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Abstract: The exploration and design process of highly efficient processor element for multimedia and signal
processing domains is presented in this study. With the introduction of synchronous data-transfer architecture for
high-performance embedded applications, the effectively exploring the exponential-size architectural design spaces
by detailed simulation is intractable. The authors attack this via an automated approach. At first, its cost model is
built to achieve fast and accurate estimation with the characteristic of scalability. Then, the hierarchical design
space exploration methodology involving heuristic-based local process and analytical global optimisation step is
proposed to achieve the approximate optimum with short time-to-market. For target domains, our proposed
method arrives at better optimised results within only 25 h when compared with other methods. A System on
Chip (SoC) involving the optimised processor element has been implemented in 0.13 mm complementary metal
oxide semiconductor (CMOS) process and the experimental results show that our processor element outperforms
TMS320C64 series and does the obvious acceleration to multimedia applications in SoC system.

1 Introduction
In multimedia and signal processing domains, with the
evolvement of standard algorithms and the increasing
magnitude of computing requirements, many cost-sensitive
embedded systems pursue the high performance to realise
real-time processing. Up to now, there have been many
attempts by digital signal processors (DSP), field
programmable gate arrays (FPGA) or application specific
integrated circuits (ASIC). However, the continuously
changing landscape and the strict performance requirements
favour the future processors to be programmable, high
performance and cost-effective. Recently, with the
advancement of very-large-scale integration technology,
many processor solutions [1, 2] composed of a few of cores
integrated on a single chip have been proposed to deal with
power issues dominating deep sub-micron technologies and
make it easy to exploit thread-level parallelism to provide
significant energy and performance advantages.

Most embedded multi-cores use the processor element
following superscalar or very long instruction word (VLIW)

architecture. But the high-performance and low-cost
requirements cannot be solved with these cores which rely
on the increasing clock rates and large caches, both of which
consume energy inefficiently. Superscalar processor adopts
the complex hardware to exploit the instruction level
parallelism and exposes the disadvantages of weak
computing ability, low-energy efficiency and poor scalability
[3]. The VLIW relies on compile-time detection of
parallelism, but its complexities of decoder or data bypasses
which increase exponentially with the number of function
units are likely to result in a poor proportion of resources
contributed to computation [3, 4]. The popular cores in the
competitive embedded products should follow a flexible
computing architecture which exploits the inherent
parallelism of programs and pursues the high utility ratio of
transistors to improve energy efficiency. The computing core
in this paper moves into the synchronous data transport
architecture (SDTA), which is a variation of the traditional
transport triggered architecture [5]. The main advantages are
centralised on its simpler control mechanism,
higher hardware utility ratio and finer-grained programming
model.
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Using the SDTA architecture, it is then extremely
important to design the highly efficient processors, achieving
higher performance while consuming minimal energy and
silicon area. Up to now, there existed lots of prior works
which used the design space exploration to organise balanced
processor. The challenge was to explore a great number of
choices for target domains within short time-to-market. A
first approach was to prune the explored design space [6]. It
could yield significant simulation time reductions but was
hard to adopt the proper strategy to get close to global
optimum. Second, the heuristic-based approach included hill
climbing [7], one-parameter-at-a-time [8], tabu search [9]
and genetic search methods [10]. The main limitation was
that they were prone to getting stuck in local minima, and
how to improve these methods in conjunction with other
approaches to get close to optimal point was worthy to
be considered. Third, the statistical simulation approach
[11, 12] reduced the number of simulated instructions. It
collected program statistics through trace-driven simulation,
but a great diversity of program behaviours could not be
reflected during the synthetic instruction trace. In addition,
the analytical optimisation approaches [13–15] adopted
some analytical-based process to output the Pareto-optimal
processors. It used the relatively accurate analytical models to
obtain the optimum in a short period, but most ones were
limited to the superscalar to our knowledge.

In order to explore and design the highly efficient
processor element for target domains, this paper develops
an automated optimisation approach which obtains the
Pareto-optimum with respect to performance-energy under
area constraints. The main contributions of this paper are
concentrated on three aspects. Firstly, the cost analytical
model of processor element with the advantages of
flexibility and high efficiency is proposed to meet the
precision requirements and suits for the application-specific
exploration. Secondly, the optimal processor elements are
derived by a hierarchical optimisation process effectively.
To improve the efficiency, the hierarchical optimisation
approach explores Pareto-optimal cores with respect to
performance energy in different area intervals at first, and
then proposes an analytical method with trace simulation to
optimise the overall processor. The proposed automated
approach arrives at approximate optimum only within 25 h
and obviously outperforms other design space pruning
method or genetic algorithm. Finally, for the representative
benchmarks of multimedia domains [16, 17], the optimal
processor element through our approach has been
implemented in 0.13 mm 1P8M CMOS process. The
experimental results show that our optimised processor
element with the advantage of low power consumption
outperforms TMS320C64 in performance and yields
obvious acceleration to target multimedia benchmarks.

2 Processor element architecture
The proposed processor element is based upon the SDTA
architecture, which is a variation of the traditional transfer

triggered architecture (TTA) [5]. It inherits the advantages
of exploiting multiple-level parallelisms but modifies the
shortcomings of TTA mainly on three aspects. The
unreasonable pipeline structure is improved firstly. In our
processor element, most simple operations are triggered by
data transfers within transfer stage while the executions of
other complex operations are arranged in the next cycle. In
this way, many computing results are immediately available
by the next-slot instructions and it is easy to reduce the
program runtime without any influence to the frequency by
balancing the overhead of each cycle. Secondly, the special
bypass and branch-decoder mechanisms are used to reduce
branch penalties of conditional jumps, unconditional jumps
and returns to two cycles in contrast with four-cycle stalls
of TTA, and it could avoid great performance losses.
Thirdly, the multimedia extension techniques are
introduced, referring to Intel’s MMX, SSE1 and so on.
[18]. They exploit the available data level parallelism in
multimedia programs for high performance and then
provide less memory bandwidth requirements.

The major difference between SDTA architecture and
traditional VLIW one is the way that the operation is
executed. In our programming model, the program only
specifies the data transports on the network. Operations
occur as a ‘side-effect’. In SDTA architecture, each
function unit has one or several operator registers, result
registers but only one trigger register. Data transferred to
trigger register will trigger the corresponding unit to work,
where different operations are indicated by slot codes. The
advantages of the proposed architecture during exploiting
parallelism are summarised as follows. Firstly, the processor
elements are configured with an abundance of function
units, and many custom resources are connected with high-
bandwidth transport network to meet high-performance
requirement. Meanwhile, simplifying instruction decoder
logic, issue logic and data paths results in a high utility
ratio of silicon resources, thus the energy consumption per
operation is decreased. Secondly, the distributed operand
and result registers are available to store variables. The
distributed framework with scalability characteristic reduces
the pressure of multi-ports register files and improves the
performance effectively. Thirdly, the decoupled architecture
among the units and network is more suitable for
exploiting deep pipeline to make full use of resources. With
multimedia extensions, it supports both the single
instruction stream, multiple data streams (SIMD) and
multiple instruction streams, multiple data streams
(MIMD). Fourthly, the data-triggered property of
programming model is more flexible and fine-grained than
traditional operation-triggered ones, for example VLIW.
The programming model which allows the transfer
parallelism among several traditional-dependent operations
is suitable for more efficient schedule in instruction level as
well as in data level.

Then, we can customise the processor element of the above
architecture to meet the requirement of target domains, for
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example the multimedia and signal processing applications.
To decrease the time-to-market coupled with increasing
design space and keep the software-based compatibility
with less development effort, the processor element needs
to be modelled using a uniform architecture description
language [19] which exists above the register transfer level
by ignoring details. Using architecture description files, the
instruction mapping and the parallel schedule may be
performed by software-based toolkits, and the hardware-
based toolkits may generate the Verilog descriptions of
processor elements. Fig. 1 illustrates the general
architecture of SDTA processor element, the oval boxes
denote function units, dotted boxes denote storages, bold
edges are pipeline edges and dotted edges are data-transfer
edges. A data-transfer edge transfers data between units
and storages. A path from a root node (e.g. fetch1) to a
leaf node is called a pipeline path (e.g. ffetch1, fetch2,
decode, transferg). Our processor element is composed of a
great number of computing resources, involving arithmetic
units, float units, cordic unit [20], register files, load/store
units, io/control unit and channel unit [21], which issues
the direct memory access (DMA) commands with unique
identifiers to DMA engine to transfer valid data between
local storage and other memory spaces. Then, the right
dashed box represents the memory system including the
instruction cache, local storage and DMA engine [22],
which receives and arbitrates DMA commands from
channel unit, instruction cache or remote agents, with
responsibility for transferring data between different
memory spaces. As all known, many multimedia programs
require a bandwidth-oriented memory system. However,
the conventional cache-based memory hierarchies organised
with limited cache memories which lack of the efficient
prefetch always lead to a poor performance because of poor
temporal locality. The introduction of local storage may
simplify the hardware overhead of caches, and its decoupled
memory access allows software to schedule data transfers in
parallel with core computation thereby overcoming memory
latencies and achieving high memory bandwidth.

3 Modelling area and power
characteristics
During the exploration of a huge number of processor elements,
the cost estimation approach is extremely important for
determining optimal choices and its key characteristics should
be emphasised to be accurate, highly efficient and scalable.
Up to now, extensive research efforts have been put to
develop efficient power estimation methods at all levels of
design process but cannot be applied to exploration process.
The point of our work is not to compete with other tools, but
rather to develop a cost model with the characteristics of
accuracy, high-efficiency and scalability for space exploration.

3.1 Processor area model

With each elementary component, there is an associated area
cost. As shown in (1), the area estimation of entire processor
is composed of individual component areas. Most of the
component areas are derived from cost library except for
transfer network and control logic. The area of transfer
network is the area sum of sockets and busses that are
implemented by AND gates and multiplexers, respectively.
The control logic includes the instruction fetch and
decoder components. The area of instruction fetch
component is synthesised to be little and in proportion to
the instruction width. The area of decoder component is
closely related to transfer network and function unit
number, and it can be derived using the analytical methods
similar with the power consumption model given below

APE ¼ AfuþARF þAcntrlþAnetwork þAicacheþAdma þAlocal

(1)

3.2 Power consumption model

With the modularity characteristic of SDTA element, the
mainly modelled components fall into several categories,
including transfer network, register files, function units,

Figure 1 General architecture of our processor element
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decoder units, on-chip memories and so on. Based on the
distinct underlying structures of each component, the
hybrid power model is developed as follows.

Every function unit consumes the power as (2), which is
expressed as the sum of dynamic power and leakage current
power consumption Pfu(i),s. The dynamic energy is
expressed as the sum of all the active operation energy,
which is the product of operation execution times fj and
dynamic energy per operation Efu(i),j. The average power
consumption is given by P ¼ E/Timeexec, where Timeexec

denotes the program runtime. In addition, the power
consumption for register file is estimated using (3), where
ERP(i)WP( j)R(m)W (n) is the average dynamic energy when m
reads and n writes are executed in parallel, and
fRP(i)WP( j )R(m)W (n) is the number of access times

Pfu(i) ¼
X Efu(i),j � fj

Timeexec þ Pfu(i),s

(2)

PRF ¼
X ERP(i)WP(j)R(m)W (n),size � fRP(i)WP(j)R(m)W (n),size

Timeexec þ PRP(i)WP(j),size,s

(3)

The transfer network acts as the backbone of processor
element and is composed of three basic units involving
busses, input and output sockets. In general, these basic
units are implemented by AND or multiplexers which are
classified into bit-independent units [23]. Therefore the
transfer network could be partitioned into basic units with
small lookup table thereby achieving the accurate results
and improving the efficiency. The transfer network
consumes power consumption as (4) and it is the power
sum of sockets and busses. For each socket, their dynamic
energy Esk, and the leakage current power Psk, are derived
from cost library, whereas the input transition is collected
from simulation. For busses, some switch tables for AND
operations are used for power estimation. With the
collected signal transitions, the ith bus uses its own
capacitive load u as the index to search for the information
in cost library for computing its dynamic energy

Pnetwork ¼
(SEsk i þ SEsk o þ SEbus)

Timeexec þ (SPsk i þ SPsk o þ SPbus)

¼
(SEmux,2 þ SEmux,p þ SEAND,u)

Timeexec þ (SPmux,2,s þ SPmux p,s þ SPAND,u,s)

(p ¼ 2, . . . , 10; u ¼ 10, . . . , 50) (4)

The power of decoder exists in (5) and (6). In general, the
decoder logic of transfer bus is independent with each
other, and thus we measure the total decoding power by a
division approach. For a representative decoder logic where
u units are connected to the bus, ETu, EFu denote the
average decoding power when conditional fields are true or
false, respectively. When collecting the successful and
failure decoding times of the jth bus associated with Mj

units, we introduce a factor l to adjust the reference. The
factor l is linearly calculated by control bits as shown in
(6), where ri is the number of control bits corresponding to
the representative case associated with i units, rfu and rreg

are the number of control bits for function units and
register files in the estimated cases. For the area estimation
of decoder, the similar method is followed, and another
parameter Au instead of ETu and EFu is inbuilt to calculate
the parameter Adecoder

Pdecoder ¼
X

j

(ETMj
�Numj,true þ EFMj

�Numj,false)� l

Timeexec

þ
X

j

Ps,Mj
� l (5)

l ¼
(
P

rfu þ
P

rreg)

ri

(6)

The power of on-chip memories are modelled by
considering different subcomponents (tag arrays, data
arrays and so on). This can be done using PrimePower
toolkit [24] in the synthesisable design flow, and the
energy consumption of an access on a cache with particular
size and associativity is derived. Eic,r, Eic,w denote the
average read and write dynamic energies of instruction
cache, El,r, El,w denote the access dynamic energies of local
storage, and Pic,s, Pl,s are the leakage current power of
instruction cache and local storage, respectively. Then, with
the power analysis towards the DMA engine
implementation, Edma,miss denotes the energy of instruction
transfers after a miss, Edma,in and Edma,out represent the
average energies of each inflow and outflow items
associated with DMA requests. The power of instruction
cache, local storage and DMA engine follow (7)–(9),
respectively. Besides the hit in caches, missic represents the
miss ratio. SPic denotes the dynamic instruction number,
SPr, SPw indicate the number of accesses to local storages
and SPget, SPput are the number of inflow and outflow
items (see (7)–(9))

Pic ¼
(SPic � Eic,r þ SPic �missic � Eic,w)

Timeexec þ Pic,s

(7)

Plocal ¼
((SPput þ SPr)� Es,r þ (SPget þ SPw)� Es,w)

Timeexec þ Plocal,s

(8)

Pdma ¼
(Edma,in � SPget þ Edma,out � SPput þ SPic �misssic � Edma,miss)

Timeexec þ Pdma,s

(9)
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3.3 Cost model evaluation

Given the cost library, the results from analytical model are
compared with analysis results from tools. We select a wide
range of processor choices on the design space and perform
the baseline programs. The cost library parameters and the
activity information collected by cycle-based simulator are
imported into cost model to calculate the estimated area and
power. Meanwhile, the RT level descriptions are synthesised
using design compiler to gain the area references and the gate-
level power analysis by prime power is used to gain power
references. Fig. 2 presents the boxplot of error distributions
from the power estimations of 100 random validation choices.
The error is expressed as jobservation-estimationj/observation.
Boxplots are graphical displays of data to measure the average,
identify the outlier and indicate the distribution dispersion. As
shown in Fig. 2, the power model achieves the median errors
of 8.1, 7.5, 12.2, 5.2 and 9.1% for each component,
respectively, and the box length called inter-quartile range
indicates the least error dispersion of transfer network, in
contrast with the worst dispersion of decoder. During the
exploration, the decoder power model is emphasised to be
efficient and sensitive to a wide range of configurations at the
expense of accuracy because of the linear estimation from
representative cases. For transfer network, combined with its
regular underlying structure, the RT level estimation by a
division approach is adopted for the more accurate results.
Fig. 3 plots the cumulative distribution of the power error,
quantifying the number of total estimation results with less
than a particular error. Axis x denotes the error and axis y
indicates the percentage of validation choices with less than a
particular error. Seventy per cent and Ninty per cent of the
power errors are less than 8.9 and 12.2%, respectively. In
addition, the average and maximum area errors are also
measured at 4.0 and 6.9% for the same validation choices. The
correlation coefficients of area and power on the above sample
spaces are calculated to be 0.989 and 0.972, respectively, which
argues that our cost model tracks the observed results well [25].

The efficiency of cost model seems to be more important than
the absolute accuracy while exploring design space. In practice,
the above area and power model are integrated into a simulator,
which outputs the cost estimation through collecting the
execution information and referring to the in-built cost library.

For example, the performance simulator consumes about 2.2 s
when performing 1024-points fft program. If the cost
estimation option is added, the simulation needs about 2.7 s
for the same program. Thus, the above cost model has little
influence on the estimation efficiency.

4 Automated optimisation
approach
4.1 Overall automated framework

With the parameterised configurations for the architecture in
Fig. 1, the new framework made up of analytical cost model
and automated exploration process is proposed to optimise
and design the SDTA processor element with short time-
to-market, pursuing the performance-energy optimal for
multimedia and signal processing domains. The automated
optimisation methodology to explore and design the SDTA
processor is illustrated in Fig. 4, where the two-phase
automated process refers to a series of toolkits including an
architecture-sensitive compiler, a sequential simulator, a
parallel simulator, an explorer and a hardware generator.

In the first phase, the front-end compiler transforms the
baseline programs or kernels written in high-level language
into sequential codes. By importing it into sequential
simulator, the statistical parameters including the type and
percentage of operations, the average active registers and
the parallelism upper bound are used to roughly determine
the initial computing core. Here, according to the statistical
parameters, we can also profile complex programs to
highlight parallelism segments, whose code will be
scheduled effectively by latter back-end compiler. Then, as
shown in Fig. 4, the InstrGen toolkit uses its machine
description file to generate instruction set profile and the
back-end architecture-sensitive compiler schedules the
sequential codes into parallel ones. In our back-end
compiler, its parser reads the sequential codes and machine
description file to produce basic forms of intermediate
code, for example the target-machine instructions, the basic
blocks and the procedures of program. Next the scheduler
begins the control-flow and data-flow analysis, and
considers the above statistical parameters to estimate the
performance of different schedule measures, such as loop

Figure 2 Distribution of power estimation errors for different component
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optimisation, software pipelining, branch prediction,
speculative scheduling and so on, to improve the underlying
parallelism. At last, the parallel simulator with proposed cost
model is used to verify the parallel codes and collect the cost
information. We modify the machine description files of the
initial core according to simulation reports, even adding
some special function units to ensure the exact results.

In the second phase, the exploration process employs a
combination of local optimisation and global optimisation. The
local optimisation uses a heuristic-based algorithm to search for
the Pareto-optimal core candidates with respect to performance
energy in different area intervals, and gets rid of the redundant
network connectivity. In global optimisation step, the analytical
method with trace-driven simulation is employed to estimate
various combinations of Pareto-optimal cores and on-chip
memories. The output is the processor configuration that is
optimal with respect to performance energy under different
area constraints. Finally, the explored architecture is translated
into Verilog descriptions, which are followed by Electronic
Design Automation (EDA) design process to complete its very
large scale integration (VLSI) implementation.

4.2 Computing cores exploration

The automated exploration begins with the characteristic
analysis of target multimedia programs. By the front-end

GCC compiler, the programs are translated into sequential
codes using the translation template and the operation
descriptions. During the sequential simulation on these
codes, the relative code profiling files could be exported to
determine the operation types, unit number and buses
number. At first, the type and number of operations
determine the function unit configuration. According to
the profiling files, the operation type decides which units to
be implemented, and then the number of units is decided
according to the operation proportion. In general, the
schedule details of back-end compiler should also be taken
into account for a more accurate determination. However,
because of the lack of initial description, the parallel
schedules are not allowed and the measure of determining
the unit number by operation proportion is taken
temporarily. Secondly, the average active register roughly
determines how many registers should be implemented.
We take the pre-schedule measure to analyse the active
register number while treating the functions or procedures
as basic blocks after code expansion. Because the active
register analysis by sequential codes always results in lots
of pseudo-dependencies which influence the accuracy of
register number, the relative check with the assistance
of profiling files is especially performed to prevent them.
The average number of active registers shows how many
active registers should exist both to save the hardware cost
and to retain the performance. Thirdly, the parallelism
upper bound is determined through the trace analysis by
the architecture-independent simulation, and it means how
many buses should be used. In the work, unlimited
hardware resources are hypothesised and none optimisation
measure is taken.

Given the above initial configuration, the computing cores
exploration is a critical step in automated approach for the
highly efficient processor. To shorten the period, we adopt
a divide-and-conquer method for processor optimisation
and gain some performance-energy Pareto-optimal cores in
different area intervals. The exploration process is described
as follows.

Several extension phases are employed to decide the
maximum configuration by considering the back-end
schedule effect. Based on the initial computing core, the

Figure 3 Cumulative distribution of total power error

Figure 4 Automated optimisation methodology for processor element
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back-end compiler and parallel simulator are started to collect
runtime information. By marking the function units or
register files above the particular utility ratios to be
extendable, the number of some units needs to be increased
to meet actual requirements. Each extension phase tries to
increase the number of units with the highest type-utility
ratio, which indicates the minimal individual utility ratio
among the units with same type. The extended core with
the average speedup larger than threshold a is acceptable,
otherwise the selected unit type will be marked to be non-
extendable. The maximum core Confmax is produced after
several extension phases till all the unit types are marked to
be non-extendable. By the way, there also exist some units
which do not participate in the optimisation process,
including controller unit, channel unit and so on. During
the exploration, the numbers of them are set to be one.

The heuristic-based method is used to search for optimal
computing cores in different area intervals. Given the
maximum core Confmax, the performance-area-energy
metric of each computing core is evaluated by the cost
function in (10), where Delay, A, E and Delay0, A0, E0

represent the delay, area and energy costs of the current
and maximum core, respectively. In general, the computing
cores with higher performance but less area and energy
consumption are favoured by designers. During the
exploration, we generate the Pareto-optimal cores from
the maximum one. Along with the area decrease during the
tailor process, the increased program delay and energy
consumption always result in a non-monotonous reduction
of the cost function value. Therefore in order to obtain the
computing cores with lower function values, those units
consuming much area and energy but corresponding to
small utility ratio should be cut down firstly from original
cores. Heuristic function is shown in (11), and the
heuristic-based algorithm for the performance-energy

Pareto-optimal cores is described in Fig. 5. In the
equations below, ui denotes the utility ratio of a particular
unit, Ai denotes its area parameter and Ei presents its
energy. In our heuristic-based algorithm, step 1 uses the
parallel simulation to obtain the delay, area and energy
information of the maximum core. Then, steps 2–5 use
the heuristic function to start the tailor process. While
tag[type[pi]] equalling 1 means that the type of units pi

has been visited, each of iteration selects a tailored core
with lower function value to be the Pareto-optimal
core until the algorithm terminates when reaching the
minimum one.

Quality ¼
A

A0

� �p Delay

Delay0

� �q
E

E0

� �r

(10)

S ¼
ui

(A
p
i � Er

i )
(11)

In addition, because of the frequent data transfers and high
wire load, the transfer buses always become the critical
paths in VLSI design. For these Pareto-optimal cores,
connectivity optimisation transforms the fully connected
configuration into a partially connected one by removing
the redundant sockets to accelerate the programs and save
energy consumption. To avoid the performance loss, the
conservative method is adopted, where the sockets with
small utility ratios and the buses without any connected
socket are removed.

4.3 Processor element optimisation

The parameterise components in the design space include
function units, register files, network connectivity,
instruction caches and so on. The simulation-based exhaust
search scheme consumes so much time that it becomes
impractical, thus our optimisation process employs a

Figure 5 Heuristic-based algorithm for Pareto-optimal cores
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hierarchical approach. Following with the above local
optimisation, the global optimisation step constructs the
cross-product of Pareto-optimal cores and on-chip
memories. Overall optimisation operates as follows. For the
target programs, we start with the application
characteristics analysis to determine the initial computing
cores. Then, using the area and energy information of each
component from pre-built cost library, we continually find
performance-energy Pareto-optimal computing cores from
entire design space, and optimise the transfer network for
low power and high frequency as described in Section 4.2.
The combinations of Pareto-optimal computing cores,
instruction caches and local storages are used to compose
different SDTA processor elements. For each computing
core choice, the back-end compiler schedules the
applications into target parallel codes, which are
independent with the codes of other configurations. When
the parallel simulation is performed on the individual
parallel code, the statistical parameters about the computing
components or basic units is substituted to the cost model
to obtain metrics Acore, Cyclecore, Energy-Dcore, Pcore,s.
With the memory trace files generated from parallel
simulation, the trace-driven simulations are used to collect
statistical parameters about memory accesses, which are
substituted to the memory cost model to gain the
parameters of instruction cache, local storage and DMA
engine. Apart from the dynamic energy consumption and
leakage current power of each component, such as Energy-
Dic, Energy-Dlocal, Energy-Ddma and Pic, Plocal, Pdma, the
metrics Delayic, Delaylocal and Delaychannel indicate the
instruction cache access delays, local storage access delays
and channel access delays in cycles.

We adopt the analytical performance and cost estimation
approach. The area of processor element is the sum of all
subcomponent areas. The runtime delay and energy
consumption are analytical as in (12) and (13), where,
Frequency denotes the frequency of the combined processor
element. Finally, within a certain silicon area constraint, the
element with the excellent characteristics of high

performance and low power is selected to be the optimal one

DelayPE ¼ Delaycore þDelayic þDelaylocal þDelaychannel

(12)

EnergyPE ¼ Energy �Dcore þ Energy �Dic

þ Energy �Dlocal þ Energy �Ddma

þ (Pcore þ Pdma þ Pic þ Plocal)

�DelayPE � Frequency (13)

5 Exploration experiments
According to our automated approach, the toolkits including
sequential simulator, instruction generator, architecture-
sensitive compiler, parallel simulator, design explorer and
hardware generator have been completed. This section
describes the automated process of processor element for
the target domains and presents the comparison results
with other methods.

The automated design of processor element is driven by
target benchmarks. By the analysis to multimedia or digital
signal processing applications, many representative
computing-intensive kernels from TMS320C64 DSP
library [16], such as FFT etc., are selected as benchmark
application-specific software. These kernels are frequently
used during the relative domains and their performance
improvement is a key factor for the applications. In
addition, the benchmarks also include some programs from
MediaBench suite [17], which is considered to be a de-
facto standard for multimedia domains. The speedup and
low-power characteristic of these programs will prove the
high efficiency of our processor element. The design space
used for the exploration is listed in Table 1, and there are
nearly 486 000 design choices.

Figure 6 Flow to collect the program statistics

Table 1 Design space of explored processor element

Components Ranges

arithmetic 2, 3, 4, 5, 6

multiplier 1, 2, 3

logic 1, 2, 3, 4

shifter 1, 2, 3

compare 1, 2, 3

load/store 1, 2, 3

register files 6–10 banks, 8 registers per bank

buses 6, 7, 8, 9, 10

instruction
cache

8, 16, 32, 64 kB

local storages 2 banks, 64 kB; 4 banks, 64 kB;
6 banks, 64 kB
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5.1 Optimisation effect of computing
cores

The optimisation process begins with the application analysis
thereby determining the initial SDTA computing core
among a huge number of choices. Based on the sequential
simulation analysis towards the above baseline programs, the
operation types and the operation proportion are shown in
Fig. 7. The proper proportion among the arithmetic, the
multiplier, the load/store, the logic, the shift, the compare
and the float operations is nearly 4:1:3:1:2:1:1, which is used
to decide the function unit number of individual type. Note
that, during the pre-design phase, many DSP-oriented
instructions [26] such as multiply accumulate (MAC) and
SIMD ones have also been introduced into the elementary
units to meet the parallel computation requirements.
Meanwhile, according to trace analysis, the register file size
and the buses number are set to be 57 and 10, respectively.

After the initialised computing core towards target
domains, the threshold a in each extension phase is set to
1.002 to increase the unit number of each type. Based on
Confmax, the heuristic function directs the units with low
value to be removed. The change of constant kp, q, rl in
(10) always leads to different optimisation results. In this
section, the constant value k1, 2, 1l emphasises the
program performance and tends to achieve a trade-off
among performance, silicon area and energy consumption.
For baseline programs, the heuristic-based algorithm works
as shown in Fig. 8. Given configuration Confmax, it spends
12 h in exploring 24 cores, and each iteration produces a
Pareto-optimal one denoted by square point with respect to
performance area energy. The exhaustive technique that
sweeps design parameter values to consider all the design
points is impractical. Instead, a local simulated annealing
method is employed to validate the Pareto-optimal points.
Starting from a particular optimised core, the successive
disturbances by both adding high-utilised unit and
removing low-utilised one become more and more unlikely
with advancing search time. For each optimised core, the
triangle point in Fig. 8 represents the disturbance result. It
is obvious that the optimised cores by our method is a
Pareto-optimal design point for which there exist no other
points that achieve a better score for both area and

ED2P (energy delay delay product) metrics. Then, the
connectivity optimisations are performed on these Pareto-
optimal cores. The optimisation results of the six cases are
shown in Fig. 9, where the average benchmark delay only
increases about 3.5% and the variation of speedup is
calculated to be nearly 0.001, which argues that the delays
of optimised cores have not deviated from the original
performance too much. On the other hand, it can be seen
that the critical path is shorten with nearly 0.23 ns, and
thus the program runtime has been decreased by nearly 7.6%.

5.2 Comparison with other methods

Towards the combinations of connectivity-optimised Pareto-
optimal cores, instruction caches and local storages, the
overall optimisation in Section 4.3 selects the designs with
minimum ED2P to be results with a particular area
constraint. For the cost estimation, little overhead beyond
the area constraint (e.g. 5%) is allowed by considering the
error factor of our model, but the SDTA processor element
with less area is preferred when the approximate ED2P
values of multiple choices are observed. With the proposed
automated exploration approach, it is impractical to validate
the global optimum by the simulation-based exhaustive
approach. In this section, we have applied both the pruning
method and genetic algorithm, thereby making an overall
comparison and validating the accuracy of our results.

With the space pruning method, a probing idea is firstly
employed, where we vary the amount of a single FU type
and retain the configuration of other FUs so that it has the
least possible influence on EP2D values. Corner cases of
the space are simulated to determine lower bounds on each
unit type, and then the explored design space is reduced.
The pruning result is that 1728 different cores and nine
on-chip memory configurations remain. With the
sequential code sampling method, it spends nearly 9 days
exploring the pruned design space and gaining the
optimised choices as one reference. A second approach is
the genetic search which uses 1/ED2P metric to calculate
the fitness value. If the evaluated area of a particular design
does not exceed the upper limit by a particular percentage,
its 1/ED2P is served as fitness value. Otherwise, the fitness
value is set to a low constant. The algorithm performs the

Figure 7 Proportion percentages of baseline applications

382 IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 5, pp. 374–387

& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-cdt.2009.0041

www.ietdl.org



evolution of individual point via processes of selection,
mutation and reproduction. In practice, the number of
generations during the evolution may be limited by long
simulation time. For the convergence criterion, we stop the
evolution when there is no longer any appreciable
improvement or the algorithm runs for a fixed number of
generations. In the end, the individual design with biggest
fitness value is selected to be results as another reference.

A set of optimal designs are generated for target domains
via the above three methods. Our proposed automated
method arrives at the same optimised designs as the
pruning method except for the area constraint of 6 mm2,
where our method generates the designs with 16 kB
instruction cache and a big core, in contrast with the
configuration of 32 kB cache and median core derived from
pruning method. Fig. 10a illustrates the running effects of
H.263 encoder program on optimised deigns derived from
different methods. Firstly, the ED2P value decreases with
the increasing of area constraints but this trend tends to be
saturated when the area constraint exceeds 7 mm2. It
indicates that the performance improvement is insignificant
regardless of the extra resources at this moment. Secondly,
through the comparisons on different methods, the
approximate ED2P values are observed because the
optimised designs identified by our method are close to
those by the pruning method. However, there exists the
absolute difference between genetic search and our method,
especially for greater area constraints. As all known, the
genetic algorithm needs to evaluate many individuals

during each generation thereby consuming too much
simulation runtime. By considering the efficiency factor, we
apply the number of maximum iterations to force its
convergence, and thus the evolution process may be
insufficient in some cases, where the ED2P values of
generated deigns by our method outperform the ones
derived from genetic algorithm. In addition, Fig. 10a
shows that the ED2P values of our method are slightly
larger than those of pruning methods. In general, these
differences of products mainly come from delay dispersions,
which are due to connectivity optimisations. All the
experiments above assume that processor element
frequencies have been steadied at 500 MHz, but the logic
synthesis results towards the optimised designs show that
the timing constraint of 2 ns cannot be satisfied in some
cases. Furthermore, the frequency factor is considered in
different optimised designs as shown in Fig. 10b, where the
optimised designs using the automated approach
outperform the ones by pruning method when area
constraints exceed 6 mm2.

5.3 Efficiency evaluation

The proposed optimisation method adopts the heuristic-
based exploration and the analytical overall optimisation to
improve the efficiency, which is one of the most critical
factors to evaluate exploration methods. To confirm it, the
design time of three methods is listed below as shown in
(13)–(15), respectively. Let Tsim be the average time per
instruction for the cycle-accurate simulation, Ninstr the
number of instructions within the target programs, Tschedule

the time for architecture-sensitive schedule on sequential
codes, Ki the number of each computing unit type and
Micache and Mlocal the number of caches and local storages.
If the simulation-based exhaustive approach is employed,
the total design time is given in (13). In contrast, (14)
shows the optimisation time with our automated method.
Tsequence is the runtime for sequential simulation, Ntype is
the extension times, NA is the number of explored cores in
heuristic-based algorithm, Noptimised is the number of
Pareto-optimal cores and Ttrace denotes the runtime for
each trace-driven simulation

T0 ¼
Y

Ki � (Tschedule þ Tsim � Ninstr

þMlocal �Micache � Ttrace) (13)

T 1 ¼ Tsequence þ (Ntype þ NA)(Tschedule þ Tsim � Ninstr)

þ Noptimised �Mlocal �Micache � Ttrace (14)

In this work, the proposed optimisation method is performed
on the Intel Pentium 2.4 GHzþ Linux Red Hat 9. For the
target programs, the parallel schedule takes nearly 140 s, the
cycle-based simulation takes about 31 min and the trace-
driven simulation for about 6 M instructions consumes
about 3 min. During the experiments, the metrics Ntype,
NA, Noptimised are 6, 24, 14, respectively, and entire
optimisation period is nearly 25 h. On the contrary,

Figure 8 Results of the heuristic-based algorithm

Figure 9 Effects of the connectivity optimisations
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it seems to be impractical to adopt the simulation-based
exhaustive method which lasts for about 30 years. Apart
from these, the design time of other methods has also been
evaluated for comparison. Firstly, the least time by pruning
method is shown in (15), where Ki

0, M 0cache and M0local

represent the numbers of available components. If the
pruning method is performed directly on the target
programs without any code sampling method, it will take
nearly 70 days. Secondly, the efficiency of genetic algorithm
depends on the fitness function and population size. We
spent 10 days in arriving at the relatively poor results, and
the original algorithm seems to require significantly more
simulations before reaching a stable solution

T2 ¼ (Tschedule þ Tsim � Ninstr)�
Y

(Ki � K 0i )

þ Ttrace((Mlocal �M 0
local)

þ (Mcache �M 0
cache))þ

Y
K 0i (Tschedule

þ TsimNinstr þM 0
localM

0
icacheTtrace) (15)

6 Prototype implementation and
performance evaluation
6.1 Processor element implementation

Using the Verilog RTL description of optimal processor
element derived from the automated toolkits towards target
domains, a heterogeneous multiprocessor SoC chip
involving the embedded processor element is fabricated
using 0.13 mm eight-metal CMOS process. The designs

are optimised with the timing constraint of 2.2 ns, and
their net-lists are placed and routed with Cadence SoC
Encounter. As illustrated in Fig. 11, the SoC is composed
of the processor element, the ARM9 processor, the
memory controllers and a complete set of peripherals for
the multimedia applications. Fig. 12 shows the layout of
SoC with an area of 4.43 mm � 4.43 mm, where the size
of processor element including 32 kB instruction cache and
64 kB local ram is nearly 7.26 mm2 and the ARM9
processor with 8 kB instruction cache and 8 kB data cache
is about 3.61 mm2. The timing and power analysis show
that our processor element can operate at 450 MHz stably
while consuming about 181 mW power consumption.

Then, we break the total energy consumption of
processor element down and measure the energy
consumption of each component by PrimePower when
running MPEG2 decoder program. The clock system
consumes about 22% of total energy, while the instruction

Figure 11 Architecture of the ATOM-2 SoC

Figure 10 Comparison of the result designs derived from different methods

a Without any timing constraint
b With timing constraint of 2 ns
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fetching, instruction decoding, transfer buses, functional
units, register files and memory subsystem are responsible
for 5.1, 9.7, 8.1, 27.4, 5 and 22.5% energy cost,
respectively. Here, Yu Hu et al. [27] once collected the
power dissipation of a VLIW processor using Trimaran
simulator which had the similar configuration with us. Its
experimental results revealed that the energy consumption
of instruction decode unit occupied nearly 50% and even
reached five times more than those of functional units.
Let us assume that the above two processors consume
similar energy consumption of functional units when
running the same programs, it can be concluded that the
decoding energy consumption of our processor element
just occupies one-fourteenth of the VLIW decoding
energy which plays an important role of the total energy.
As all known, the TMS320C64 as one of the fastest
DSPs that follow VLIW structure, contributes lots of
transistor resources to the complex decode logic and thus
consumes much decoding switch energy. But our
processor element only corresponds to the single
instruction template and in this way its simplified

decoding logic brings us the advantage of low power
consumption.

6.2 Performance evaluation

This section presents the performance evaluation results. The
ARM9 series and TMS320C64 series processors are chosen
for comparison. TMS320C64 is a VLIW architecture that is
based on two identical fixed-point data paths. Each data path
contains 32-bit 16-port registers and four execution units: an
ALU, a shifter, a multiplier and a load/store unit. These
execution units are capable of executing eight instructions
in parallel. The optimised processor element includes four
arithmetic units, two multiplier units, two logic units, three
shift units, one compare unit, three load/store units, eight-
banks register file, one channel unit, one cordic unit and so
on. These units are connected by ten buses, which support
the maximum ten transport instructions in parallel. The
C64 series developed by Texas Instrument targets the high-
performance applications, which are evaluated using the
CCS3.0 [28] for C6000. Because some kernels are
prepared in the TMS320C64 series DSP library, we have
manually optimised the benchmarks in assembly to evaluate
the performance of our optimal processor, with the
assistance of the cycle-based simulator. For the fair
comparison, we choose runtime cycles as the only metric,
assuming the same temperature and design-for-testability
technique in this section. With an optimal access timing
(one cycle for each access), Table 2 presents the
performance of computing cores, the performance of
optimised processor outperforms TMS320C64 with an
average speedup of 1.11.

In the early stage of our computing core, we have also
followed the resource configuration of TMS320C64
without any design exploration, but its performance was
relatively poor, only obtaining the speedup of 0.94 when
running same applications. The SDTA in this paper has
the advantages of exploiting multiple-level parallelisms, but
copying the resources through our experience sometimes

Figure 12 Die photo of the SoC

Table 2 Performance comparisons of computing cores (assuming single-cycle access, cycles)

Application FFT Fir IDCT vecsumsq mat Note

ARM9 238 426 24 668 3369 906 6247 5-stage pipeline

TI-C64 9911 1048 154 46 283 8-issue VLIW, 2 data path, 2 ALU, 2 shift, 2 multiplier
and 2 load/store, 32� 2 register

optimal PE 9006 924 136 41 266 10-buses, 4 arith.units, 2 multiplier, 2 logic, 3
shifter, 1 compare, 3 load/store, 8� 8 registers

speedup over
ARM9

26.5 26.7 24.8 22.1 23.5

FFT: A 1024-point complex FFT, 16 bits/input; Fir: A 64-sample, 16-taps, 16 bits/input complex FIR
Vecsumsq: Sum of Squares, 128 items, 16 bits; 2D DCT: 16 � 16 two-dimensional DCT
Mat_mul: the multiply of the matrices x and y, 8 � 8 matrix
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cannot reflect its superiority, or even results in the
unreasonable configurations. Here, our processor elements
are flexible and configurable at system design time
according to application characteristics, and the optimised
computing cores by our automated approach yields the
obvious speedup. Then, as shown in Table 2, we also use
the ARM Develop Suite to evaluate these kernels with
compiler environment, and the speedups ranging from 22.1
to 26.7 have an average of 24.7.

At last, the performance evaluation to the entire SoC is
presented. We evaluate the applications on the ARM-alone
system and then schedule most of the computing tasks to
processor element to accelerate the critical fractions of
applications. In this section, we allow the ARM9 and
processor element to run different tasks asynchronously. As
shown in Table 3, the accelerated ratio of ATOM-2 to
ARM9 achieves about 4.12-7.16. In addition, we configure
the CCS3.0 simulator with the real 40(22)-2-cycle memory
access timing (40 cycles for the first access outside the
contents of row buffer and 22 cycles for the first access in
row buffer, two cycles for each access thereafter) to collect
runtime cycles of TMS320C64. Compared to
TMS320C64, the ATOM-2 SoC also yields the speedup
of 1.47 obtained with the fraction acceleration, the
asynchronous operation and the decoupled memory
accesses. Here, the application performances are also
comparable to other configurable processors, such as
VLIW-OP, which is derived by the design exploration
towards the same target benchmarks using EPIC Explorer
platform [29] and Trimaran framework [30]. It even
consumes nearly 8 days to explore 11 664 configurations
and the optimised choice is comprised of four integer units,
one float unit, 64 GPR registers, 32 FPR registers, 32 kB
instruction cache and so on. With the same DRAM access
timing, the collected cycles from Trimaran simulator show
that it outperforms ARM9 because of its abundance of
reasonable resources, but its result is inferior to that of our
processor because of many low-efficiency hardware
mechanisms and little proportion of resources contributed
to computations. Furthermore, the flexible and fine-grained
SDTA programming model is in favour of exploiting the
parallelism. Traditional VLIW operation is translated into
several data transports, which allow the transfer parallelism

on instruction level as well as on data level to make full use
of the computing units.

7 Conclusion
For multimedia and signal processing domain, the customised
processor element can provide higher performance while
consuming less silicon area and energy consumption. This
paper describes a novel automated approach to guide the
application-specific processor element which follows the
SDTA architecture to provide high performance and cost-
efficient. We develop the analytical cost model with the
advantages of accuracy, high efficiency and scalability and
then explore the whole design space using a hierarchical
method. The core exploration process adopts a heuristic-
based method to search for Pareto-optimal cores with
respect to the performance energy in different area intervals.
The global optimisation step uses the trace-driven
simulations and the analytical method to speed up the
processor element process. For the multimedia benchmarks,
the proposed optimisation approach outperforms the design
space pruning method and genetic algorithm. Finally, an
optimal processor element is implemented using UMC
0.13 mm CMOS in an SoC system. It can operate at
450 MHz while only consuming nearly 181 mW, and its
core size is only 7.26 mm2. The experimental results show
that our optimised processor element with the advantage of
low power consumption outperforms TMS320C64 in
performance and the SoC speedups towards ARM9 and
TMS320C64 for target applications have an average of 5.31
and 1.47, respectively.
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