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Abstract Finding replacement candidates for accommodating a new object is an
important research issue in web caching. Due to the new emerging factors in the
transcoding proxy and the aggregate effect of caching multiple versions of the same
multimedia object, this problem becomes more important and complex as audio and
video applications have proliferated over the Internet, especially in the environment
of mobile computing systems. This paper addresses coordinated cache replacement
in transcoding proxies. First, we propose an original model which determines cache
replacement candidates on all candidate nodes in a coordinated fashion with the ob-
jective of minimizing the total cost loss for linear topology. We formulate this prob-
lem as an optimization problem and present a low-cost optimal solution for deciding
cache replacement candidates. Second, we extend this problem to solve the same
problem for tree networks. Finally, we conduct extensive simulations to evaluate the
performance of our solutions by comparing with existing models.

Keywords Web caching · Multimedia object · Transcoding proxy · Cache
replacement · Transcoding · Internet

1 Introduction

Web caching is an important technology for improving the services over Internet.
Since the majority of web objects are static, caching them at various network com-
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ponents (e.g., client browser, proxy server) provides a natural way of decreasing net-
work traffic. Moreover, web caching can also reduce users’ access latency and allevi-
ate server load.

A key factor that affects the performance of web caching is the cache replacement
policy, which is a decision for evicting an object currently in the cache to make room
for a new object. A number of cache replacement policies, which attempt to optimize
various performance metrics, such as hit ratio, byte hit ratio, delay saving ratio, etc.,
have been proposed in the literature [4, 24]. However, all these polices are local re-
placement models that determine cache replacement candidates from the view of only
a single node. Furthermore, they become inefficient in transcoding proxies due to the
new emerging factors in the transcoding proxy (e.g., the additional delay caused by
transcoding, different sizes, and reference rates for different versions of a multimedia
object) and the aggregate effect of caching multiple versions of the same multimedia
object. Although the authors have elaborated these issues in [13], they considered
the cache replacement problem at only a single node. Cooperative caching, in which
caches cooperate in serving each other’s requests and making storage decisions, is
a powerful paradigm to improve cache effectiveness [10, 11, 15, 21]. There are two
orthogonal issues to cooperative caching: object location (i.e., finding nearby copies
of objects) and object management (i.e., coordinating the caches while making stor-
age decisions). The object location problem has been widely studied [14, 16, 30].
Efficient coordinated object management algorithms are crucial to the performance
of a cooperative caching system, which can be divided into two type of algorithms:
placement and replacement algorithms. There are a number of research on finding ef-
ficient solutions for cooperative object placement [19, 29, 32]. However, there is little
work done on finding efficient solutions for cooperative object replacement. Due to
the interrelationship among different versions of the same multimedia object, cooper-
ative caching in transcoding proxies becomes more important and complicated. This
is very significant for the performance of a cooperative caching system since when a
updated version is to be cached, an efficient replacement policy should decide cache
replacement candidates by considering the cooperation of all the nodes on the path
from the server to the client. Another important point is that the replacement decision
on each node should be beneficial, i.e., the profit gained by caching the new object
should be no less than the profit lost by removing some objects from the cache to
make room for the new object. As the transcoding proxy is attracting an increasing
amount of attention in the environment of mobile computing, it is noted that new ef-
ficient cache replacement policies are required for these transcoding proxies. In this
paper, we address coordinated cache replacement in transcoding proxies. The main
contributions of this paper are summarized as follows:

• We propose an original model which determines cache replacement candidates
among all candidate nodes in a coordinated fashion with the objective of minimiz-
ing the total cost loss for linear topology.

• We formulate this problem of an optimization problem and present a low-cost op-
timal solution for deciding cache replacement candidates.

• We further present an optimal solution for the same problem for tree networks.
• We evaluate our solution on various performance metrics through extensive simu-

lation experiments with existing models.
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The rest of this paper is organized as follows: Sections 2 and 3 introduce related
work and preliminaries, respectively. We formulate the problem and present an op-
timal solution for this problem in Sect. 4. In Sects. 5 and 6, simulation model and
performance evaluation are described, respectively. Finally, we conclude this paper
in Sect. 7.

2 Related work

Cache replacement policies play an important role in the functionality of web
caching. An overview of web caching replacement algorithms can be found in [4, 24].
All these policies can be generally classified into three categories as traditional re-
placement policies and their extensions [23], key-based replacement policies [31],
function-based replacement policies [1, 12, 17, 25, 27], and transcoding technology-
based replacement policies [13, 26, 28]. A common characteristic among them is that
the replacement decisions are drawn from the view of only a single node. These sin-
gle node-based algorithms become inefficient when cooperative caching is consid-
ered. This problem becomes more difficult and complicated in transcoding proxies
due to the new emerging factors in the transcoding proxy and the aggregate effect of
caching multiple versions of the same multimedia object. In [13], the authors pro-
posed an efficient cache replacement algorithm for transcoding proxies by exploring
the aggregate effect of caching multiple versions of the same multimedia object in
the same cache at only a single node. Finding efficient coordinated cache replace-
ment policies in transcoding proxies will greatly improve the performance of web
caching as audio and video applications have proliferated on the Internet.

Cooperative caching has been widely discussed in the literature. These studies
include analytical results [3, 18], simulation experiments [6, 16], and prototypes and
products [2, 8]. Cooperative caching helps for two reasons [21]. First, cooperation
permits a busy cache to utilize a nearby idle cache for serving a specified request.
Moreover, cooperation balances the improved hit time achieved by increasing the
replication of popular objects against the improved hit ratio achieved by reducing
replication and storing more objects.

There is little work done on cooperatively determining replacement candidates
when a new object is to be cached at a number of caches. In [21], the authors proposed
a cooperative replacement algorithm that not only preserves the implicit coordination
offered by greedy-dual, but also enables busy caches to utilize nearby idle caches. The
problem addressed in this paper is from a different point of view, which considers the
coordination among all the caches and the interrelationship among different versions
of the same multimedia object.

3 Preliminaries

We first introduce multimedia object transcoding in Sect. 3.1, and then notations and
definitions in Sect. 1.
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Fig. 1 An example of a
weighted transcoding graph

3.1 Multimedia object transcoding

Transcoding is used to transform a multimedia object from one form to another, fre-
quently trading off object fidelity for size, i.e., the process of converting a media file
or object from one format to another. Transcoding is often used to convert video for-
mats (i.e., Beta to VHS, QuickTime to MPEG). But it is also used to fit HTML files
and graphics files to the unique constraints of mobile devices and other Web-enabled
products. These devices usually have smaller screen sizes, lower memory, and slower
bandwidth rates. In this scenario, transcoding is performed by a transcoding proxy
server or device, which receives the requested document or file and uses a specified
annotation to adapt it to the client.

The relationship among different versions of a multimedia object can be expressed
by a weighted transcoding graph. An example of such a graph is shown in Fig. 1,
where the original version A1 can be transcoded to each of the less detailed ver-
sions A2, A3, A4, and A5. It should be noted that not every Ai can be transcoded to
Aj since it is possible that Ai does not contain enough content information for the
transcoding from Ai to Aj . In our example, transcoding can not be executed between
A4 and A5 due to insufficient content information. The transcoding cost of a multi-
media object from Ai to Aj is denoted by w(i, j). The number beside each edge in
Fig. 1 is the transcoding cost from one version to another. For example, w(1,2) = 6,
and w(3,4) = 4. φ(i) is the set of all the versions that can be transcoded from Ai ,
including Ai . For example, φ(1) = {1,2,3,4,5}, φ(2) = {2,4,5}, and φ(4) = {4}.
In this paper, we use W to denote a weighted transcoding graph.

3.2 Notations and definitions

We model the network as a graph G = (V ,E) in this paper, where V ={v0, v1, . . . , vn}
is the set of nodes or vertices, and E is the set of edges or links. We assume that
every node is associated with a cache with the same size B and there are m mul-
timedia objects maintained by the server. For multimedia object j , we assume that
it has mj versions (Oj,1,Oj,2, . . . ,Oj,mj

). To simplify the analysis in Sect. 4.2,
we assume that all versions of the same multimedia object have the same size. Our
analysis can be extended to the general case with the same methodology. Thus, each
node can hold at most B objects. We denote the set of objects cached at node vi by
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Table 1 Parameters used in simulation

V = {v0, v1, . . . , vn} Set of nodes in the network

Ok Version k of object j

Ai Set of different versions of object j cached at node vi

Lk(u, v) Cost of sending a request for version Ok over the link (u, v)

ri,k Request for Ok at node vi

fi,k Frequency of ri,k

S(ri,k) Serving object for ri,k

Y i = {Ai
1,A

i
2, . . . ,A

i
m}, where Ai

j ⊆ {Oj,k1 ,Oj,k2, . . . ,Oj,kj
} is the set of different

versions of object j cached at node vi . Obviously, Y = {Y 1, Y 2, . . . , Y n} is the set of
all objects cached. For each version of object Oj , we associate each link (u, v) ∈ E a
nonnegative cost Lj,k(u, v), which is defined as the cost of sending a request for ver-
sion Oj,k and the relevant response over the link (u, v). In particular, Lj,k(u,u) = 0.
If a request goes through multiple network links, the cost is the sum of the cost on all
these links. The cost in our analysis is calculated from a general point of view. It can
be different performance measures such as delay, bandwidth requirement, and access
latency, or a combination of these measures. Let ri,j,k denote the request for Oj,k at
node vi and fi,j,k be the frequency of ri,j,k .

For notational tidiness, we omit argument j in all parameters and functions
throughout the following analysis since our analysis is based on a specific object.
For example, Ok denotes version k of object j , Ai is the set of different versions of
object j cached at node vi , Lk(u, v) denotes the cost of sending a request for version
Ok over the link (u, v), ri,k denotes the request for Ok at node vi , and fi,k denotes the
frequency of ri,k . In our analysis, we assume that the server holds all the m versions
of object j , which is denoted by Z0,1,Z0,2, . . . ,Z0,m. In our analysis, we assume
that Lk(vi1, vi2) = (i1 − i2)L for all 1 ≤ k ≤ m as there are i1 − i2 links on the path
between node vi1 and node vi2 , and the cost on each link for each version of Oj is L.
The transcoding graph is a linear array and the transcoding cost between any two
adjacent versions is constant, i.e., t (Ok1 ,Ok2) = ∑k2−1

k=k1
t (Ok,Ok+1) = (k2 − k1)

+T ,
where x+ = x if x ≥ 0 else x+ = ∞. we also assume that there exists some positive
integer δ such that (δ − 1)T ≤ L, and δT > L. If not, i.e., L � T or T � L, then
they are obviously two trivial cases.

For easy understanding, we summarize the notation used in this paper in Table 1.

4 Cooperative cache replacement in transcoding proxies

In this section, we first formulate the problem in Sect. 4.1, and then present an optimal
solution for this problem in Sect. 4.2. Finally, we describe our cooperative cache
replacement scheme in Sect. 4.3.

4.1 Problem formulation

Before formulating the problem, we give some explanation on how the requests are
served. As shown in Fig. 2, a request goes along a routing path from the client
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Fig. 2 System model for multimedia object caching

(node vn) to the server (node v0). Note that any request ri,k could find the ser-
vice from S(ri,k), where S(ri,k) denotes the serving object for ri,k . Assume that
S(ri,k) = Ok1 ∈ Ai1 with k1 ≤ k and i1 ≤ i, then there may be the following ways
of serving ri,k by Ok1 ∈ Ai1 :

• Ok1 is first sent from node vi1 to node vi and then transcoded to Ok at node vi .
• Ok1 is first transcoded to Ok at node vi1 and then Ok is sent from node vi1 to

node vi .
• Ok1 is first sent from node vi1 to node vi2 , transcoded to Ok at node vi2 , and then

Ok is sent from node vi2 to node vi .
• Ok1 is first sent from node vi1 to node vi2 and transcoded to Ok2 at node vi2 , and

then Ok2 is sent from node vi2 to node vi3 and transcoded to Ok3 at node vi3 , then
Ok3 is sent from node vi3 to node vi and transcoded to Ok at node vi .

• ...

From the above analysis, we can see that when a new or updated version of a mul-
timedia object to be cached (Oi0 for instance) is passing through each node between
nodes vi′ and vi , it should be decided where Oi0 should be cached and which ver-
sion should removed from the relevant cache to make room for it depending on how
ri,k is served. Given X (i.e., the set of cached objects) and Ok′ ∈ Ai′ (i′ ≤ i), then
d(ri,k,Ok′) is defined as follows:

d(ri,k,Ok′) = (i − i′)L + (k − k′)+T (1)

where d(ri,k,Ok′) is the access cost of serving ri,k by Ok′ at node vi′ .
Now, we begin to formulate the problem addressed in this paper, i.e., determining

where a new or updated version Oi0 should be cached among nodes {v1, v2, . . . , vn}
and which version of object j should be removed at that node to make room for Oi0

such that the total cost loss is minimized. Suppose that P ⊆ V is the set of nodes at
each of which Xi,ki

∈ Ai should be removed to make room for Oi0 , then this problem
can be formally defined as follows:

L
(
P ∗) = min

P⊆V

{
L(P )

} =
∑

vi∈P

(
l(Xi,ki

) − gi(Oi0)
)

(2)

where L(P ) is the total relative cost loss, l(Xi,ki
) is the cost loss of removing Xi,ki

from node vi , and gi(Oi0) is the cost saving of caching Oi0 at node vi .

4.2 Dynamic programming-based solution

Before presenting the solution, we evaluate the two items, i.e., l(Xi,ki
) and gi(Oi0),

shown in (2) in detail.
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First, we begin with presenting a solution for finding the best way of serving ri,k ,
i.e., finding S(ri,k). Based on (1), the cost of serving ri,k , denoted by c(ri,k), is defined
as follows:

c(ri,k) = min
{

min
Ok′ ∈Ai′ ,1≤i′≤i

d(ri,k,Ok′), iL
}

(3)

Therefore, the object for serving ri,k , denoted by S(ri,k), is determined as follows:

S(ri,k) =
{

Ok∗ if c(ri,k) = d(ri,k,Ok∗)

Z0,k if c(ri,k) = iL
(4)

The following property will help us simplify the problem of finding the best way
of serving ri,k .

Theorem 1 If both Ok1 and Ok2 are cached at node vi′ , then we have d(ri,k,Ok1) <

d(ri,k,Ok2) for k > k1 > k2.

Proof Based on the definition of d(ri,k,Ok), we have d(ri,k,Ok1) = (i − i′)L +
(k − k1)

+T and d(ri,k,Ok2) = (i − i′)L+ (k − k2)
+T . Since (k − k1)

+ < (k − k2)
+,

we have d(ri,k,Ok1) < d(ri,k,Ok2). Hence, the theorem is proven. �

From Theorem 1, we can see that for request ri,k , we can consider only the least
detailed version that can be transcoded to version k. Thus (3) can be simplified as
follows:

c(ri,k) = min
{

min
1≤i′≤i

d(ri,k,Ok′′), iL
}

(5)

where Ok′′ is the least detailed version of object j cached at node vi′ that can be
transcoded to version k.

It is easy to see that the time complexity for computing S(ri,k) is O(logn), where
n is the number of nodes in the network. So, the total complexity for computing all
S(ri,k) (1 ≤ i ≤ n and 1 ≤ k ≤ m) is O(mn logn) since there are n nodes and object
j has m different versions.

For each object x ∈ X, the set of requests served by x is expressed as R(x) =
{ri,k|S(ri,k) = x} and the total cost for the requests served by x is C(x) =∑

ri,k∈R(x) fi,kd(ri,k, x).
Regarding to R(x), we have the following property.

Property 1 If ri,k ∈ R(x), then ri′,k′ ∈ R(x′) ∀i′ ≤ i and k′ ≤ k.

Proof Suppose that x ∈ Ai1 = Ok1 , x′ ∈ Ai2 = Ok2 and there exists i′ ≤ i and
k′ ≤ k such that ri′,k′ ∈ R(Oi2). Since S(ri′,k′) = x′, we have d(ri′,k′ , x′) ≤
d(ri′,k′ , x). Therefore, we have (i′ − i2)L+ (k′ −k2)T ≤ (i′ − i1)L+ (k′ −k1)T , i.e.,
(i2 − i1)L+ (k2 −k1)T ≥ 0. Therefore, we have d(ri,k, x) = (i − i1)L+ (k −k1)T =
(i − i2)L + (k − k2)T + (i2 − i1)L + (k2 − k1)T = d(ri,k, x

′) + (i2 − i1)L +
(k2 − k1)T ≥ d(ri,k, x

′). Obviously, this contradicts ri,k ∈ R(x). Hence, the prop-
erty is proven. �
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Fig. 3 Example for
calculating l(x)

From Property 1, we can see that R(x) should be a region that can be divided into
several rectangular regions. This can be seen from Fig. 3. For example, R(x4) can be
divided into two regions by the vertical broken line from x2.

Regarding to calculating l(Xi,ki
), we first give the following theorem.

Theorem 2 Suppose that only Xi,ki
is cached at node vi , then we have

l(Xi,ki
) =

∑

ri,k∈B0

fi,k

[
i · L − d(ri,k,Xi,ki

)
]

+
n∑

i=1

∑

ri,k∈Bi

fi,k

[
d
(
ri,k,X

i
ki

) − d(ri,k,Xi,ki
)
]

(6)

where B0 = {(α,β)|(α = i0, β ∈ R0 ∩ R(Xi,ki
))} ∩ R(Xi,ki

) and Bi = {(α,β)|
(α = i0, β ∈ R(Xi

ki
) ∩ R(Xi,ki

))} ∩ R(Xi,ki
).

Proof It is obvious that Bi ∩ Bj = φ for i �= j . This guarantees that each request’s
access cost is only calculated one time. Now, we prove the correctness of the calcu-
lation of l(Xi,ki

), i.e., the requests in Bi should be served by Xi
ki

. Suppose that there

exists a request ri′,k′ ∈ Bi which is not served by Xi
ki

. Based on Property 1, we have
all the requests in the region B ′

i = {(α,β)|i ≤ α ≤ i0, ki ≤ β ≤ k0} will be not served
by Xi

ki
. It is easy to see that R(Xi

ki
)∩B ′

i �= φ, i.e., there exist some requests in region

R(Xi
ki

) that are not served by Xi
ki

. This obviously contradicts the fact that all the

requests in region R(Xi
ki

) are served by Xi
ki

. Hence, the theorem is proven. �

For example, in Fig. 3, if x1 is removed, R(x1) can be divided into three regions
(i.e., A, B , and C), which will be served by x4, x3, and the server, respectively. Thus,
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Fig. 4 Example for calculating
l(x)

we have l(x1) = ∑
ri,k∈A fi,k[d(ri,k, x4) − d(ri,k, x1)] + ∑

ri,k∈B fi,k[d(ri,k, x3) −
d(ri,k, x1)] + ∑

ri,k∈B fi,k[i · L − d(ri,k, x1)].
In practice, the general case is that several versions of the same multimedia object

are cached at node vi at the same time (see Fig. 4). In this case, calculating l(x)

should also consider the mutual effect of the least more detailed cached version on the
removed version since the requests served by the removed version could be satisfied
by this detailed version. For example, when calculating l(x2), R(x2) might be divided
into four parts A, B , C, and D which will be served by x4, x5, x3, and x1, respectively.

Taking into consideration the caching dependence along the path, calculating
l(Xi,ki

) becomes more complex and it is so obvious to obtain an optimal solution.
Similarly, we can calculate the cost saving of caching Oi0 at node vi . For ex-

ample in Fig. 4, if i0 = y1, then R(x6) can be divided in to two parts: E and
F ; if i0 = y2, then R(x6) can also be divided in to two parts. So, we have
g(y1) = ∑

ri,k∈G fi,k[d(ri,k, y1) − d(ri,k, x6)] and g(y2) = ∑
ri,k∈E fi,k[d(ri,k, x6) −

d(ri,k, y1)] + ∑
ri,k∈F fi,k[i · L − d(ri,k, y1)].

Now, we begin to present an optimal solution for the problem as defined in (2). In
the following, we call the problem a k-optimization problem if we determine cache
replacement candidates from nodes {v1, v2, . . . , vk}. Thus, the original problem (2) is
an n-optimization problem. Theorem 3 shows an important property that the optimal
solution for the whole problem must contain optimal solutions for some subproblems.

Theorem 3 Suppose that X = {Xi1,ki1
,Xi2,ki2

, . . . ,Xiα,kiα
} is an optimal solution for

the α-optimization problem and X′ = {Xi′1,ki′1
,Xi′2,ki′2

, . . . ,Xi′β ,ki′
β

} is an optimal so-

lution for the kiα − 1-optimization problem. Then X∗ = {Xi′1,ki′1
,Xi′2,ki′2

, . . . ,Xi′β ,ki′
β

,

Xiα,kiα
} is also an optimal solution for the α-optimization problem.
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Proof By definition, we first have L(X∗) = l(Xi′1,ki′1
)+ l(Xi′2,ki′2

)+· · ·+ l(Xi′β ,ki′
β

)+
l(Xiα,kiα

) = L(X′) + l(Xiα,kiα
) ≥ l(Xi1,ki1

) + l(Xi2,ki2
) + · · · + l(Xiβ,kiβ

) +
l(Xiα,kiα

) = L(X). On the other hand, since X is an optimal solution for the α-
optimization problem, we have L(X) ≥ L(X∗). Therefore,we have L(X) = L(X∗).
Hence, the theorem is proven. �

Based on Theorem 3, an optimal solution for the n-optimization can be ob-
tained by checking all possible removed candidates from node v1 to node vn

in order. Therefore, it is east to get that the time complexity of this solution is
O(n2 + mn logn) based on our previous result that the complexity for computing
all S(ri,k) is O(mn logn), where n is the number of nodes in the network and m is
the number of versions of object j .

Now, we can derive an optimal solution for (2) for tree networks by using the
following two theorems. The proofs of Theorems 4 and 5 can be found in [20].

Theorem 4 For tree Tr , if C(r) = {r1, r2, . . . , rm}, then we have P ∗
r = ⋃m

i=1 P ∗
r,ri

.

Theorem 5 For tree Tr,w , if C(w) = {w1,w2, . . . ,wt }, then we have

P ∗
r,w =

{⋃t
i=1 P ∗

r,wi
, L(

⋃t
i=1 P ∗

r,wi
) ≥ L(P ∗

w ∪ {w})
P ∗

w ∪ {w}, L(
⋃t

i=1 P ∗
r,wi

) < L(P ∗
w ∪ {w})

By Theorem 4, we can see that the optimal solution for tree Tr can be decomposed
into the combination of the solutions for subtrees {Tr,w,w ∈ C(r)}. By Theorem 5,
we can see that the optimal solution for tree Tr,w can be further divided until the
division cannot be proceeded according to the relationship between L(

⋃t
i=1 P ∗

r,wi
)

and L(P ∗
w ∪ {w}). Therefore, based on Theorems 4 and 5, a dynamic programming-

based algorithm can be proposed to solve the problem formulated in (2).

4.3 Cooperative cache replacement scheme

Based on the previous analysis, we present the following cooperative cache replace-
ment scheme. In our scheme, every cache maintains some information about the ob-
jects in the form of object descriptors. An object descriptor contains information that
includes the object size and the access frequencies for all versions of the multimedia
objects. When an updated version of a multimedia object is to be cached or a request
for a version of a multimedia object arrives at the server, it should be cached at those
nodes where a version of this object is cached and the cache replacement candidates
are decided according to our proposed solution.

Since the cache contents change over time, the access frequency and the cost loss
of an object with respect to a node must be refreshed from time to time. The access
frequency can be estimated based on recent request history, which is locally available
(e.g., by using a “sliding window” technique [27]). The cost loss is updated by the
response messages. Specifically, a variable with an initial value of zero is attached to
each object. At each intermediate node along the way, the variable is increased by the
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cost of the last link the object has just traversed. The value is then used to update the
cost loss of the object maintained by the associated cache. If the object is inserted into
the cache, the node resets the value to zero before forwarding the object downstream.
In this way, the updated cost loss is disseminated to all the caches on the way.

5 Simulation model

To the best of our knowledge, it is difficult to find true trace data in the open litera-
ture to simulate our model. Therefore, we generated the simulation model from the
empirical results presented in [1, 5, 7, 9, 13, 19].

The network topology was randomly generated by the Tier program [9]. Exper-
iments for many topologies with different parameters have been conducted and the
relative performance of our model was found to be insensitive to topology changes.
Here, only the experimental results for one topology was listed due to space limi-
tations. The characteristics of this topology and the workload model are shown in
Table 2, which are chosen from the open literature and are considered to be reason-
able.

The Wide Area Network (WAN) is viewed as the backbone network to which
no servers or clients are attached. Each Metropolitan Area Network (MAN) node
is assumed to connect to a content server. Each MAN and WAN node is associated
with an en route cache. Similar to the studies in [7, 12, 17, 27, 29], the cache size
is described as the total relative size of all objects available in the content server. In
our experiments, the object sizes are assumed to follow a Pareto distribution and the
average object size is 130 KB. We also assume that each multimedia object has at

Table 2 Parameters used in
simulation Parameter Value

Number of WAN Nodes 200

Number of MAN Nodes 200

Delay of WAN Links Exponential Distribution

p(x) = θ−1e−x/θ

Delay of MAN Links Exponential Distribution

p(x) = θ−1e−x/θ

Number of Servers 100

Number of Web Objects 1000 objects per server

Web Object Size Distribution Pareto Distribution

p(x) = aba

a−1

Web Object Access Frequency Zipf-Like Distribution
1
iα

Average Request Rate Per Node U(1,9) requests per second
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Fig. 5 Transcoding graph for
simulation

most five versions and that the transcoding graph is as shown in Fig. 5. If an object
has less than five versions, some nodes in the transcoding graph is null. For the case
in which an object has only one version, then the transcoding graph degenerates to
a node. The transcoding delay is determined as the quotient of the object size to the
transcoding rate, which is assumed as 20 KB/Sec in the simulation. In the simulation,
the client at each MAN node randomly generates the requests, and the average request
rate of each node follows the distribution of U(1,9), where U(x,y) represents a
uniform distribution between x and y. The access frequencies of both the content
servers and the objects maintained by a given server follow a Zipf-like distribution
[7, 22]. In the simulation, α is set as 0.7. Specifically, the probability of a request for
object O in server S is proportional to 1/(iα · jα), where S is the ith most popular
server and O is the j th popular object in S. The delay of both MAN links and WAN
links follows an exponential distribution, where the average delay for WAN links is
0.45 seconds and the average delay for WAN links is 0.06 seconds.

The cost for each link is calculated by the access delay. For simplicity, the delay
caused by sending the request and the relevant response for that request is propor-
tional to the size of the requested object. Here, we consider the average object sizes
for calculating all delays, including the transmission delay, and transcoding delay.
The cost function is taken to be the delay of the link, which means that the cost in our
model is interpreted as the access latency in our simulation.

We apply a “sliding window” technique to estimate the access frequency to make
our model less sensitive to transient workload [27]. Specifically, for each object O ,
f (O,v) is calculated by K/(t − tK), where K is the number of accesses recorded,
t is the current time, and tK is the K th most recently referenced time (the time of
the oldest reference in the sliding window). K is set to 2 in the simulation. To reduce
overhead, the access frequency is only updated when the object is referenced and at
reasonably large intervals, e.g., several minutes, to reflect aging, which is also applied
in [29].

In addition to the model presented in Sect. 4.2, we also consider the following
caching models for comparison purposes.

LRU: LRU is a solution that evicts the web object which is requested the least
recently. In LRU, different versions of the same multimedia object are con-
sidered as different objects.

AE [13]: AE is a solution that explores the aggregate effect of caching multiple ver-
sions of the same multimedia object in the cache.
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LT : LT is a solution for cooperated multimedia object replacement in transcod-
ing proxies in linear topology proposed in this paper.

TN: TN is a solution for cooperated multimedia object replacement in transcod-
ing proxies in tree networks proposed in this paper.

6 Performance evaluation

In this section, we compare the performance results of our solutions (proposed in
Sect. 4.2) with those models introduced in Sect. 5 in terms of several performance
metrics. The performance metrics we used in our simulation include delay-saving ra-
tio (DSR), which is defined as the fraction of communication and server delays which
is saved by satisfying the references from the cache instead of the server, average ac-
cess latency (AAL), request response ratio (RRR), which is defined as the ratio of the
access latency of the target object to its size, average hit ratio (AHR), which is defined
as the ratio of the number of requests satisfied by the caches (including the requests
satisfied by transcoding from the cached version) as a whole to the total number of
requests, exact hit ratio (EHR), which is defined as the ratio of the number of requests
satisfied by the exact version in the caches as a whole to the total number of requests,
and highest server load (HSL), which is defined as the largest number of bytes served
by the server per second. In the following figures, LRU, AE, LT , and NT denote the
results for the solutions introduced in Sect. 5

6.1 Impact of cache size

In this experiment set, we compare the performance results of different models across
a wide range of cache sizes, from 0.04% to 15.0%.

The first experiment investigates DSR as a function of the relative cache size per
node and Fig. 6 shows the simulation results. As presented in Fig. 6, we can see that
our solutions outperform existing solutions since our coordinated cache replacement

Fig. 6 Experiment on DSR
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Fig. 7 Experiment on AAL and RRR

Fig. 8 Experiment for AHR and EHR

model determines the replacement candidates cooperatively among all the nodes for
linear topology and tree networks, whereas existing solutions, including LRU and
AE, decide cache replacement candidates locally, i.e., only from the view of a single
node. We can also see that our proposed solution for tree networks outperforms the
proposed solution for linear topology in that a linear topology can be viewed as a
special case of tree networks when a tree has only one path from the server to the
client.

Figure 7 shows the simulation results of AAL and RRR as a function of the relative
cache size at each node. Clearly, the lower the AAL or the RRR, the better the perfor-
mance. As we can see, all solutions provide steady performance improvement as the
cache size increases. We can also see that both TN and LT significantly improve both
AAL and RRR compared to AE and LRU since our proposed solutions determines the
cache replacement candidates in an optimal and coordinated way, while the others
decide the replacement candidates only by considering the situation of a single node.

Figure 8 shows the results of EHR and AHR as a function of the relative cache
size for different solutions. By computing the optimal replacement candidates, we
can see that the results for our solutions can greatly outperform those of the other
solutions, especially for smaller cache sizes. We can also see that AHR and EHR
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Fig. 9 Experiment for HSL

Fig. 10 Experiment for DSR and RRR

steadily improves as the relative cache size increases, which conforms to the fact that
more requests will be satisfied by the caches as the cache size becomes larger.

Figure 9 also shows the results of HSL as a function of the relative cache size.

6.2 Impact of object access frequency

This experiment set examines the impact of object access frequency distribution on
the performance results of different models. The relative cache size for this exper-
iment set is 10%. Figures 10 and 11 shows the performance results of DSR, RRR,
AHR, and EHR, respectively, for the values of Zipf parameter α from 0.2 to 1.0. We
can see that both TN and LT consistently provide better performance over a wide
range of object access frequency distributions.
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Fig. 11 Experiment for AHR and EHR

7 Conclusion

The transcoding proxy is attracting more and more attention since it plays an im-
portant role in the functionality of web caching. In this paper, we presented a co-
ordinated cache replacement model in transcoding proxies where multimedia object
placement and replacement policies are managed in a coordinated way. Our model
is formulated as an optimization problem and the optimal solution is obtained using
a low-cost dynamic programming-based solution. Extensive simulation experiments
have been performed to compare the proposed coordinated cache replacement model
with several existing models. The results show that our model effectively improves
delay-saving ratio, average access latency, request response ratio, object hit ratio, and
highest server load. The proposed coordinated cache replacement model considerably
outperforms local cache replacement models that consider cache replacement at in-
dividual nodes only. Our model has wide applications for web caching, especially for
the case in which multimedia objects are involved. However, it is a challenging task
for our future research to solve this problem in the general case, i.e., the case in which
different versions of the same multimedia object are of different sizes. The techniques
of applying dynamic programming shown in this paper may serve as useful tools for
deriving such solutions in the general case.
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