained subjectively, whereas the informational transfer
(i.e. SQ) is obtained ‘objectively’ by counting the users’
correct answers to a predefined question list that concerns
the semantics of a video. The work in [32] deals with
football content, where video and animation presentations
are studied, focusing on the reality and enjoyment compared
to the real game. Our work is different in that we consider
the ‘fidelity’ of the adapted content with respect to the
original and in that the adapted content is varied in terms of
both quality and modality. Moreover, SQ in our work is not
computed based on ‘correct answers’ as in [14, 31, 32]
because the questions are specific for a given content and
may not sufficiently cover the semantics of the content.

6 Conclusions

For the purpose of seamless modality conversion, we have
presented a systematic approach to help determine the
conversion boundaries between modalities. We presented
the overlapped content value (OCV) model to represent the
dependence of content value on resource and modalities.
In the context of content adaptation, we pointed out two
important aspects of content value: the perceptual quality
and the semantic quality. Then we presented the subjective
method to evaluate the content value of a content that may
be drastically scaled or converted to different modalities.
For the specific case of video and image modalities, we
discussed some computational methods to replace the time-
consuming subjective evaluation. Finally, by comparing the
content values of different modalities in the obtained OCV
model, the adaptation engine can quantitatively make
decisions on modality conversion in addition to content
scaling. Our future work will focus on the objective
evaluation of content value across other modalities
(e.g. graphics, 3-D video). The semantics factor will be
also explored by considering some genre hierarchy of
multimedia contents.
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