
Memory-aware dynamic voltage scaling for
multimedia applications

J. Choi and H. Cha

Abstract: As the computing environments are continuously moving towards battery-operated
mobile and handheld systems, the development of energy-saving mechanisms for such devices
has recently become a technical challenge. Dynamic voltage scaling (DVS) has historically been
considered an effective method to reduce the processor power consumption. Conventional DVS
techniques typically consider only processor utilisation issues in a policy-making process.
However, as memory-bound multimedia applications are becoming popular in handheld devices,
the DVS policies should consider the so-called ‘memory wall’ problem to maximise energy
gain. Recent DVS techniques suffer from the inefficiency of their policies caused by the
memory-wall problem while executing multimedia applications, and no previous research on
DVS considers the problem explicitly. The existence of the memory wall problem in a real
system is revealed and a metric that can be used to detect the problem in advance is found. A
memory-aware DVS (M-DVS) technique that takes the memory wall problem fully into
consideration is proposed. The experimental results on a PDA show that M-DVS can reduce
�8% of additional power consumption, compared with conventional DVS, without any QoS
degradation for handling multimedia clips.
1 Introduction

Dynamic voltage scaling (DVS) is a technique to prolong
battery life in handheld devices, such as personal digital
assistants (PDAs) and Smartphone, by scaling the frequency
and voltage of the processor dynamically depending on the
execution complexity of running applications. Weiser et al.
[1] showed that dynamic adjustment of a processor
frequency, based on the processor utilisation, reduces
power consumption. Govil et al. [2] further proposed
various kinds of prediction techniques for processor
utilisation and showed that the power reduction depends
not only on the accuracy of prediction but also on the
smoothness in the performance level changes. Although
DVS techniques based on processor utilisation effectively
reduce the power consumption, the techniques are not
optimal to support multimedia applications where external
memory is frequently accessed. This inadequacy is
because current prediction techniques do not fully consider
the memory-bound nature of sequential multimedia access
in their DVS policies.

Recent work on DVS does not explicitly consider the
interaction between the processor and the memory,
although they adopt multimedia applications as key work-
loads [3–5]. Grunwald et al. [6] pointed out that the non-
linear performance characteristics between the processor
and the memory are related to memory access latency.
Martin et al. [7, 8] studied the problem from the system’s
point of view and showed that low-performance memory
causes a performance bottleneck in executing multimedia

IEE, 2006

IEE Proceedings online no. 20050031

doi:10.1049/ip-cdt:20050031

Paper first received 29th January and in revised form 9th November 2005

The authors are with the Department of Computer Science, Yonsei University,
Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea

E-mail: hjcha@cs.yonsei.ac.kr
130
applications. Martin emphasised that this memory bottle-
neck problem should be considered in the development of
DVS techniques, but no concrete methodology was dis-
cussed. Fan et al. [9] showed that an optimal power
reduction can be achieved by considering the power charac-
teristics of the processor and the memory. However, the
suggested mechanism on dynamic power state transition
requires long latency in accessing the main memory, and
it is not practically feasible to change the power state of a
particular memory bank during operation. Weissel and
Bellosa [10] proposed a DVS technique that utilises event
counters to set the operating frequency of the processor in
consideration of the memory wall effect. A metric called
energy performance ratio is used for their DVS policy,
but the policy does not consider the voltage scaling and
hence their approach has practical limitations in its
reduction of power. Choi et al. [11] proposed a technique
to reduce power consumption by lowering the processor
performance when decoding multimedia clips residing in
external memory. However, the technique is based on the
rather unrealistic assumption that the external memory
operates at a constant speed regardless of the processor fre-
quency. Also, the processor studied in their experiments is
not adequate for handheld devices, hence the result may
not be of practical use. Cho and Chang [12] proposed a
memory-aware DVS (M-DVS) policy that assigns
optimal frequencies of both memory and processor, consid-
ering the system-level power consumption characteristics.
The policy, however, assumes a linear relationship
between the processor frequency and the memory
frequency, which is not adequate in fine granularity DVS
processors.

This paper focuses on the development of a DVS policy
that considers the non-linear performance characteristics,
the so-called ‘memory wall’ problem, that are typically
found in handheld devices when running memory-bound
multimedia applications. We experimentally reveal the
existence of the memory wall problem in a real system
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006

and propose a metric that can be used to detect the problem
in advance. An M-DVS that takes the memory wall problem
fully into consideration is then proposed.

2 Memory wall problem

The memory wall problem is a well-known issue in compu-
ter architecture research [13, 14], where overall system per-
formance is degraded because of lower-speed memory
device compared with processor speed. The problem is
aggravated in handheld devices because high performance
Rambus DRAM or DDR DRAM cannot be adopted
because of their high power consumptions. Additionally,
multimedia applications that are commonly used in hand-
held devices require frequent and sequential memory
accesses. To show the memory wall problem experimen-
tally, a set of video clips, 300, 500, and 700 kbps MPEG
clips, are played using MPlayer [15] on a PXA270-based
embedded platform [16] that runs the Linux operating
system. The PXA270 is a general-purpose processor based
on the Xscale architecture and has a DVS capability of
changing its frequency from 117 to 416 MHz.

Fig. 1 shows the changes in processor utilisation,
measured in the kernel context, as the processor frequency
increases. Processor utilisation does not decrease linearly,
although the processor’s operating frequency increases lin-
early. That is, the processor utilisation starts to increase in
the range between 208 and 286 MHz, then decreases
again after that. This demonstrates that the system perform-
ance is indeed affected by a factor other than the frequency
of processor. It is possibly because of the memory com-
ponent because low memory performance cannot keep up
with the performance of the processor, especially when
running memory-bound multimedia applications. The
phenomenon is observed consistently with other clips with
different bit rates. The higher the bit rate, in effect as the
access frequency increases, the more obvious the effect.

The observed memory wall problem is caused by the
structural characteristic of the SoC-based processor, which
usually has a uni-clock source for distributing clocks to pro-
cessor and memory, and also uses low-to-mid-speed
memory for low power consumption. Implementing the
uni-clock leads to design simplification and cost reduction.

Fig. 2 shows that the operating frequencies of the
processor and the memory have different gradients,
but the trends are the same in each region. Pmw is
defined as the range of processor frequency causing
the memory wall problem. In this range, the memory per-
formance is lower than that of the processor and this
induces a processor blockage in executing multimedia

Fig. 1 Memory wall problem
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006
applications. Consequently, it results in excessive processor
utilisation.

Conventional DVS policies simply use overestimated
processor utilisation, caused by the memory wall problem,
as a metric for the performance setting of the processor.
Hence, the policies do not accurately reflect the actual util-
isation of the processor. To illustrate this, we define the
system utilisation and the jobs to be executed as follows.
Note that in our work a multimedia application, which typi-
cally shows periodic execution patterns, is considered for
the domain of study. The system utilisation Usys(i) at ith
period refers to the overall utilisation of the system.
Usys(i) is measured by the kernel and includes both the pro-
cessor and the memory utilisation and ranges between U sys

lb

and U sys
ub , which are, respectively, the minimum and the

maximum available utilisation in the system. J(i) refers to
the actual job at the ith period of a process that has a
period Q. Jproc(i) and Jmem(i) are, respectively, the portion
of the processor-bound job and the memory-bound job
within J(i).

Fig. 3 shows an example of a periodic process. Here, J(i)
consists of Jproc(i) and Jmem(i) and Usys(i) is defined as
(Tmem(i)þ Tproc(i))/Q. In other words, Usys(i) is the ratio
of the execution time of both the processor-bound job and
the memory-bound job in the ith period, over the period
Q. During the period of Jmem(i), the processor blocks and
does nothing but waits for the media data to be available
to the processor. The Usys(i) metric that has typically been
used in conventional DVS polices does not, however, differ-
entiate Jmem(i) and Jproc(i). Therefore the overall system
utilisation is overestimated because of the existence of the
memory wall problem. Accordingly, the memory wall
problem that may be confronted in executing multimedia
applications should be carefully considered in developing
a DVS technique. In the next section, we propose an
M-DVS technique that takes the memory wall problem
into consideration.

3 Memory-aware dynamic voltage scaling

This section describes the M-DVS policy that specifically
considers the memory wall problem. Fig. 4 illustrates the
operational principles of M-DVS and conventional DVS.
In the figure, fproc

ub and fsd
ub denote the maximum operating

frequencies of the processor and the memory, respectively.
In conventional DVS, the operating point starts at (Usys(i),
fproc(i)) ¼ (a, a0) and, as time advances, it reaches (c, c0)
via (b, b0). The conventional technique acknowledges that
the system utilisation is saturated at (c, c0). In reality,
however, the processor utilisation has been over-estimated
in this region Pm where the memory performance is
restricted because of the memory wall problem. Here,
recognising the system utilisation in (c, c0) is just a reflec-
tion of the memory wall phenomenon (via M-DVS), an
additional power reduction can be achieved by moving
the processor frequency further down to (d, d0).

Before discussing the M-DVS policy, we first illustrate
how M-DVS can detect the memory wall problem in prac-
tice. Knowing that the application is memory-bound, the
key idea is to monitor the number of data cache misses in
the processor, for a unit time interval, and uses it for the
metric. Recent processors used for handheld devices are
usually equipped with a capability of monitoring internal
component behaviour in software to analyse the perform-
ance of the processor. This capability is normally named
the performance monitoring unit (PMU) and it enables the
real-time monitoring of the data cache, instruction cache,
translation lookaside buffer (TLB) and so on. In our work,
131

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Frequency steps

O
pe

ra
tin

g
fr

eq
ue

nc
y

in
M

H
z

Pocessor core CLK

SDRAM CLK

P mw

Fig. 2 Operating frequencies of processor and memory

Q

Jmem(i) Jproc(i)Jmem(i-1) Jproc(i-1)

Q

Processor
operating
frequency

Tmem(i) Tproc(i)Tmem(i-1) Tproc(i-1)

Î Î

ºº

Fig. 3 Processor-bound and memory-bound jobs in a periodic process
the number of data cache misses Dcache
miss (i) is obtained at run-

time via the PMU of the PXA270 processor, and the stat-
istics are used to detect the memory wall problem in real
applications. Dcache

miss (i) denotes the number of data cache
misses occurring during the ith period. Dcache

miss (i) ranges
between Dcache

lb and Dcache
ub , which are the experimental

upper and lower bounds, respectively.
To show the suitability of the metric, Dcache

miss (i) is exper-
imentally monitored in the same environment as described
in Fig. 1 and the results are shown in Fig. 5. Here,
Dcache

miss (i) changes sharply in the region between 208 and
286 MHz, where the memory wall problem occurred in
the previous experiment in Fig. 1. The ‘hit-under-miss’
functionality of the PXA270 processor generates different
Dcache

miss (i) values for different combinations of the processor
and memory frequencies, in decoding the same clip. The
hit-under-miss functionality enables cache access even in
the case of cache miss. With this functionality, Dcache

miss (i)
increases sharply in the memory wall section because the
cache access module is synchronised with the processor
clock, whereas the cache content is filled by external
memory that is slower than the processor. On the basis of
this observation, we adopt Dcache

miss (i) as a metric that
detects the memory wall problem.

Using Dcache
miss (i), the memory wall problem is now

detected and consequently an effective DVS policy can be
132
devised. In normal situations, M-DVS works similar to a
conventional DVS, but upon detecting the memory wall
problem, the policy further reduces the operating frequency
of the processor and achieves an additional power
reduction. This is possible because the system utilisation
has wrongly been overestimated. Implementing M-DVS in
a real system requires an appropriate mapping of the
system utilisation to the valid operating frequencies of the
processor. In our scheme, n different operating frequencies
are chosen and each frequency is associated to the system
utilisation Usys(i). Fig. 6 illustrates the concept. Here, Kseg

is a constant (in percentage) that determines the segment
size of each Usys(i).

The size of the Usys(i) segment determined by Kseg has a
significant impact on the degree of power consumption in
the DVS algorithm and, therefore finding an optimal Kseg

is important in achieving a maximum power reduction. It
is, however, non-trivial to find an optimal value analyti-
cally, because the processing requirement and the memory
access are subject to change dynamically because of the
non-linearity of the interactions among the cache memory,
TLB, the pre-fetch module and the pipeline at run-time.
For practical reasons, we have used a heuristic mechanism
to determine Kseg by adjusting the value through a series of
DVS experiments. This generates a minimum energy index
1. The energy index 1 is defined as the normalised value
Fig. 4 Operational principles of M-DVS and conventional DVS
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006

of voltage settings upon performing the DVS operation,
given the number of voltage setting segments, that is,
1 ¼

P
i¼1
s N(i) �Cfv � fproc(i)/

P
i¼1
s N(i), where N(i) is the

number of processor setting occurrences for fproc(i) and
Cfv is a constant that converts fproc(i) to the associated
voltage. To prevent quality of service (QoS) degradation
with DVS, we have conducted the experiments by increas-
ing the portion of high performance frequency by varying
Kseg from 25 to 75%. As shown in Fig. 6, the heuristic
method finds an appropriate value without QoS degradation
because the portion of fproc

ub , which is the highest frequency
of the processor, increases with the higher value of Kseg.
This approach is based on the fact that the bursty workloads
in MPEG require more portion of the highest operating fre-
quency to have minimal energy consumption without QoS
degradation [6]. Next, we devise a heuristic to determine,
by comparing with Dcache

miss (i) at run-time, the threshold
Dcache

thr that is used to detect the memory wall property of
a task. This is similar to the one used for finding Kseg and
finds Dcache

thr that has a minimum 1 without QoS degradation.

fprocðiÞ ¼
j �f ub

proc

n
;Usysði� 1Þ

[
ð j� 1Þ �ð100� KsegÞ

n� 1
;
j �ð100� KsegÞ

n� 1

� �
;

for j ¼ 1; . . . ; n ð1Þ

fprocðiÞ ¼ fprocðiÞ � Kg; if Usysði� 1Þ

¼ U ub
sys and Dmiss

cacheði� 1Þ . Dthr
cache ð2Þ

On the basis of Kseg and Dcache
thr , the M-DVS policy is

expressed in (1) and (2). In (1), the next frequency fproc(i)
of the processor is determined by the current system utilis-
ation Usys(i 2 1). As a processor can have only discrete
operating points, M-DVS selects an appropriate operating
point in the range between fproc

ub /n and fproc
ub , according to

117
130

143
156

16
9

182
195

208
234

260
28

6
312

33
8

364
390

416
300Kbps

500Kbps
700Kbps

0

2000

4000

6000

8000

10000

12000

14000

16000

A
ve

ra
ge

da
ta

ca
ch

e
m

is
sd

un
de

r"
hi

tu
nd

er
m

is
s"

Processor operating frequency in MHz

12000-14000

10000-12000

8000-10000

6000-8000

4000-6000

2000-4000

0-2000

Fig. 5 Average number of data cache miss
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006
the current system utilisation Usys(i 2 1) and Kseg. After
the initial setting of fproc(i), (2) adjusts fproc(i) by checking
the occurrence of the memory wall problem. That is, if
Dcache

miss (i 2 1) is larger than Dcache
thr and Usys(i 2 1) reaches

its maximum, the system is alerted to experience the
memory wall problem and the clock frequency is further
adjusted to achieve an additional power reduction. In this
case, M-DVS re-adjusts the processor frequency to
fproc(i) 2 Kg, where Kg is the variable that moves fproc(i)
to the position d in Fig. 4.

4 Experiments

This section evaluates the performance characteristics of
M-DVS on the basis of real experiments. The experimental
platform is the Intel PXA270 processor development kit
running the Linux kernel 2.4.19. Fig. 7 illustrates the
M-DVS implementation that consists of multiple functional
modules based on the layering concept. Both the policy
module and the monitor module reside in the kernel. The
monitor module consists of two parts: the utilisation
monitor that measures and calculates the system utilisation
and the memory behaviour monitor that monitors the data
cache. The M-DVS policy module determines the next fre-
quency of the processor on the basis of the data gathered
from those two units, and the next processor setting is
passed to the hardware through the API layer. We minimise
the operating overhead by implementing the M-DVS policy
module in the context of the process scheduler in the kernel.
Also, system portability and modularity are achieved by
accessing the low-level hardware through a well-defined
set of API functions. For the actual power measurement,
the Agilent data logger 34970A/34901A [17] is used.
Simultaneous monitoring of both core voltage and current
consumption is conducted to increase the measurement
accuracy of the actual power consumption.

Now, we experimentally demonstrate that the proposed
M-DVS system reduces more power consumption than the
conventional DVS, without QoS degradation. The process
of finding thresholds for both conventional DVS and
M-DVS is discussed first. The functional behaviour of
M-DVS is then validated by showing the frequency distri-
butions generated by conventional DVS and M-DVS. The
last experiments prove that M-DVS achieves an additional
power reduction, compared with conventional DVS, by
showing the actual power consumption.

Table 1 shows the process of finding the optimal value of
Kseg for the cases of decoding MPEG clips of 300, 500 and
700 kbps with Mplayer. Given four different kinds of oper-
ating frequency, M-DVS selects the Kseg value that induces
the lowest 1 without missing the deadline, in effect the
actual decoding time (TS) does not surpass the deadline.
For example, in the case of 300 kbps, Kseg ¼ 55% is
selected instead of 25%, because TS for Kseg ¼ 25% sur-
passes the deadline although it has the lowest 1. Table 2
Fig. 6 Utilisation based on the Kseg threshold
133

Kernel scheduler layer

Hardware

Processor

Applications

Memory behavior monitor

Processor utilization monitor

Command APIs

SDRAM

Monitor Module

DVS decision module

Monitoring APIs

DC

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2

BNC

4Mb/s

Core PMU Dcache

Measurement

Monitoring Host

Data logger

API layer

Policy module

Rdrop

Fig. 7 M-DVS system and its power measurement
shows the process for finding Dcache
thr for the same clips.

Similar to the case of Kseg, Dcache
thr is selected upon the con-

dition that the power consumption is minimised without
missing the deadline. The large variation of optimal

Table 1: Determining Kseg

Bit rate,

kbps

Kseg(%) 1 TS, s Deadline

300 25 1.311 33.6 Miss

40 1.321 32.4 –

55 1.319 32.8 –

75 1.325 32.6 –

500 25 1.373 32.7 –

40 1.451 30.6 –

55 1.465 31.1 –

75 1.459 31.3 –

700 25 1.401 32.5 –

40 1.405 30.9 –

55 1.404 31.2 –

75 1.421 31.4 –

Table 2: Determining Dcache
thr

Bit rate,

kbps

Dcache
thr 1 TS, s Deadline

300 5000 1.196 31.1 –

10 000 1.188 31.6 –

15 000 1.202 31.1 –

20 000 1.196 31.0 –

500 5000 1.238 32.0 –

10 000 1.309 30.6 –

15 000 1.297 30.5 –

20 000 1.264 30.8 –

700 5000 1.148 35.7 Miss

10 000 1.146 30.7 –

15 000 1.176 31.1 –

20 000 1.117 30.9 –
134
values is because of the fact that the processor used in our
experiment is based on the ‘out-of-order processor’ archi-
tecture, which induces unpredictable recursive cache
access [18].

On the basis of the thresholds obtained by the heuristic
search, Fig. 8 shows the run-time frequency distributions
of the processor with three different policies, No-DVS,
DVS and M-DVS, for decoding a 300 kbps video clip.
Note that No-DVS does not use any DVS policy and DVS
is a conventional policy based on the processor utilisation,
without considering the memory wall effect. For a fair com-
parison, both DVS and M-DVS use the same Kseg. The
experimental results show that because of the low com-
pression rate of the clip, both DVS and M-DVS select oper-
ating frequencies below 104 MHz for the most part. It is
apparent in the figure that M-DVS shifts the frequency set-
tings of [104, 156] MHz of DVS to 78 MHz (57%) and also
[312, 390] MHz to lower frequencies. It is also observed
that a small portion of the M-DVS frequency is set to the
maximum frequency of the processor, 416 MHz, in order
to compensate for possible QoS degradation by transition
to a lower frequency. In summary, M-DVS is shown to
lower the processor frequency when detecting the memory
wall problem, and sets the maximum operating frequency
to prevent a possible QoS degradation caused by the
reduced frequency.

Fig. 9 shows the traces of power consumption that corre-
spond to the processor frequencies determined by the three
policies. The top graph shows the overall performance, and
the bottom graph shows the magnified view on [100, 153]
segment to observe whether M-DVS properly detects the
memory wall problem. Here, the moving averages of the
two latest samples are presented both for DVS and
M-DVS. The top graph clearly shows that both DVS and
M-DVS reduce the power consumption compared with
No-DVS whose trace of the power consumption is dispersed
higher than 150 mW. Also shown is that M-DVS consumes
less power than DVS because most power consumption
measurements of M-DVS ranges from 50 mW to 60 mW,
compared with that of DVS which is in the range from 50
to 100 mW. In the bottom figure, two segments ([108,
125] and [128, 139]) validate that M-DVS works as
expected and achieves an additional power reduction by
shifting the processor frequency appropriately with the
memory wall compensation. The figure also shows that
M-DVS sets the highest processor performance to cope
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006

Fig. 8 Frequency distributions of different DVS policies with 300 kbps clip

20

40

60

80

100

120

140

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152

DVS

M-DVS

0

50

100

150

200

250

300

350

400

1 20 39 58 77 96 115 134 153 172 191Sample advance

Po
w

er
co

ns
um

pt
io

n
in

m
W

du
m

m
y

No DVS

DVS

M-DVS

Effects of M-DVS

Fig. 9 Power consumption traces with 300 kbps clip
with possible performance loss in compensating for the
memory wall problem. This is observed in the sample
instances of 127, 141, 147 and 153.

The average power consumptions of the processor for
three different videos under the same experimental

Table 3: Power consumption summary

MPEG workloads,

kbps

Policies

No-DVS DVS M-DVS

300 241 75 59

500 267 103 78

700 250 99 82

Average power consumption in milliwatts.

31% 39% 40%24% 33%29%

0

20

40

60

80

100

300Kbps 500Kbps 700Kbps

R
el

at
iv

e
po

w
er

co
ns

um
pt

io
n

th
an

N
o-

D
V

S
in

%

No-DVS DVS M-DVS

Fig. 10 Relative power consumption
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006
environment are summarised in Table 3. Fig. 10 shows
the relative power consumption of DVS and M-DVS
compared with No-DVS. DVS and M-DVS save, respect-
ively, �63 and 71% power consumption on average
compared with No-DVS. Also, M-DVS saves �8%
additional power consumption compared with DVS. To
avoid QoS degradation, the experiment considers the QoS
factors, such as dropped frames, decoding time and
deadline, in selecting thresholds. The experimental results
show that there are neither dropped frames nor deadline
misses monitored with our experimental setup and hence
the proposed M-DVS satisfies the application’s QoS
requirements.

5 Conclusions

Although there are many DVS-related studies on the effi-
cient utilisation of limited battery resources, DVS
methods considering only the processor encounter the
memory wall problem when executing multimedia appli-
cations. This paper experimentally demonstrates that the
memory wall problem exists in a real system and proposes
M-DVS, a DVS technique, that effectively detects the
memory wall problem at run-time and further reduces
power consumption using an M-DVS policy. The net
result is that M-DVS saves �8% power consumption
when compared with a conventional DVS.

The main contribution of our work is as follows. First, we
experimentally showed that the memory wall problem exists
135

in a real handheld device when executing memory-bound
applications, such as multimedia playback, and that conven-
tional DVS techniques fail to optimise power reduction as a
result. We then redefined the ‘processor utilisation’ used in
it conventional DVS as the system utilisation and con-
structed a supplementary algorithm, on the top of conven-
tional DVS, which enables an additional power reduction.
Our work shows that the behaviour of main memory
should be considered in developing an efficient DVS
policy within a certain category of applications, and our
experimental results should give insights to any practitioner
in the related field. In addition, the design factors observed
and analysed from the viewpoint of the operating system
and power consumption can be reflected in SoC design
process. Recently, multimedia applications such as stream-
ing services have become dominant applications for hand-
held devices such as portable media player or cellular
phones. Our research results can be easily applied to those
devices, as the platform used in our work adopts a similar
processor and memory structure.

Our mechanism needs to be extended to cover the possi-
bility of multiple memory wall points because the speed of
processors used in the handheld platforms tends to increase
sharply compared to DRAM. In addition, considering the
fact that the DMA architecture of embedded processors
affects the main memory performance, further study is
required to understand the power consumption character-
istics of the DMA peripherals in the context of processor
DVS. This will be part of our future work.

6 Acknowledgments

This work was supported by the Korea Research Foundation
Grant (KRF-2003-041-D00475).

7 References

1 Weiser, M., Welch, B., Demers, A., and Shenker, S.: ‘Scheduling
for reduced CPU energy’. Proc. First Symp. on Operating Systems
Design and Implementation, Monterey, CA, November 1994,
pp. 13–23

2 Govil, K., Chan, E., and Wasserman, H.: ‘Comparing algorithms for
dynamic speed-setting of a low-power CPU’. Proc. Int. Conf. on
Mobile Computing and Networking, Berkeley, CA, November 1995,
pp. 13–25
136
3 Nurvitadhi, E., Lee, B., Yu, C., and Kim, M.: ‘A comparative study of
dynamic voltage scaling techniques for low-power video decoding’.
Proc. Int. Conf. on Embedded Systems and Applications, Las
Vegas, NV, June 2003, pp. 292–298

4 Pouwelse, J., Langendoen, K., and Sips, H.: ‘Application-
directed voltage scaling’, IEEE Trans. VLSI Syst., 2003, 11, (5),
pp. 812–826

5 Mohapatra, S., Cornea, R., Dutt, N., Nicolau, A., and
Venkatasubramanian, N.: ‘Integrated power management for video
streaming to mobile handheld devices’. Proc. 11th ACM Int. Conf.
on Multimedia, Berkeley, CA, November 2003, pp. 582–591

6 Grunwald, D., Levis, P., Morrey, C.B. III, Neufeld, M., and Farkas,
K.I.: ‘Policies for dynamic clock scheduling’. Proc. 4th Symp. on
Operating Systems Design and Implementation, San Diego, CA,
October 2000

7 Martin, T.L., and Siewiorek, D.P.: ‘Non-ideal battery and main
memory effects on CPU speed-setting for low power’, IEEE Trans.
VLSI Syst., 2001, 9, (1), pp. 29–34

8 Martin, T.L., Siewiorek, D.P., Smailagic, A., Bosworth, M., Ettus, M.,
and Warren, J.: ‘A case study of a system-level approach to power-
aware computing’, ACM Trans. Embedded Comput. Syst., 2003, 2,
(3), pp. 255–276

9 Fan, X., Ellis, C.S., and Lebeck, A.R.: ‘The synergy between power-
aware memory systems and processor voltage scaling’. Proc. Power
Aware Computer Systems, San Diego, CA, December 2003,
pp. 164–179

10 Weissel, A., and Bellosa, F.: ‘Process cruise control-event-driven
clock scaling for dynamic power management’. Proc. Compilers,
Architectures and Synthesis for Embedded Systems, Grenoble,
France, October 2002, pp. 238–246

11 Choi, K., Soma, R., and Pedram, M.: ‘Off-chip latency-driven
dynamic voltage and frequency scaling for an MPEG decoding’.
Proc. 41st Design Automation Conf., San Diego, CA, June 2004,
pp. 544–549

12 Cho, Y., and Chang, N.: ‘Memory-aware energy-optimal frequency
assignment for dynamic supply voltage scaling’. Proc. Int. Symp. on
Low Power Electronics and Designs (ISLPED 2004), Newport
Beach, CA, August 2004, pp. 387–392

13 Hennessy, J., and Patterson, D.A.: ‘Computer architecture - A
quantitative approach’ (Morgan Kaufmann Publishers, 2003, 3rd edn.)

14 Wulf, W., and McKee, S.: ‘Hitting the memory wall: implications of
the obvious’, Comput. Archit. News, 1995, 23, (1), pp. 20–24

15 Available online at http://www.mplayerhq.hu
16 Intel: Intel PXA27x processor family, available at http://developer.

intel.com/design/pca/prodbref/253820.htm, accessed 21 February
2005

17 Agilent: 34970A data acquisition switch unit, available at www.
agilent.com, accessed 21 February 2005

18 Srinivasan, S.K., and Velev, M.N.: ‘Formal verification of an Intel
XScale processor model with scoreboarding, specialized execution
pipelines, and impress data-memory exceptions’. Proc. First ACM
and IEEE Int. Conf. on Formal Methods and Models for Co-design,
Mont Saint-Michel, France, June 2003, pp. 65–74
IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 2, March 2006

	1 Introduction
	2 Memory wall problem
	3 Memory-aware dynamic voltage scaling
	4 Experiments
	5 Conclusions
	6 Acknowledgments
	7 References

