
International Journal of Knowledge-based and Intelligent Engineering Systems 10 (2006) 139–153 139
IOS Press

An agent-based approach to intrastream
synchronization for multimedia applications

S.S. Manvi∗ and P. Venkataram
Protocol Engineering and Technology (PET)-UNIT, Electrical Communication Engineering Department, Indian
Institute of Science, Bangalore-560012, India
E-mail: {sunil,pallapa}@ece.iisc.ernet.in

Abstract. Multimedia synchronization control is essential to overcome the network delay variance problem in order to provide
continuous and smooth playout of a multimedia stream. This paper proposes an agent-based intrastream synchronization
scheme, which adapts to network delay fluctuations for continuous and smooth playout of a multimedia stream. The scheme
employs three types of agents: application manager agent (AMA), user agent (UA) and negotiation/renegotiation mobile agents
(NMAs/RMAs). AMA creates UA, NMAs and RMAs. UA monitors the synchronization parameters (delays, rate of change of
delays, losses, etc.) as well as studies the user expectations. The NMAs/RMAs are used to negotiate/renegotiate synchronization
parameters. The scheme operates in two phases: start-up synchronization and resynchronization. In start-up synchronization
phase, a NMA is created by AMA to negotiate the delays and rate of change of delays with the intermediate nodes in the
network on the basis of application requirements. In resynchronization phase, a RMA is created by AMA to renegotiate the delay
parameters and resynchronize the presentation units of a stream, whenever UA reports violation of application requirements.
Also, resynchronization phase takes care of link failures. The scheme is simulated in several network scenarios for verifying
its operation effectiveness. It maintained the synchronization parameters well within the sustainable values. The benefits of
the scheme are: asynchronous delay negotiation and adaptation, flexibility, adaptability and supports component based software
development.

Keywords: Multimedia, synchronization, mobile agents, delays, jitters

1. Introduction

Multimedia applications such as Internet telephony,
video phone, etc., demand strict real-time delivery of
media units to support continuous and smooth play-
out at the receiver. However best effort service net-
works do not offer guaranteed bounded delays for the
media units. Hence multimedia synchronization con-
trol is required to alleviate the problem of network
delay variance. There are two types of synchroniza-
tions: Interstream and Intrastream synchronization.
Interstream synchronization deals with maintenance of
temporal relations among the multiple media streams
whereas intrastream synchronization refers to mainte-
nance of temporal relations between the media units of

∗Corresponding author.

a stream [1]. For interstream synchronization issues,
reader is referred to [2–6] since it is not in the scope of
this paper.

The maintenance of temporal relationships within a
stream depends on the following parameters: network
delays and its variations, clock skew and drift, and end-
system jitters. Network delay variations are caused
due to unpredictable traffic in the network. Clocks can
be synchronized using network time synchronization
protocol [7]. Clock drift is eliminated by using sta-
ble crystal oscillators. End-system jitters occur due to
variations in workstation loads.

In recent years, some of the static and dynamic in-
trastream synchronizationmethods have been proposed
based on buffers and packet delay variations to over-
come the network delay variations. The work given
in [8] uses special measurement packets to estimate the

ISSN 1327-2314/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved

140 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

voice packet delays and playout time. A detailed sur-
vey of intrastream synchronization methods for play-
out adaptation are discussed in [9]. The concord algo-
rithm [10] computes the delays based on packet loss
from packet delay distribution. The work given in [11]
discusses adaptive playout mechanisms for packetized
audio that adjusts to network delay fluctuations.

RTP (Real Time Protocol) along with RTCP (Real
Time Control Protocol) are used to synchronize the me-
dia streams prior to decoding operations by computing
jitters [12]. The scheme presented in [13] uses dis-
tributed jitter control at the network layer. A deadline
based scheduling at each node is discussed in [14]. The
work given in [15] describes the method of concealing
smaller delay fluctuations by stretching voice segments
and incorporating silence intervals. A video smoother
is proposed that dynamically adapts various playout
rates to compensate the delay variance [16]. An adap-
tive buffering scheme is proposed in [17], which man-
ages the multimedia presentation by enforcing equal-
ized delays to incoming media streams.

Quality of service (QoS) parameters (such as band-
width, delays, etc.) reservations also help in synchro-
nizing the presentation units of a multimedia stream.
Several technologies have been developed in this con-
text namely, ATM (asynchronous transfer mode) net-
works, MPLS (multiprotocol label switching) networks
with constraint based label distribution, RSVP (re-
source reservation protocol) and Diffserv (differenti-
ated services) [31–34].

From the literature survey, it is observed that existing
intrastream synchronization schemes lacks flexibility,
extensibility, customization, component reuse facility
and maintainability which is needed in current Internet
software development [18]. Agent technology is ex-
pected to provide the solutions to deal with these issues
and also facilitate network programmability. This pa-
per proposes an agent-based intrastream synchroniza-
tion scheme that can adapt to network delay fluctua-
tions.

1.1. Proposed work

The objective of proposed work is to provide in-
creased flexibility in adaptation to network delay varia-
tions for continuous and smooth playout of a multime-
dia application. The scheme employed three types of
agents: static application manager agent (AMA), static
user agent (UA) and negotiation/renegotiation mobile
agent (NMA/RMA). It works at the receiver/destination
side. AMA creates UA, NMAs and RMAs. UA mon-

itors the synchronization parameters as well as stud-
ies the user expectations. The scheme consists of two
phases: start-up synchronization and resynchroniza-
tion. In start-up synchronization phase, AMA sends a
NMA from the destination to negotiate the node delays
and rate of change of delays per every media unit (pre-
sentation unit). On successful start-up synchroniza-
tion, transfer of media units takes place from source to
destination. Even-though negotiation has been done,
there is a possibility of some intermediate nodes vio-
lating the negotiation terms during running period of
an application or there could be some link failures. In
order to eliminate this problem, resynchronization is
employed.

Here, AMA at the destination creates a RMA based
on the UA recommendationsand sends it across the net-
work nodes of the path connecting source and destina-
tion to renegotiate the delays and rate of change of de-
lays per every media unit. A UA understands expecta-
tions of a user and gets performance from the network.
The creation of RMAs may be based on application re-
quirements, which may fall under either of the follow-
ing categories: 1) reaching certain acceptable threshold
media unit loss; 2) variation of change in inter-arrival
media unit time beyond the expected value; 3) variation
in end-to-end delays beyond the sustainable delays at
certain instant of time. Also, NMAs may be created
upon getting link failure report from the intermediate
nodes to negotiate synchronization parameters on the
new path during resynchronization phase.

1.2. Paper organization

The following section presents a brief background
and concept of agent technology. Section 3 describes
the playout system model, proposed intrastream syn-
chronization technique and some of the benefits of us-
ing mobile agents for synchronization. Simulation of
the proposed work and its results are presented in Sec-
tions 4 and 5, respectively. Finally we conclude the
proposed work in Section 6.

2. Agent technology

Agents are the autonomous programs situated within
an environment (either host or network), which sense
the environment and acts upon the environment to
achieve their goals. They have certain special proper-
ties which make them different from the standard pro-
grams such as mandatory and orthogonal properties.

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 141

Mandatory properties of the agents are: autonomy, re-
active, proactive and temporally continuous. The or-
thogonal properties are: communicative, mobile, learn-
ing and believable [19–21]. Agents can be classified
based on properties they posses: local or user inter-
face agents, network agents, distributed AI (Artificial
Intelligence) agents and mobile agents. The network
agents and user interface agents are usually termed as
single agent systems whereas the other two agents are
called as multiagent systems.

Mobile agent is an itinerant agent dispatched from
a source node which contains program, data, and ex-
ecution state information, migrates from one node to
another node in the heterogeneous network and ex-
ecutes at remote host until it achieves its goals [22,
23]. Mobile code should be platform independent, so
that, it can execute at any remote host in the hetero-
geneous network environment. Mobile agents code
can be written in Java, TCL, Perl, or XML languages.
Agents communicate and cooperate with other agents
to achieve their goals. Inter-agent communication can
be achieved by using message passing, remote proce-
dure calls or common knowledge base (black board
architecture). An agent platform supports the follow-
ing services: agent creation, agent reception, agent ex-
ecution, agent migration, inter-agent communication,
persistence, fault tolerance and security [27]. Some of
the popular agent platforms are IBM Aglets, Grasshop-
per, Voyager, Agent TCL, Tacoma and Mole. Agent
based schemes offer several benefits as compared to tra-
ditional approaches: overcomes latency; reduces net-
work traffic; encapsulate protocols; flexibility; adapt-
ability; software reusability and maintainability and
support component based software development [24,
25].

3. Proposed synchronization technique

The proposed intrastream synchronization technique
adapts to network delay variations by negotiating and
renegotiating delays and rate of change of delays with
the intermediate nodes in the path on the basis of ap-
plication requirements and the user expectations. It as-
sumes that the destination gets the information about
the route (from source to destination), link capaci-
ties and link propagation delays from the route finding
agency created by an application manager agent as and
when required [30]. Discussion of route finding agency
is beyond the scope of this paper since our intention is
to describe the synchronization scheme. The scheme

operates in two phases: start-up synchronization and
resynchronization with a synchronization agency oper-
ating at the receiver side.

3.1. Playout system model

The periodic media units (presentation unit) of a
stream emitted from a source that are transported to des-
tination through intermediate nodes have to be synchro-
nized and played back at the destination (see Fig. 1).
The characteristics of the playout system model are as
follows.

– The presentation unit (PU) of a stream is chosen
as the unit perceivable by the human beings, for
example, a frame is a perceivable PU of a video
stream.

– The PUs of a stream are labeled with sequence
numbers, and they are presented in same sequence.

– Some intermediate nodes may violate the delay
agreements made with the hosts with certain prob-
ability due to congestion at a node and node unre-
liability.

– The queuing delay of a PU in each non agreement-
violating intermediate node vary as per the agreed
delays and rate of change of delays.

– The queuing delay of a PU in each agreement-
violating intermediate node vary more than the
agreed delays and rate of change of delays.

– Clock differences and drifts are assumed to be zero
between the source and destination.

– Intermediate nodes use deadline based schedul-
ing for each arrived PU depending on agreed de-
lays and rate of change of delays. For example,
for a non agreement-violating intermediate node,
if agreed delay for a first PU = 0.05 seconds
and rate of change of delay = 0.001 seconds per
each PU, then the queuing delay for 100 th PU is:
0.05 + 0.001 ∗ 99 = 0.0599 seconds. In case of
agreement-violating nodes, rate of change in de-
lays may rise above the agreed values at regular
intervals at most by 100%.

– An agent platform exists at every intermediate
node and the end-systems. However, in case of
agent platform not available, the agents use tradi-
tional message exchange mechanisms to perform
its task.

– All the intermediate nodes support negotiation/
renegotiation of delay parameters. However, sta-
tistical delay parameter values will be considered
for nodes that do not support reservations, in case
of unavailability of a path with all nodes in the
path supporting reservations.

142 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

Agent
Migration

DestinationSource

1 2 3 N

N= number of intermediate nodes

Fig. 1. Playout system model.

3.2. Synchronization scheme

On invoking a multimedia application, it first runs
start-up synchronization for initial synchronization pa-
rameters negotiation with intermediate nodes at every
node in the path. Later it performs resynchronization, if
synchronization requirements are violated or link fail-
ure occurs. Synchronization agency at a receiver is
depicted in Fig. 2. The scheme employs three types
of agents: static user agent, static application manager
agent and negotiation/renegotiation mobile agents. It
uses a knowledge base for inter-agent communication
that works based on blackboard principle. Components
of the synchronization agency are explained.

Knowledge base: It consists of following data: ap-
plication id, expected length of the session, PU size,
playout duration of PU, number of PUs to be played,
number of played PUs, playout time of the PUs, quality
feedback from user (positive or negative value), accept-
able end-to-end delay, sustainable end-to-end delay,
acceptable loss, measured loss, jitters at the receiver,
server transmission start time, fixed delays at server and
client (includes packetization/depacketization, encod-
ing/decoding), measured end-to-end delays, required
and measured jitters at every node on the route, re-
quired and measured rate of change of delays at every
node on the route, required and measured delays at ev-
ery node on the route, available routes between source
and destination, maximum capacity and propagation
delays of links. This knowledge base is used by agents
to share the synchronization related information and
update with latest information by seeking permission
from the application manager agent.

Application manager agent (AMA): It is a static agent
created by an application which synchronizes the activ-
ities of other agents in the agency. User agent and ne-

gotiation/renegotiation agents and knowledge base are
created by this agent. The agent acquires application
requirements by communicating with the server, client
and the user. It gets the route and its links informa-
tion between source and destination by communicating
with the route finding agency during synchronization
and resynchronization. Agent computes average queu-
ing delays required at each node to satisfy the delay re-
quirement of an application and performs start-up syn-
chronization by using negotiation agent and reserves
certain amount of buffers for continuous playout. Later,
it computes playout time of PUs, which will be used by
the application for playout. On predicting the violation
of application requirements, user expectations given by
the user agent, it triggers renegotiation agent to per-
form resynchronization. Also, it creates a negotiation
agent and sends on a new route for resynchronization
if the link failures on the existing route are reported by
intermediate nodes. Once negotiation/renegotiation is
done, recomputes buffer requirement and the playout
time of the PUs to be played.

User agent (UA): It is a static agent which monitors
the PU losses, number of PUs played, end-to-end de-
lays, rate of change of delays and jitters, and updates
the knowledge base. The agent periodically interacts
with the user to know his/her expectations about the
quality of presentation by using its GUI (graphical user
interface). If the user is not satisfied, UA advices the
AMA to perform resynchronization either on the cur-
rently used route or another route (if current route is
either approaching congestion mark or a link is failed).
The routes are chosen by AMA in consultation with
route finding agency but not by UA.

Negotiation/renegotiation mobile agent (NMA/
RMA): This is a mobile agent which roams in the given
route to negotiate/renegotiate the delays and rate of

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 143

User agent

Knowledge
Base

Application manager agent

negotiation/renegotiation agents

Fig. 2. Synchronization agency at the receiver.

change of delays such that end-to-end delays and jitters
are within the limits of application requirements so as
to provide good quality presentation. It updates the
knowledge base with new reserved delays and rate of
change of delays at every node in the path.

3.2.1. Start-up synchronization
The scheme computes delays and rate of change

of delays to be negotiated along the nodes in the
path connecting source and destination on the basis
of following parameters: link capacities, fixed de-
lays at source and destination (packetisation, encod-
ing/decoding), expected duration of the call, sustain-
able end-to-end delay and better delivery end-to-end
delays [35]. The worst case sustainable delays of an
application can go even beyond the sustainable end-to-
end delays depending on the perception of an individ-
ual.

In this phase, a NMA is sent from the destination on
the path to negotiate delays and rate of change of delays
in each intermediate node of the path. Negotiated delay
parameters at each node in the path will be used to setup
the node buffers. Algorithm 1 presents the pseudo-code
of this phase. Considering the system model as shown
in Fig. 1, a mobile agent makes visit to the nodes, N,
N-1,. . . , and 1, in sequence for negotiating the delay
parameters.

Algorithm 1. Start-up synchronization {Nomenclat-
ure: lpdi = ith link propagation delay, Ci =
capacity of ith link, fd = fixed delays (packeti-
sation/depacketisation, encoding/decoding delays at

source and destination), S = PU size, N = number
of intermediate nodes, bacd = better acceptable end-
to-end delay requirement, sd = sustainable end-to-end
delay requirement, l = expected length of the session,
pud = length of presentation/generation duration of a
PU (if 20 PUs/sec, then PU duration is 50 ms), eed =
end-to-end delay, jit = jitters, sts = server trans-
mission start time, V = Visiting itinerary of a mobile
agent, src = source, ptimej = playout time of j th PU
bqd and sqd are better and sustainable average queu-
ing delay at an intermediate node, respectively, D i and
dDi are delay and rate of change of delay per PU at
intermediate node i, respectively}
Begin

1. AMA updates the knowledge base with appli-
cation requirements and the routes between the
source and destination along with status informa-
tion of links of the routes;

2. AMA computes the average queuing delays bqd
and sqd to satisfy the delay requirements of an
application;

sqd = (sd −
N+1∑

i=1

lpdi + (2 ∗ fd)

(1)

+
N∑

i=1

(S/Ci))/N

bqd = (bacd −
N+1∑

i=1

lpdi + (2 ∗ fd)

(2)

144 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

SOURCE

1 2 3 4 5 6

7 8

9
1110

Vulnerable links: 23 and 45
Vulnerable nodes: 3 and 5

DESTINATION

Fig. 3. Simulation model.

0

5

10

15

20

25

30

0 20 40 60 80 100

Sy
nc

hr
on

iz
at

io
n

lo
ss

 (%
)

Percent change in rate of change of delays

Synchronization loss .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 4. CASE I: Synchronization loss (%) .Vs. Percent change in rate of change of delays.

+
N∑

i=1

(S/Ci))/N

{Note: The equations 1 and 2 consists of prop-
agation delays across the path, the fixed delays,
and transmission delay at the intermediate node.}

3. AMA creates a NMA to negotiate Di and dDi

with N intermediate nodes of the path connecting
source and destination

4. NMA initializes its visiting sequence (addresses
of nodes to be visited, V = {vn, vn−1, ..., 1,
src}), jit = 0, and eed = 0;

5. For i = 1 to N do /* agent travels from
destination to source*/
Begin

– NMA migrates to upstream node i;
– NMA negotiates the delay Di within the range

[0, bqd];
– NMA computes the rate of change of delay per

PU, dDi = (sqd−Di) ∗ pud/l and negotiates
this with the node i;

– NMA updates jitters and end-to-end delays:
jit = jit + sqd − Di, and eed = eed + Di

End for i;
6. NMA after reaching the source, sends a mes-

sage to AMA at the destination about the
sts, Di, dDi, jit and eed, and requests server to
start transmission, and then disposes;

7. AMA computes the total eed by including fixed,
link propagation and transmission delays and up-

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 145

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 20 40 60 80 100

M
ea

n
bu

ffe
rin

g
de

la
y

(S
ec

)

Percent change in rate of change of delay

Mean buffering delay .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 5. CASE I: Mean buffering delays .Vs. Percent change in rate of change of delays.

dates the knowledge base:

eed = eed +
N+1∑

i=1

+(2 ∗ fd)

(3)

+
N∑

i=1

(S/Ci)

8. AMA computes playout time for the PUs and
updates the knowledge base

ptimej = sts + (eed + jit)
(4)

+(j − 1) ∗ pud

9. AMA requests UA to monitor the synchroniza-
tion parameters (delays, rate of change of delays
and PU losses) and also requests to interact with
the user about the feedback of the presentation
quality;

10. Application starts playing PUs only after buffer-
ing for a duration of jit time units;

11. Stop.

End.

3.2.2. Resynchronization
Even-though the intermediate nodes have agreed for

negotiated delay parameters, some of the nodes in the
path may be unreliable to provide the guaranteed delay
service because of following reasons: 1) overloaded
traffic passing through them; 2) node may be trying
to maximize its revenue by promising guaranteed ser-
vices and allowing more number of users than it can

handle. Some times the links may fail. In such cases,
the end-users will experience asynchrony in their me-
dia presentations: hence a poor quality presentation of
data. In order to handle these types of problems, resyn-
chronization phase is necessary to detect the delay pa-
rameter violations and link failures, and send a RMA
to renegotiate the delay parameters either on the exist-
ing or alternate route and adapt to the current network
environment by resynchronizing the media units of a
stream.

The creation of RMAs may be based on following
application requirements, which may fall under either
of the following categories: 1) on detection of losses
and reaching sustainable loss; 2) on detection of in-
crease in rate of change of delays; 3) on detection of
increase in end-to-end delays beyond the sustainable
delays at certain instant of time. The NMA may also
be created on getting link failure report from the inter-
mediate nodes to negotiate the synchronization param-
eters on a new route. Algorithm 2 presents the pseudo-
code for resynchronization method, which uses sus-
tainable loss parameter and link failures for invoking
resynchronization.

Algorithm 2. Resynchronization { Nomenclature:
al = acceptable loss (%), x = normalized value,
npu = number of PUs to be generated/played (l/pud),
nplay = number of played PUs, loss = percentage
of lost packets, CDi = current queuing delay of the
recently transmitted packet at ith node, cdDi = current
rate of change of delay per PU duration, feed back

146 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

0

5

10

15

20

25

30

0 20 40 60 80 100

Sy
nc

hr
on

iz
at

io
n

lo
ss

 (%
)

Percent change in rate of change of delays

Synchronization loss .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 6. CASE II: Synchronization loss (%) .Vs. Percent change in rate of change of delays.

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 20 40 60 80 100

M
ea

n
bu

ffe
rin

g
de

la
y

(S
ec

)

Percent change in rate of change of delay

Mean buffering delay .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 7. CASE II: Mean buffering delays .Vs. Percent change in rate of change of delays.

feedback from the user (denotes negative or positive
value)}
Begin

1. UA at the destination computes the percentage of
late arrived (loss) PUs and also gets the feedback
from the user and updates the knowledge base.

2. AMA performs following action: If ((loss �
(x ∗ al)) and (feed back = negative)), gets the
current route from the knowledge base, then goto
step 4;

3. If link failure is reported from intermediate node,
AMA requests an alternate route from the rout-

ing agency that does not use the failed links, up-
dates the knowledge base, then perform start-up
synchronization (CALL Algorithm 1) for the re-
maining length of the session; goto step 9;

4. AMA creates a RMA to renegotiate the Di, dDi,
and recompute the jit and eed} on the given
route;

5. For i = 1 to N do
Begin

– RMA migrates to upstream node i.
– RMA negotiates the delay Di within the range

[Di, CDi] at node i.

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 147

– RMA negotiates the dDi to original agreed
dDi, if cdDi is greater than dDi at node i.

End for i;
{Note: The non agreement-violating intermedi-
ate nodes will negotiate with probability 1/nt,
where nt is the number of times renegotiation
has taken place for the session. The agreement-
violating nodes will negotiate with probability
1.}

6. RMA after reaching the source, recomputes jit
and eed and informs the AMA at the destination
about the renegotiated Di and dDi and disposes.
The jit and eed are computed as follows:

eed =
N+1∑

i=1

lpdi + (2 ∗ fd) +
N∑

i=1

(S/Ci)

(5)

+
N∑

i=1

Di

jit =
N∑

i=1

dDi ∗ (npu − nplay) (6)

7. AMA computes the playout time for remaining
PUs by using renegotiation completed time, eed,
jit, and pud as given in step 8 of Algorithm 1.
Updates the knowledge base;

8. Application updates its jitter buffers based on jit
and plays out the subsequent PUs;

9. Stop.

End.
Resynchronization methods can also be invoked by

considering the rate of change of delay variations at the
destination as said earlier. For this purpose, step 2 has
to be modified in algorithm 2, i.e., if AMA observes
increase in rate of change of interarrival time of con-
secutively received packets for certain amount of time,
it invokes the RMA for renegotiating the delays and
rate of change of delays in the nodes along the path.

In a situation, where at random intervals of time, the
sustainable end-to-end delay requirement vary (may
vary from 90% to 150% of the sustainable delays) for
an application because of unavailability of resources at
intermediate nodes, resynchronization is invoked based
on the current sustainable end-to-end delay require-
ments. For this purpose the modifications to algorithm
2 should be done in steps 1 and 2. In step 1, determine
the current end-to-end delays of the PUs and sustain-
able end-to-end delays, and in step 2, goto step 4, if

current end-to-end delay is greater than the sustainable
end-to-end delays.

If the PUs to be presented does not arrive within
the duration of skew tolerance, application uses skew
compensation mechanisms for playout. These mecha-
nisms are: restricted blocking (display the last frame to
deal with the losses and delayed frames) and blocking
(do not play anything or stretch the playout duration
of existing PUs) for video and audio streams, respec-
tively [26].

3.3. Benefits of using agents

Agent oriented programming facilitates component
based software engineering (CBSE) which is needed
in today’s software development of web-based sys-
tems [18,25]. In future there will be enormous num-
ber of agents (agents are next generation components)
which have to coordinate with each other to provide
multimedia information searching, retrieval and com-
munication services, once the agent platform becomes
standardized.

As observed from the literature [28–30], agents are
used in various ways to support multimedia commu-
nications: they go through the intermediate nodes to
gather the bandwidth and delay information; they can
identify the congested nodes in the network and suggest
different routes; they can intelligently vary the band-
width at the source depending on the network envi-
ronment. We can encode all these functionality along
with the delay estimation within a single agent and im-
prove the performance of multimedia communication
systems.

Some of the benefits of using the agents for synchro-
nization purpose are as follows.

– Flexibility: Flexibility in delay adaptation policies
by changing agent code facilitates personalizing
of customer services, i.e., adaptation policies may
be coded to depend on current and predicted net-
work traffic as well as on the link/node failures.
NMA/RMA can be even coded to negotiate based
on some pricing models as used by the customers.

– Adaptability: The agency used in synchronization
copes up with a dynamic, heterogeneous and open
environment which is characteristic of today’s In-
ternet. The agents dynamically either adapt or
renegotiate to maintain the synchronized presen-
tations based on application requirements and net-
work problems such as congestion and link fail-
ures.

148 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

0

5

10

15

20

25

30

0 20 40 60 80 100

Sy
nc

hr
on

iz
at

io
n

lo
ss

 (%
)

Percent change in rate of change of delays

Synchronization loss .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 8. CASE III: Synchronization loss (%) .Vs. Percent change in rate of change of delays.

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 20 40 60 80 100

M
ea

n
bu

ffe
rin

g
de

la
y

(S
ec

)

Percent change in rate of change of delay

Mean buffering delay .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 9. CASE III: Mean buffering delays .Vs. Percent change in rate of change of delays.

– Reusability: Part of the agent software can be
reused for allocating bandwidth and buffers re-
quired for any kind of multimedia application.
Reusing of code is possible because of au-
tonomous operation of agents involved in multi-
media services.

– Maintainability: Since the agents developed for
synchronization purpose is developed on a mod-
ular approach in combination with other agents
involved in the multimedia services, it is easy to
debug and update the agent software.

– Customizability: The agent software can be cus-

tomized to the user needs and the application re-
quirements by encoding the delays and rate of
change of delays in the agent.

– Scalability: The agent sent from a host of a net-
work for delay parameters negotiation or renego-
tiation can be made to perform aggregate tasks for
other hosts of the network that are connected to
the same source.

– Asynchronous operation: RMAs/NMAs sent
across the network do not need permanent connec-
tions to the hosts. As and when required the agents
will send the information to AMA. This feature

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 149

0

5

10

15

20

25

30

0 20 40 60 80 100

Sy
nc

hr
on

iz
at

io
n

lo
ss

 (%
)

Percent change in rate of change of delays

Synchronization loss .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 10. CASE IV: Synchronization loss (%) .Vs. Percent change in rate of change of delays.

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 20 40 60 80 100

M
ea

n
bu

ffe
rin

g
de

la
y

(S
ec

)

Percent change in rate of change of delay

Mean buffering delay .Vs. Change in delays

Pviola=0.0
Pviola=0.2
Pviola=0.5

Fig. 11. CASE IV: Mean buffering delays .Vs. Percent change in rate of change of delays.

is particularly useful in mobile networks, where
no permanent connection wastes bandwidth and
computation time of the manager agent.

4. Simulation

In this simulation, we consider invoking of RMAs
during resynchronization phase on the basis of applica-
tion categories as discussed in Section 3.2.2. We gen-
erated several applications, which fall into above men-
tioned categories. In this section we give a network

traffic model to test the proposed scheme, simulation
procedures and the results.

4.1. Network model

We consider a network simulation model as shown
in Fig. 3 for testing the proposed intrastream synchro-
nization scheme. The model has 13 nodes in which
primary path between source and destination is 1-2-3-
4-5-6. There are 2 unreliable intermediate nodes (3 and
5) which may violate the delay and rate of change of
delay agreements. Also, there are two unreliable links

150 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

60000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000

En
dt

oe
nd

 d
el

ay
 (s

ec
)

PUnumbers

Endtoend delays (sec)

Sustainable delay
Maximum sustainable delay

Pviola=0.5, change in dD=100%

Fig. 12. End-to-end delays (sec) for each PU (only the first 60,000 PUs delays are shown) considering better delivery delays = 200 ms, sustainable
delays = 400 ms, and maximum sustainable delays = 600 ms (1.5 times of 400 ms).

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

Sy
nc

hr
on

iz
at

io
n

lo
ss

 (%
)

Synchronization loss .Vs. Change in delays

Pviola=0.2, Plfail=0.2
Pviola=0.2, Plfail=0.5
Pviola=0.5, Plfail=0.2
Pviola=0.5, Plfail=0.5

Percent change in rate of change of delay

Fig. 13. CASE V: Synchronization .Vs. Percent change in rate of change of delay.

2–3 and 4–5, which may fail. Alternate paths between
source and destination are 1-2-7-8-4-5-6 and 1-2-3-9-
10-11-5-6 for failed links 2–3 and 4–5, respectively.
Probability of a link failure may be designated as P lfail

for every 100 PUs delivery.
An agreement-violating node may violate with a

maximum probability of Pviola at every regular time in-
terval. Rate of change of delays may change randomly
in an agreement violating node. The fixed delays of
an application are fd. The maximum capacity C of all
the links are same. The propagation delays lpd of all

the links are equal. Other parameters of the the appli-
cation requirements are acceptable delay (bacd), sus-
tainable delay (sd), worst case sustainable delay by ap-
plication by using playout compensation mechanisms
(msd), PU size (S), PU presentation duration (pud),
length of the session (l), and acceptable loss (al). The
agreement-violating node varies rate of change of de-
lays at regular intervals of x PUs. Agent creation, mi-
gration, and execution time is distributed uniformly in
the range (50, 200) ms. as observed in experiment con-
ducted using IBM aglets work bench [26,27]. Rate of

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 151

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

M
ea

n
bu

ff
er

in
g

de
la

y
(s

ec
)

Mean buffering delay .Vs. Change in delays

Pviola=0.2, Plfail=0.2
Pviola=0.2, Plfail=0.5
Pviola=0.5, Plfail=0.2
Pviola=0.5, Plfail=0.5

Percent change in rate of change of delay

Fig. 14. CASE V: Mean buffering delay .Vs. Percent change in rate of change of delay.

change of delay at a node per PU duration varied from
LV to HV .

4.2. Simulation procedure

The inputs considered in the simulation are: bacd =
200 ms [35], sd = 400 ms., msd = 600 msec;
lpd = 1 ms., C = 50 Mbps; fd = 10 ms, al = 2.0%;
S = 1024 bytes, pud = 50 ms., Pviola (violation
probability) is considered for different cases as 0.0, 0.2
and 0.5 for nodes 3 and 5 respectively, LV = 5% to
HV = 100%; l = 600 sec., and x = 100 PUs, Plfail

is considered for cases 0.0 and 0.5.
Begin

– Run the simulation program for following cases
by changing the rate of change of delay variations
and evaluated the performance parameters.

∗ CASE I: Uses only start-up synchronization.
∗ CASE II: Uses start-up synchronization, and

resynchronization is invoked at the instant of
losses exceeding acceptable PU losses.

∗ CASE III: Uses start-up synchronization, and
resynchronization is invoked at the instant of
losses exceeding 90% of the acceptable PU
losses.

∗ CASE IV: Uses start-up synchronization and
invokes resynchronization whenever rate of
change of end-to-end delays vary more than
agreed values for consecutive number of PUs.

∗ CASE V: Uses CASE III with link failures

– The simulation program also ran for a large ses-
sion of 100 minutes, in which resynchronization
is invoked whenever end-to-end delays of the PUs
exceed the certain percentage of sustainable delays
at every regular intervals of time. The percentage
of required sustainable delays is uniformly dis-
tributed (initially it starts with 90% of sustainable
delays).

End.
The performance parameters evaluated in the simu-

lation are as follows.

– Synchronization loss: It is defined as the percent-
age of PU loss (late arrivals) of the stream in a
presentation period;

– Mean buffering delay: It is defined as the mean
waiting time of presented PUs of a stream in the
receiver;

– Agent overheads: It is defined as the number of
agents created during resynchronization.

– Latency: It is the time required for renegotiation
either during application requirement violations or
link failures.

5. Results

We observe that without applying the resynchroniza-
tion (see Figs 4 and 5) for an application, synchroniza-
tion loss increases and the mean buffering delay reduces
with increase in probability of agreement violation and

152 S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications

percent changes in rate of change of delays. The user
experiences degradation in the presentation quality due
to more losses if the nodes violate the agreements and
delays crop up abruptly.

If resynchronization is used, we notice that the
synchronization losses are well within the desired/
sustainable losses (within 2% for CASE III and around
2% for CASE II) even with the increase in probability
of agreement violation and the rate of change of delays
(see Figs 6 and 8). The buffering delays (see Figs 7
and 9) in CASE II and CASE III are little higher as
compared to CASE I so as to avoid the losses.

If resynchronization is invoked at the instant of in-
crease in rate of change of delay losses will be almost
nearing zero (see Fig. 10) even in case of agreement vi-
olation and rise in rate of change of delay at the expense
of little more agent overheads as compared to CASE
II and CASE III. Mean buffering delays (Fig. 11) are
more here as compared to other cases.

The agent overheads observed during resynchroniza-
tion are: 39, 35 and 52 for CASE II, CASE III and
CASE IV, respectively with Pviola = 0.2; 74, 74 and
96 for CASE II, CASE III and CASE IV, respectively
with Pviola = 0.5.

Finally we conducted the simulation of the synchro-
nization scheme (using Pviola = 0.5 and rise in rate of
change of delay = 100%) for a larger session duration
of 100 minutes, in which resynchronization is invoked
if observed end-to-end delays of PUs exceed the cer-
tain percentage of sustainable delays (sustainable de-
lays are assumed to be uniformly distributed within the
range [0.9 ∗ Sd, 600]) at every intervals of 100 PUs.
This simulation is conducted to view the variation in
end-to-end delays of the PUs (see Fig. 12). We observe
that end-to-end delays of the PUs are well controlled by
the resyncronization phase. The delays vary within the
best delivery delay (200 ms) to maximum sustainable
delays (600 ms).

The agent overheads noticed in this simulation is 283.
The overheads are very much minimal as compared to
the flexible services offered to the users. For an agent
with size of 4 KB, bandwidth required by the agents
is 4KB*283 = 9.27 Mb for a session of duration 6000
sec: hence 1.54 Kbits/sec is the bandwidth overhead for
an application. Suppose, if there are 500 applications
using this scheme over the path, the overheads will
amount to 770 Kbits/sec which is very small percentage
of the path bandwidth (7*50 Mbps = 350 Mbps).

It is noticed from the Figs 13 and 14 that the syn-
chronization losses are little increased with link fail-
ures since some time is required to setup a new route

and resynchronize the presentations. During this pe-
riod some PUs will be lost. However, the scheme im-
mediately renegotiates on another route (with the as-
sumption that the new route has enough resources). In
case of resources not available on a new route, appli-
cation is terminated by AMA on getting information
from NMA. Latency in resynchronization during link
failures varied from 600 ms. to 800 ms.

6. Conclusions

The paper presented an agent-based intrastream syn-
chronization scheme, which synchronizes the media
units of a stream under the conditions of network de-
lay variance problems and link failures. The scheme
used an agency employing agents to negotiate, rene-
gotiate and adapt the delays and rate of change of de-
lays with the intermediate nodes in the network based
on customized parameters of an application (sustain-
able loss, sustainable delays, sustainable rate of change
of delays) for resynchronizing the presentation units
within the stream. The simulation results showed that
the scheme maintains the synchronization parameters
of an application well within the sustainable values
even under variations of network delays and link fail-
ures. Agent-based schemes facilitate software reuse
and maintenance. However, some problems have to be
resolved in agent system implementation since it is in
infant stage: creation of a standardized agent platform
for Internet to facilitate development of agent based ap-
plications, security to agents from hosts and vice versa,
and agent creation tools. There are some efforts made
by standard bodies such as FIPA (Foundation of Intelli-
gent Physical Agents) and OMG (Object Management
Group) [19]. It is soon expected that agent technology
will become a reality within few years especially in
the areas of network management, information man-
agement, e-commerce and peer to peer computing.

References

[1] G. Blakowski and R. Steinmetz, Media Synchronization Sur-
vey: Reference Model, Specification, and Case Studies, IEEE
JSAC 14(1) (1996), 5–35.

[2] A. Zhang, Yuqing and M. Mielke, Netmedia: Streaming Mul-
timedia presentations in distributed environments, IEEE Mul-
timedia mag (2002), 56–73.

[3] K. Rothermel and T. Helbig, An adaptive protocol for syn-
chronizing media streams, ACM Multimedia Systems 5 (1997),
324–336.

S.S. Manvi and P. Venkataram / An agent-based approach to intrastream synchronization for multimedia applications 153

[4] C. Huang and R. Lee, Achieving multimedia synchronization
between live video and live audio streams using QoS controls,
Computer Communications 19 (1996), 456–467.

[5] E. Biersack and W. Geyer, Synchronized delivery and playout
of distributed stored multimedia streams, ACM Multimedia
systems 7 (1999), 70–90.

[6] L. Lamont, L. Li, R. Brimont and N. Georganas, Synchroniza-
tion of Multimedia data for a Multimedia News on demand
Application, IEEE JSAC 14 (1996), 264–277.

[7] D.L. Mills, Internet time synchronization: Network time pro-
tocol, IEEE trans. communications 39 (1991), 1482–1493.

[8] F.A. Bertran, F. Oller and J.M. Selga, Voice synchronization
in packet switching networks, IEEE Network. mag (1993).

[9] N. Laoutaris and I. Stavrakakis, Intrastream synchronization
for continuous media streams: A survey of playout schedulers,
IEEE network mag (2002).

[10] N. Shivkumar, C.J. Sreenan, B. Narendra and P. Agrawal, The
concord algorithm for synchronization of networked multime-
dia streams, Proc. ICMCS (1995).

[11] R. Ramjee, J. Kurose, D. Towsley and H. Schulzrinnie, Adap-
tive playout mechanisms for packetized audio applications in
Wide Area Networks, Proc. IEEE Infocom, Canada, 1994,
680–688.

[12] H. Schulzrinne, R. Frederick and V. Jacobson, RTP: A trans-
port protocol for real time applications, RFC 1889 (1996).

[13] S. Kadur, F. Gashing and B. Millard, Delay-jitter control
in multimedia applications, Multimedia systems Journal 4
(1996), 30–39.

[14] D. Pern, H. Zhong and D. Ferrari, Delay jitter control for real
time communication in a packet switching network, Proceed-
ings of IEEE Tricomm (1991), 35–43.

[15] F. Liu, J. Kim and C. Jay Kuo, Adaptive delay concealment
for Internet voice applications with packet based time scale
modification, IEEE ICASSP (2001), 1461–1465.

[16] M.C. Yuang, S.T. Liang, Y.G. Chen and C. L-Sen, Dynamic
video playout smoothing method for multimedia applications,
Proc. IEEE ICC (1996), 1365–1369.

[17] Y. Xie, C. Liu, M.J. Lee and T.N. Saadwi, Adaptive multime-
dia synchronization in a teleconference system, Multimedia
System Journal 7 (1999), 326–337.

[18] M.L. Griss and G. Pour, Accelerating development with agent
components, IEEE Comp. Mag 34(5) (2001), 37–43.

[19] S.S. Manvi and P. Venkataram, Applications of agent technol-
ogy in communications: A review, Computer communications

27(15) (2004), 1493–1508.
[20] Cetus links, http://www.cetus-links.org/00 mobile agents.

html.
[21] D. Chess, N. Benjamin, C. Harrison, D. Levine and C. Paris,

Itinerant agents in mobile computing, IEEE personal commu-
nication (1995), 35–49.

[22] D. Wong, N. Paciorek and D. Moore, Java based mobile agents,
Communications of ACM 42 (1999).

[23] D. Chess, C. Harrison and A. Kershenbaum, Mobile Agents:
Are They a Good Idea? IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, New York, March 1995.

[24] D.B. Lange and M. Oshima, Seven good reasons for mobile
agents, Communications of ACM 42 (1999), 88–89.

[25] N.R. Jennings, An agent-based approach for building complex
software systems, Communications of ACM 44 (April, 2001),
35–41.

[26] S.S. Manvi and P. Venkataram, Multimedia synchronization
model for Internet based education systems using agents, Jour-
nal of Comp.Sc. and Informatics 32(2) (June, 2003), 30–41.

[27] IBM Aglets work bench, http://www.trl.ibm.co.jp/aglets.
[28] S.S. Manvi and P. Venkataram, QoS Management by Mobile

Agents in Multimedia Communication, Database and Expert
Systems (DEXA 2000), Agent-Based Intelligent Systems ABIS-
2000, Greenwich, U.K, Sept. 2000, 407–411.

[29] S.S. Manvi and P. Venkataram, Mobile Agent based Online
Bandwidth Allocation Scheme in Multimedia Communica-
tions, IEEE GLOBECOM, San Antonio, USA, Nov. 2001,
2622–2626.

[30] K. Oida and M. Sekido, An agent-based routing system for
QoS guarantees, Proc. IEEE Int. Conf SMC (1999), 33–38.

[31] S. Keshav, An engineering approach to computer networks,
Addison wesley, 1997.

[32] D. Awduche, J. Malcolm et al., Requirements of traffic engi-
neering over MPLS, RFC 2702, Sep. 1999.

[33] R. Guerin, S. Blake and S. Herzog, Aggregate RSVP-based
QoS request, Internet Draft, 1997.

[34] G. Lu, Issues and technologies for supporting multimedia
communication over Internet’, Computer communications 23
(2000), 1323–1335.

[35] Kouhei Fujimaoto, Shingo Ata and Masayuki Murata, Statisti-
cal analysis of packet delays in the Internet and its application
to playout control for streaming applications, IEICE Trans.
commn. E84-B (June, 2001), 1504–1512.

