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Music information retrieval (MIR) is an emerging
research area that explores how music stored digi-
tally can be effectively organized, searched, re-
trieved, and browsed. The explosive growth of
online music distribution, portable music players,
and lowering costs of recording indicate that in the
near future, most of the recorded music in human
history will be available digitally. MIR is steadily
growing as a research area, as can be evidenced by
the international conference on music information
retrieval (ISMIR) series (soon in its sixth year) and
the increasing number of MIR-related publications
in Computer Music Journal and other journals and
conference proceedings.

Designing and developing visualization tools for
effectively interacting with large music collections
is the main topic of this overview article. Connect-
ing visual information with music and sound has
fascinated composers, artists, and painters for a long
time. Rapid advances in computer performance
have enabled a variety of creative endeavors to con-
nect image and sound, ranging from simple direct
renderings of spectrograms popular in software mu-
sic players to elaborate real-time interactive sys-
tems with three-dimensional graphics. Most
existing tools and interfaces that use visual repre-
sentations of audio/music such as audio editors
treat audio as a monolithic block of digital samples
without any information regarding its content. The
systems described in this overview are character-

ized by the fact that they attempt to visually repre-
sent higher-level information about the content of
music. MIR is a new field, and visualization for MIR
is still in its infancy; therefore we believe that this
article provides a comprehensive overview of the
current state of the art in this area and will inspire
other researchers to contribute new ideas.

Background

There has been considerable interest in making mu-
sic visible. Many artists have attempted to realize
the images elicited by sound (Walt Disney’s Fanta-
sia being an early, well-known example). Another
approach is to quantitatively render the time or fre-
quency content of the audio signal, using methods
such as the oscillograph and sound spectrograph
(Koening, Dunn, and Lacey 1946; Potter, Kopp, and
Green 1947). These are intended primarily for scien-
tific or quantitative analysis, although artists like
Mary Ellen Bute have used quantitative methods
such as the cathode ray oscilloscope toward artistic
ends (Moritz 1996). Other visualizations are derived
from note-based or score-representations of music,
typically MIDI note events (Malinowski 1988;
Smith and Williams 1997; Sapp 2001).

The idea of representing sound as a visual object
in a two- or three-dimensional space with properties
related to the audio content originated in psychoa-
coustics. By analyzing data collected from user
studies, it is possible to construct perceptual spaces
that visually show similarity relations between
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single notes of different musical instruments (Grey
1975). Using such a timbre space as control in com-
puter music and performance was explored by Wes-
sel (1979). This idea has been used in the Intuitive
Sound Editing Environment (ISEE), in which nested
two- and three-dimensional visual spaces are used
to browse instrument sounds as experienced by mu-
sicians using MIDI synthesizers and samples (Verte-
gaal and Bonis 1994). The Sonic Browser is a tool for
accessing sounds or collections of sounds using
sound spatialization and context-overview visuali-
zation techniques where each sound is represented
as a visual object (Fernström and Brazil 2001). An-
other approach is to visualize the low-level percep-
tual processing of the human auditory system
(Slaney 1997). An interesting visualization that
combines traditional audio editing waveform repre-
sentations and pitch-based placement of notes is
used in the Melodyne software by Celemony (avail-
able online at www.celemony.com/cms/).

The main goal of this article is to provide an
overview of visualization techniques developed in
the context of music information retrieval for repre-
senting polyphonic audio signals. One of the defin-
ing characteristics that differentiate the techniques
described in this article from most previous work is
that the techniques described here use sophisticated
analysis algorithms to automatically extract con-
tent information from music stored in digital audio
format. The extracted information is then rendered
visually. Visualization techniques have been used in
many scientific domains (e.g., Spence 2001; Fayyad,
Grinstein, and Wierse 2002); they tend to take ad-
vantage of the strong pattern-recognition abilities of
the human visual system to reveal similarities, pat-
terns, and correlations in space and time. Visualiza-
tion is more suited for areas that are exploratory in
nature and where there are large amounts of data to
be analyzed. MIR is a good example of such an area.
The concept of browsing is also central to the de-
sign of interfaces for MIR. Browsing is defined as
“an exploratory, information seeking strategy that
depends upon serendipity . . . especially appropriate
for ill-defined problems and exploring new task do-
mains” (Marchionini 1995).

Techniques for visualizing music in the context
of MIR can be roughly divided into two major cate-

gories: techniques for visualizing a single file or
piece of music, and techniques for visualizing col-
lections of pieces. The systems described in this ar-
ticle are representative of the possibilities afforded
by MIR visualization.

Parameterizing the Audio

The first step in any visualization of an audio sig-
nal is to convert the audio to a parametric window-
based feature and typically include Mel-Frequency
Cepstral Coefficients (MFCCs), spectral features
from the Short-Time Fourier Transform (STFT), or
subspace representations from principal compo-
nent analysis. The window size may be varied,
although robust analysis typically requires resolu-
tion on the order of 20 Hz, that is, 20 windows per
second. For most visualization techniques, the ac-
tual parameterization is not crucial as long as
“similar” sounds yield similar parameters. Psycho-
acoustically motivated parameterizations have
also been explored. Although this article occasion-
ally describes specific parameterizations, it does
so only for completeness and clarity. All the de-
scribed visualization techniques can use other
parameterizations.

In many of the visualization techniques described
herein, it is necessary to reduce the dimensionality
of the parameterization of the audio signal so that
the information can be mapped for example to spa-
tial dimensions or color. Principal components
analysis (PCA)—or more generally, the Karhunen-
Loeve transform (Jolliffe 1986)—can be used for this
purpose. PCA is a dimensionality reduction tech-
nique where a high-dimensional set of feature vec-
tors is transformed to a set of feature vectors of
lower dimensionality with minimum loss of infor-
mation. The extraction of a principal component
amounts to a variance maximization rotation of the
original feature space. In other words, the first prin-
cipal component is the axis passing through the
centroid of the feature vectors that has the maxi-
mum variance and therefore explains a large part
of the underlying structure of the feature space.
The next principal component tries to maximize
the variance not explained by the first. In this
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manner, consecutive orthogonal components are
extracted.

Figure 1 (left) shows a scatter plot of two-
dimensional data points. The data are concentrated
in an ellipse that is indicated by a dotted line. PCA
rotates the original data axes to maximize the vari-
ance accounted for by each dimension in the result-
ing subspace. In practice, PCA is computed using
the singular-value decomposition (SVD; Strang
1988) of the rectangular data matrix. As shown in
Figure 1 (right), projection of the data on to the ro-
tated axis U1 accounts for more variance in the data
than projection onto the original axis X1. Here, U1 is
the direction that accounts for the most variance in
the original data and is the singular vector corre-
sponding to the largest singular value. The axis U2

is the axis orthogonal to U1 that accounts for as
much of the remaining variance in the original data
as possible. The subsequent axes in the low-
dimensional subspace are calculated similarly.

More specifically, the principal components are
linear combinations of the original feature vectors v
that can be arranged as columns of a matrix V. To
compute the principal components, we first calcu-
late the feature vector covariance matrix C:
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where V̄̄ = 1/I∑iVi, and its singular value decomposi-
tion (SVD) is given by

(2)

Here, U and W are orthogonal matrices, and S is a
diagonal matrix. The principal components of V are
the columns of U, and the corresponding singular
values are contained in S.

To perform dimensionality reduction from n
dimensions to m dimensions, where m < n, the
principal components corresponding to the m
largest singular values are chosen. The collec-
tion of pieces of music over which the covari-
ance matrix C is calculated is important and
provides context-sensitivity for PCA-based visual-
izations. For example, if the feature vectors from
only the specific song to be analyzed are used for
the computation of the covariance matrix, the re-
sulting PCA will reflect only the variance of that
particular file. On the other hand, if a larger collec-
tion of pieces of music is used for the computation
of the covariance matrix, the resulting PCA will
reflect the variances over the entire collection.
Therefore, the same piece of music can have differ-
ent PCA-based visualizations depending on which
feature vectors are used to calculate the covariance
matrix.

C U WT= �
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Figure 1. The left depicts
two-dimensional data con-
centrated in an ellipse. The
right shows the data ro-
tated according to its two
principal axes, computed
using principal compo-
nents analysis.
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Visualizing a Single Musical Piece

Music is a complex human artifact, and there are
many possible ways one could try to describe it.
The techniques described in this section attempt to
visually represent aspects of a piece of music, such
as structure, rhythm, self-similarity, and similarity
to other pieces and styles.

Similarity Matrix

Musical pieces generally exhibit some degree of co-
herence or similarity over their full durations. With
the exception of more avant-garde compositions,
structure and repetition are general features of
nearly all music. For example, the coda often re-
sembles the introduction, and the second chorus
generally sounds like the first. On a shorter time
scale, successive bars are often repetitive, especially
in popular music. The similarity matrix is a general
method for visualizing musical structure via its
acoustic self-similarity across time, rather than by
absolute acoustic characteristics.

Similarity-matrix analysis is a technique for
studying the global structure of time-ordered media
streams (Foote and Cooper 2003). An audio file is
visualized as a square, as shown in Figure 2. Time
runs from left to right as well as from top to bottom.
In the square matrix, the brightness of point (i, j) is
proportional to the audio similarity between in-
stants i and j in the source audio file. Similar re-
gions are bright, dissimilar regions are dark. Thus,
there is always a bright diagonal line running from
top left to bottom right, because each audio instant
is maximally similar to itself. Repetitive similari-
ties, such as repeating notes or motifs, show up as
checkerboard patterns: a note that occurs twice
will give four bright areas at the corner of a square.
The two regions at the off-diagonal corners are the
“cross-terms” resulting from the first note’s simi-
larity to the second. Repeated themes are visible
as diagonal lines parallel to—and separated from—
the main diagonal by the time difference between
repetitions.

The similarity matrix contains the quantitative
similarity between all pairwise combinations of au-

dio windows, and different audio parameterizations
can be used depending on the application. Repre-
sent the B-dimensional feature vector computed for
N windows of a digital audio file by the vectors
{u1, . . . ,uN} ⊂ RB. Given a similarity measure d: RB x
RB → R, the resulting similarity data is embedded
in a matrix S as illustrated in Figure 1. The ele-
ments of S are

(3)

Throughout, S(i, j) denotes the element of the ith
row and jth column of the matrix S.

A common similarity measure is the cosine dis-
tance. Given feature vectors vi and vj (representing
windows i and j, respectively), then

(4)

This measure is large if the vectors are similarly ori-
ented in the feature space. Normalizing the inner
product removes the dependence on magnitude (and
hence energy, given spectral features). In practice,
we typically zero-mean the data to give the highest
range to the distance measure. To build a non-
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Figure 2. Diagram of the
similarity matrix
embedding.



negative matrix, we also employ the following ex-
ponential similarity measure:

(5)

To visualize an audio file, an image is constructed
so that each pixel at location (i, j) is given a gray
value proportional to the similarity measure de-
scribed above.

We now review a visualization of a popular song.
The piece analyzed is Magical Mystery Tour by The
Beatles. The 22-kHz digital audio file is divided into
non-overlapping 1,024-sample windows at 20 Hz.
We calculate the 1,024-point magnitude spectrum
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and 45 MFCCs from each audio frame. The upper-
left panel of Figure 3 shows the similarity matrix
computed from the MFCC features using Equation
5. The upper-right panel shows the similarity ma-
trix computed from the seven MFCCs with the
largest variances. The seven coefficients are nor-
malized to unit variance before calculating the sim-
ilarity matrix using the similarity measure of
Equation 5. The upper-left panel of Figure 4 shows
the matrix computed from the full spectrogram
data. The upper-right panel shows the matrix com-
puted using the spectrogram data projected into a
subspace composed of its first seven principal com-
ponents and scaled to unit variance. The bottom
panels show visualizations of the manual segmenta-

46 Computer Music Journal

Figure 3. Similarity matri-
ces computed from 45
MFCCs (top left) and the
seven MFCCs with great-
est variance (top right)

after low-pass filtering for
The Magical Mystery Tour.
The bottom row shows vi-
sualizations of the manual
segmentation for reference.
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tion of Table 1. The y-axis in the visualizations in-
dicates the cluster of each segment; the x-axis
shows time.

In both Figures 3 and 4, the most visible structure
is the song’s coda, from 141 sec to 171 sec, which is
distinct from the song’s verse, chorus, and bridge
elements. Its dissimilarity from the rest of the
piece is quantified by the dark regions of low cross-
similarity in the bottom-most rows and rightmost
columns of the similarity matrices. As expected,
the reduced-dimension features show improved
discrimination in the corresponding similarity
matrices. Overall, the PCA-projected spectrogram
features provide the best visualization of the piece’s
structure.
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Figure 4. Similarity matri-
ces computed from the full
spectrogram data (top left)
and the SVD-projected
spectrograms (top right)

after low-pass filtering for
The Magical Mystery Tour.
The bottom row shows vi-
sualizations of the manual
segmentation for reference.

Table 1. Manual Segmentation of The Magical Mys-
tery Tour

Segment Boundaries (sec)

Intro 0–10
Verse (Voc.) 11–21
Verse (Voc. and Inst.) 22–32
Chorus 33–42
Verse (Voc.) 43–53
Verse (Voc. and Inst) 54–64
Chorus 65–73
Bridge 74–88
Verse (Voc.) 89–102
Verse (Voc. and Inst.) 103–117
Chorus 118–141
“Outro” 141–171



Beat Spectrum and Beat Spectrogram

Both the periodicity and relative strength of rhyth-
mic structure can be derived from the similarity
matrix. The term beat spectrum is used to describe
a measure of self-similarity as a function of the lag
(Foote and Uchihashi 2001). Peaks in the beat spec-
trum at a particular lag l correspond to audio repeti-
tions at that temporal rate. The beat spectrum B(l)
can be computed from the similarity matrix using
diagonal sums or autocorrelation methods. A simple
estimate of the beat spectrum can be found by diag-
onally adding the similarity matrix S as follows:

(6)

Here, B(0) is simply the sum along the main diag-
onal over some continuous range R, B(1) is the sum
along the first superdiagonal, and so on. A more ro-
bust estimate of the beat spectrum is the autocorre-
lation of S:

(7)

Because B(k,l) is symmetric, it is only necessary to
perform the sum over one variable to yield a one-
dimensional result B(l). This approach works sur-
prisingly well for most kinds of musical genres,
tempos, and rhythmic structures.

B k l i j i k j l
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Figure 5 shows the beat spectrum computed from
the first ten seconds of Paul Desmond’s jazz compo-
sition Take 5, performed by the Dave Brubeck Quar-
tet. Besides being in an uncommon time signature
(5/4), this rhythmically sophisticated work requires
some interpretation. First, note that there is no ob-
vious periodicity at the actual beat tempo (denoted
by solid vertical lines in the figure). Rather, there is
a marked periodicity at five beats and a correspon-
ding sub-harmonic at ten. Jazz aficionados know
that “swing” is the subdivision of beats into non-
equal periods rather than “straight” (equal) eighth
notes. The beat spectrum clearly shows that each
beat is subdivided into near-perfect triplets. This is
indicated with dotted lines spaced one-third of a
beat apart between the second and third beats. A
clearer visualization of “swing” would be difficult
to achieve by other means.

The beat spectrum can be analyzed to determine
tempo and more subtle rhythmic characteristics.
Peaks in the beat spectrum give the fundamental
rhythmic periodicity (Foote and Uchihashi 2001).
Strong off-beats and syncopations can be then de-
duced from secondary peaks in the beat spectrum.
Because the only necessary signal attribute is repeti-
tion, this approach is more robust than other ap-
proaches that look for absolute acoustic features
such as energy peaks.

There is an inverse relationship between the
time accuracy and the beat spectral precision. Tech-
nically, the beat spectrum is a frequency operator
and hence does not commute with a time operator.
Thus, beat spectral analysis, like frequency anal-
ysis, exhibits a tradeoff between spectral and tem-
poral resolution.

The beat spectrogram is used to analyze rhyth-
mic variations over time. Like its namesake, the
beat spectrorgram visualizes the beat spectrum over
successive windows to show rhythmic variation
over time. Time is on the x-axis, with lag time on
the y-axis. Each pixel is colored with the scaled
value of the beat spectrum at that time and lag, so
that peaks are visible as bright horizontal bars at the
repetition time. Figure 6 shows the beat spectro-
gram of a 33-second excerpt of the Pink Floyd song
Money. Listeners familiar with this classic-rock
chestnut may know the song is primarily in the 7/4
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Figure 5. Beat spectrum of
the jazz composition Take
Five.
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time signature, save for the bridge (middle section),
which is in 4/4. The excerpt shown begins at 4 min
55 sec into the song, and it clearly shows the transi-
tion from the 4/4 bridge back into the last 7/4 verse.
To the left are strong beat spectral peaks on each
beat, particularly at two and four beats (the length
of a 4/4 bar), along with an eight-beat subharmonic.
Two beats occur in slightly less than a second, cor-
responding to a tempo slightly faster than 120 beats
per minute (120 BPM). This is followed by a short
two-bar transition. Then, around 10 sec (on the x-
axis) the time signature changes to 7/4, clearly
visible as a strong seven-beat peak with the absence
of a four-beat component. The tempo also slows
slightly, visible as a slight lengthening of the time
between peaks.

Beat Histograms

The beat histogram (BH) is similar to the beat spec-
trum in that it visualizes the distribution of various
beat-level periodicities of the input signal. How-
ever, the method of calculation is different. The BH
is calculated using periodicity detection in multiple
octave channels that are computed using a discrete
wavelet transform (DWT). Figure 7 shows a
schematic diagram of the calculation. The signal is
first decomposed into a number of octave frequency
bands using the DWT. Following this decomposi-

tion, the time-domain amplitude envelope of each
band is extracted separately. This is achieved by ap-
plying full-wave rectification, low-pass filtering,
and downsampling to each octave frequency band.
After removal of the mean, the envelopes of each
band are then added together, and the autocorrela-
tion of the resulting sum envelope is computed. The
dominant peaks of the autocorrelation function cor-
respond to the various periodicities of the signal’s
envelope. These peaks are accumulated over the
whole sound file into a beat histogram, where each
bin corresponds to the peak lag,namely, the beat
period in BPM.

Rather than adding one, the amplitude of each
peak is added to the beat histogram. That way,
when the signal is very similar to itself (strong beat)
the histogram peaks will be higher. In Tzanetakis
and Cook (2002), six numerical features that at-
tempt to summarize the BH are computed and used
for classification. Figure 8 shows a BH for a piece of
rock music (Come Together by the Beatles). (Notice
the peaks at 80 BPM—the main tempo—and 160
BPM.) The x-axis corresponds to beats per minute,
and the y-axis corresponds to the degree of self-
similarity for that particular periodicity or beat
strength (Tzanetakis, Essl, and Cook 2002). Many
other algorithms for tempo and beat detection have
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Figure 6. Beat spectrogram
of Pink Floyd’s Money
showing the transition
from 4/4 time to 7/4 time
around 10 seconds (on the
x-axis).

Figure 7. Flow diagram of
beat histogram calculation.



been proposed in the literature and could be used as
front ends to similar visualizations to the beat his-
togram and beat spectrum.

Real-Time Audio Classification Display

The GenreGram is a dynamic, real-time audio dis-
play for showing automatic genre classification re-
sults. More details about this process can be found
in Tzanetakis and Cook (2002). The classification is
performed using supervised learning where a statis-
tical model of the feature distribution for each class
is built during training with labeled samples. Once
the classifier is trained, it can then be used to clas-
sify music it has not encountered before. Although
it can be used with any audio signal, it was designed
for real-time classification of live radio signals. Each
genre is represented as a cylinder that moves up and
down in real time based on a classification confi-
dence measure ranging from 0.0 to 1.0. Each cylin-
der is texture-mapped with a representative image
for each genre.

In addition to demonstrating real-time automatic
musical genre classification, the GenreGram pro-
vides valuable feedback both to users and algorithm
designers. Different classification decisions and
their relative strengths are combined visually, re-
vealing correlations and classification patterns. Be-
cause in many cases the boundaries between genres
are fuzzy, a display like this is more informative

than a single one-or-nothing classification decision.
For example, both male speech and hip-hop are acti-
vated in the case of a hip-hop song, as shown in Fig-
ure 9. Of course, it is possible to use GenreGrams to
display other types of audio classifications, such as
instruments, sound effects, and birdsongs.

Mapping Time-Varying Timbre to Color

The basic idea behind timbregrams (Tzanetakis and
Cook 2000a) is to map audio files to sequences of
vertical color stripes in which each stripe corre-
sponds to a short slice of sound (typically 20 msec
to 0.5 sec). Time is mapped from left to right. The
similarity of different files (context) is shown as
overall color similarity, while the similarity within
a file (content) is shown by color similarity within
the timbregram. For example, a file that has an ABA
structure, where section A and section B have differ-
ent sound textures, will have an ABA structure in
color also. Although it is possible to manually create
timbregrams, they are typically created using PCA
over automatically extracted feature vectors. Unlike
approaches that directly map frequency content to
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Figure 8. Beat histogram
example for a piece of rock
music (30 sec clip from
Come Together by The
Beatles).

Figure 9. GenreGram, a
dynamic real-time visual-
ization of music
classification.
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color such as Comparisonics (www.comparisonics
.com), timbregrams allow any parametric audio rep-
resentation to be used as a front end.

Two main approaches are used for mapping the
principal components to color to create timbre-
grams. If an indexed image is desired, then the first
principal component is divided equally, and each in-
terval is mapped to an index of a colormap. Any
standard visualization colormap such as grayscale
or thermometer can be used. This approach works
especially well if the first principal component ex-
plains a large percentage of the variance of the data
set. In the second approach, the first three principal
components are normalized so that they have equal
means and variances. Although this normalization
distorts the original feature space, in practice it pro-
vides more satisfactory results as the colors are
more clearly separated. Each of the first three prin-
cipal components is mapped to coordinates in a
RGB or HSV color space. In this approach, a full-
color timbregram is created.

There is a tradeoff between the ability to show
small-scale local structure and global overall simi-
larity depending on the quantization levels and the
amount of variance in color range allowed. For ex-
ample, by allowing many quantization levels and a
large color-range variance, different sections of the
same audio file can be visually distinguished. If only
an overall color is desired, fewer quantization levels
and smaller variation should be used.

It is important to note that the similarity in color
depends not only on the particular file (content) but
also the collection over which the PCA is calculated
(context). That means that two files might have
timbregrams with similar colors as part of collec-
tion A and timbregrams with different colors as
part of collection B. For example, a string quartet
and orchestral piece will have different timbre-
grams if viewed as part of a classical music collec-
tion but similar timbregrams if viewed as part of a
collection that contains files from many different
musical genres.

Timbregrams can be arranged in two-dimensional
tables for browsing. The table axis can be either
computed automatically or manually created. For
example, one axis might correspond to the year of
release, and the other might correspond to the auto-

matically extracted tempo of the song. In addition,
timbregrams can be superimposed over traditional
waveform displays (see Figure 10) and texture mapped
over objects in a timbre space, described later.

Figure 11 shows the timbregrams of six sound
files. The three files on the left column contain
speech and the three on the right contain classical
music. It is easy to visually separate music and
speech even in the grayscale image. It should be
noted that no explicit class model of music and
speech is used and the different colors are a direct
result of the visualization technique. The bottom-
right sound file (opera) is light purple and the speech
segments are light green. In this mapping, light and
bright colors correspond to speech or singing (Figure
11, left). Purple and blue colors typically correspond
to classical music (Figure 11, right).

Timbregrams of pieces of orchestral music are
shown in Figure 12. From the figure, it is clear that
the fourth piece from the top has an AB structure,
where the A part is similar to the second piece from
the top and the B part is similar to the last piece
from the top. The A part is light pink (in color) or
light gray (in grayscale), and the B part is dark purple
(in color) or dark grey (in grayscale). This is con-
firmed by listening to the corresponding pieces in
which A is a loud, energetic movement where the
entire orchestra is playing and B is a lightly orches-
trated flute solo.

Visualizing Music Collections

Managing the increasing size of digital music and
sound collections is challenging. Traditional tools
such as the file browser provide little information to
assist this process. In this section, some approaches
to visualizing large music collections for browsing
and retrieval are described.

Timbre Spaces

The Timbre Space Browser (Tzanetakis and Cook
2000b) maps each audio file to an object in a two- or
three-dimensional virtual space. The main proper-
ties that can be mapped are the x, y, and z coordi-
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nates for each object. In addition, a shape, texture
image or color, and text annotation can be provided
for each object. Standard graphical operations such
as display zooming, panning, and rotating can be
used to explore the browsing space. Data model op-
erations such as section pointing and semantic
zooming are also supported. Selection specification
can also be performed by specifying constraints on
the browser and object properties. For example, the
user can ask to select all the files that have positive
x values, triangular shapes, and red color. Principal
curves, originally proposed in Hastie and Stuetzle
(1989) and used for sonification in Herman,

Meinicke, and Ritter (2000) can be used to move se-
quentially through the objects.

Figure 13 shows a two-dimensional timbre space
of sound effects. The icons represent different
types of sound effects such as walking (dark squares)
and various other types of sound effects (white
squares) such as tools, telephones, and door-bell
sounds. Although the icons have been assigned
manually, the x and y coordinates of each icon are
calculated automatically based on audio features.
This way, files that are similar in content are visu-
ally clustered together, as can be seen from the fig-
ure where the dark walking sounds occupy the left
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Figure 10. Timbregram su-
perimposed over a wave-
form.
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side of the figure while the white sounds occupy the
right side.

Figure 14 shows a 3-D timbre space of different
pieces of orchestral music. Each piece is represented
as a colored rectangle. The x, y, and z coordinates
are automatically extracted based on music similar-
ity and the rectangle coloring is based on timbre-
grams. These figures contain fewer objects than
typical configurations for clarity of presentation on
paper. Audio collections with sizes that typically
range from 100 to 1,000 files/objects can easily be
accommodated with timbre spaces.

Music Similarity via Self-Organizing Maps and
Smoothed Data Histograms

Islands of Music is a graphical interface to music
collections (Pampalk 2001; Pampalk, Rauber, and
Merkl 2002a). Similar pieces of music are automati-
cally clustered into groups and visualized as islands.
On an island, mountains and hills represent sub-
groups of similar pieces. Land bridges connect re-
lated islands. The music is arranged such that
similar pieces and groups are close to each other
on the map.

Islands of Music is based on the self-organizing
map (SOM) neural network algorithm (Kohonen
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Figure 11. Timbregrams of
speech (left ) and music
(right). (The left column is
light green, and the right
column is dark purple.)

Figure 12. Timbregrams of
orchestral music pieces.

Figure 12

Figure 11
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Figure 13. Two-
dimensional timbre space
of sound effects.

Figure 14. Three-
dimensional timbre space
of orchestral music pieces.

Figure 13

Figure 14
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2001) combined with the smoothed data histogram
(SDH) visualization (Pampalk, Rauber, and Merkl
2002b). The SOM consists of units arranged on a
fixed grid. Each unit represents a prototypical piece
of music. The pieces in the collection are mapped to
the prototype that is most similar (also known as
the best-matching unit). During the training pro-
cess, the units are adapted to better represent the
pieces mapped to them, with the constraint that
units close to each other on the grid represent simi-
lar music.

The SDH visualization shows the distribution of
the music collection on the map. It is a rough and
robust estimate of the corresponding probability
density function. In particular, for each piece, the
weighted contribution of the n closest units are ac-
cumulated in the histogram bins. One of the results
is that the land bridges between related islands be-
come more apparent. The SDH informs the user in
which areas there is a high density of pieces (“is-
lands”) and which areas are populated sparsely (the
“sea”). The color mapping used has the following
range: dark blue (deep sea), light blue (shallow sea),
yellow (beach), light green (grass), dark green (for-
est), gray (rocks), and white (snow).

The most critical component of the Islands of
Music interface is the similarity measure that is
used. Several measures are available (e.g., Pampalk
2004); however, none of these performs comparably
to similarity ratings by a human listener.

An example for Islands of Music is shown in Fig-
ure 15. (The same map in two dimensions is shown
in Figure 16.) The snow-covered mountain on the
lower left represents more aggressive music from
Papa Roach and Limp Bizkit (a mix of metal, punk,
and rap). Following the land bridge to the mountain
toward the right leads to less aggressive music, in-
cluding Living in a Lie by Guano Apes, Not an Ad-
dict by K’s Choise, and Adia by Sarah McLachlan
(all of which are slow songs sung by women and
sound quite similar); this area also includes songs
such as Yesterday by the Beatles, California Dream-
ing by The Mamas and The Papas, and House of the
Rising Sun by The Animals. The third snow-
covered mountain (lower right) represents classical
music such as Für Elise by Beethoven. Other pieces

on the same island include orchestra pieces and
slow love songs.

A frequently asked question is what the x-axis
and y-axis represent. If the mapping were linear, the
two dimensions would correspond to the first two
principal components of the data. However, the
main advantage of the SOM compared to the PCA is
its ability to map the data nonlinearly. Thus, it is
not possible to directly label the axes. Nevertheless,
different options to explain the regions of the map
are available such as “weather charts” (Pampalk,
Rauber, and Merkl 2002a). The idea is to visualize a
third dimension (temperature, air pressure, strength
of bass beats, etc.) on top of a map.

An example visualizing the distribution of bass
beats is shown in Figure 17. Note that instead of the
grayscale used here, we usually use a color scale
ranging from blue (low values) to red (high values).
The classical music island has the weakest bass
beats, the two other mountains described previ-
ously have about average bass beats, and most of the
islands in the upper region have very strong bass
beats. For example, very strong bass beats can be
found on the upper-left island, which contains
mainly music from Bomfunk MC’s (a mix of hip-
hop, electro-funk, and house).

In the previous example, only 77 pieces were
mapped. The same approach can be used for larger
collections, as shown in Figure 18. This simply re-
quires a zoom function. Alternatives include using
growing hierarchical SOMs to organize music
(Rauber, Pampalk, and Merkl 2002). To allow the
user to fully benefit from hierarchical organizations,
it would be useful to have an automatic summariza-
tion of individual music pieces and sets of pieces,
for example, a short sequence of music that is typi-
cal for a whole island.

Figure 18 shows how an organization for a larger
collection might look like. The highlighted island
contains mainly music from Bomfunk MC’s. The
island a bit to the lower left contains mainly Red
Hot Chili Peppers, and the mountain on the oppo-
site side of the map (lower-left corner) contains
mainly classical pieces.

Figure 19 shows the organization of 3,298 pieces
from the magnatune.com collection. On the Web
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Figure 15. Islands of Music. Figure 16. Flat view of Fig-
ure 15 with song labels
added.

Figure 15

Figure 16
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site, the pieces are organized into eleven genres,
with most pieces labeled as classical music. Fig-
ure 19 shows the distribution of the genres on the
SOM. Note that most genres are not an isolated and
well-defined cluster but rather spread out over the
whole map and have significant overlap with most
other genres. In particular, world music is signifi-
cantly spread out. The most compact cluster is
punk music, which is located opposite from classi-
cal music.

Combining Different Views

So far, the assumption for the Islands of Music visu-
alization was that there is one overall similarity
measure according to which the pieces are organ-
ized. However, music similarity has many dimen-
sions, such as tempo, rhythm, instrumentation,
lyrics, cultural context, harmony, melody, and so
on. Each of these dimensions defines a specific
view of the music collection. These views can be
combined using aligned-SOMs (Pampalk, Dixon,
and Widmer 2004) to allow the user to smoothly
and gradually change focus between the views.

57

Figure 17. Weather charts,
revealing areas with strong
bass beats.



Aligned-SOMs are comprised of many individual
SOMs of the same size stacked on top of each
other. Each SOM represents a specific view, for ex-
ample, derived from mixing 20 percent timbre and
80 percent rhythmic similarity. Neighboring
SOMs represent similar views (i.e., similar mixing
weights). During training of the SOMs, an addi-
tional constraint is enforced to ensure that each
piece of music is located in the same area on neigh-
boring SOMs.

Figure 20 shows an aligned-SOM combining a
view based on rhythmic properties and a view based
on MFCCs (describing spectral characteristics re-
lated to timbre). In the upper part of the screenshot

is the Islands of Music view. For example, in the
current view, classical piano pieces are located in
the lower left and pieces from Papa Roach are in the
upper right. Below are the codebooks, which are
only of interest to the researcher studying specific
characteristics of the similarity measures used. Be-
low these codebooks is a slider that allows the user
to focus more on rhythmic similarity (by moving
the slider to the left) or timbre-based similarity (by
moving the slider to the right). When the slider is
moved, the pieces on the map are slowly rearranged
to adjust to the new definition of similarity. As
the pieces move, also the islands slowly move, sink,
or emerge.
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Figure 18. Islands of Music
with 359 pieces.
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Figure 19. Visualization
of genre distributions in
the magnatune.com
collection.
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Conclusions

A variety of audio visualization techniques have
been proposed in the context of MIR for represent-
ing music pieces and collections of them visually.
These techniques rely on state-of-the-art audio sig-
nal processing and machine-learning techniques
that automatically extract content information
from audio signals that is subsequently mapped to

visual attributes. By visualizing content informa-
tion, one can take advantage of the strong pattern-
recognition abilities of the human visual system to
identify structure and patterns of audio signals.
For example, the ABA structure of some piece of
music can be immediately recognized in a visuali-
zation such as a similarity matrix or a timbregram
but requires a few minutes of listening to be identi-
fied aurally.
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Figure 20. Combining dif-
ferent views using aligned-
SOMs.
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A related field that is also still in its infancy is the
visualization of symbolic data and connections to
common music notation. The explicit visualization of
pitch information and its integration with timbre and
rhythm visualization are another area of future re-
search. Evaluation is one of the biggest challenges in
any type of visualization and typically requires exten-
sive user studies. The field of MIR is new, and there-
fore related visualization techniques are still mostly
an academic curiosity, and their evaluation has been
mostly informal. It is our hope that these ideas will
serve as seeds for highly interactive visual inter-
faces for exploring large collections of music in the
future and more large-scale evaluation experiments.
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