
50 communications of the acm | december 2012 | vol. 55 | no. 12

practice
Doi:10.1145/2380656.2380671

 Article development led by
 queue.acm.org

A proposal to improve the performance
and availability of streaming video and other
time-sensitive media.

bY aiman eRbaD anD chaRLes “bucK” KRasic

sender-side
buffers and
the case for
multimedia
adaptation

Such stringent standards, however,
are in practice carefully constructed to
exclude problematic content such as
video streaming and interactive virtu-
al environments. If sites counted vid-
eo-streaming rebuffer events against
their availability, their multiple nines
availability would vanish in a poof.
Yet, one could argue that a video re-
buffer just at the moment of the win-
ning goal in the World Cup is a form
of unavailability just as severe as, say,
a failure that causes a social-network
user to repeat some steps in compos-
ing a post. The goal of this article
is to propose methods for adaptive
transport that are ultimately aimed at
bringing the performance and avail-
ability of streaming video and other
time-sensitive media in line with that
of traditional Web content. To do so
we have developed an enhanced trans-
port called Paceline.

the internet/WeB architectUre has developed to
the point where it is common for the most popular sites
to operate at a virtually unlimited scale, and many sites
now cater to hundreds of millions of unique users.
Performance and availability are generally essential
to attract and sustain such user-bases. As such, the
network and server infrastructure plays a critical role in
the fierce competition for users. Web pages should load
in tens to a few hundred milliseconds at most. Similarly,
sites strive to maintain multiple nines availability
targets—for example, a site should be available to
users 99.999% of the time over a one-year period. I

m
A

g
E

 B
Y

 T
H

O
m

A
S

 P
A

J
O

T

december 2012 | vol. 55 | no. 12 | communications of the acm 51

As high-bandwidth low-latency mul-
timedia applications such as videocon-
ferencing, online games, and virtual re-
ality applications become mainstream
on the Internet, they will saturate the
network, especially in mobile environ-
ments, much as other high-bandwidth
(but high-latency) applications such
as peer-to-peer file sharing do now.
Videoconferencing, for example, is be-
coming a common service provided by
social-networking sites (for example,
Hangouts in Google). More than ever,
real-time video streaming is becom-
ing an integral component in many
applications, such as live broadcasting
of big events (for example, the Olym-
pics, Super Bowl, and World Cup), dis-
tance learning, and on-demand video
(Netflix). In addition, the global video-
games industry was a $64 billion busi-
ness in 2012, growing larger than the
movie industry. Fast-paced large-scale

games have high bandwidth require-
ments,1 so they do not adhere to the old
wisdom of network games having thin
communication streams.

The combination of high bandwidth
and low end-to-end latency is poorly
supported in popular transports.3,8

Paceline is an enhanced transport de-
signed to support interactive, high-
bandwidth applications. Contrary to
conventional wisdom in multimedia
transports, Paceline has not been im-
plemented over User Datagram Proto-
col (UDP), nor does it propose changes
to TCP. The deployment obstacles and
duplication of effort faced by solutions
that alter or replace TCP outweigh the
challenges of mitigating its impair-
ments. Instead, Paceline uses several
innovative techniques to address TCP
latency problems.

On top of TCP transport delays,
large sender-side application buffers

can accumulate and delay important
data, exerting more influence over
perceived quality. To have graceful
failure modes for multimedia content
in diverse environments (from giga-
bit broadband networks to congested
wireless links), Paceline enables ap-
plications to adapt demands based on
the available resources, and it favors
important data. It supports quality
adaptation based on the Priority-Prog-
ress model,9 shown to be more stable
in terms of packet delay and jitter for
video streaming over TCP.10

end-to-end tcP Latency analysis
Since interactivity and transport la-
tency are a key focus here, let’s look
at the sources of TCP latency and set
the context for Paceline. As depicted
in Figure 1, end-to-end transport la-
tency is commonly broken down into
four components: processing delay, as

52 communications of the acm | december 2012 | vol. 55 | no. 12

practice

a result of processing speed; queuing
delays in nodes (hosts and network
routers and switches); transmission
delay resulting from the bit-rate of
transmission; and propagation delays
caused by physical distances. When
one or more of those delays becomes
large, interactivity (application-to-
application message delivery) will suf-
fer. Of these four latency components,
queuing delay (inside TCP send buffers
and network node queues) is the dom-
inant cause of latency for high-band-
width TCP applications. This is known
as the bufferbloat problem.7

Processing delay is generally negli-
gible because of fast CPUs and careful
design of transport algorithms. Trans-
mission delay will be bounded to

delaytransmit = mss/link _ rate

assuming for the moment that ADUs
(application data units) fit within trans-
port segments up to an mss (maximum
segment size). With common values of
link _ rate (Mbps or Gbps) and mss
(for example, 1,500 byte), delaytransmit
will be a small value (for example, sub-
millisecond). This leaves propagation
delay and queuing delays as the domi-
nant contributors to latency.

One-way propagation delay has
lower bounds set by the laws of phys-
ics. Typical Internet path RTT (round-
trip-time) values are in tens of millisec-
onds for intra-continental distances,
or around 100 or 200 milliseconds for
distances that cross oceans or traverse

satellites. In addition, TCP provides
reliability via retransmissions that can
add extra queuing delay (multiples of
the propagation delay) to the total. In
the common case, however, TCP’s fast
retransmit mechanism should limit
the retransmission-induced queuing
delay to an RTT or two.

More importantly, TCP’s socket
buffer is often large enough that it can
cause queuing delays in seconds. In
many realistic conditions, the queu-
ing delay specifically caused by the
sender-side TCP socket buffer is the
dominant portion of the total delay
because of large kernel socket buffers
employed by TCP implementations.
For example, with a typical TCP send
buffer size of 64KB, and a 300Kbps
video stream, a full send buffer con-
tributes 1,700ms of delay. To avoid
unnecessary queuing delays, the ker-
nel can be changed to dynamically
tune the socket buffer size, bringing
the end-to-end delay within two RTTs
most of the time, while leaving TCP’s
congestion control unchanged.8

Paceline builds upon this idea, but
is designed to avoid the need for kernel
modifications. A user-level approach
avoids the deployment obstacles of in-
troducing new TCP implementations,
deals gracefully with transparent prox-
ies that can defeat an in-TCP-based ap-
proach, and allows a failover mecha-
nism to reduce the worst-case latency
when TCP becomes stalled in the case
of back-to-back losses and retransmis-
sion timeouts.

Data service model:
not all Data is born equal
In diverse environments, demands
often exceed available bandwidth,
leading to large sender-side queues.
Queues can introduce head-of-line
blocking (a delay that occurs when a
line of packets is held up by the first
packet) and hinder perceived quality
if all the data items are treated equally
and processed in a FIFO (first-in first-
out) order. Minimizing the amount
of data committed to TCP socket buf-
fers reduces TCP sender-side queu-
ing delays and pushes the sender-side
buffers up the stack to the layer above
TCP (Paceline in our design). Here, we
describe the transport service model
in Paceline with the necessary qual-
ity adaptation mechanisms to manage

figure 2. streams of application data units.

Web-based Game Streams

1. Web Page Download Stream 2. Chat Stream Streams

Messages

Chunks

1.1 Image

1.1.1 1.1.2 1.2.2 1.3.1 1.3.2 1.3.3 2.1.1 2.1.2 2.2.1

1.2 Image 1.3 Script 2.1 Video 2.2 Audio

figure 1. components of end-to-end latency.

Processing

Queuing transmission

Propagation

node or Router

Link

host hostRouter

networkLink Link

practice

december 2012 | vol. 55 | no. 12 | communications of the acm 53

the sender-side buffers based on the
Priority-Progress model.

Paceline provides a reliable mes-
sage-based service model, chosen be-
cause low latency is a primary goal and
messages provide a natural explicit
means for the application to inform
the transport about latency prefer-
ences, as well as representing an ADU.
Paceline’s programming interface al-
lows the application to specify mes-
sage importance on a per-message
basis, and Paceline delivers messages
in order of importance. The ability to
queue messages ahead of time is es-
sential to achieve high bandwidth,
but the ability to prioritize messages
is necessary to prevent head-of-line
blocking between messages of differ-
ent importance levels and the attend-
ing loss of responsiveness.

Unlike the byte-stream service
model, Paceline allows the sender to
cancel a pending message. This fea-
ture is motivated by the goal of respon-
siveness because the old data will slow
down new messages and waste band-
width. In conjunction with congestion
control, cancellation is used by the ap-
plication to adapt the rate of message
delivery to the underlying network con-
ditions. Informed cancellation main-
tains reliable delivery semantics while
allowing applications to cancel stale
messages. This provides an alternative
to random dropping of messages (for
example, UDP) under congestion. At
the receiver, Paceline passes messages
directly to the application. The appli-
cation needs to handle out-of-order
delivery and missing data introduced
by message priority and cancellation.

In Figure 2, each ADU such as a video
frame or a Web image uses a Paceline
message. Each message is part of a full-
duplex transport instance referred to
as a stream (for example, video stream
or Web document download stream).
Similar to SPDY,2 an application-layer
transport protocol designed for mini-
mal latency, Paceline supports multi-
streaming, which multiplexes concur-
rent streams on top of a single TCP
channel. Applications can perform
the following operations on streams:
creation, sending a message, cancel-
ing a message, and deletion. Streams
are decoupled from the underlying
TCP channels since all streams with
the same host address and port num-

ber are multiplexed over the same TCP
channel. A channel is the underlying
communication primitive, identified
by the host address and port number.

Like SPDY, Paceline efficiently
multiplexes small Web transactions
on top of a single TCP channel us-
ing short-lived streams (that is, those
with few messages). More impor-
tantly, its innovative fairness design
allows timely communication across
concurrent long-lived streams such
as videoconferencing or games. Dif-
ferent high-bandwidth streams can
share a link and have varying require-
ments in terms of latency and high-
level application-quality metrics (for
example, frame rate). For example,
a game transfers several kinds of
streams such as player status updates,
player video coordination chats, ad-
vertisements, and game control mes-
sages. The frequency of advertise-
ments might be relaxed if necessary
to help ensure player updates are
sent promptly. Similarly, a distance-
learning session can transfer voice,
video, and slides from different users
as separate streams multiplexed over
the same TCP channel and can have
different quality metrics.

To help illustrate Paceline’s service
model, Figure 3 contains a pseudo
code example of the logic that an adap-
tive real-time application might use, in
this case an adaptive videoconferenc-

ing client. The client calls the send _
video _ frame function to send a
video-frame message. This function
sends the message with an importance
specified using an application-specific
utility measure, reflecting the relative
importance of individual frames to
perceived quality. If congestion control
restricts the rate of the stream, the cli-
ent will cancel messages of low impor-
tance when their utility has expired,
while messages of high importance
will be sent. For messages of equal
importance, Paceline breaks the tie ac-
cording to position. Paceline’s service
model provides a clean interface for
rate adaptation to match application
demands with network conditions, in-
stead of committing messages to the
network transport (that is, socket buf-
fer) and then suffering from transport
queuing delays.

To benefit from Paceline’s data-
service model, applications have to
develop domain-specific adaptation
policies. High-definition videocon-
ferencing, for example, has two di-
mensions for adaptation: spatial and
temporal quality. For each ADU, the ap-
plication calculates an importance val-
ue to estimate its contribution to video
quality. Each ADU represents a video
layer and uses a Paceline message.

In addition to these two quality di-
mensions, higher-level indicators can
be incorporated, such as the active tab,

figure 3. adaptive videoconferencing client.

send_video_frame (player, stream, frame) {
 /* Set message data and length */
 msg_init.data = frame.data;
 msg_init.length = frame.data_len;

 /* Set message importance */
 msg_init.importance = get_importance(frame);
 msg_init.virtual_time = get_virtual_time(frame);
 msg_init.sent = video_frame_sent;

 /* Sending a frame with cancellation */
 stream.msg_create(msg_init, &frame.msg_handle);
 stream.msg_write(frame.msg_handle);
 frame.expire_event = expire_video_frame;
 add_timer(frame.deadline,
 frame.expire_event);
}
expire_video_frame (frame, stream) {
 stream.msg_cancel(frame.msg_handle);
}
video_frame_sent (player, frame) {
 cancel_timer(player,frame.expire_event);
}

54 communications of the acm | december 2012 | vol. 55 | no. 12

practice

mouse clicks, and position of scroll bar
to derive the adaptation policies. Simi-
larly, FPS (first-person shooter) games
have limited upload bandwidth to send
frequent updates to all game players,
especially in epic fights with a large
number of players concentrated in one
area. Games can reduce the bandwidth
requirements using criteria such as
proximity, recency, and aim, because
players are most likely interested in
nearby players or those with whom
they have recently interacted.

Paceline is implemented as a us-
er-level library and is layered above
standard TCP implementations. As
depicted in Figure 4, Paceline’s archi-
tecture consists of two layers: stream
and channel. The stream layer man-
ages the application-message queue
in Paceline and ensures low latency
for data with more influence over
quality by enabling adaptation be-
tween messages in one stream and
across streams. This layer consists of
two subsystems: the message framing
and fragmentation; and the stream
fairness. The channel layer handles
the TCP low-level sender-side delays.
It consists of the latency controller
and the connection manager.

framing and fragmentation:
Which chunk to send?
Fragmentation is the first of several
techniques that improve transport

latency. Paceline allows application-
level messages of arbitrary size. To
decouple transmission delay of poten-
tially large application messages from
lower-level queuing delays, the data-
transfer mechanism supports send-
er-side fragmentation of application
messages into Paceline chunks, and
receiver-side reassembly of chunks
back into the original application mes-
sages. Chunks are bounded to a small
size, typically a fraction of TCP’s maxi-
mum segment size.

Paceline includes application-level
message queues. Unlike lower-level
queues that operate in FIFO order,
Paceline’s message queues are based
on priority, so that chunks of newly ar-
rived important messages may quickly
preempt older less-important ones.
Therefore, chunks of messages with
high importance are released to the
network faster and observe minimal
queuing inside Paceline, as well as
minimum application-level transmis-
sion delay. Cancellation allows the ap-
plication to abort a low-importance
message if its overall transmission de-
lay is too large.

stream fairness:
from Which stream?
Paceline messages (and chunks) are
part of a full-duplex stream. Each
stream in Paceline has a separate prior-
ity queue with chunks ready to be sent.

For fair and timely communication
across concurrent streams, Paceline
supports two notions of fairness: quali-
ty and resource fairness. Resource fair-
ness guarantees fair bandwidth across
streams, while quality fairness ensures
fair application-level quality. Quality is
specified in generic terms but derived
from the application level; examples
are the frames per second in videocon-
ferencing or the updates per second in
online games.

While FIFO or round-robin policies
are simple ways of multiplexing data
of different streams over the underly-
ing channel, timeliness necessitates
a better notion of fairness among
concurrent streams, especially when
bandwidth is limited. Paceline imple-
mented a fair sharing policy among ac-
tive streams that has data inspired by
weighted fair queuing. Each stream has
a cumulative virtual time, an increas-
ing counter quantifying the resources
a stream (messages) has used since it
was created. Active streams are orga-
nized in order of their virtual time, and
chunks are sent from the stream with
the minimum virtual time. The impor-
tant factor regulating how streams are
multiplexed is how their virtual times
are initialized and adjusted.

Virtual time initialization is based
on two rules:

 ˲ Rule 1 (Fair Start). When a stream
is created its virtual time is set to the
minimum virtual time of all active
streams to ensure that existing streams
do not starve until the new stream
catches up in virtual time. If no active
streams exist, the virtual time of the
newly entered stream is set to the maxi-
mum time of all idle streams, or zero if
this is the only stream.

 ˲ Rule 2 (Use It Or Lose It). If a stream
becomes active after being idle, the
stream’s virtual time is set to the maxi-
mum of its virtual time and the mini-
mum virtual time of all active streams.
This guarantees that no stream, while
idle, can save its share of resources for
future use.

When a stream transmits a message
over the underlying channel, its vir-
tual time is updated according to the
virtual times of messages sent, which
are based on the application fairness
criteria. Conventional resource fair-
ness increments the virtual time based
on the size of each message transmit-

figure 4. Paceline architecture.

Application

TCP Sockets

Paceline

Paceline Chunks

Message Streams

Framing and Fragmentation

Stream Fairness

Connection Manager Latency Controller

Stream Layer

Channel Layer

practice

december 2012 | vol. 55 | no. 12 | communications of the acm 55

ted by the stream. On the other hand,
quality fairness increments the virtual
time based on an indicator of the ap-
plication quality of experience, such as
the frame rate. By scaling virtual times
of streams with different factors, Pace-
line can allocate different shares to
different streams, providing weighted
fair sharing.

Latency controller:
how many chunks to send?
To give applications more agility in
adapting data delivery, Paceline re-
duces the amount of committed data
in TCP’s outgoing buffer and keeps
data in its own message queues. The
latency controller monitors the prog-
ress of the underlying TCP flow and
regulates the rate of application data
(chunks) delivered to the sender-side
TCP. The goal of this controller is to
send chunks into TCP fast enough to
allow the congestion control to claim
the flow’s fair share of available band-
width, but not so fast as to cause an
unnecessary amount of FIFO queu-
ing to accumulate in TCP’s outgoing
socket buffer.

Paceline’s controller regulates the
writing of application data to TCP in a
way that dynamically matches the buf-
fer fill level to a value close to the size
of TCP’s congestion window (cwnd)—
namely, cwnd+3×MSS. This design
implements at the user level the same
strategy that was implemented inside
the kernel in a previous study and was
shown to strike the best balance be-
tween latency and throughput.8

Paceline has two distinct schemes
to estimate the cwnd: kernel-assisted
and the purely user-level approach.
Each has specific advantages. The ker-
nel-assisted scheme, called the PaceK
controller, uses information directly
from the kernel TCP via the socket
API. While this scheme is simple
and effective, it requires information
that only some implementations of
TCP make available. Thus, the PaceK
controller is not fully portable. Also,
transparent proxies in the network
path would likely defeat the PaceK
controller’s ability to regulate queu-
ing delay, as the TCP socket buffers
in the proxies operate independently
and can easily become points of ma-
jor queuing delay if they precede the
path bottleneck.

The purely user-level controller in
Paceline is called PaceA. Unlike the
PaceK controller, it uses only the com-
mon TCP socket API available on all
major operating systems. Thus, PaceA
is more portable (no need to extend
or modify kernels), easier to deploy
(for example, in relation to firewalls),
and avoids problems that result from
intermediate proxies. At the user level
the value of cwnd is not available so
the primary goal of PaceA is to derive
cwnd’, an estimate of TCP’s cwnd.
PaceA uses application-level acknowl-
edgments (P-ACKs) to measure latency
and bandwidth and estimate cwnd’ as
the latency × bandwidth. More in-
formation about the design of PaceA is
available elsewhere.5

connection manager:
Which tcP socket to use?
In Paceline, the latency controller is
the basic technique for limiting TCP la-
tency. In our experiments, however, the
distribution of latencies across messag-
es retained a prominent tail, and there
was a wide gap (for example, more than
a factor of eight) between median and
worst-case latencies. We diagnosed the
worst-case latencies through a combi-
nation of instrumentation in Paceline
and packet-trace analysis. Under heavy
congestion, TCP can experience back-
to-back losses leading to one or more
retransmission timeouts. Our diagno-
sis confirmed that the worst-case la-
tencies were correlated with such epi-
sodes of exponential back-off. Similar
problems are observed when testing
Paceline over wireless links with poor
signal strength. To reduce their im-
pact and introduce a ceiling on worst-
case performance, Paceline includes a
failover mechanism to supplement its
basic latency-limiting mechanisms.

Paceline’s failover is analogous to
the scenario where the user presses the
stop/reload buttons in a Web browser
upon encountering slow response.
Automated failover may sound quite
radical, but our evaluation shows that
our implementation achieves signifi-
cant reductions in worst-case latencies
while preserving bandwidth fairness.
Automated failover resembles remov-
ing exponential back-off from TCP,
shown to be safe in previous work.

The connection manager main-
tains a number of back-up TCP sock-

ets and implements failover in a man-
ner that is fully transparent to the
application. We switch to a new TCP
socket when a threshold is reached.
The threshold setting is subject to a
trade-off between latency and fairness
since replacement channels start in
TCP slow-start, possibly resulting in
underutilization of the network. The
failover threshold is set dynamically
using an equation that resembles
TCP’s RTO (retransmission timeout).
A safety margin was added to the
failover factor to reduce the number
of false positives caused by noise in
measurements outside the kernel.

We evaluated Paceline experimen-
tally within a network-emulation test-
bed. Our measurements are compared
against two points of reference: TCP,
used to quantify the improvements re-
sulting from Paceline; and SST (Struc-
tured Stream Transport),6 implement-
ed over UDP with no transport buffer
queuing delays. SST provides a rich
service model including reliable mes-
saging and congestion control, and it
includes the full range of capabilities
one might expect from any realistic
clean-slate replacement for TCP. Thus,
we use SST to approximate a best-case
reference point against which to com-
pare Paceline.

In TCP mode, our application still
uses the service API of Paceline, but the
latency controller is disabled; hence, we
send data via TCP as fast as it will allow.

Our network set-up uses the com-
mon dumbbell topology, where a set
of servers on a LAN connect through
a single-bandwidth-delay-constrained
link, emulating a congested WAN in-
tra-continental path, to a set of clients
on a remote LAN. For the WAN path,
we emulate a 30ms RTT delay with a
bandwidth limit of 16Mbps or 12Mbps.
The WAN bottleneck uses drop-tail
queuing with a queue size of twice the
bandwidth-delay product of the WAN
adding 60ms when the bottleneck be-
comes congested. The experiments are
set up to reflect rather harsh congested
conditions, where the bottleneck WAN
link is persistently saturated. This is
the range in which TCP’s performance
leaves a lot to be desired.

transport Performance summary
Paceline improves upon TCP’s weak-
nesses and maintains its strengths.

56 communications of the acm | december 2012 | vol. 55 | no. 12

practice

The low-level transport performance
compares the transport latency, utili-
zation, and fairness of Paceline with
that of TCP. Paceline reduces the me-
dian, the 99.9%, and worst-case end-to-
end latency by a factor of three to four
times. On the other hand, Paceline has
similar bandwidth fairness to TCP,
high network utilization, and reason-
able wire overhead. Paceline is incre-
mentally deployable on the Internet
since it shares bandwidth fairly with
TCP flows while retaining all latency
improvements. (For detailed transport
performance, see Erbad et al.5)

application-Level Performance:
Does adaptation Work?
Here, we evaluate the performance
of adaptive applications in terms of
application-level quality metrics. The
evaluation sheds light on the trade-
off between average quality and inter-
activity, and then shows the message
latency in Paceline with respect to as-
signed importance.

Quality and interactivity trade-off.
One of the main issues to consider is
the nature of the trade-off between
overall multimedia quality and inter-
activity—better interactivity (lower la-
tency) generally comes at the expense
of video quality (for example, spatial
detail). The following experiments fix
the number of flows to eight videos
(4Mbps each, extremely congested
link) but vary the level of interactivity
using a configuration parameter of the
latency threshold (the amount of time
each ADU is given before it expires and
gets canceled by the sender) on outgo-
ing messages.

To quantify video performance
close to the level of user experience,
we measure the frame rate in fps
(frames per second). Adaptation in
the videoconferencing test applica-
tion prioritizes ADUs according to
two dimensions of video quality: tem-
poral quality (frame rate) and spatial
quality, measured with PSNR (peak
signal-to-noise ratio) of frames. The
video format is scalable so each video
frame consists of eight ADUs with
one base spatial-layer ADU and seven
(progressive) enhancement spatial-
layer ADUs. The default adaptation
policy is biased toward temporal qual-
ity. That is, as the bit rate of a video
stream drops, spatial enhancement

figure 5. Latency threshold versus temporal quality.

30

25

20

15

10

5

0

100

te
m

p
or

al
 Q

u
al

it
y

(f
ra

m
es

 P
er

 s
ec

on
d

)

1,000
Latency threshold (ms)

10,000

 PaceA PaceK SST SST

figure 6. end-to-end message latency based on message importance.

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

0

0

m
es

sa
g

e
L

at
en

cy
 (

m
s)

m
es

sa
g

e
L

at
en

cy
 (

m
s)

message importance

(a) median

(b) 99.9th Percentile

message importance

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

 TCP Paceline

 TCP Paceline

practice

december 2012 | vol. 55 | no. 12 | communications of the acm 57

ADUs are dropped; and when the spa-
tial quality nears minimum, then fur-
ther reductions in bit rate will cause
dropping of base ADUs, which will re-
sult in dropping entire frames (lower
temporal quality). Therefore, in the
congested settings used for testing,
the temporal quality (that is, frame
rate) is the quality measure.

Figure 5 shows the average frame
rate as the latency threshold is var-
ied. Notice that on the rightmost side
of the graph with the highest latency
thresholds (tens of seconds), all trans-
ports achieve full temporal quality of
the video (30fps). The temporal qual-
ity when using TCP drops much more
rapidly moving leftward (with lower
latency thresholds). Even though TCP
delivers high throughput, the high
transport latency with TCP causes
frequent head-of-line delays blocking
between low-importance ADUs (spa-
tial enhancements) and high-impor-
tance ADUs (base layers). This trans-
lates to dropped frames and a much
lower fps rate.

The trends exhibited by SST and
Paceline are very similar. Recall that
SST’s implementation completely
avoids transport queuing delays.
Comparing temporal qualities of
Paceline and SST, we see that Pace-
line also eliminates most TCP send-
er-side queuing delays. The knees of
the Paceline and SST curves in the
100ms–200ms zone indicate that even
in this heavily congested network, it
is possible for an application such as
videoconferencing to keep within the
zone of reasonable interactivity with a
modest impact on quality. On the oth-
er hand, using TCP as the transport
results in quality not increasing sub-
stantially until well over the 500ms
point, which is probably not accept-
able for comfortable interaction.

Importance effects on latency. Up
to this point, Paceline was shown to
be within the zone of responsiveness
similar to clean-slate protocols such
as SST. This section investigates the
effects of importance on message la-
tency. Messages are spread into buck-
ets according to their importance,
and the one-way end-to-end latency of
the delivered messages is measured
in each bucket. Figure 6a presents the
median latency, while Figure 6b is the
99.9th percentile latency.

As shown in Figure 6, both TCP (with
adaptation) and Paceline have lower
median and worst-case latency for im-
portant data, with an improvement of
more than a factor of two over less-im-
portant data. Since TCP commits mes-
sages in the kernel send buffer, TCP
flows have higher overall latency with a
median that is well above the expected
latency (275ms). Paceline, on the other
hand, keeps the median latency very
close to the one-way delay (75ms) for
more important data. Paceline also has
consistent 99.9th percentile latency
due to failover, which is close to 400ms
for all messages. The 99.9th percentile
latency in TCP is above a second for the
majority of messages, reaching almost
1.8 seconds in some cases.

We evaluated quality fairness across
streams in Paceline. Video quality is
defined by the temporal quality (fps).
Figure 7 plots the frame rate of three
videos over time. The videos (trans-
ferred over three streams) display with
identical quality (in terms of frame
rates) that changes based on network
conditions. It is interesting to note
that streams were allocated different
bandwidth shares in the same period
to achieve equal quality.

Quality fairness in the Paceline
model is completely controlled by ap-
plication-quality metrics. We provide
applications with the notion of im-
portance to control adaptation within
streams. Weights and virtual time, on
the other hand, specify importance
across stream boundaries.

Limitations and future Work
The Paceline implementation is writ-
ten in C, and we have been mindful of
performance and efficiency from the
start. Using QStream, a complete end-
to-end implementation of adaptive
video streaming, was helpful because
the application provided visual and
quantitative feedback directly con-
nected to each performance change.
Later Paceline was used in research on
massive scale gaming, which revealed
performance weaknesses not apparent
in the video setting. Prominent among
these, certain elements of game traf-
fic (state updates) involve very high
volumes of small messages, and keep-
ing processing overhead down in this
setting is a challenge, particularly in
terms of taxing dynamic memory allo-
cators. We have a design to reduce the
Paceline memory allocation to at most
one per application-level message.

Current transport protocols such
as SPDY embrace all-SSL-all-the-time
methodology, partly motivated by se-
curity but also motivated to mitigate
myriad problems caused by middle
boxes that are intolerant (intentionally
and not) to new protocols. In hindsight,
it would have been useful to think of
SSL integration from the early stages
of Paceline’s design. Paceline can per-
form SSL negotiation at the channel
level, amortizing the cost of the initial
negotiation. We also need to ensure
that encryption happens only when
messages are written to the socket in or-
der to avoid canceling encrypted data.

figure 7. Quality fairness policy: temporal quality

30

25

20

15

10

5

0

60

te
m

p
or

al
 Q

u
al

it
y

(f
ra

m
es

 P
er

 s
ec

on
d

)

time (s)

70 80 90 100 110 120

 Stream1 Stream2 Stream3

Stream 1 Stream 2 Stream 3

58 communications of the acm | december 2012 | vol. 55 | no. 12

practice

The Minion architecture of Nowlan et
al.12 has several features that would be
beneficial and complementary to Pace-
line’s strengths, such as its SSL strategy
and wire-compatible changes to TCP
that allow unordered receive.

Paceline reduces sender-side queu-
ing delay by writing the minimum
amount to the TCP socket buffer. Re-
cently, the bufferbloat problem has re-
ceived greatly renewed general attention
and interest. The recent algorithm work
by Kathleen Nichols and Van Jacobson
is a promising step since it is easy to im-
plement and needs no configuration.11
What is still missing, however, is true
end-to-end evaluation that quantifies
the total combined effect of refinements
to TCP, ECN (Explicit Congestion Noti-
fication), AQM (Active Queue Manage-
ment), and adaptive multimedia.

Underlying our interest is what we
believe remains an open question: Is
there really a line between applications
that needs to break from TCP for inter-
activity reasons? This is a line that has
been moving steadily over time.

Lessons Learned
Introducing a new transport layer is
challenging because the designer must
address several critical issues. First, the
transport layer has to improve perfor-
mance significantly for the target ap-
plications in order to justify the extra ef-
fort. Second, the enhancements should
not negatively affect other traffic types;
we adhere to the vision that the Internet
should remain a general-purpose infra-
structure for a vast array of applications.
Finally, the performance improvements
at the transport level in terms of latency,
fairness, and utilization need to trans-
late to quality improvements at the ap-
plication level. Paceline has shown posi-
tive results in all these aspects.

We tested Paceline extensively us-
ing videoconferencing scenarios over
WAN settings. Paceline was also used
in a small cloud-based game prototype
to scale the wide area communication
of an Epic-scale game scenario.13 Both
of these applications show significant
improvements in multimedia qual-
ity because of the reductions in TCP
sender-side delays and the use of ad-
aptation in Paceline.

To ensure we have a general-purpose
transport supporting a wide range of
applications, we tested using a network

traffic generator simulating different
HTTP Web traffic flavors (for example,
HTTP1.0 and HTTP1.1, with and with-
out pipelining). The experiment tested
Web document downloads while vary-
ing the number of objects per page and
the page size. Paceline improved the
bandwidth utilization using the multi-
streaming feature as we increased the
number of objects as a result of the
automatic pipelining of small transac-
tions on top of the underlying channel.

We evaluated Paceline using trans-
port and application-quality metrics.
Transport-level metrics were necessary
during the early stages of developing
Paceline algorithms, such as the laten-
cy rate controller and failover criteria.
It was essential at that stage to ensure
Paceline did improve latency without
reducing fairness and network utili-
zation. As the transport became more
mature, however, we needed to ensure
these low-level improvements translat-
ed into quality improvements for video
and other multimedia applications.
Verifying application-quality improve-
ments is the limitation of the majority
of newly proposed transports.

Finally, effective use of the network
required application-level knowledge
of quality and importance measures,
along with careful tracking of messag-
es to avoid wasting bandwidth. Quality
adaptation is an essential transport
feature. Paceline enables applica-
tions to scale quality with the available
bandwidth and to favor data with more
influence over quality. Adaptive multi-
media applications can provide grace-
ful failure modes with different qual-
ity levels instead of rebuffering when
bandwidth is limited.

The Paceline implementation is
part of the QStream video-streaming
system, which is open source and may
be downloaded from http://qstream.
org. More implementation and evalua-
tion details can be found in an earlier
article on the topic.4

acknowledgments
Thanks to colleagues at the Network,
Systems, and Security lab at the Univer-
sity of British Columbia for their feed-
back on previous drafts of the article.
Special thanks to Mahdi Tayarani Na-
jaran for his significant contributions
to the design and implementation of
Paceline. Finally, thanks to Terry Coatta

for helping to improve both the style
and content of this article.

 Related articles
 on queue.acm.org

Four Billion Little Brothers?: Privacy, mobile
phones, and ubiquitous data collection

Katie Shilton
http://queue.acm.org/detail.cfm?id=1597790

VoIP: What is it Good for?

Sudhir R. Ahuja and Robert En
http://queue.acm.org/detail.cfm?id=1028897

Data in Flight
Julian Hyde
http://queue.acm.org/detail.cfm?id=1667562

References
1. Bharambe, A., douceur, J. R., Lorch, J.R., moscibroda,

T., Pang, J., Seshan, S. and Zhuang, X. donnybrook:
Enabling large-scale, high-speed, peer-to-peer games.
In Proceedings of the ACM SIGCOMM Conference on
Data Communication, (2008), 389–400.

2. The Chromium Projects. SPdY: An experimental
protocol for a faster Web, (2011); http://www.
chromium.org/spdy/spdy-whitepaper.

3. Erbad, A. Real-time support for interactive multimedia
applications (2012); http://hdl.handle.net/2429/42878.

4. Erbad, A., Hutchinson, N.C. and Krasic, C. dOHA:
Scalable real-time Web applications through adaptive
concurrent execution. In Proceedings of the 21st
International Conference on World Wide Web, (2012),
161–170.

5. Erbad, A., Tayarani Najaran, m. and Krasic, C. Paceline:
latency management through adaptive output.
In Proceedings of the First Annual ACM SIGMM
Conference on Multimedia Systems, (2010), 181–192.

6. Ford, B. Structured streams: a new transport
abstraction. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, (2007), 361–372.

7. gettys, J. and Nichols, K. Bufferbloat: dark buffers in
the Internet. Queue 9, 11 (2011), 40:40–40:54.

8. goel, A., Krasic, C. and Walpole, J. Low-latency
adaptive streaming over TCP. ACM Transactions
on Multimedia Computing, Communications, and
Applications 4, 3 (2008), 1–20.

9. Krasic, C. A framework for quality-adaptive media
streaming: Encode once–stream anywhere. Ph.d.
thesis. AAI3119036 (2004).

10. Kuschnig, R., Kofler, I. and Hellwagner, H. An
evaluation of TCP-based rate-control algorithms
for adaptive Internet streaming of H.264/SVC.
In Proceedings of the First Annual ACM SIGMM
Conference on Multimedia Systems, (2010), 157–168.

11. Nichols, K. and Jacobson, V. Controlling queue delay.
Queue 10, 5 (2012), 20:20–20:34.

12. Nowlan, m., Tiwari, N., Iyengar, J., Amin, S. and
Ford, B. Fitting square pegs through round pipes:
unordered delivery wire compatible with TCP and TLS.
In Proceedings of the 9th Conference on Networked
Systems Design and Implementation, (2012).

13. Tayarani Najaran, m. and Krasic, C. Scaling online
games with adaptive interest management in the
cloud. In Proceedings of the 9th Annual Workshop on
Network and Systems Support for Games, (2010),
9:1–9:6.

Aiman Erbad recently joined the computer science and
engineering department at qatar University as an assistant
professor after completing his Ph.d. at the University
of British Columbia. His research interests include Web
architecture, networking, real-time multimedia, ubiquitous
computing, and concurrency support.

Charles “Buck” Krasic works on large-scale processing
of video at google’s YouTube. Prior to joining YouTube, he
was a professor in the department of computer science
at the University of British Columbia. His research led to
the development of qStream. Other research interests
include multimedia, operating systems, networking, and
distributed systems.

© 2012 ACm 0001-0782/12/12

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

