
Published in IET Communications
Received on 30th June 2009
Revised on 30th November 2009
doi: 10.1049/iet-com.2009.0134

In Special Issue on Video Communications over Wireless
Networks

ISSN 1751-8628

Reliable multimedia multicast communications
over wireless mesh networks
M. Iqbal1 X. Wang2 D. Wertheim1

1Faculty of Computing, Information Systems and Mathematics, Kingston University, Kingston upon Thames KT1 2EE, UK
2School of Engineering, Swansea University, Swansea, UK
E-mail: writeme@hotmail.co.uk

Abstract: Wireless mesh networks (WMNs) facilitate both data transfer and real-time applications over wireless
medium. Owing to the shared nature of wireless frequencies, bandwidth limitation is a major challenge facing
WMNs. If real-time multimedia applications, such as live video streaming, are shared among multiple clients
using unicast communications, it could result in network resources starvation. Multicast transmission saves
network resources by replicating live multimedia transmitted data from one source to multiple destinations
using the same stream. The authors have developed a novel implementation of a multicast extension to
ad hoc on-demand distance vector (MAODV) routing protocol in Linux kernel 2.6 user space, which is referred
to as unidirectional link-aware MAODV (UDL-MAODV). Multicast video transmissions use user datagram
protocol, which does not use implicit handshaking dialogues for guaranteeing reliability of data. Therefore the
authors propose and have implemented modifications to the MAODV route discovery process to improve the
reliability of multicast video transmissions. These modifications enable UDL-MAODV to ensure reliable route
establishment for multimedia multicast communications over WMNs in the presence of UDLs. The authors
describe in this study the software architecture of the UDL-MAODV implementation in the Linux kernel 2.6
user space, and also present multicast validation and results of performance tests using the SwanMesh WMN
testbed. Furthermore, UDL-MAODV has been cross-compiled and tests are presented to compare the
performance of the implementation using X86 and ARM architecture-based SwanMesh nodes. The test results
show that the proposed algorithm is reliable and efficient.

1 Introduction
Multicast communication is the transmission of data from
one sender to a group of hosts identified by a single
destination address [1, 2]. It utilises network infrastructure
efficiently by requiring the source to send a packet only
once. This is particularly useful for the transmission of
multimedia data over wireless networks where the
bandwidth is limited. Previously, we have designed and
developed a WMN testbed ‘SwanMesh’ for disaster and
emergency services [3] and healthcare [4–6]. We have also
developed a handheld mobile device for the SwanMesh
WMN in healthcare [6]. The mobile device is capable of
video streaming, Internet access and voice over wireless
networks. The purpose of the development is to deliver
real-time multimedia services wherever and whenever it is
needed. SwanMesh can efficiently deliver data services such

as broadband Internet using unicast communications,
although there are noticeable throughput drops on each
hop between the client and gateway nodes. Owing to the
limited bandwidth resources, if unicast is used to deliver
real-time multimedia services such as audio, video
teleconferencing, and delivery of live video streaming, then
this could result in network failure due to resource
starvation. Therefore SwanMesh multicast operation is used
to deliver the real-time applications.

Multicast routing in wireless mesh networking is a key
issue. Similar to unicast, multicast mesh routing has also
been adopted from mobile ad hoc networks (MANET).
Several schemes have been proposed in different multicast
routing protocols [7–17]. Comparative analysis studies
[18–22] have shown that these multicast protocols perform
well under specific scenarios considering mobility, traffic

1288 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org



loads, packet overhead and network conditions. One protocol
may not be optimal in all scenarios [23, 24]. These protocols
can be classified using two criteria [24, 25]. The first criterion
is based on maintaining the routing state. Similar to unicast,
it classifies routing mechanisms into two types, proactive and
reactive. Proactive maintains a routing state whereas reactive
works on demand. The second criterion is based on the
multicast packet-forwarding global data structure, which
has basically two further types: mesh-based and tree-based.
A tree-based multicast routing protocol creates a multicast
tree from each of the sources to all receivers, whereas a
mesh-based multicast routing protocol sustains a mesh
structure containing all the receivers of a group. Hybrid-
based multicast routing combines the above two structures.
A review of the MANET multicast routing protocols was
presented in [25]. Multicast ad hoc on-demand distance
vector (MAODV) [26, 27] and on-demand multicast
routing protocol (ODMRP) [28] are two of the main
reactive multicast routing protocols within the MANET
working group at the Internet Engineering Task Force for
ad hoc networks. Multiple tree MAODV (MT-MAODV)
[29] is an extension to MAODV that establishes multiple
trees to provide multiple routes for multicasting.
Destination-driven ODMRP [30] is a destination-driven
extension to ODMRP. MAODV is tree-based and
ODMRP is mesh-based. Both are well-known protocols
used for WMNs. ODMRP works independently whereas
MAODV is an extension to the ad hoc on-demand distance
vector (AODV) [31, 32] unicast routing protocol. Its
route-discovery mechanism is based on AODV. MAODV
also utilises the control messages that exist in AODV and
employs the same route request (RREQ ) and route reply
(RREP) discovery cycle during its multicast route discovery
operation. Thus, route information obtained during
multicast route discovery operations increases unicast
routing knowledge and vice-versa.

SwanMesh has shown good performance for its unicast
communications [3–6]. Since SwanMesh uses reactive
AODV user-space-based implementation [33], MAODV
is the best option to implement multicast communications
in our testbed. Previously, the University of Maryland has
developed an MAODV implementation which is more
than five years old and does not provide support for Linux
kernel version 2.6 [34]. Therefore we have developed a
novel Linux kernel user-space-based implementation
of MAODV, which we refer to as unidirectional
link-aware MAODV (UDL-MAODV). Our multicast
implementation is based on [33] as a unicast base protocol.
It runs in Linux kernel 2.6 as a dynamically loadable module.

MAODV forms a bidirectional shared tree for its multicast
data transmission and does not support multicast over
unidirectional links (UDLs). MAODV relies on its
underlying unicast AODV protocol to avoid UDLs.
During both multicast and unicast AODV operations
assume that the links are bidirectional, but in the presence
of UDLs AODV will fail [35]. Even the smallest network

of two nodes cannot survive in the presence of a UDL
between them during multicast operation, for example, if
we run a multicast application on two nodes in the
presence of a UDL between them, both nodes would
become group leaders. This is because none of them would
receive an RREP to the RREQ sent by them during the
multicast route discovery operation owing to the UDL
between them. After becoming the group leader both
nodes will start broadcasting the periodic group hello
message over UDL. This will initiate an indefinite process
of tree merger which will result in network failure.

Therefore sensing and avoiding UDLs is crucial for reliable
multicast transmission of multimedia applications over
WMNs. Three basic mechanisms described in [36] are
used by AODV to avoid UDLs: (i) exchange neighbour
sets via an extension field with broadcast HELLO
messages; (ii) receive N-consecutive broadcasted HELLO
messages from another node before completing the
neighbour detection process; (iii) using signal-to-noise ratio
(SNR) as a threshold for control packets to obtain the
signal quality before establishing a route. The major
downsides of the above three approaches are that neighbour
exchange HELLO messages become variable in size, and
the success rate depends on how many neighbours a node
detects. Another problem is caused by the different
transmission rates between broadcast messages and unicast
messages where unicast messages are sent at a higher rate.
The lower rate messages can reach further than the higher
rate. This approach uses broadcast HELLO messages and
hence does not address the difference between unicast and
broadcast. Similarly, N-HELLO messages also do not
address this difference. Furthermore, N-HELLO messages
introduce latency that may affect on-demand properties of
the protocol. The problem with the SNR threshold
technique is that it sets a minimum link quality to
eliminate poor links; when there are no other routes
available, routing data over a poor link (which is below
minimum link quality) is better than no route.

We have addressed the above problems by proposing
modifications to MAODV. We have proposed and
implemented a UDL detection process which works in an
on-demand fashion and is invoked only if needed during
the multicast route discovery process and also tackles the
broadcast unicast transmission difference by using unicast
control messages for handshake.

The remainder of this paper is organised as follows. In
Section 2, we describe the software architecture of our
implementation. In Section 3, our proposed modifications
to enhance the reliability of MAODV are presented. In
Section 4, we present the results of validation and
performance tests using our testbed to ensure the correct
functionality of modifications and performance of our
implementation. Finally, the paper is concluded in
Section 5. A detailed description of MAODV operations
can be found in [26, 27].

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1289
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org



2 Software architecture of
multicast implementation
Our MAODV implementation is based on AODV-UU
0.9.5, a recent kernel user-space implementation developed
by Uppsala University, Sweden [33]. During its multicast
operation our implementation shares the information
maintained by AODV in the unicast route table. Multicast
extension maintains a multicast route table to store the
route information gathered during multicast operation.
Similar to AODV, MAODV also discovers multicast
routes whenever needed using RREQ and RREP cycle
during its route discovery process. MAODV control
packets also share the user datagram protocol (UDP) port
used by AODV. Fig. 1 describes the software architecture
of our implementation in kernel 2.6 user space.

MAODV uses the following control messages during its
multicast route discovery operations:

† RREQ message;

† RREP message;

† Group HELLO (GRPH) message;

† Multicast activation (MACT) message.

The first two messages are the same as those used by
AODV during its unicast operation and MAODV utilises

them with additional procedures controlled by new flags
and extensions. These control messages are of UDP type
and the normal Internet protocol (IP) header processing
applies to these messages.

Many studies were conducted [37–41], since the release of
Linux kernel version 2.6 have shown its improved
performance compared to Linux kernel version 2.4 [42].
Netfilter is a framework within the Linux kernel to
intercept and manipulate network packets. A Netlink
socket is a mechanism used to communicate information
between the kernel and user-space processes. Similar to
unicast, we also used a Netlink socket to send multicast
route entry control messages. These control messages are to
add, delete and update multicast route table entries in user
space. The detailed software architecture of our MAODV
kernel 2.6 user-space implementation is shown in Fig. 1.

MAODV establishes a bidirectional tree for each multicast
group, which comprises a group leader, group members and
router nodes. Each multicast group has a group leader that is
a member of the group and is also responsible for maintaining
the group. It broadcasts group hello messages to the network
after every GROUP_HELLO_INTERVAL milliseconds so
that the other nodes on the network can update their
multicast route table information accordingly. Group
member nodes are those either sending or receiving the
multicast data and the router nodes are not group members
but play an important role in forwarding the multicast data

Figure 1 MAODV kernel 2.6 user-space implementation software architecture

1290 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org



in order to form the multicast group tree for group
communications. In the multicast tree structure each
node has an UPSTREAM neighbour node or a
DOWNSTREAM neighbour node or both. The
UPSTREAM neighbour node has a lower hop count to
the group leader than the DOWNSTREAM neighbour.
Therefore it is closer to the group leader. The
DOWNSTREAM neighbour is further from the group
leader and thus has a higher hop count to the group leader.
The group leader obviously has only DOWNSTREAM
nodes.

When a node wishes to join a multicast group in order to
send or receive multicast data and does not have a route to the
group, it originates and broadcasts an RREQ control
message. If the join flag is set in the multicast RREQ
control message then only the nodes which are members of
the group will reply to the message by sending back an
RREP control message to the originator.

To prevent unnecessary network-wide dissemination of
RREQ broadcasts, the originating source node of an
RREQ uses an expanding ring search technique. Using this
technique, the source node originates the first RREQ
with its IP header time to live (TTL) value set to
TTL_START. The source node sets the timeout for receiving
a corresponding RREP to RING_TRAVERSAL_
TIME. The value of RING_TRAVERSAL_TIME
equals 2∗NODE_TRAVERSAL_TIME∗(TTL_VALUE +
TIMEOUT_BUFFER), where NODE_TRAVERSAL_
TIME is a conservative estimate of the average one hop
traversal time for packets and includes queuing delays, interrupt
processing times and transfer times. The default value for the
NODE_TRAVERSAL_TIME parameter is set to 40 ms
[32]. The TIMEOUT_BUFFER is a configurable parameter,
which is by default set to 2 [32]. Its purpose is to provide a
buffer for the timeout so that if the RREP is delayed because
of congestion, a timeout is less likely to occur while the RREP
is still routing back to the source. The TIMEOUT_BUFFER
can be omitted by setting its parameter value to 0.

If an RREP is not received within RING_
TRAVERSAL_TIME, the source node may broadcast
another RREQ with its TTL incremented by
TTL_INCREMENT. The source node keeps originating
the RREQ if the corresponding RREP is not received up
to a maximum of RREQ _RETRIES. Each time a new
value for the TTL and RING_TRAVERSAL_TIME is
calculated as described above.

If the RREQ originating node does not receive an RREP
within RREP_WAIT_TIME, then it considers itself the
only member of the group and becomes group leader. If
the node receives an RREP then it sends a MACT
message with a J (Join) flag along the selected best route to
activate it. The intermediate nodes along the path to the
multicast group will activate their UPSTREAM and
DOWNSTREAM neighbour nodes to form the tree. The

MACT message is also used with the P (Prune) flag if a
node wishes to leave a multicast group. While assembling
the multicast control messages during the multicast route
discovery process, the participating nodes use different
procedure control flags and extensions based on different
scenarios.

3 Modifications
We have made modifications to the MAODV algorithm to
help to improve the reliability of the protocol in the
presence of UDLs. A UDL detection process is proposed
in order to avoid UDLs on the network during the
multicast route discovery operation.

3.1 UDL detection process

UDLs can be caused by many reasons, including hidden
terminal problems [43]. Differences in transmission rate
and packet size and fluctuating links are also some of the
reasons that can cause UDLs [36]. Additionally, UDLs
may also occur due to differences in sophistication or
configuration of the device, or due to the signal
interference caused by transmissions from other nodes or
devices such as jammers.

We propose a UDL detection process which is only
activated if there is a multicast application running on the
network. The multicast route table has a field called next
hops that maintains a linked list structure [27] to store
information about the next hop neighbours of the node.
We have made modifications by adding a new flag field to
the linked list structures; we refer to this as the UDL
detection flag. The flag is used to store a value to indicate
information on the link between the node and its next hop
neighbour. Flag B indicates a bidirectional link whereas
flag U indicates a UDL.

During the multicast route discovery process, when a node
receives a multicast control message from its next hop
neighbour it first looks into its multicast route table to
check UDL flag entry before processing the control
message. This is to make sure that a bidirectional link
exists to the neighbour. If the entry for the next hop
neighbour does not exist in multicast route table or it has
the entry but the status is inactive due to its being out of
the expiry timer’s time, then the node will initiate the
UDL detection process, which is a two-way handshake
process. A node initiates it by sending an acknowledgment
message (LINK_DETECTION) to the next hop
neighbour node from which it has received the multicast
control message. If it receives an acknowledgment message
(UDL-ACK) from the next hop neighbour within
UDL_WAIT_TIME, then the link is considered a
bidirectional link. If the node does not receive UDL-ACK
after UDL_WAIT_TIME, it will further make UDL-
RETRIES number of attempts by sending LINK_
DETECTION messages again. If the UDL_ACK is still

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1291
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org



not received, the node will consider the link between itself
and the next hop node as unidirectional. At the end of the
process an entry for the next hop neighbour into the
multicast route table is made indicating the link status
as U or B. The UDL entry becomes inactive after
LINK_DETECTION_EXP_TIME milliseconds. LINK_
DETECTION_EXP_TIME is a variable defined by the
user to set the expiry timers on UDL detection entries,
which expires on timeouts. This enables the user to
increase or decrease the UDL entry expiry time depending
on the operating environment and required frequency of
the link detection accordingly.

The proposed UDL processes is integrated into MAODV to
improve its reliability during route discovery by detecting and
avoiding unreliable and UDLs. Thus, these modifications
enable UDL-MAODV to ensure a reliable route
establishment during multimedia multicast communications
over WMNs in the presence of unidirectional links. The
process is only invoked during the multicast operation, thus
this approach minimises the operating overheads by invoking
the process in an on-demand fashion. Furthermore, we have
integrated the UDL handshaking process into the MAODV
RREQ–RREP cycle in such a way that it does not cause any
delay during the RREQ–RREP cycle at the forwarding
nodes, only at destination node RREQ–RREP cycle is
affected by the UDL handshaking. More details on this are
provided in Section 4.1.

Our proposed UDL detection mechanism uses unicast
control messages for handshaking, which also takes care of
problems introduced by broadcast and unicast transmission
differences.

4 Evaluation tests
We used SwanMesh (our WMN testbed) to perform
evaluation tests. Mackill (an open source MAC filter utility
developed by Uppsala University in Sweden) is a utility tool
which can force different connectivity configurations of
mesh nodes without the nodes being required to be
physically separated. We have used this tool to establish our
network topology scenarios during the tests. We have
cross-compiled and set up our testbed using several wireless
router application platform (WRAP) board [44] and the
Liod270 development kit [45] nodes. Fig. 2 shows a
WRAP board and the Liod270 development kit. The
WRAP boards are based on X86 architecture, whereas the
Loid 270 development kit nodes are based on the ARM
architecture. We present tests to evaluate the scalability and
performance of our UDL-MAODV implementation in
terms of delay during the route establishment process in Section
4.1. We have used five WRAP board-based SwanMesh nodes
of the same specifications to conduct tests presented in Section
4.1. In Section 4.2, we present our validation tests to ensure the
correct functionality of modifications made to MAODV during
our implementation. We used four WRAP board-based

SwanMesh nodes to perform validation tests. To evaluate the
cross-platform performance of our implementation, we have
performed multicast performance tests using both the ARM
and X86 architectures. In Section 4.3, we present a cross-
platform performance comparison analysis of these tests.

4.1 Route establishment evaluation

In this section, we present tests to evaluate the scalability and
performance of our UDL-MAODV in terms of delay during
the route establishment process. MAODV reactively uses an
RREQ and RREP cycle to find routes between a source node
and a destination node. During the multicast operation when
a source node needs to find a route to the destination group, it
initiates the route discovery process and broadcasts an RREQ
message. A node which is a member of a multicast group or
has a route to the multicast tree may respond to the RREQ by
sending an RREP back to the source node. All the other
nodes process and forward the RREQ by re-broadcasting it.

We have used a chain topology of five SwanMesh nodes
test scenario as shown in Fig. 3 to calculate the time that
RREQ and RREP take to complete a route discovery cycle.
All the five nodes have the same specifications. As shown
in Fig. 3, node E is a source node which wishes to find a
route to the destination node A. The distance between the
source and destination nodes is four hops. Intermediate
nodes B, C and D act as router nodes to process and
forward the RREQ and RREP control messages to
complete the cycle during the multicast route discovery
process.

During our test, we first run multicast application on node
A, which joins the multicast group as a group leader. The
group leader broadcasts group hello messages across the
network every GROUP_HELLO_INTERVAL. This
enables other nodes to maintain up-to-date information
about who the multicast group leader is. When node E
receives the group hello message, it learns the hop count to

Figure 2 X86 (WRAP board) and ARM (Loid 270
development kit) architecture-based SwanMesh nodes

1292 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org



the group leader; however, node E is not aware of the route to
group leader. Therefore when we run a multicast application
on node E, it broadcasts the RREQ message to find the route
to the group in order to join it. Since node E is aware of its
distance to the group leader, it would not use TTL_START
value for the first RREQ. Instead it sets the TTL value to the
group leader hop count + TTL_INCREMENT. The value
for TTL_ INCREMENT is by default set to 2 [32]. Thus, it
broadcasts the first RREQ with a TTL value set to 6. The
source node E sets the waiting timeout for receiving a
corresponding RREP to RING_TRAVERSAL_TIME,
which is calculated as 640 ms during the RREQ–RREP
cycle shown in Fig. 3. The formula to calculate the value
of RING_TRAVERSAL_TIME [32] is described in
Section 2.

If within 640 ms node E does not receive an RREP, it
would originate another RREQ. Therefore the total time it
takes to establish a route between source and destination
nodes depends on how much time the RREQ–RREP
cycle takes to complete. Fig. 3 shows details of the period
of time taken at several stages to complete the entire
RREQ–RREP cycle. All these individual intervals of time
at different phases add up to the total time taken to
complete the RREQ–RREP cycle during the multicast
route discovery process. We have calculated the average
processing and travelling time for RREQ and RREP
message at each node with the help of time stamps and
debugging reports based on several tests. We also describe
how much extra delay UDL causes while detecting UDLs.
Furthermore, we have cross-referenced the total time taken

by the RREQ–RREP cycle using the difference in time
stamp values which was logged at source node E at the
time of the originating RREQ and receiving RREP.

As shown in Fig. 3, the lower layers time is 1.1 ms which is
the delay caused at lower layers during an RREQ or RREP
control message transmission between two nodes. It is the
average time that the RREQ or RREP message takes to
travel after an AODV socket has sent it out from one node
and received by the AODV socket at the next hop node.
The RREQ processed and forwarded time is 0.6 ms, which
is the average time taken at each intermediate node to
process the RREQ and re-broadcast it after processing it.
The RREQ processed and RREP sent time is 1.1 ms,
which is the average time that the destination node takes to
process the RREQ and send an RREP. The RREP
processed and forwarded time is 0.5 ms, which is the
average time taken at each intermediate node to process
and forward the RREP back to the source node. The UDL
process time is 2.5 ms, which is the maximum time UDL
takes to complete the two-way handshake to detect a
bidirectional link and update the multicast route table flag
accordingly.

We have integrated UDL into the multicast route
discovery in such a way that when the first RREQ is
received by a node which is not a destination, it processes
the RREQ and re-broadcasts it before initiating the UDL
process to detect the link between itself and the node from
which it has received the RREQ. Thus, it does not cause
any delay as the RREQ travels towards the destination. We

Figure 3 UDL-MAODV multicast route discovery RREQ–RREP cycle

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1293
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org



numbered the processes in Fig. 3 to show the sequence in
which a node performs each process during the RREQ–
RREP cycle, for example, node D will process D1 first and
once D1 is completed it processes D2. When it receives
the RREP, it would initiate D3 to process and forward the
RREP. D2 represents the UDL process which is initiated
by node D to detect the next hop link on the reverse route
of RREQ. The time it takes to complete D2 is less than
the time it would take before node D has to perform D3
when it receives an RREP, even if the next hop node is the
destination. Therefore when the RREP travels back to
the intermediate node to reach the source node, the
intermediate node will have information on the link. The
node will only forward the RREP if it has a bidirectional
link to the next hop node on the reverse route; otherwise it
will discard the RREP. Thus, the source node will not
receive an RREP for the route with a UDL.

The only delay that is caused by the UDL process is at the
destination node. This is because when the destination node
receives the RREQ , it would initiate the UDL process to
detect the link between itself and the node from which it
has received the RREQ before sending an RREP.

We disabled the UDL process to compare the performance
of UDL-MAODV with basic MAODV. The average time
recorded for MAODV to complete the RREQ–RREP
cycle is 13.2 ms using the scenario shown in Fig. 3. UDL-
MAODV has taken 2.5 ms extra compared to MAODV to
complete the RREQ–RREP cycle, which is due to delay
caused at the destination node to complete the UDL process.

MAODV forms a bidirectional shared multicast tree
connecting multicast sources and receivers within
connected portion of the network. It reactively finds a route
between source and destination nodes using an RREQ–
RREP cycle. The total time required to complete the
RREQ–RREP cycle during the route establishment
process for any new node depends on its hop distance to
the destination group tree member. Therefore the time it
takes to find a route may vary depending on the node’s
location within the network. Based on experience gained
during our UDL-MAODV implementation in the
SwanMesh testbed, we have proposed a method to
calculate the time UDL-MAODV takes to complete the
RREQ–RREP cycle for any node in the network in order
to find a route to the multicast destination. In order to
provide an accurate calculation, the method requires that all
the nodes taking part in the network transmission has the
same hardware specifications such as architecture, power
and wireless card, and so on. TRREQ – RREP-cycle(S) is the
total time it would take for the RREQ–RREP cycle to
complete at a given source node S, which is calculated as
follows

TRREQ −RREP-cycle(S) = TRREQ −R(D) + (H − 1)

(TRREQ -F(I ) + TRREP-F(I )) + TLL + TUDL-process (1)

where TRREQ-R(D) is the average RREQ processed and
RREP sent time taken at the destination node D;
TRREQ-F(I ) is the average RREQ processed and forwarded
time taken at the intermediate node I; TRREP-F(I ) is the
average RREP processed and forwarded time taken at the
intermediate node I and H is the hop count distance
between source node S and destination node D.

TUDL-process is the maximum time UDL takes to complete
the two-way handshake to detect a bidirectional link and
update the multicast route table flag accordingly. TLL is the
total delay caused at lower layers during an RREQ–RREP
cycle and is calculated as follows

TLL = H (TLL-RREQ + TLL-RREP) (2)

where TLL-RREQ is the average delay time caused at lower
layers during an RREQ control message transmission
between two nodes, TLL-RREP is the average delay time
caused at lower layers during an RREP control message
transmission between two nodes and H is the hop count
distance between source node S and destination node D.

The TRREQ–RREP-cycle(S) calculation assumes that the
network is not congested and WMN nodes are fixed. Mobility
is not a major issue while providing networking among wireless
mesh router nodes as mesh router nodes are either fixed or have
a very low mobility in WMNs [46]. The mesh client’s devices
which connect to mesh router nodes wirelessly may be mobile.
In order to control congestion during multicast operation of
UDL-MAODV, we have proposed a quality of service (QoS)
scheme which is being published in the paper entitled ‘A QoS
scheme for multimedia multicast communications over
WMNs’ in this special issue of IET Communications [47].

4.2 Validation tests

We performed a few validation tests to ensure correct
functionality of our UDL-MAODV implementation. We
have verified and cross-referenced the UDL-MAODV
operation using a multicast route table and debugging
outputs to ensure its correctness. To cover all the aspects of
the network behaviour our validation tests go through the
following stages.

4.2.1 First stage: In the first stage of our test, we turn on
two nodes A and B. We create a UDL using Mackill. We run a
multicast application on node A, which initiates a multicast
route discovery process by sending a multicast RREQ as
shown in Fig. 4. Node B receives the multicast RREQ
control message through the UDL from node A. Node B
processes the first multicast RREQ and initiates the UDL
detection process. It learns that the link between itself and
the next hop node is unidirectional; therefore node B makes
an active entry into the multicast route table for the next hop
neighbour node A with the UDL flag set to U, indicating the
UDL. Node B ignores all the further RREQ control
messages sent by node A after checking the UDL entry.

1294 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org



On not having received a multicast RREP message during
the route discovery process, node A becomes group leader of
the multicast group itself. Node A starts broadcasting
multicast GRPH control messages with GROUP_HELLO_
INTERVAL milliseconds. On receiving the GRPH message
over the UDL as shown in Fig. 5, node B ignores the GRPH
message after going through the UDL checks as the UDL
flag indicates a UDL to node A.

4.2.2 Second stage: In the second stage of our validation
test, before running a multicast application on node A, we
unblock node B’s MAC address on node A using Mackill.
This changes the link from unidirectional to bidirectional.
During the route discovery process when node B learns
through the UDL process that the link between its next
hop neighbour A and itself is bidirectional, it makes the
UDL flag entry to indicate a bidirectional link between the
two nodes and processes all the control messages it received
after link detection including the periodic GRPH control
message.

4.2.3 Third stage: In this stage, we turn on two more
nodes C and D to test tree merger over a UDL. We use
Mackill to create a topology where nodes C and D can
only see each other and cannot hear any communication
from nodes A and B. Similarly nodes A and B can only
communicate to each other. This creates two groups of
nodes AB and CD, where nodes in one group cannot
communicate to the nodes in the other group. We start
the multicast application on nodes B, C, D and A using
the same multicast group address. After going through the
route discovery process and UDL checks, we have
established the topology where node B becomes a group
member for which node A becomes the group leader.
Similarly node C becomes the leader of the group and
node D becomes a group member.

Now we use Mackill to unblock node C’s address on node
B to create a UDL between node B and node C. This enables
node B to receive periodic GRPH messages sent by node C
as shown in Fig. 6 but node C cannot receive GRPH
forwarded by node B. When node B receives the first
GRPH message from node C carrying information about
another group leader, it processes GRPH and initiates the
UDL detection process as it does not have an entry for
node C in its multicast route table. Therefore it needs to
ensure a bidirectional link to the source node from which it
has received the GRPH message before it further process
the tree merger. After realising the one way link between
itself and node C, it updates its multicast route table with
the UDL flag entry indicating a UDL to node C. Node B
ignores all the further control messages it receives
related to this tree merger. Node B will keep receiving the
GRPH control messages from node C after every
GROUP_HELLO_INTERVAL over the UDL. It keeps
ignoring the GRPH control message after making a UDL
check at the multicast route table’s UDL flag entry. Thus,
it avoids the tree merger process over a UDL.

The above scenario is an example which could cause
network failure without our proposed UDL detection
process. Without the UDL process the above situation will
create an indefinite loop of tree merger. This is because
when node B receives a GRPH from node C, it will
initiate a tree merger process. Node B will never receive an
RREP from node C for the RREQs sent during the tree
merger process due to the UDL. Node B will keep
initiating the tree merger every GROUP_HELLO_
INTERVAL on receiving another GRPH, which will flood
the network with the indefinite tree merger process and
eventually will fail the network.

4.3 Performance tests

We have conducted the performance tests using both ARM
and X86 architecture-based mesh nodes. We have used the
Iperf tool to measure the performance of our multicast
implementation on both platforms. Iperf is a Linux tool to
measure both multicast and unicast network performance.
In order to evaluate network performance of our UDL-
MAODV implementation with different multicast UDP
sender rates, we have performed five sets of Iperf tests in each
of the hop scenarios shown in Fig. 7. We ran the Iperf sender
application on the multicast sender node to send the
multicast data using the following five sender bit rates in each

Figure 4 First multicast RREQ control message received by
node B over a unidirectional link

Figure 5 First GRPH multicast control message received by
node B over the unidirectional link

Figure 6 Node B receives a GRPH over the unidirectional
link during tree merger

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1295
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org



hop scenario (1 ¼ 250 Kbps, 2 ¼ 200 Kbps, 3 ¼ 150 Kbps,
4 ¼ 100 Kbps and 5 ¼ 50 Kbps). This results in a total of 20
performance tests each of which is run for 15 min. We
performed 20 tests on each platform to conduct a cross-
platform multicast performance comparison of our UDL-
MAODV implementation. We have used five WRAP
boards and five Loid 270 development kits-based SwanMesh
nodes during these tests. We formed the multicast chain
scenarios shown in Fig. 7 using the Mackill utility.

During the tests we have logged the multicast receiver rate
and packet loss for the node labelled as receiver in each hop

scenario shown in Fig. 7. We compiled these results to take
average values and present the graphical cross-platform
comparison of UDL-MAODV performance in Fig. 8.

We observed that on both the platforms the multicast
receiver rate drops as the hop distance between sender and
receiver increases. Similarly, the packet loss also increases as
the sender rate and hop distance between sender and
receiver increases. The results show that the packet loss
grows as the multicast sender application feeds more
packets into the network on longer routes. This is because
there are more forwarding nodes on the longer routes. As a
result, these nodes may contend for the wireless channel
within carrier-sensing range of each other. This leaves each
node on the route with a different available link capacity
due to flows self-interference. Therefore if the multicast
sender application generates packets at a rate greater than
the bottleneck bandwidth on the route, from source to
destination this results in heavy packet loss. By observing
the packet loss results for certain hops with a particular bit
rate, we can clearly define a relationship for a hop-count-
dependent sender bit rate.

Our UDL-MAODV performs better on the ARM
architecture compared to the X86 architecture. There are
several reasons for the higher performance. The Loid 270
ARM-based nodes that we have used have higher power
compared to the WRAP boards. Additionally, we have used
a very much lighter version of the Linux operating system
on the Loid 270 nodes compared to the WRAP boards. We
have installed a Linux Debian system on the WRAP boards

Figure 7 Multicast performance test scenarios

Figure 8 Cross-platform multicast performance test comparison

a SwanMesh X86 multicast receiver rate
b SwanMesh ARM multicast receiver rate
c SwanMesh X86 multicast receiver packet loss, %
d SwanMesh ARM multicast receiver packet loss, %

1296 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org



which comes with a lot of built-in modules. This slows down
the performance of the operating system, especially on
embedded and low power nodes. On the Loid 270 nodes
we have used a boot loader and a root file system and a very
light version of the Linux kernel 2.6. We have selected
only required options during kernel compilations from
source. Apart from these factors difference in wireless card
and antenna sophistication may also play a part in
performance.

5 Conclusions and future work
In this paper, we have presented our implementation of
MAODV routing protocol based on the Linux kernel 2.6.
We are not aware of any other MAODV implementation
which has support for the Linux kernel 2.6. The
implementation provides multicast multimedia operation in
our WMN. We described the software architecture of our
Linux kernel 2.6 user-space implementation. We have
proposed and implemented some modifications to
MAODV to improve and enhance the reliability of the
multicast video transmission. We introduced a UDL
detection process which is only invoked when there is a
multicast application running on the network. We
presented tests to evaluate the performance of our UDL-
MAODV in terms of delay caused at several stages
of a complete RREQ–RREP cycle during the route
establishment process. We also describe how much extra
delay UDL causes while detecting UDLs during that cycle.
We have integrated UDL into multicast route discovery
process in such a way that it does not cause any delay at
intermediate nodes during the RREQ–RREP cycle. The
only delay that is caused by the UDL is at the destination
node.

The total time required to complete an RREQ–RREP
cycle for any node to find a route depends on its hop
distance to the destination. Therefore the time may vary
depending on the node’s location within the network.
Based on experience gained during our UDL-MAODV
implementation in the SwanMesh testbed, we have
proposed a method to calculate the time UDL-MAODV
takes to complete the RREQ–RREP cycle for any node in
the network in order to find a route to the multicast
destination.

Validation tests were performed to ensure correct
functionality of our algorithm. We have also performed
cross-platform performance tests and presented a
comparison analysis. The test results show that
UDL-MAODV performs better on the platform with a
lighter version of the operating system and higher power
nodes.

The performance tests help us to understand the
relationship between network performance and the hop
count-based multicast sender rate. The packet loss increases
and the receiver rate decreases, as the multicast application

feeds more packets into the network on longer routes. This
is because there are more forwarding nodes on the longer
routes. As a result, these nodes may contend for the
wireless channel within carrier-sensing range of each other.
This leaves each node on the route with a different
available link capacity due to a flow’s self-interference.
Therefore if the multicast sender application generates
packets at a rate greater than the bottleneck available
bandwidth on the route from source to destination, this
may result in heavy packet loss.

Multimedia video communication over WMNs use the
UDP port; therefore these applications may accept some
degree of packet loss. This is because UDP multicast
communication does not detect network congestion. Lack
of congestion control or a congestion avoidance mechanism
results in packet loss and poor quality of communications.
This problem can be solved using a cross-layer sender-based
admission control for UDP real-time traffic; this should be
capable of dynamically regulating the new and admitted real-
time traffic in order to adapt to the changing network
conditions of shared wireless frequency. Thus, the
multimedia multicast video sender application would generate
packets at a rate no greater than the bottleneck bandwidth on
the route from source to destination. This would noticeably
improve the video quality over wireless networks.

We have investigated and designed such a QoS scheme
which is being published in this special issue of IET
Communications [47].

6 References

[1] AGRAWAL D., ZENG Q.A.: ‘Introduction to wireless and
mobile systems’ (Brooks/Cole, 2004, 2nd edn.)

[2] STALLINGS W.: ‘Data and computer communications’
(Pearson Education, 2003, 7th edn.)

[3] IQBAL M., WANG X.H., WERTHEIM D., ZHOU X.: ‘SwanMesh:
a multicast enabled dual-radio wireless mesh network for
emergency and disaster recovery services’, J. Commun.:
Special Issue on Wireless Communications for Emergency
Communications and Rural Wideband Services, 2009, 4,
(5), pp. 298–306

[4] IQBAL M., WANG X.H., WERTHEIM D., ZHOU X.: ‘Load balanced
multiple gateway support in wireless mesh networks for
broadband services’. Proc. Eighteenth Wireless and
Optical Communications Conf. (WOCC 09), NJIT, Newark,
New Jersey, USA, 1–2 May 2009

[5] WANG X.H., IQBAL M., ZHOU X.: ‘Design and development of a
dual radio wireless mesh network for healthcare’. Proc. Fifth
Int. Conf. on Information Technology and Applications in
Biomedicine (ITAB 2008), Shenzhen, China, 30 – 31 May
2008, pp. 300–304

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1297
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org



[6] ZHOU X., WANG X.H., IQBAL M., YAN L.: ‘A handheld mobile
device for wireless mesh networks in healthcare’. Proc.
Second IEEE Int. Symp. on IT in Medicine and Education
(ITME 2009), Jinan, China, 14 – 16 August 2009,
pp. 1070–1073

[7] CAI S.B., YAO N.M., WANG N.B., YAO W.B., GU G.C.: ‘Multipath
passive data acknowledgement on-demand multicast
protocol’, Comput. Commun., 2006, 29, (11), pp. 2074–2083

[8] JIN J., ZHANG D., WEI G., WAN B.: ‘Ripple: an efficient team
multicast protocol in wireless ad hoc networks using
directional antennas’. Proc. China – Ireland Int. Conf. on
Information and Communications Technologies, Beijing,
China, 26–28 September 2008, pp. 494–498

[9] YI Y.J., PARK J.S., LEE S.W., LEE Y.Z., GERLA M.: ‘Implementation
and validation of multicast-enabled landmark ad-hoc
routing (M-LANMAR) protocol’. Proc. IEEE Military
Communications Conf., Boston, MA, USA, 13 – 16 October
2003, pp. 1024–1029

[10] PAN D.R., XUE Y., ZHAN L.J.: ‘A multicast wireless mesh
network (WMN) network routing algorithm with ant
colony optimization’. Proc. Sixth Int. Conf. on Wavelet
Analysis and Pattern Recognition, Hong Kong, China,
30–31 August 2008, pp. 744–748

[11] PATIL A., ESFAHANIAN A.H., LIU Y.H., XIAO L.: ‘Resource
allocation using multiple edge-sharing multicast trees’,
IEEE Trans. Veh. Technol., 2008, 57, (5), pp. 3178–3186

[12] PATHAN A.S., MONOWAR M., RABBI M., ALAM M., HONG C.:
‘NAMP: neighbor aware multicast routing protocol for
mobile ad hoc networks’, Int. Arab J. Inf. Technol., 2008,
5, (1), pp. 102–107

[13] DAS S.M., PUCHA H., HU Y.C.: ‘Distributed hashing for
scalable multicast in wireless ad hoc networks’, IEEE
Trans. Parallel Distrib. Syst., 2008, 19, (3), pp. 347–362

[14] KANG N., OH J., KIM Y.: ‘A novel approach to overlay
multicasting schemes for multi-hop ad-hoc networks’,
IEICE Trans. Commun., 2008, 91, (6), pp. 1862–1873

[15] LIU B.H., HUANG P.C., TSAI M.J.: ‘Distributed reformation of
core-based group-shared multicast trees in mobile ad hoc
networks’, J. Parallel Distrib. Comput., 2008, 68, (5),
pp. 582–595

[16] GUO S., YANG O.: ‘Maximizing multicast communication
lifetime in wireless mobile ad hoc networks’, IEEE Trans.
Veh. Technol., 2008, 57, (4), pp. 2414–2425

[17] GUO S., YANG O.: ‘Localized operations for distributed
minimum energy multicast algorithm in mobile ad hoc
networks’, IEEE Trans. Parallel Distrib. Syst., 2007, 18, (2),
pp. 186–198

[18] PANDEY M., ZAPPALA D.: ‘A scenario-based performance
evaluation of multicast routing for ad hoc networks’. Proc.
Sixth IEEE Int. Symp. on World of Wireless Mobile and
Multimedia Networks, Taormina, Italy, 13 – 16 June 2005,
pp. 31–41

[19] ALMOBAIDEEN W., MIMI H.M., MASOUD F.A., QADDOURA E.:
‘Performance evaluation of multicast ad hoc on-demand
distance vector protocol computer communications’,
Comput. Commun., 2007, 30, (9), pp. 1931–1941

[20] NGUYEN U.T.: ‘On multicast routing in wireless mesh
networks’, Comput. Commun., 2008, 31, (7), pp. 1385–1399

[21] NGUYEN U.T., XU J.: ‘Multicast routing in wireless mesh
networks: minimum cost trees or shortest path trees?’,
IEEE Commun. Mag., 2007, 45, (11), pp. 72–77

[22] SANTOS R.A., GONZALEZ A., VILLASENOR L., GARCIA-RUIZ M., RANGEL V.,
EDWARS A.: ‘Analysis of topological and geographical multicast
routing algorithms on wireless ad hoc networks’, J. Electron.
Electr. Engng. (ELEKTRONIKA IR ELEKTROTECHNIKA), 2008, 2,
(82), pp. 23–28

[23] VISWANATH K., OBRACZKA K., TSUDIK G.: ‘Exploring mesh and
tree-based multicast routing protocols for MANETs’, IEEE
Trans. Mobile Comput., 2006, 5, (1), pp. 28–42

[24] MURTHY C.S.R., MANOJ B.S.: ‘Ad hoc wireless networks:
architecture and protocols’ (Prentice-Hall, 2004, Special edn.)

[25] LUO J.H., XUE L., YE D.X.: ‘Research on multicast routing
protocols for mobile ad-hoc networks’, Comput. Netw.,
2008, 52, (5), pp. 988–997

[26] ROYER E.M., PERKINS C.E.: ‘Multicast operation of the
ad-hoc on-demand distance vector routing protocol’. Proc.
Fifth Annual ACM/IEEE Int. Conf. on Mobile Computing
and Networking Seattle, Washington, USA, 15 – 19 August
1999, pp. 207–218

[27] ROYER E.M., PERKINS C.E.: ‘Multicast ad hoc on-demand
distance vector (MAODV) routing’, Internet Engineering
Task Force (IETF) INTERNET-DRAFT ,draft-ietf-manet-
maodv-00.txt.. Available at http://tools.ietf.org/html/
draft-ietf-manet-maodv-00, accessed November 2009

[28] YI Y., LEE S.J., SU W., GERLA M.: ‘On-demand multicast
routing protocol (ODMRP) for ad hoc networks’,
Internet Engineering Task Force (IETF) INTERNET-DRAFT
,draft-yi-manet-odmrp-00.txt.. Available at http://tools.
ietf.org/html/draft-yi-manet-odmrp-00, accessed
November 2009

[29] CHOW C.O., ISHII H.: ‘Multiple tree multicast ad hoc on-
demand distance vector (MT-MAODV) routing protocol for
video multicast over mobile ad hoc networks’, IEICE
Trans. Commun., 2008, 91B, (2), pp. 428–436

1298 IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-com.2009.0134

www.ietdl.org

http://tools.ietf.org/html/draft-ietf-manet-maodv-00
http://tools.ietf.org/html/draft-ietf-manet-maodv-00
http://tools.ietf.org/html/draft-yi-manet-odmrp-00
http://tools.ietf.org/html/draft-yi-manet-odmrp-00


[30] TIAN K., ZHAO Z., ZHANG B., LIU H., MA J.: ‘Destination-driven
on-demand multicast routing protocol’, Internet
Engineering Task Force (IETF) INTERNET-DRAFT ,draft-ke-
dodmrp-00.. Available at http://tools.ietf.org/html/draft-
ke-dodmrp-00, accessed November 2009

[31] PERKINS C.E., ROYER E.M.: ‘Ad-hoc on-demand distance
vector routing’. Proc. Second IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, USA,
25–26 February 1999

[32] PERKINS C.E., BELDING-ROYER E.M., DAS S.R.: ‘Ad hoc on-
demand distance vector (AODV) routing’, Internet
Engineering Task Force (IETF) INTERNET-DRAFT ,draft-
ietf-manet-aodv-13.txt.. Available at http://tools.ietf.org/
html/draft-ietf-manet-aodv-13, accessed November 2009

[33] AODV-UU-0.9.5: Available at http://core.it.uu.se/core/
index.php/AODV-UU, accessed November 2009

[34] Linux kernel version 2.6: Available at http://www.
kernel.org/, accessed November 2009

[35] PRAKASH R.: ‘Unidirectional links prove costly in wireless
ad hoc networks’. Proc. Third Int. Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications, Seattle, Washington, USA, August 1999,
pp. 15–22

[36] LUNDGREN H., NORDSTRÖ E., TSCHUDIN C.: ‘Coping with
communication gray zones in IEEE 802.11b based ad hoc
networks’. Proc. Fifth ACM Int. Workshop on Wireless
Mobile Multimedia, Atlanta, Georgia, USA, September
2002, pp. 49–55

[37] Open Source Development Laboratory: ‘Linux process
scheduler improvements in version 2.6.0’, 2003. Available at
http://devresources.linux-foundation.org/craiger/hackbench/,
accessed November 2009

[38] LARSON P.: ‘Kernel comparison: improved memory
management in the 2.6 kernel’, 2004. Available at http://

www.ibm.com/developerworks/library/l-mem26/, accessed
November 2009

[39] WILLIAMSON R.: ‘Kernel comparison: networking
improvements in the 2.6 kernel’, Available at http://www.
ibm.com/developerworks/linux/library/l-net26.html, accessed
November 2009

[40] KEAT H.K., JING W., HU Z.: ‘Linux VM: comparing
virtual memory performance between Linux versions
2.4 and 2.6 on low memory system’, Florida State
University, USA, 2004. Available at http://seantoh.
tnlsolutions.my/project/hidden/LinuxVM.doc, accessed
November 2009

[41] BHATTACHARYA S.P., APTE V.: ‘A measurement study of the
Linux TCP/IP stack performance and scalability on SMP
systems’. Proc. Int. Conf. on Communication System
Software and Middleware, New Delhi, India, 2006,
pp. 1–10

[42] Linux kernel version 2.4: Available at http://www.
kernel.org/, accessed November 2009

[43] TOBAGI F., KLEINROCK L.: ‘Packet switching in
radio channels: Part II – the hidden terminal problem
in carrier sense multiple access and the busy tone
solution’, IEEE Trans. Commun., 1975, 23, (12),
pp. 1417–1433

[44] Available at http://www.pcengines.ch/, accessed
November 2009

[45] Available at http://www.emertxe.com/content/view/
72/126/, accessed November 2009

[46] AKYILDIZ I.F., WANG X., WANG W.: ‘Wireless mesh networks:
a survey’, Comput. Netw., 2005, 47, (4), pp. 445–487

[47] IQBAL M., WANG X.H., LI S., ELLIS T.: ‘A QoS scheme for
multimedia multicast communications over wireless mesh
networks’, IET Commun., 2010, 4, (11)

IET Commun., 2010, Vol. 4, Iss. 11, pp. 1288–1299 1299
doi: 10.1049/iet-com.2009.0134 & The Institution of Engineering and Technology 2010

www.ietdl.org

http://tools.ietf.org/html/draft-ke-dodmrp-00
http://tools.ietf.org/html/draft-ke-dodmrp-00
http://tools.ietf.org/html/draft-ietf-manet-aodv-13
http://tools.ietf.org/html/draft-ietf-manet-aodv-13
http://core.it.uu.se/core/index.php/AODV-UU
http://core.it.uu.se/core/index.php/AODV-UU
http://www.kernel.org/
http://www.kernel.org/
http://devresources.linux-foundation.org/craiger/hackbench/
http://www.ibm.com/developerworks/library/l-mem26/
http://www.ibm.com/developerworks/library/l-mem26/
http://www.ibm.com/developerworks/linux/library/l-net26.html
http://www.ibm.com/developerworks/linux/library/l-net26.html
http://seantoh.tnlsolutions.my/project/hidden/LinuxVM.doc
http://seantoh.tnlsolutions.my/project/hidden/LinuxVM.doc
http://www.kernel.org/
http://www.kernel.org/
http://www.pcengines.ch/
http://www.emertxe.com/content/view/72/126/
http://www.emertxe.com/content/view/72/126/


Copyright of IET Communications is the property of Institution of Engineering & Technology and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.


