
DOI: 10.1007/s10766-005-0027-1
International Journal of Parallel Programming, Vol. 35, No. 1, February 2007 (© 2007)

Reducing Off-Chip Memory
Access via Stream-ConsciousTiling
on Multimedia Applications

Chunhui Zhang,1,2 Fadi Kurdahi1

Received March 15, 2006; accepted October 10, 2006

The iteration space of a loop nest is the set of all loop iterations bounded
by the loop limits. Tiling the iteration space can effectively exploit the avail-
able parallelism, which is essential to multiprocessor compiling and pipelined
architecture design. Another improvement brought by tiling is the better data
locality that can dramatically reduce memory access and, consequently, the
relevant memory access energy consumptions. However, previous studies on
tiling were based on the data dependence, thus arrays without dependen-
cies such as input arrays (data streams) were not considered. In this paper,
we extend the tiling exploration to also accommodate those dependence-free
arrays, and propose a stream-conscious tiling scheme for off-chip memory
access optimization. We show that input arrays are as important, if not more,
as the arrays with data dependencies when the focus is on memory access
optimization instead of parallelism extraction. Our approach is verified on
TI’s low power C55X DSP with popular multimedia applications, exhibit-
ing off-chip memory access reduction by 67% on average over the traditional
iteration space tiling.

KEY WORDS: tiling; memory hierarchy; data locality; iteration space; DSP;
low power.

1. INTRODUCTION

Tiling, or blocking, has been extensively studied in the context of uniform
loops due to its uniformity — computations are identical over the entire

1Department of EECS, University of California, Irvine, CA, 92697, USA
2To whom correspondence should be addressed. E-mail: chunhuiz@uci.edu

63

0885-7458/07/0200-0063/0 © 2007 Springer Science+Business Media, LLC

64 Zhang and Kurdahi

loop index space, thereby the analysis can be simplified within a single
iteration instance.(1–4) It is well-known that tiling is an effective method in
defining more convenient memory access patterns, improving data locali-
ties and, consequently, saving energy consumptions.

1.1. Iteration Space and Data Space

The iteration space I (computation domain) is the set of all loop iter-
ations bounded by the loop limits. Each iteration instance can be repre-
sented by a vector �i = (i1, . . . , in) for a loop nest of depth n, where ik
is the value of the k-th loop index, counting from the outermost to the
innermost loop. An iteration space is represented by the integer points
contained within a convex polyhedron I = {�i | B�i ≤ �b}.(5)

Constrained by array bounds, the data space D can also be viewed as
a set of polytopes. For a given nested loop, D is formed only by the ref-
erenced array elements despite the original array declarations. Each state-
ment in the loop may include one or several references to the arrays or
scalars (the degenerations of arrays).

1.2. Iteration Space Tiling

Traditional tiling schemes focused on iteration space, known as the
iteration space tiling.(6) A tile in the iteration space is the collection of
iterations to be executed as an atomic unit. Usually the nest depth is dou-
bled after tiling, although there are exceptions, e.g., strip-mining (a special
case of tiling). Fig. 1(a)–(d) illustrates a piece of example code together
with its iteration space before and after tiling, where the original 2-D loop
nest is mapped to a 4-deep loop nest by tiling. The tiled code in Fig. 1
(c) uses a tile size of 2 × 2. The two innermost loops execute the iteration
instances within each tile, represented as 2 × 2 shadowed square in Fig. 1
(d). The two outer loops, represented by the two axes in the figure, execute
the 6 tiles.

Tiling the iteration space may improve the available parallelism, hence
many tiling techniques were tailored for parallel machines to exploit
the intrinsic concurrencies.(1,2,6) Their major concerns were the execution
legality and how to distribute tiles onto processors, which are similar
to the time-space transformation in systolic processing. Likewise, tiling
on iteration space introduces more parallelism to structural or functional
pipelining in single processor systems.(7) Loop tiling may also improve
data locality.

The essential issue in iteration space tiling, either for multiple or
single processor systems, is the data dependence relation. Since ordering

Reducing Off-Chip Memory Access 65

for i = 1 to 6 do
 for j = 1 to i do
S1: d1(i, j) = 5 * d3(i-1, j);
S2: d2(i, j) = d3(i-1, j-1) + 4.7;
S3: d3(i, j) = d1(i, j-1) + d2(i, j);

(a)

for ii = 1 to 6 by 2 do
 for jj = 1 to ii by 2 do
 for i = ii to min(6, ii+1) do
 for j = jj to min(ii, jj+1) do
S1: d1(i, j) = 5 * d3(i-1, j);
S2: d2(i, j) = d3(i-1, j-1) + 4.7;
S3: d3(i, j) = d1(i, j-1) + d2(i, j);

(c)

1
i

j Iteration Space

0 2 3 4 5 6
0
1
2
3
4
5
6

(b)

1
ii

jj Tiled Iteration Space

0 2 3 4 5 6
0
1
2
3
4
5
6

(d)

1
i

j Iteration Space

0 2 3 4 5 6
0
1
2
3
4
5
6

1
i

j Data Spaces

0 2 3 4 5 6
0
1
2
3
4
5
6 d1

d2
d3

(e)

Fig. 1. Iteration space, data space, and tiling: (a) example code of a nested loop; (b) the
corresponding iteration space and dependencies; (c) the code after tiling and (d) the tiled
iteration space; (e) data spaces match the iteration space (the solid area) except at the bound-
aries.

constraints determine the extractable parallelism, it is not surprising
that tiling related models were branded with data dependence, that we
call “dependence models”, e.g., the Multi-dimensional Data Flow Graph
(MDFG),(4) the data dependence graph,(8) the dependence array,(9) etc.
It also justifies that why previous studies(1,2,6,7) favored certain uniformly

66 Zhang and Kurdahi

recurrent equations (UREs)–all data arrays in the UREs involve data
dependencies thus can be abstracted in the dependence models. However,
data arrays not involving dependence, among which input array is the
common case, were excluded from the consideration of the traditional
iteration space tiling.

1.3. The Motivating Examples

A common characteristic in those UREs is the tightly matched itera-
tion space and data space. Actually, the example code in Fig. 1(a) is a typ-
ical URE loop nest, in which the iteration space I and the data spaces of
D1, D2, D3 (representing the data arrays d1, d2, d3, respectively) share the
same triangle shape except at the boundaries, shown in Fig. 1(e). There-
fore, the data spaces can be tiled in the same shape spontaneously and
implicitly when the iteration space tiling executes. At the same time, it can
show decent localities.

Unlike the URE example where the iteration space and data spaces
are well matched, the I–D relationship of our second example, matrix
multiplication, is a little intricate as illustrated in Fig. 2. In the polyhe-
dron-view, the iteration space is a cube while the data spaces are com-
posed of three faces of the cube, each representing one of the three data
arrays. Every iteration instance G, represented by iteration vector G =
(iG, jG, kG), needs the corresponding data from the three data arrays,
which are just the projections from G onto the xy, xz and yz planes.
When we tile I into an orthogonal polytope with the side sizes of t1, t2,
t3, the corresponding data needed will be from the projected rectangular
areas on the faces of D.

Motivated by the two examples, we come to a point that memory
access optimization should be application-dependent, which can be jus-
tified by two pieces of evidence. First of all, an application may have
well-matched loop and data array indices while another may exhibit com-
plex relationships between its iteration space and data space. Secondly, the
input for an application may be either a small amount of data serving as
a prologue (the URE example) or large-sized data streams in another (the
matrix multiply example).

1.4. Stream-Conscious Tiling

The disproportionate developments of processor and memory speeds
have hindered the overall system performance. To circumvent this speed
gap, memory hierarchy plays a dominant role with advantages in terms of
area, performance and power. In fact, most multimedia applications have

Reducing Off-Chip Memory Access 67

for ii = 0 to N by t1 do
for jj = 0 to N by t2 do

for kk = 0 to N by t3 do
for i = ii to ii+t1-1 do

for j = jj to jj+t2-1 do
for k = kk to kk+t3-1 do

 A(i, j) = A(i, j) + B(i, k) * C(k, j);

for i = 0 to N do
for j = 0 to N do

for k = 0 to N do
A(i, j) = A(i, j) + B(i, k) * C(k, j);

(a)

(b) (c)

Fig. 2. (a) The code of matrix multiply before tiling and (b) after tiling; (c) Connecting the
I and the D of matrix multiply.

large input data streams buffered in the external main memory. Tiling on
those streams is somehow mandatory and significantly impacts conven-
tional iteration space tiling techniques in several ways:

(i) Tiling on input arrays has more significant effects on communi-
cation. Here we refer to “communication” as the off-chip mem-
ory access, and the off-chip memory access count is simplified
as the “memory access”. For UREs, communication volume is
approximated by the number of dependence vectors across a tile
boundary.(7) It is significantly smaller than the communication
volume of the input arrays, which is proportional to the tile
itself.

(ii) The data space of an input array usually exhibits its own shape
rather than that of the iteration space, e.g., the matrix multiply
example in Fig. 2. We will demonstrate later that it is exactly
the mismatched iteration and data space that introduces a large
exploration potential for memory access optimization.

(iii) Dependence models are incapable of abstracting any informa-
tion from dependence-free input arrays.

Actually, dependence-oriented iteration space tiling was not contrived
for demands other than parallelism extraction. Therefore, there is a clear
need to propose a stream-conscious tiling technique with the goal of mem-
ory access optimization, in terms of access count, time and energy con-
sumption.

68 Zhang and Kurdahi

1.5. Target Application Domain

Although it is a “hard” problem in general, the objective of memory
access optimization is achieved in this work by focusing on a specific
application domain — multimedia applications, including video process-
ing, medical imaging, multimedia terminals, artificial vision, and so on.
The main characteristics of those applications are: data-dominated, nested
loops, manifest affine conditions and indices, static data, and so on. As
a consequence, most example loops in this context are regular, that is to
say, perfectly nested, with simple indexing, and free of conditional state-
ments, thereby containing possible analytical solutions. Admittedly, more
and more multimedia applications, such as MPEG-4, have data dependent
conditions and indexing, and are quite irregularly nested. Nevertheless,
appropriate pruning on such specifications can solve this issue partially,
and the “complete” solution is a topic for future research.

In order to take advantage of data locality without violating exe-
cution legality, we propose the stream-conscious tiling exploration tech-
nique for memory access reductions considering both the iteration space
and data arrays. Since memory access, especially external memory access,
makes a prominent contribution towards system-level power consumption,
this idea is further extended for the purpose of energy reduction. The
approaches are verified on TI’s low power C55X DSP. Experiments show
that the reduction on off-chip memory access can reach 85% (about 67%
on average) over traditional iteration space tiling and more than 38%
(about 26% on average) over another data oriented scheme.

The rest of this paper is organized as follows: Section 2 reviews
the related work and Section 3 describes the models. A novel loop rep-
resentation, xMDFG (eXtended Multi-dimensional Data Flow Graph),
is proposed in Section 4. Our tiling exploration scheme is presented in
Section 5 with the case studies illustrated in Section 6. Section 7 verifies
our approaches on a TI’s DSP platform. Finally, the conclusion and future
work are drawn in Section 8.

2. RELATED WORK

The work done by Andonov et al.(1) and Robert et al.(9) represents
the typical studies on the effects of orthogonal tiling on multiple processor
systems. In,(1) the authors modeled programs of uniform recurrence equa-
tions (UREs), and showed how the methods of systolic array synthesis can
be profitably used for optimal tiling. Although the realistic model of the
communication costs of general purpose multiprocessors yields a partic-
ular non-linear optimization problem, they used an analytic solution and

Reducing Off-Chip Memory Access 69

gave a closed form formula for the optimal tile size and processor count.
Robert et al.(9) further developed the problem to the mapping and sched-
uling of the tiles on to physical processors under limited computational
resources. In addition, Carter used the Parallel Memory Hierarchy (PMH)
model to improve superscalar performance(2) via tiling.

In any case, the focusses in those tiling works were mainly parallel
computations on multiprocessors. They were interested in URE examples
whereas arrays that did not show dependence were assumed to be ready
on local memories for processing. Therefore, the demands on data commu-
nication given by their formulas were low and the communication models
in those works were overlooked due to their insignificant effects. They usu-
ally assumed (sometimes implicitly) caches to be of the local memory type.

The emergence and popularity of real-time embedded systems pushed
the demand of predicability as well as the improvement on the worst case
execution time (WCET) for the applications running on them. It turned
out that software-managed scratchpad memory was satisfactory. In,(10)

an architecture containing both cache and scratch pad memory is used.
Arrays that are too large to fit in the SPM are therefore kept in the main
memory and accessed through the data cache. Scores of similar works to
improve either localities or predicability using the SPM can be found.(11)

To this date, however, not many studies have looked into the prob-
lem of tiling on software-managed memories. Kandemir’s work(12) inves-
tigated the dynamically partitioning issue on software-managed memory
systems for data reuse exploration, but only square tile and strip-min-
ing were considered. Sha’s group(3) established an analytical framework
addressing both tile shape and size for computation and communication
overlapping. Although memory hierarchy was addressed, they only mod-
eled UREs without communication budget for large input arrays.

As both the data stream sizes and the adoption of software-managed
memories increase dramatically in embedded multimedia systems, the new
emphasis lies on the data flow management. Hence, unlike previous tiling
studies that worked mainly on the iteration space, there is a clear need
for data-oriented tiling. In this work, we analyze the relationship between
iteration space and data space based on subscript functions, and propose
a stream-conscious tiling scheme. Consequently, data tiling is no longer
simply the outcome of routine code generation. Instead, it is incorporated
into the exploration stage for memory access optimization.

Kadayif et al.(13) present a data space-oriented tiling strategy, repre-
senting the latest progress in this field. Their strategy works on data arrays
and employs the subscript function, which is very similar to our approach.
However, there are still significant differences between these two optimiza-
tion strategies. First, the dependence-free input data is ignored in Kadayif

70 Zhang and Kurdahi

et al.(13). We note that input data arrays often contribute the largest por-
tion to total communication volume and is the main focus in our stream-
conscious tiling approach. Therefore, our stream-conscious tiling approach
outperforms Kadayif’s strategy when input data arrays are present.

Second, the objective of their data tile selection strategy is to mini-
mize the number of nontile elements (refer to Ref. 13 for the definition),
and even they admit the inaccuracy of using nontile elements to estimate
the communication volume. In contrast, our approach works by connect-
ing tiling shapes directly with the memory access measures, and therefore
the objective of tiling exploration are established accurately for measur-
ing memory access related costs. Although they take advantage of data
locality across loop nests while our strategy focuses on singleton loop nest,
Darte’s cl,(14) that “general algorithms do not really subsume simpler ones
because the objective functions for simpler algorithms can be more sophis-
ticated”, works perfectly here.

Finally, their tiling exploration algorithm is more expensive than ours.
In their strategy, the algorithm iterates on every data array in order to
identify the best seed array, while inside each iteration, the code needs
to be re-generated many times, which is very costly. Furthermore, when
one calculates the seed iteration (refer to Ref. 13), it involves matrix inver-
sions on the subscript functions, which are usually very expensive. By
contraries, our approach provides algorithms to formalize the relationship
between tiling and memory access parameters straightforwardly, which can
be solved in an easier manner.

3. MODEL

3.1. Program Model

The program model we use is based on the one proposed by
Banerjee.(5) The model is shown in Fig. 3, where L1 and U1 are integer
constants; Lr and Ur are integer-valued affine (linear)
functions of i1, i2, . . . , ir−1. The loop bodies S1, . . . , Sk are a totally
ordered set of assignment statements, composed of a finite number of
affine functions of i1, i2, . . . , in. It is a perfect loop nest in the sense that
there are no statements between loops. For a general loop nest, pruning it
with only the innermost statements left is adequate in most cases since the
innermost loop body has the largest computation domain.

The ordered execution induces dependencies between iterations. There
is a dependence between statements Si and Sj , if an instance Si(I) of Si ,
an instance Sj (J) of Sj (I , J are loop index vectors), and a memory loca-
tion M, satisfy the following conditions:

Reducing Off-Chip Memory Access 71

for i1 = L1 to U1 do
 for i2 = L2 to U2 do

 for in = Ln to Un do
Statement S1
Statement S2

Statement Sk
 endfor

 endfor
endfor

Fig. 3. The program model.

• Both Si(I) and Sj (J) refer to M, and at least one of the references
is a write;

• Si(I) is to be executed before Sj (J);
• The memory location M is not written in the time period from

the end of execution of Si(I) to the beginning of the execution of
Sj (J).

The dependence vector between Si(I) and Sj (J) is J − I . The loop
nest is said to be uniform if the dependence vectors do not depend on
either I or J (except at the boundaries). We can then represent the loop
nest as a reduced graph with k nodes (the statements) linked by edges cor-
responding to the dependence vectors.

3.2. Architecture Model

We adopt a generic architecture model using software-managed mem-
ories, which is different from many tiling approaches(2,15) developed for
cache-based systems. The reasons are, but not restricted to, that the
dynamic nature of cache restrains compile-time optimization from the
extensive use of static data scheduling, and the fine-grain (cache line) fea-
ture of cache lessens the advantages of medium-grain tiling. Neverthe-
less, it does not mean that cache-based systems may not benefit from our
method.

Many DSPs(16,17) use RAMs/ROMs as the on-chip memories; real-
time embedded systems adopt Scratch-Pad Memories (SPMs) increasingly
to solve the hard time-constraint issue because complete software-managed
SPMs allow one to exactly predict the processing time. Figure 4 shows

72 Zhang and Kurdahi

CPU
Core

On-Chip
Instruction

Memory

On-Chip
Scratch-Pad

Memory

Off-Chip
Main

Memory...

Global Interconnect

Custom
Cores

Fig. 4. The architecture model.

the architecture model block diagram. It consists of an instruction mem-
ory, an SPM for data storage, a main memory, a DSP or RISC CPU core
and custom cores. The main memory is assumed to be off-chip and usu-
ally realized by DRAM with high access latency. The rest of the compo-
nents are fabricated on-chip. In the stream-conscious tiling algorithm, we
are interested in the data flow between the on-chip SPM and the off-chip
memory, that are shaded in color in Fig. 4.

3.3. Execution Model

The adopted execution model assumes a general situation where all
data and instructions are located in the external memory initially. An
instruction can operate only when it has been loaded on-chip and the
required data is available in the SPM. The iteration space is divided into
uniform tiles except at the boundaries to exploit better locality. Accord-
ingly, tiling on iteration space leads to tiles on the involved arrays, called
a data tile set in a whole.

Numerous achievements in pipeline synthesis since the late 1980s can
be used for more compact intra-tile execution scheduling. Since the loop
code is usually condensed with limited length and desirable locality, a
nested loop can reside in on-chip instruction memory and run for a cer-
tain time with ignorable memory loading cost. Consequently, the major
task is to manage the data transfers between the SPM and the off-chip
memory. Additionally, the execution model assumes the following:

Reducing Off-Chip Memory Access 73

(1) SPM allocation for data tile set. An on-chip SPM has a limited
size, while larger sized tiles usually provide better locality, only
two data tile sets are in the SPM concurrently (one for prefetch-
ing).

(2) Communication cost. The communication cost of one transac-
tion—to transfer n consecutive data items—is modeled as C =
Cs + n ∗ Ct , where Cs stands for the start-up penalty including
access latency and software initialization overhead, and Ct is the
cycles to transfer one data item in the stable status.

(3) Inter-tile scheduling. Tiles are atomic with synchronization hap-
pening only at the starting and ending points of tiles. Here,
“atomic” means that tiles are the same in size and shape, and are
applied with the same processing; “synchronization” refers to the
choreographing of computation and communication. The execu-
tion sequence of tiles is lexicographic. Tiling may bring in extra
communication costs to avoid a dependency violation.

Our model depicts a realistic scenario: to execute a specific loop, the
input arrays need to be prefetched from the lower to the upper level of
memory hierarchy. In other words, the input data is no longer assumed to
be local, instead, their access cost is taken into account. This idea is also
applied to the processed data that could or should not be kept in local
memory and need to be output.

3.4. Activity-Based Power Consumption Model

It is well-known that a design decision made at an earlier stage has
more significant impact on the final implementation. Low-energy design
obeys this rule. Although there are many factors determining the power
dissipation, e.g., process technology, supply voltage, operating frequency,
wire length and capacitance, we are more interested in system level anal-
ysis on the memory subsystem in this work. Therefore, the dominant
parameters are the count of memory access and the total access cycles,
while the other factors are orthogonal to the discussion in this work.

Consequently, we accept the idea of an activity-based power analy-
sis—the system is divided into modules that contribute their power inde-
pendently based on their own properties and activities. Depending on its
functionality, an individual module may have its specific power-related
configurations, such as the switching ratio, the percentage of write, syn-
chronous or asynchronous configurations, and so on. However, they share
the one and often most important configuration—utilization ratio, which
is popular in practical DSP energy models.(17,18)

74 Zhang and Kurdahi

Definition 1. Utilization ratio is a quantitative measurement of per-
formance. The utilization ratio of a module is the percentage of its current
performance with respect to its maximum achievable performance.

Utilization is an abstract concept and needs to be specified individu-
ally for different modules.

Definition 2. Activation Baseline Power, Pbase, is the power con-
sumption of a specific module when it is powered on but the utilization
ratio is zero. Utilization Power, Putilization, is the extra power consumption
when the utilization ratio becomes non-zero.

Most of Pbase comes from the clock tree, especially when the latter
is not gated. Overall, there are two major components in the proposed
energy model (shown in Eq. 1): the “baseline” energy, which is calculated
by the product of Pbase and the total run time; and the “activity” energy
caused by “utilization”.

Etotal = Estatic + Eactivity = (Pbase + Putilization) × Trun time (1)

For memory subsystem, the “activity” energy can eventually be com-
puted by per-access energy Eper access. Since the computational energy
(activity energy of CPU) is relatively small, it is excluded from the discus-
sion. Therefore, the energy model is improved in Eq. (2).

Etotal = Estatic + Eaccess = Pbase × Trun time + Eper access × Access count

(2)

The activity-based model aids in system design for greater efficiency
and is conformed to many real life DSPs.(17,18)

4. STREAM-CONSCIOUS LOOP RPRESENTATION

Most multimedia applications have very structured computations
expressed in perfectly nested loops. In order to facilitate the analysis,
mathematic methods such as graph theory and linear algebra have been
applied to nested loops for modeling. However, classic loop represen-
tation models, e.g., the MDFG and the PRDG, are tailored for par-
allelism extraction and cannot abstract the input and output data flow
across memory hierarchies. In this section, we propose a loop representa-
tion form, the xMDFG (eXtended Multi-dimensional Data Flow Graph),

Reducing Off-Chip Memory Access 75

which is based on the MDFG using data alignment technique, to over-
come the shortcoming. In the xMDFG, input and output data arrays are
aligned and connected with the computation domain, thus the comprehen-
sive analysis on both computation scheduling and bulk data flow becomes
feasible.

4.1. Background

4.1.1. Subscript Function

The subscript function for a reference is a mapping from the itera-
tion space I to the data space D, specifically, from the iteration vectors to
the array elements. We assume that the subscript functions are affine since
many array references in practical codes are affine functions. Under this
assumption, a reference to an array d can be written as f (�i) = Fd

�i + �ad ,
where Fd is a linear transformation matrix called access matrix and �ad

is the offset (constant) vector.(8) For instance, the reference to array d in
Fig. 5(a) S1 can be written as:

f (�i) = Fd
�i + �ad =

(
1 0
0 1

) (
i

j

)
+

(
-1
3

)
(3)

4.1.2. MDFG

A Multi-dimensional Data Flow Graph (MDFG)(4) G = (V , E, d)

is a node-weighted and edge-weighted directed graph used to represent
a nested loop of computation. V is the set of computation nodes, E ⊆
V × V is the set of data dependence edges, d is a function from E to Zn

representing the multi-dimensional dependence vector between two nodes,
where n is the number of dimensions. Other models, such as dependence
array,(9) can be viewed as variations of the MDFG. An edge with zero-
vector delay represents an intra-iteration dependence, and non-zero delay

(a) (b)

for i = 0 to N do
 for j = 0 to N do
S

1
: a(i, j) = b(i, j - 6) + d(i - 1, j + 3);

S
2
: b(i + 1, j - 1) = c(i + 2, j + 5);

S
3
: c(i + 3, j - 1) = a(i, j - 2);

S
4
: d(i, j - 1) = a(i, j - 1) ;

S
1

S
4 S

3
S

2

(0, 1)

(1, -4) (0, 2)

(1, -6)

(1, 5)

Fig. 5. (a) Example code of a nested loop; (b) the corresponding MDFG.

76 Zhang and Kurdahi

represents an inter-iteration dependence (Loop Carried Dependence). A
legal MDFG must have no zero-delay cycles. Figure 5 shows a well-known
example taken from,(19) together with the corresponding MDFG.

4.2. III-DDD “match degree”

Data arrays may have different shapes or even dimensions without
breaking the “uniform dependence” constraint. We describe the relation-
ships between iteration space and data space in the sense of I-D match
degree, which falls into one of the three categories: the “perfect match”,
the “dimensional match”, or the “mismatch”. A “perfect match” refers to
the case where the access matrix F is an identity matrix or an elementary
matrix derived with only row interchange operations. The examples in Fig.
6(a) belong to this case. If the access matrix has the same rank as the loop
nest depth n, we call it a “dimensional match”. Otherwise, the I-D match
degree falls into the “mismatch” category. For instance, the three arrays in
the loop of Fig. 2(a) are “mismatched” to the computation domain.

4.3. xMDFG — Extended MDFG for Stream Modeling

The essential element in an MDFG is the data dependence, which
constrains the scheduling of statements, while input array does not change
the original MDFG at all. However, it may take more than data depen-
dence to constrain execution: the availability of input arrays is also a con-
straint as long as hierarchical memories, rather than flat memories, are
considered. That is, a statement can only be executed after its input data
is located at the top of the memory hierarchy.

For the loops with large input data arrays, data availability dominates
the data flow cost. Consequently, we refine the MDFG model, abstract-
ing input and output arrays (streaming data) into loop representations. It
belongs to a data alignment problem, where subscript function plays a key
role in bridging data arrays with the computation domain.

Specifically, we associate the input array (if it exists) with the iteration
space, and represent them in the MDFG using an extra node. Likewise,
an extra “sink node” is assigned to identify the bulk communication for
each output array. For the simple example code of Fig. 6(a), its xMDFG
is given in Fig. 7(a). Those extra nodes for array input and output are
actually external memory load and store operations as illustrated in 6(b).

In practice, such load and store instructions are usually grouped into
independent loops executed (e.g., as DMA processing on DSP platforms)
before and after the computation loop. Here, we use loop fusing to merge
them into one loop for the convenience of modeling. The edge between

Reducing Off-Chip Memory Access 77

for x = 1 to M do
 for y = 1 to N do
S1: load in(x, y);
S2: out(x, y) = a * in(x, y) + b;
S3: store out(x, y);

(b)

for x = 1 to M do
 for y = 1 to N do
 out(x, y) = a * in(x, y) + b;

(a)

for i = 0 to N do
 for j = 0 to N do

d1(i, j) = d2(i, j-1) + d3(2*i, j-3);
d2(i, j) = d1(i, j-1) + d3(i+j-2, i);

(c)

for m = 0 to IMAGE_WIDTH-MASK_SIZE do
 for n = 0 to IMAGE_HEIGHT-MASK_SIZE do

sum = 0;
for i = 0 to MASK_SIZE do
 for j = 0 to MASK_SIZE do

if (mask(i, j) != 0)
 sum += image(m+i, n+j);

result(m, n) = sum;
 (d)

Fig. 6. Code fragments (a) a loop belongs to a “perfect match” with (b) a variant of it;
(c) an illustrative code for UGR; (d) code for algorithm of automatic target recognition.

(0, 0)

S2

S1

(0, 0)

S3

SB SC

SM

SA

(0, 0, *)

(*, 0, 0)

(0, 0, 1)

(0, *, 0)

(a) (b)

Fig. 7. Building the xMDFG (a) for the simple alignment example; (b) for matrix multiply.

the extra nodes and the original MDFG nodes is called access dependence.
Unlike input dependence, which deals with two reads to the same memory
location, access dependence handles data flow between different memory
levels. Not only extra edges, but also extra nodes are added to the orig-
inal MDFG. We name such modified MDFG as xMDFG.

78 Zhang and Kurdahi

4.4. Building the xMDFG

The relationship between iteration space and data arrays may be very
complicated. The access dependence may violate the rule of “lexicograph-
ically non-negative”.(20) Nevertheless, the legality analysis for the original
MDFG part still stands. For each I-D match degree category, we briefly
demonstrate the methods in aligning input data with MDFG, from simple
to complex. Throughout those methods, the principal idea is to re-declare
(transform) the data array as compactly as possible. In the following text,
A stands for the original array while B, the transformed one, and FA, FB

are the access matrices:
(1) The “perfect match”. The alignment process is straightforward as

in the example illustrated in Subsection 3.3. If FA is an identity matrix,
no transformation is needed and the access dependence is the offset vec-
tor, which can further be re-timed to a zero vector if it is not. Otherwise,
the indices of the data array are interchanged so that the resulted access
matrix FB becomes an identity matrix.

(2) The “dimensional match”. There are two cases in a “dimensional
match”: FA is non-singular square, or FA has more rows than columns (n
columns) but the rank is still n. In both cases, B is declared as B(�i) =
A(FA

�i + �aA)). For instance, fA

(�i) = (
5 1
3 2

)(
i

j

) + (
4
1

)
, then B is defined as

B(�i) = A(5i + j + 4, 3i + 2j + 1). This is the same as applying a shifting
M1 = −�aA plus a transformation M2 = F−1

A on array A. Some elements
in A may not be represented in B if FA is not unimodular. However, all
the referenced array elements in A are well mapped to array B (indices are
integers). The resulting access dependence is a zero-vector.

(3) The “mismatch”. Although the method for a “dimensional match”
case is still feasible, A can be re-declared in a more compact way. We use
the reduced form, a special echelon form that each leading non-zero entry
is a one and all entries above and below such leading ones are zeros. For

example, FA(�i) =
(

1 2 0
3 0 2
0 1 1

)
has the reduced form R =

(
1 2 0
0 0 1
0 0 0

)
. The complete

reduction procedure uses row interchange and multiplication operations
(refer to Ref. 21 for details). Via the reduced form, array B is declared in
almost the most compact way, FB = R and B(fB(�i)) = A(fA(�i)).

However, the reduced form of a matrix may contain fractional num-
bers. In this case, row multiplication operation is applied to ensure that
all entries are integers. Moreover, the access dependence is no longer a dis-
tance. Figure 7(b) gives the xMDFG for the matrix multiply code in Fig.
2 (a). The notation ∗ stands for [−∞, +∞] as defined in.(20) Such depen-
dence is known as direction dependence. Although direction dependence
is imprecise, it is accurate enough for our subsequent analysis using the

Reducing Off-Chip Memory Access 79

xMDFG. Furthermore, the quantitative calculation in our proposed algo-
rithm uses the subscript function directly.

(4) Multiple references and Uniformly Generated Reference set (UGR).
An array can be referenced multiple times in the loop body. A UGR is a
set of references to the same array whose subscript functions differ only in
the offset vector, e.g., d1(i, j) and d1(i, j − 1). In those cases where there
are multiple UGRs for one array, each UGR should be treated as an inde-
pendent single reference. Even a single UGR may be handled as different
arrays, e.g., d(2i + 1, j) and d(2i − 4, j + 3) are a UGR, but should be
considered as two arrays.

In summary, aligning input data arrays with iteration space is non-
trivial, but is generally feasible after proper array transformations and
re-declarations. To align output data arrays may be even more complicated
because of the involvement with data dependence. However, many multi-
media applications are coded in a way that the access patterns are quite
simple and regular, thus building their xMDFGs is rather straightforward,
as shown later in the case studies.

5. THE STREAM-CONSCIOUS TILING TECHNIQUE

5.1. Preprocessing for Orthogonal Tiling

Despite the fact that tiles can be of any size and shape, we only
consider orthogonal tiling in this context 1(squares and rectangles in
2-D). Although intuitively it may seem restrictive, orthogonal tiling is tac-
itly taken by most researchers, even in mature compilers such as Paradigm
and Fortran 90.(23,24) In addition, parallelepiped tiling brings undesirable
complexities in handling the tile boundaries during the code generation
step, and finally increases the code size. On the other hand, parallele-
piped tiles can usually be transformed into orthogonal tiles by applying
loop skewing techniques.(20) For a given n-Dimensional iteration space I,
orthogonal tiling can be represented as �T = (T1, . . . , Tn) with Ti standing
for the tile size of the ith dimension of I.

A tile on the iteration space corresponds to one or more tiles on the
data space set. Relying on the subscript functions, the data tile set can
have the shapes different from the iteration space tile shape. In order to
guarantee a “uniform” and “simple” relationship between iteration and
data space, an extra preprocessing procedure is raised. As a result, the
properties of “atomic” and “orthogonal” of iteration space tiling remain

1Note that directly applying orthogonal tiling to some loops may result in illegal schedul-
ing,(3) however, re-timing techniques(22) can increase the legal range of orthogonal tiling
largely.

80 Zhang and Kurdahi

applicable for data space tiling. Roughly speaking, this preprocessing proce-
dure is the procedure of building the xMDFG. As demonstrated in Section
3.4, data arrays are all changed into the following forms after prepro-
cessing: the access matrix is an (1) identity matrix; (2) elementary matrix
derived with only row interchange operations; (3) (general) integer-only
reduced form. The consequent loop nest has following properties:

Property 1. For all three forms of the preprocessed access matrix,
there is at most one non-zero number in any column.

The property is obvious through the definitions of the reduced form
and the identity matrix.

Property 2. After building the xMDFG, orthogonal tiling on the
iteration space results in orthogonal data space tiles.

Proof: The iteration space I can be viewed as a linear space Zn

spanned by standard basis of the iteration indices, where �i1 = (1, 0, . . . , 0);
�i2 = (0, 1, . . . , 0); �in = (0, . . . , 0, 1). The orthogonal tiling on the iteration
space, including both tile directions and sizes, are represented by tiling vec-
tors, T1�i1, T2�i2, . . . , Tn

�in, which are mutually perpendicular. A data space
Zm can be viewed as a linear transformation from the iteration space,
while the access matrix F is the transformation matrix. If the transformed
data tiling vectors, �dT 1 = ∑n

k=1(F1kTk
�ik), . . . , �dT m = ∑n

k=1(FmkTk
�ik)

(Frc is the r-th row and c-th column entry of F) are also mutually per-
pendicular, then it is proven. Suppose there are two data tile vectors �dT a

and �dT b that are not perpendicular, so their dot product (�dT a) · (�dT b) =∑n
k=1(FakFbkT

2
k) is non-zero. Therefore, at least one of the sum items is

not zero. Let (FacFbcT
2
c) �= 0, then both Fac and Fbc are not equal to zero,

which violates Property 1. Thus, the data tiles are also orthogonal2.

Property 3. After building an xMDFG, uniform tiling on the itera-
tion space will result in uniform data tile sets except at the boundaries.

Proof: The data tile size can be calculated via the formula (f (�io+ �T)−
f (�io))′, where �io is the tile offset vector. Since f is a linear transforma-
tion composed of an affine matrix and an offset vector, f (�io + �T) equals
f (�io) + f (�T) according to the linearity laws. Consequently, the data tile
size is f �T , independent of the tile offset �io, thus is uniform.

2Since the offset vectors are constant, they do not affect the data space tiling vectors at
all and are excluded from the proof.

Reducing Off-Chip Memory Access 81

Fig. 8. The algorithm ConnectID extracts the relationship between data space tiling and
iteration space tiling, and is used as memory size constraint.

Because each data tile is also orthogonal, it can be represented by
�dT = (dT1, . . . , dTm), where dTj = ∑n

k=1(FjkTk). There may be “hole”s
(un-referenced data) in the data tile when the access matrix is in a reduced
form.

5.2. Building the Objective Functions

Due to the tiling properties established between the iteration space
and data space via the preprocessing, we can then propose an I-D com-
bined and stream-conscious tiling scheme for off-chip memory access opti-
mization. The scheme is composed of two algorithms ordered sequentially:
algorithm ConnectID is used for the preprocessing as well as the deriva-
tion of the memory size constraint (Fig. 8), and algorithm BuildObjFunc
is used to build the objective functions (Fig. 9).

ConnectID connects the iteration space and the data space in a
specific manner (building the xMDFG), and formulates the relationship
between the data tile sizes and the iteration space tiling configuration. The

82 Zhang and Kurdahi

Fig. 9. The algorithm BuildObjFunc builds the objective functions for data reuse and
communication cost on tiling.

input of the algorithm includes the iteration/data space information of the
studied loop, together with the data format weights that are used to cap-
ture and normalize data-width (e.g., if a data array is 16-bit wide and the
memory is byte-wide, then w = 2). The algorithm is quite straightforward:
it first builds the xMDFG as a preprocessing step, then it raises the iter-
ation space tiling configuration (as a vector variable) and derives the cor-
responding data tiles. Finally, it extracts the relationship between the data
space tiling and the iteration space tiling as Sr(�T), that is, how much data
memory is required for a tiling configuration �T .

The output of ConnectID is fed to algorithm BuildObjFunc, which
is used to build the objective functions of the data reuse and the com-
munication cost under various tiling configuration �T . The extent of data
reuse is formalized as the computation-communication ratio Rcc. The ratio
denotes how many iterations can be executed per (normalized) data trans-
fer. For a given loop, improving data reuse is equivalent to reducing the
memory access count.

The first step of the algorithm BuildObjFunc is to derive the inter-
tile temporal reuse (data that can be kept in the local memory for the next
tile execution) thereby giving a closed form of data transfer amount per
tile. In subsequence, the memory layout optimization is carried out in step
2. The intermediate communication cost, if exists, is calculated using the

Reducing Off-Chip Memory Access 83

formulas in.(3) Finally, the objective functions for data reuse and commu-
nication cost are formulated in step 4. In addition, several important con-
cerns about the two algorithms are discussed in detail in the following:

(1) Data space. Each data space Dj in the algorithm is assumed to
be a single UGR, with one access matrix Fj (�i) and an offset matrix set.
For instance, the reference set for the array d1 in Fig. 6(c) can be repre-
sented by: access matrix F1

(�i) = (
1 0
0 1

)
; offset matrix set �a11 = (0 0)′ and

�a12 = (0 − 1)′, thus l = 2; for �a12, a1
12 = 0 and a2

12 = −1. Note that A′ is
the transpose of matrix A.

(2) Data tile shape computation. The data tile of the j th array under
tiling �T , D �T

j = (dT 1
j , . . . , dT

dj

j), is computed by subscript function. It
is composed of two parts, the bulk data tile using access matrix, and the
part for boundary data with size (ra1

j , . . . , ra
dj

j). The full tile computa-
tion expression is given in step 3 of ConnectID. By changing the tile sizes
accordingly, the expression is also applicable to partial tiles that may pres-
ent at the boundaries.

(3) Inter-tile temporal locality. A data array or part of a data array
can be kept in the on-chip memory for more than one tile execution if it
has inter-tile temporal locality. Since the data tile shape is known and any
tile offset can also be calculated using the access matrix, the amount of
inter-tile reuse data, keep(�T), can be approximated by any overlapping of
two neighboring full tiles, shown in step 2 of BuildObjFunc.

(4) Memory layout optimization. The memory layout affects commu-
nication cost. In order to reduce the communication cost for a data array
tile D �T

j = (dT 1
j , . . . , dT

dj

j)′, one solution is to store the largest side

max{dT 1
j , . . . , dT

da

j } consecutively in memory, thus reducing the transac-
tions.

The formulated results in the experiments are based on these algo-
rithms with refinement when considering partial tiles.

5.3. Tiling Exploration

The algorithms of ConnectID and BuildObjFunc provide us with
three formulas, the memory size constraint Sr(�T) ≤ S/2 (assume pref etch-
ing), and the objective functions Rcc(�T) and Cost (�T). Since the tiling
sizes are integer numbers only, brute-force can be a feasible way of search-
ing for the optimal solution. Assuming that the loop level is k and each
loop index has the same range of (1, N), the problem complexity using
brute-force is O(Nk−1). Although N may be large in image and video
applications (e.g., image or video frame size), fortunately, most nested
loops have a nesting level less than 5, which means a very small number

84 Zhang and Kurdahi

of k, thereby indicating an acceptable exploration space. In fact, due to the
limited number of loop levels, the running time of exhaustive tiling explo-
ration for any of the benchmarks that we ran (details refer to Section 7)
is less than half an hour. In short, tiling exploration can be tackled in a
brute-force manner practically.

For particular subset problems, brute-force searching can even be
replaced by an analytical method. Indeed, our target application domain,
multimedia applications, is DSP intensive with very structured
computations and loop structures. Although loop tiling is a hard discrete
non-linear optimization problem in general,(1) the properties of our target
applications bring us the opportunity to analytically find the the optimal
(or sometimes approximately optimal) solutions to the objective functions.
We will demonstrate it in the following case studies.

6. CASE STUDIES

Despite the fact that the algorithms of motion estimation and matrix
multiply have been frequently used before, we use them as illustrative
examples for three reasons: (1) they are simple and easy to understand; (2)
they are common and there are similar algorithms throughout the signal
and image processing applications; (3) they have been well studied but we
still show what has been neglected and how it is improved by us. In addi-
tion, more applications will be demonstrated in the experimental section.

6.1. Matrix Multiply

Using the code in Fig. 2(a), the iteration space of matrix multiply
is 3-D as �i = (i, j, k) while the three data arrays are all 2-D, therefore
the nested loop has a mismatched iteration and data space. However, the

access matrices for the arrays, FA(�i) =
(

1 0 0
0 1 0

)
, FB(�i) =

(
1 0 0
0 0 1

)
, and

FC(�i) =
(

0 1 0
0 0 1

)
, are all already in reduced form thus no transforma-

tion is needed for the pre-processing. Applying the remaining steps in the
ConnectID algorithm (Fig. 8), the required memory size is acquired as
Sr(�T) = TiTj + TiTk + TjTk for tiling configuration �T = (Ti, Tj , Tk).

Subsequently, algorithm BuildObjFunc (Fig. 9) is applied. For any
neighboring full tiles (note that the loop execution order by index is k, j ,
i), the data tile of array A with size of Ti by Tj can be reused. There-
fore, transf er per tile(�T), which equals to Sr(�T) − keep(�T) is derived
as TiTk + TjTk. The refinement of including the boundary effect of load-
ing and storing array A is made in the communication cost calculation.

Reducing Off-Chip Memory Access 85

According to the legality criteria,(20) any orthogonal tiling on the code is
legal. The objective functions are finally built as below:

⎧⎪⎨
⎪⎩

Size Constraint : Sr(�T) = TiTj + TiTk + TjTk ≤ S/2
Data reuse : Rcc = TiTj Tk

TiTk+Tj Tk
= TiTj

Ti+Tj

Communication Cost : Cost = N2

Ti
(1 + 2N

Tj
)Cs + N2(1 + N

Tj
+ N

Ti
)Ct

(4)

The data reuse Rcc function is given with the assumption that the
matrix size is infinite thus the boundary effects can be ignored. Our tiling
exploration is pursued by adjusting the lengths of any two tile sides since
the third side is then fixed by the size constraint. As a consequence, the
scheme offers an O(N2) (N is the matrix size, where Ni = Nj = Nk = N)
exploration space, in contrast to the approach in,(12) which discussed only
three particular situations.

In fact, regarding the relationship Sr(�T) = Ti ·Tj +Ti ·Tk+Tj ·Tk ≤ S/2,
the optimal tiling for data reuse �TOpt Rcc can be obtained analytically and
directly from the equation: Tk is 1, while Ti and Tj are equal and are as
large as possible — (Ti, Tj , Tk) ≈ (
√1 + S/2� − 1,
√1 + S/2� − 1, 1). We
use this optimal configuration directly in our experiments without searching
the O(N2) space in the brute-force manner anymore. We note that matrix
multiply represents a subset of many practical problems, e.g., LU decom-
position, Cholesky factorization, etc., whose objective functions are almost
the same. Therefore, this analytical optimization solution is effective for a
group of applications, instead of the matrix multiply alone.

The objective function of communication cost is more complex,
whereas it still provides several useful clues: First, like the analysis for
�TOpt Rcc, larger Ti and Tj values result in a smaller communication cost
and Tk should equal 1. Second, the communication costs in the start-up
and the stable status add reverse requirements on the tile shape — “strip-
mining” versus “square”. Therefore, the optimal tiling for communication
cost lies between “strip-mining” and “square”, affected by the relative val-
ues of Cs , Ct .

The tiling exploration potential is represented by the dynamic range
of the communication cost, � = max{Cost (�T)}/min{Cost (�T)}. Figure 10
displays how the matrix size N and on-chip memory size S affect �. Most
common configurations exhibit a dynamic range of 10–40X with the larger
S, the larger �. It is interesting here to note the analogy between the
behavior of R and the MOS I -V characteristics, the dynamic range of til-
ing shows “Tri-state”: cutoff, linear and saturation.

The cutoff state exists in the region where N is very small compared
with S. Since almost the entire data arrays can be stored in an on-chip

86 Zhang and Kurdahi

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Matrix Size N

D
yn

am
ic

 R
an

g
e

S=512
S=1k
S=2k
S=4k
S=8k

Fig. 10. The exploration potential of tiling.

memory, tiling gives little profit. Illustrated in Fig. 10, S = 8K and S =
4K present such cutoff state when N is less than about 55 (30 for S =
4K). As N increases, the potential benefit of tiling also expands since on-
chip memory can not contain all the data at any specific time and thus
tiling becomes mandatory. The dynamic range increases quite linearly in
this region, therefore denoted as the linear state. However, the linear state
ceases to hold when N exceeds a certain value. The larger S, the larger
value the dynamic range saturates in. It substantiates that a larger storage
size provides better data reuse opportunities. The saturation region exhibits
heavy discrete effects.

6.2. Automatic Target Recognition — ATR

This application performs the matching between a given template and
the windows of a gray scale image. The code of the computation kernel
is shown in Fig. 6(d), consisting of image correlations between the tem-
plate matrix and shifted windows over the input image. The iteration space
�i = (m, n, i, j) is 4-D while the data spaces image and result are both two
dimensional. The subscript functions are:

fimage(�i) =
(

1 0 1 0
0 1 0 1

) (
m n i j

)′ +
(

0
0

)
(5)

Reducing Off-Chip Memory Access 87

fresult(�i) =
(

1 0 0 0
0 1 0 0

) (
m n i j

)′ +
(

0
0

)
(6)

When the iteration space is tiled as �T = (Tm, Tn, Ti, Tj), the corre-
sponding data tiles are D �T

image = (Tm + Ti, Tn + Tj) and D �T
result = (Tm, Tn).

Therefore, to fulfil the execution of one tile, (Tm+Ti)×(Tn+Tj) size of the
image needs to be loaded from the main memory and Tm ×Tn of the cor-
related results should be stored back to the main memory. After the inter-
tile temporal locality optimization, the number of memory access for one
tile is reduced to Tn × (Tm − 1 + Ti) + Tm × Tn. The size constraint and
objective functions are built as:

⎧⎪⎪⎨
⎪⎪⎩

Size Constraint : Sr(�T) = (Tm + Ti)(Tn + Tj) + TmTn ≤ S/2
Data reuse : Rcc = TmTnTiTj

Tn(Tm+Ti−1)+TmTn
= TmTiTj

2Tm+Ti−1

Communication Cost : Cost = 2NmNnNiNj

TmTiTj
Cs + NmNnNiNj

TmTiTj
(2Tm+Ti −1)Ct

(7)

Likewise, the (approximately) optimal solution for the objective func-
tion of data reuse in Eq. 7 can be solved analytically. According to the
formula, it is obvious that a larger Tj results in better data reuse. Since
Ni and Nj are usually small (8 or 16 in most cases), Tj is equal to Nj . Tn

is excluded from the formula, counting in the size constraint, Tn = 1 (for
possibly larger Tm and Ti thus larger Rcc). Since Ni is also small, the opti-
mal tile configuration for best data reuse is (T m, 1, Ni, Nj) in most cases.

Table I compares our stream-conscious tiling method with two other
tiling approaches under the common situation that image size is 512 by
512 and mask is 8 by 8. The scheme square keeps the tile sides as equally
as possible, and the kernel preserves the two innermost loops completely in
one tile. We test the memory access counts under various on-chip mem-
ory size (S constraint). Compared with square and kernel, our proposal
reduces memory access cost ranging from 22.6% to 70.0%. Unlike the tra-
ditional kernel approach, which takes the mask as a granule, our method
justifies that the partial calculation of the “mask kernel” introduces better
data reuse when S is small.

6.3. Motion Estimation

Motion estimation is a fundamental technique to obtain data com-
pression in video coding by exploiting inter-frame prediction of temporal
redundancies in video sequences.(25) Among the existing block matching
algorithms, the full-search block-matching (FSBM) algorithm exhaustively

88 Zhang and Kurdahi

Table I. Different Tiling Schemes on ATR

Shape �T #Access (millions) Ratio

S our square kernel our square kernel square kernel

64 [1, 2, 2, 8] [2,2,2,2] – 3.15 10.49 – 70.0% –
96 [3, 1, 4, 8] [3,3,3,3] – 1.80 4.97 – 63.8% –
128 [4, 1, 6, 8] [4,4,4,4] [1,1,8,8] 1.14 2.88 2.36 60.6% 51.9%
196 [5, 1, 8, 8] [5,5,5,5] [2,2,8,8] 0.891 1.879 1.442 52.6% 38.2%
256 [12, 1, 8, 8] [6,6,6,6] [5,5,8,8] 0.677 1.320 0.891 48.7% 24.0%
384 [18, 1, 8, 8] [7,7,7,7] [6,6,8,8] 0.626 0.978 0.830 36.0% 24.6%
512 [31, 1, 8, 8] [8,8,8,8] [8,8,8,8] 0.583 0.754 0.754 22.6% 22.6%
1024 [44, 1, 8, 8] [11,11,8,8] – 0.572 – 0.763 25.0% –
2048 [95, 1, 8, 8] [18,18,8,8] – 0.544 – 0.772 29.6% –

compares each N ×N block of the current frame with all candidate blocks
of the (N + 2p)2 search window defined within the previously processed
frame.

The FSBM algorithm using the sum of absolute differences (SAD)
distortion measure can be described by the four nested loops presented
in Fig. 11. The nested loop does not conform to the program model we
adopt (shown in Fig. 3). Instead, it is not perfectly nested as statements
(S1, S3–S5) located beyond the innermost loop. In addition, conditional
statement also exists. Nevertheless, the profiling of the code shows that
the innermost statement S2 consumes most of the execution time, and the
data arrays are all present as operands in S2. Therefore, the code can eas-
ily be pruned to be a regular and perfect loop.

The scalars, x, y and the SAD(x, y), only occupy 3 words, thus their
effect on the data locality can be ignored (usually they are allocated with
the local memory). The memory access exploration is largely determined
by the three data arrays, SAD, R and S. Likewise, we can use the pro-
posed algorithms to obtain the objective functions, shown in Eq. (8). The
formulas are very close to those of ATR in Eq. (7), and the analytical
solution can be obtained in a similar way.

⎧⎪⎪⎨
⎪⎪⎩

Size Constraint : Sr(�T) = (Ti + Tu)(Tj + Tv) + TiTj +TuTv ≤ S/2
Data reuse : Rcc = TiTj Tu

2Tu+Ti

Communication Cost : Cost = 2NiNj NuNv

TiTj Tu
Cs + NiNj NuNv

TiTj Tu
(2Tu + Ti)Ct

(8)

Reducing Off-Chip Memory Access 89

(x, y) = (0, 0) // motion vector initialization
SAD(x, y) = +inf.
for i = -p to p do // (2p + 1) by (2p + 1) search area
 for j = -p to p do
S1: SAD(i, j) = 0; // SAD measure initialization
 for u = 0 to (N - 1) do // N by N reference macroblock
 for v = 0 to (N - 1) do
S2: SAD(i, j) += abs(R(u, v) - S(i + u, j + v));
 end for
 end for
S3: if SAD(i, j) < SAD(x, y) then
S4: (x, y) = (i, j);
S5: SAD(x, y) = SAD (i, j);
 end if
 end for
end for
return (x, y) // motion vector

Fig. 11. The pseudo code of FSBM algorithm using SAD distortion measure.

7. EXPERIMENTS

7.1. Experimental Setup and Tiling Overhead

The effectiveness of our combined tiling method is verified through the
experiments on a software-managed memory system, TI’s C55X DSP,(16)

with the help of a cycle-accurate (including peripherals) simulator CCStu-
dio v2.2.(26) C55X’s DMA-EMIF (Extended Memory InterFace) engine is
highly reconfigurable and the data memory can be flexibly mapped as a
number of banks in any sizes, thereby we can test our proposal in a large
configuration range.

TI provides an optimized DSP function library for C programmers on
the TMS320C55X devices, DSPLIB. Figure 12 gives the reference assem-
bly code of the matrix multiply routine in the DSPLIB and the corre-
sponding function calling to it. The assembly code size is 65 16-bit words.
Tiling doubles the nest depth from 3 to 6. Therefore, the code size after
tiling is roughly doubled too. Nevertheless, the code size increase caused
by tiling is small (less than 100 words) in comparison with the on-chip
program memory of C55X device, which is usually in tens of kilo-words.
In addition, the cost in transferring program code is negligible again due
to the regular computation that compacts code size.

For data communication between the off-chip and on-chip memories,
C55X uses its EMIF port and DMA engine. There is initialization over-
head because the EMIF and DMA engines contain about 40 registers to
be assigned with proper values in totality. However, after the initialization
at the very beginning, only several registers need to be re-assigned with

90 Zhang and Kurdahi

#include <math.h>
#include <tms320.h>
#include <dsplib.h>

#include "test.h"

short i;
short eflag= PASS;

void main()
{
 // clear output buffer (optional)
 for (i=0;i<row1*col2;i++) r[i] =0;

 // compute
 mmul(x1, row1, col1, x2, row2, col2, r);

 // test
 eflag = test(r, rtest, row1*col2, MAXERROR);

 if(eflag != PASS)
{

 exit(-1);
}

 return;
}

(a)

.mmregs
.if __far_mode

OFFSET .set 1
.else

OFFSET .set 0
.endif

 .text
 .def _mmul
_mmul:

PSHM AR1
PSHM AR6
PSHM AR7
PSHM ST0 ; 1 cycle
PSHM ST1 ; 1 cycle

; Matrix multiplication using 3 nested loops
mul1

LD *SP(11+OFFSET), A
STLM A, AR6 ; AR6 -> SP(5+OFFSET)

mul2 MVMM AR2, AR4
MVMM AR3, AR5
LD *SP(8+OFFSET), A
STLM A, AR7 ; AR7 -> SP(2+OFFSET)
LD #0, A

mul3 MAC *AR4+,*AR5,A,A
MAR *AR5+0
BANZ mul3,*AR7-

mul3end STH A,*AR1+ ; store output element
MAR *AR3+
BANZ mul2, *AR6-

mul2end
LDM AR2, A
ADD B, A
STLM A, AR2
MVDK *SP(9+OFFSET), AR3 ; AR3 -> input 2

mul1end NOP

(b)

Fig. 12. (a) The C code to call the matrix multiply routine; (b) The DSPLIB assembly
matrix multiply code for TMS320C55X implementation. c© Texas instruments Inc, 1998.

new values to trigger the next data transaction — a very low cost. Fur-
thermore, data transfer control is always needed in code generation (either
by tools or by designers) for software-managed memory systems in spite of
tiling. Therefore, it should not be viewed as an extra burden brought by
tiling. The experiments conducted by us show that the compound trans-
action start-up penalty Cs , which includes access latency and software ini-
tialization overhead, is about 40 clock cycles.

7.2. Experimental Results

Figure 13(a) and (b) compare the theoretical and the experimental til-
ing exploration results on matrix multiply in a typical configuration. They
show large exploration potential (over 15 times) on tiling. The theoreti-
cal mesh is based on Eq. (4). The values of Cs , Ct are extracted from
C55X’s DMA-EMIF engine. The theoretical formula accurately estimates
the experimental results with the average error of less than 6%. It vali-
dates the effectiveness of our stream-conscious tiling scheme in modeling
the communication metrics.

Reducing Off-Chip Memory Access 91

0

25

50

75

100

125

0

25

50

75

100

125

10
6

10
7

10
8

Ti

S = 8K, N = 128,
Ct = 7, Cs = 39

Tj

C
om

m
un

ia
tio

n
C

os
t (

C
yc

le
s)

Theoretical results

(a)

0

25

50

75

100

125

0

25

50

75

100

125

10
6

10
7

10
8

TiTj

C
om

m
un

ia
tio

n
C

os
t (

C
yc

le
s)

Experimental results on TI C5510

(b)

Fig. 13. Tiling exploration on matrix multiply (N = 128, S = 8 KB) (a) the theoretical vs.
(b) the experimental results on communication costs; the theoretical formula accurately esti-
mates the experimental results with the average error less than 6% (closely matched profiles).

92 Zhang and Kurdahi

0

10

20

30

40

50

60

70

80

90

2K 4K 8K 16K 32K

Available On-chip Memory Size

%
 R

ed
uc

tio
n

in
 c

om
m

un
ic

at
io

n
co

st
 b

y
O

pt
_C

os
t

Squ Squ_reuse IST Proposed Opt_Rcc

Fig. 14. Percentage reduction in communication cost over conventional tiling schemes
(the first three columns in one group) when our approach Opt Cost is used.

Inside the exploration space, we further compare our communica-
tion optimization schemes with previous approaches. Squ(12) partitions all
three arrays to equal squares without inter-tile reuse. Squ reuse further
takes advantage of inter-tile temporal locality. IST (Iteration Space Til-
ing)(3) represents the traditional iteration space tiling approach. In order
to reduce the number of dependencies across tile boundaries, IST par-
titions the iteration space along the direction of the dependence vector
(0, 0, 1), resulting in tiling shape as (a, a, N) where the value of a is con-
strained by the SPM size.3 Opt Rcc is our stream-conscious tiling scheme
for data reuse optimization and Opt Cost, our stream-conscious tiling for
communication minimization.

The tiling configurations for Squ/Squ reuse, IST, Opt Rcc and
Opt Cost are (26 26 26), (128 7 7), (44 44 1) and (43 43 2), respectively in
Fig. 13(b). Compared with Squ, Squ reuse and IST, the proposed Opt Rcc
reduces the total memory access by 52.8%, 35.9% and 65.6%.

Figure 14 demonstrates the communication costs of different schemes
when the available on-chip memory size S ranges from 2KB to 32KB.
Although some commercial DSPs have larger on-chip data RAM than
what we used in the experiments, the data RAM is usually divided and
reserved for different purposes in the whole program. Therefore, tiling with
limited available memory is still attractive and practical.

Even though all those schemes show good data reuse, our commu-
nication-minimal solution Opt Cost still brings the total cycle reductions

3When applying the data space-oriented tiling from,(13) similar tile shape as IST is
expected since the loop nest is singleton.

Reducing Off-Chip Memory Access 93

0

10

20

30

40

50

60

70

80

90

ATR ME Cholesky LU

%
 R

ed
uc

tio
n

in
 m

em
or

y
ac

ce
ss

 b
y

O
pt

_R
cc

Squ_reuse,
S=4K

Squ_reuse,
S=16K

IST,
S=4K

IST,
S=16K

Fig. 15. Percentage reduction in off-chip memory access number over conventional tiling
schemes when our approach Opt Rcc is used.

to over 38.8% compared with the best previous schemes. The proposed
Opt Rcc scheme for data reuse, which is easier to obtain analytically,
shows the communication costs close to the optimal ones (the worst case
is 11.0% in Fig. 13(c)). Therefore, it can be used to approximate the expen-
sive Opt Cost scheme, which obtains the optimal solutions via brute-force
or ILP ways.

Besides matrix multiply, several array intensive applications are evalu-
ated. They are: ATR, ME, Cholesky and LU. In ATR, we assume a com-
mon situation that the image size is 512 by 512 and the mask is 8 by 8.
ME is a full search motion estimation algorithm with a 16 by 16 search-
ing window in a 512 by 512 image. Cholesky,(27) and LU are for Cholesky
factorization and LU decomposition for image restoration with the size of
128 and 192, respectively. Note that one of the two arrays in Cholesky has
3 UGRs, thus there are always 8 data tiles in the SPM concurrently (4 for
prefetching).

Applying the proposed stream-conscious tiling algorithm, we can
obtain the objective function for optimal data reuse and derive the corre-
sponding tile shape Opt Rcc analytically (refer to the previous case study
section). The benchmarks and experimental results are summarized in
Table II. Figure 15 displays the reductions in off-chip memory access
number over conventional Squ reuse, and IST tiling schemes when our
approach Opt Rcc is used. For the four benchmarks, our approach reduces
the memory access by about 37.4% when S = 4KB, and 25.4% when
S = 16KB on average compared with the best of the previous schemes.

94 Zhang and Kurdahi

Table II. Summary of the Tested Applications

Off–chip memory access count (in 104)

SPM size S = 4K SPM size S = 16K

No. of
Bench Loop data Arrays Array Squ IST Opt Rcc Squ IST Opt Rcc
mark depth* arrays dimension size(s)** reuse reuse

ATR 4 2 2-D 512; 8 69.1 235.9 56.6 59.2 235.9 53.4
ME 4 2 2-D 512; 16 194.6 445.6 82.7 70.3 445.6 56.4
Cholesky 3 4*** 2-D, 1-D 128 8.29 24.39 5.06 4.34 5.72 2.77
LU 3 5*** 2-D, 1-D 192 18.63 54.70 12.13 9.81 12.85 6.30

* The number of levels of the nested loop.
** All 2-D arrays are square here, therefore only one side size is given. ATR and ME
have two different sizes of arrays.
*** One of the two arrays has 3 UGRs where each UGR should be treated as an
independent single reference.

It has been shown that 50–75% of the power consumption in embed-
ded multimedia systems is the consequence of memory accesses.(28,29)

Since the largest portion of memory access activities come from data
array communications, we extend the stream-conscious tiling algorithm
(Fig. 9) for energy reduction with moderate modifications. Our approach
achieves this goal by reducing the off-chip memory access activities as
well as shortening the overall run time. We note that the tile shapes for
optimal memory access count and access time may not be the same, thus
the objective function (minimizing Eq. 2) for energy reduction provides a
tradeoff between those two metrics.

The power model for C5510 is activity-based and provided by TI,
where each active component can be isolated and accurately modeled
to determine its contribution to the overall power consumption.(18) The
EMIF utilization is related to the maximum bandwidth and the one
hundred percent utilization corresponds to the maximum transfer rate for
a given frequency. This number will be scaled down by both slower and
less frequent transfers. The same rule is applicable to the rest of memory
subsystems.

Table III lists the activation baseline power of each individual mod-
ule. At the frequency of 200 MHz with the temperature being 25◦C, the
total activation baseline power is 187.94 mW. Note that there is no mem-
ory access and not a single instruction is executed by the CPU. Such
high cost on Pbase underlines the importance of shortening the run time.

Reducing Off-Chip Memory Access 95

Table III. Activation Baseline Power of C5510 DSP

SPM+ Other
Module DPLL CPU EMIF DMA I-Cache Timer Circuitry Total

Core Current (mA) 46.13 2.06 11.27 5.77 6.01 2.53 4.50 78.26
I/O Current (mA) 0 0 12.89 0 0 0 6.12 19.01
Power (mW) 73.81 3.30 60.55 9.23 9.61 4.05 27.39 187.94

(Frequency = 200 MHz; Temperature = 25◦C; Core voltage = 1.6 V; IO voltage = 3.3 V)

SCT with respect to IST SCT with respect to Squ_reuse

0
10
20
30
40
50
60
70
80
90

ATR Matrix_Mul ME Cholesky LU

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Fig. 16. The energy reductions by the proposed SCT scheme.

By running tests on memory access, the per-access-energy to the off-chip
memory is obtained as 7.101 nJ.

We compare our tiling exploration scheme, Stream-Conscious Til-
ing, (SCT) with previous approaches Iteration Space Tiling (IST)(3) and
Squ reuse.(12) The access count, run time, together with the corresponding
access energy and activation baseline energy are summarized in Table IV.
Our tiling exploration brings a considerable reductions in memory access
count. Although there is no rigidly linear relationship between the mem-
ory access count and time, reducing the access count usually shortens the
total access time. On average, the reductions in access energy by SCT are
67.8% with respect to IST and 27.7% with respect to Squ reuse. Similar
reductions are achieved in the measure of run time, 66.6% compared with
IST and 25.7% compared with Squ reuse on average. Figure 16 displays
the total energy reductions when our approach SCT is used, ranging from
50.8 to 88.0% with respect to IST, and from 9.2% to 38.2% with respect
to Squ reuse.

96 Zhang and Kurdahi

Table IV. Summary of the Energy Consumptions

Matrix
Benchmark ATR Mul ME Cholesky LU Average

IST 16753.7 1396.1 31645.5 405.2 1846.3 –
Access energy (uJ) Squ 4040.6 1047.4 4498.6 309.3 1004.1 –

reuse
SCT 3755.8 698.0 3854.5 198.9 619.2 –

Access energy IST 77.6% 50.0% 87.8% 50.9% 66.5% 67.8%
reduction
by SCT with Squ 7.01% 33.4% 14.3% 35.7% 38.3% 27.7%
respect to (%) reuse

IST 16947 1566 32787 504.2 2147 –
run time (K cycles) Squ 4233 1212 4719 359.8 1106 –

reuse
SCT 3753 758 3896 236.0 685.2 –
IST 15925.3 1471.6 30810.3 473.8 2017.6 –

Activation Squ 3977.5 1138.8 4434.1 338.1 1039.3 –
Baseline Energy reuse
(uJ)

SCT 3526.5 712.3 3661.4 221.8 643.9 –
Activation IST 77.9% 51.6% 88.1% 53.2% 68.1% 66.6%
Baseline Energy
run time (K cycles) Squ 11.3% 37.5% 17.4% 34.4% 38.0% 25.7%

reuse
respect to (%)

8. SUMMARY AND FUTURE WORK

In earlier researches on iteration space tiling, data tiling was sim-
ply the outcome of code generation. In contrast, the proposed technique
combines both iteration space tiling and data space tiling into the explo-
ration stage, therefore the objective functions for memory access opti-
mization can be derived explicitly and accurately. The experiments show
significant improvement in hiding memory latency, reducing memory
access, and hence reducing energy consumptions.

For loops with iteration space and data space well matched, the
exploration potential is usually limited. Instead, we would like to extend
our approach to non-uniform loops (e.g., FFT). We note that the uni-
form dependence is still a common restriction in this area. Furthermore,
the extension to multiple loop nests is interesting and challenging.

Reducing Off-Chip Memory Access 97

REFERENCES

1. R. Andonov, H. Bourzoufi, and S. Rajopadhye, Two-dimensional Orthogonal Tiling:
From Theory to Practice. in Proceedings of HPC ’96, pp. 225–231 (1996).

2. L. Carter, J. Ferrante, and S. F. Hummel, Hierarchical Tiling for Improved Superscalar
Performance. in Proceedings of IPPS ’95, pp. 239–245 (1995).

3. Fei Chen and E. Sha. Loop Scheduling and Partitions for Hiding Memory Latencies.
in Proceedings of ISSS ’99, pp. 64–70 (1999).

4. R. M. Karp, R.E. Miller, and S. Winograd, The Organization of Computations for
Uniform recurrence equations. J. ACM, 14(3):563–590 (July 1967).

5. U. Banerjee, Loop Transformations for Restructuring Compilers. Kluwer Academic Pub-
lishers (1993).

6. J. Ramanujam and P. Sadayappan, Tiling Multidimensional Iteration Spaces for
Nonshared Memory Machines. in Proceedings Supercomputing ’91, pp. 111–120 (1991).

7. Q. Wang, E. Sha, and N. L Passos Optimal Data Scheduling for Uniform Multi-
Dimensional Applications, IEEE Trans. Computers, 45(12):1439–1444 (Dec. 1996).

8. M. Wolfe, High Performance Compilers for Parallel Computing, Addison Wesley Pub-
lishing Company (1996).

9. P. -Y. Calland, J. Dongarra, and Y. Robert, Tiling with Limited Resources. in Proceed-
ings ASSAP ’97, pp. 229–238 (1997).

10. P. R. Panda, N. D. Dutt, and A. Nicolau, Efficient Utilization of Scratch-Pad Memory
in Embedded Processor Applications, in Proceedings of EDTC ’97, pp. 7–11 (1997).

11. P. Marwedel, L. Wehmeyer, M. Verma, Stefan Steinke, and Urs Helmig, Fast, Predict-
able and Low Energy Memory References Through Architecture-Aware Compilation. in
Proceedings of ASP-DAC’04, pp. 4–11 (2004).

12. M. Kandemir, J. Ramanujam, M. Irwin, V. Narayanan, I. Kadayif, and A. Pari-
kh, A Compiler-Based Approach for Dynamically Managing Scratch-Pad Memories in
Embedded Systems. IEEE Trans. CAD, 23(2):243–260 (Feb. 2004).

13. I. Kadayif and M. Kandemir, Data Space-Oriented Tiling for Enhancing Locality.
ACM Trans on Embedded Comput Sys, 4(2):388–414 (May 2005).

14. A. Darte and G. Huard. Complexity of Multi-Dimensional Loop Alignment. in Pro-
ceedings of STACS’02, pp. 179–191 (2002).

15. J. J. Navarro, E. G. Diego, and J. R. Herrero. Data Prefetching and Multilevel Blocking
for Linear Algebra Operations. in Proceedings of Supercomputing ’96, pp. 109–116 (1996).

16. TMS320C55x DSP Functional Overview, Texas Instruments Inc.,
http://focus.ti.com/lit/ug/spru307a/spru307a.pdf.

17. ADSP-21xx Processor, Analog Devices Inc., http://www.analog.com/processors/
processors/ADSP/.

18. Texas Instruments, Inc. TMS320VC5510 Power Consumption Summary (SPRA972)
(2003).

19. J. -K. Peir and R. Cytron, Minimum Distance: A Method for Partitioning Recurrences
for Multiprocessors. IEEE Trans. on Comp., 38(8):1203–1211 (1989).

20. J. Xue, Loop Tiling for Parallelism. Kluwer Academic Publishers (2000).
21. P. C. Shields. Elementary Linear Algebra. Worth Publishers, Inc. (1980).
22. A. Darte, G. -A. Silber, and F. Vivien, Combining Retiming and Scheduling Tech-

niques for Loop Parallelization and Loop Tiling. Parallel Process. Lett., 7(4):379–392
(1997).

23. M. W. Hall, S. Hiranandani, K. Kennedy, and C. W. Tseng. Inter-Procedural Compi-
lation of Fortran D for MIMD Distributed-Memory Machines. in Proceedings of Su-
percomputing ’92, pp. 522–534 (1992).

98 Zhang and Kurdahi

24. D. J. Palermo, E. Su, J. A. Chandy, and P. Banerjee, Communication Optimizations
Used in the PARADIGM Compiler for Distributed Memory Multicomputers. in Pro-
ceedings of Supercomputing ’94, pp. 1–10 (1994).

25. V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algo-
rithms and Architectures, 2nd edn., Kluwer Academic (1997).

26. Code Composer Studio Product, Texas Instruments Inc., http://www.go-dsp.com/mm-
help/swfs/profiler.htm.

27. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press (1992).

28. M. R. Stan and W. P. Burleson, Bus-invert coding for low-power i/o. IEEE Trans.
VLSI, 3(1):49–58 (Mar. 1995).

29. S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man, Power Exploration
for Data Dominated Video Applications. in Proceedings of ISLPED’96, pp. 359–364
(1996).

