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Large-Scale Multimedia Retrieval (LSMR) is the task to fast analyze a large amount of multi-
media data like images or videos and accurately find the ones relevant to a certain semantic 
meaning. Although LSMR has been investigated for more than two decades in the fields 
of multimedia processing and computer vision, a more interdisciplinary approach is neces-
sary to develop an LSMR system that is really meaningful for humans. To this end, this paper 
aims to stimulate attention to the LSMR problem from diverse research fields. By explaining 
basic terminologies in LSMR, we first survey several representative methods in chronological 
order. This reveals that due to prioritizing the generality and scalability for large-scale data, 
recent methods interpret semantic meanings with a completely different mechanism from 
humans, though such humanlike mechanisms were used in classical heuristic-based meth-
ods. Based on this, we discuss human-machine cooperation, which incorporates knowledge 
about human interpretation into LSMR without sacrificing the generality and scalability. In 
particular, we present three approaches to human-machine cooperation (cognitive, onto-
logical, and adaptive), which are attributed to cognitive science, ontology engineering, and 
metacognition, respectively. We hope that this paper will create a bridge to enable research-
ers in different fields to communicate about the LSMR problem and lead to a ground-break-
ing next generation of LSMR systems.
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IntroductIon

With the emergence of the Internet, the way to deliver visual 
and audio content has been significantly changed. The deliv-
ery in the early days was called broadcasting, where a small 
number of television and radio stations disseminated their 
programs to the general public. In the 90’s, the distribution 
began to shift to narrowcasting through cable TV, Pay Per 
View (PPV), and so on. This enables the audience to select 
programs of interest from a much larger number of pro-
grams than the ones offered by broadcasting. Nowadays, 
the delivery is called thincasting (Snoek, & Smeulders, 2012) 
because video and audio hosting sites like YouTube and 
Internet Archive store a much higher number of programs 
compared to broadcasting and narrowcasting. For example, 
300 hours of videos are uploaded to YouTube every minute 
(YouTube, n.d.). Such rapidly growing multimedia data can-
not be manually managed or indexed.

It is often said that a picture is worth a thousand words. For 
example, the foreground video frame in Figure 1 conveys to 
humans many semantic meanings, such as “person,” “road,” 
“car,” “tree,” “building,” “sky,” “street,” “daytime,” and so on. 
In addition, the time dimension adds further meanings, like 
object actions, camera movements, things or people coming 
in and out of the screen, and so on. The sequence of video 

frames in Figure 1 shows “a person is walking,” “the camera 
follows him,” and “the road is out-of-frame in the end.” Com-
pared to this, actual multimedia data are indexed only with 
a small number of meanings. It is reported that on average, 
videos on YouTube are tagged only with one to seven mean-
ings (Syrett, 2009). Therefore, a lot of research effort has been 
put on the development of Large-Scale Multimedia Retrieval 
(LSMR) methods, which analyze a large amount of multime-
dia data in terms of various semantic meanings, and support 
users to efficiently find interesting and relevant contents.

We adopt two policies in order to make the following dis-
cussions simple and clear. First, we use example to indicate a 
single unit of multimedia data, such as image, video, and audio. 
When the discrimination among these data formats is not 
important, we use examples as their abstract name. Second, 
by drawing an analogy with Content-Based Image Retrieval 
(CBIR) in Datta, Josh, Li, and Wang (2008), we define LSMR 
as any technology that, in principle, helps to organize large-
scale multimedia data. Hence, LSMR in this paper includes 
technologies such as object recognition, image/video/audio 
classification, browsing, summarization, and so on.

The goal of LSMR is to quickly analyze a large amount of 
examples and accurately identify the ones relevant to a given 
query. In other words, LSMR can be considered as a binary 
classification problem to discriminate between relevant and 
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irrelevant examples to the query. It should be noted that there 
is a crucial difference between traditional alpha-numeric data 
and multimedia data (Shirahama, Ideno, & Uehara, 2006). 
The former are “structured” where their alpha-numeric repre-
sentations directly describe semantic meanings and relation-
ship operators (e.g., equal, not equal) are well-defined. On the 
other hand, raw multimedia data are “unstructured” where 
their digitized representations (i.e., pixel values on each image 
or video frame, and values in an audio signal) do not describe 
semantic meanings, and relationship operators are ill defined.

Thus, LSMR is generally conducted based on the scheme 
shown in Figure 2. From raw multimedia data, features that 

characterize meanings like color, edge, motion, and power 
spectrum are extracted at first. This is considered as the 
transformation of raw multimedia data into data that are 
computationally tractable and suitable for retrieval. Features 
are usually extracted as vectors because of their computa-
tional simplicity, and many sophisticated methods have been 
developed for vector data. For example, in Figure 2, the color 
feature representing many grey-colored pixels character-
izes colors of the car and the road shown in the left video. In 
addition, the shape of the car and the boundary line of the 
road are characterized by the edge feature with many lines 
from top-left to bottom-right, and the movement of the car 

Figure 1. An illustration of various semantic meanings contained in multimedia data.

Figure 2. A general scheme of Large-Scale Multimedia Retrieval (LSMR).
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is captured by the motion feature representing many right 
movements of (tracked) points. Also, the power spectrum 
indicates the main frequency of the engine sound of the car. 
By combining these features into a single vector, each exam-
ple is represented as a point in a multidimensional space, as 
shown in the center of Figure 2. Based on this, a classifier 
(retrieval model) is constructed to discriminate between rel-
evant and irrelevant examples to a query. In Figure 2, exam-
ples over and under the dashed line (classification boundary) 
are regarded as relevant and irrelevant to cars, respectively. 
Like this, the classifier can be considered as a projection 
function bf n →ℜ: , where nℜ is the vector representa-
tion of an example and b  is a binary variable representing 
the relevance or irrelevance to the query.

However, there is the semantic gap, which is the disagree-
ment between features automatically extracted by machines 
and semantic meanings perceived by humans (Djordjevic, 
Izquierdo, & Grzegorzek, 2007; Smeulders, Worring, San-
tini, Gupta, & Jain, 2000; Staab et al., 2008). The semantic 
gap is attributed to the internal dissimilarity and the exter-
nal similarity in terms of features. The former means that 
features in examples containing a certain meaning can sig-
nificantly vary depending on camera techniques and shoot-
ing environments. The latter means that different meanings 
are often presented in examples with similar features. Let us 
consider examples displaying cars in Figure 3. As shown in 
Figure 3 (a), visual appearances (i.e., features) depend on dif-
ferent variables, such as the distance of the camera to a car, 
the shape of a car, lighting condition, and occlusion (other 
objects mask the shape of a car). In addition, Figure 3 (b) 
shows that visual appearances in examples displaying ships, 
trains, and helicopters are similar to those in examples dis-
playing cars. Thus, research on LSMR mainly targets how to 
bridge the semantic gap by accurately covering internally dis-
similar examples and excluding externally similar examples.

In the last two decades, many LSMR methods have been 
proposed and the retrieval performance has improved sig-
nificantly. However, except for very specific problems like 
face detection, there is no practical LSMR method that 
can achieve accurate retrieval for various semantic mean-
ings. One main reason is that, due to the large data size 
that is unmanageable by humans, researchers tend to leave 

LSMR just to machines. In other words, the enhancement 
of machine performance and the popularization of machine 
learning, data mining, and big data analysis caused the false 
expectation that machines fed with a large amount of exam-
ples can learn a classifier the way humans do. As a result, 
many recent methods do not consider any mechanism 
of how humans interpret semantic meanings. This paper 
emphasizes the importance of human-machine cooperation 
that incorporates the mechanism of human interpretation 
into LSMR. This approach complements the advantage of 
humans with the advantage of machines to create a synergy. 
On one hand, a human can easily recognize meanings in 
examples, but this is still difficult for a machine. On the other 
hand, the machine can analyze a large amount of examples 
much faster than the human. Therefore, by conceptualizing 
LSMR based on human-machine cooperation, we aim to 
achieve fast retrieval that can recognize meanings with the 
accuracy similar to human interpretation.

We review existing LSMR methods by classifying them 
into the following three categories: (1) machine-based, 
(2) human-based, and (3) human-machine cooperation. 
Machine-based LSMR does not explicitly model the mecha-
nism of human interpretation. The most intuitive method is 
to construct a classifier only by statistically analyzing features 
of examples. Human-based LSMR is supported by humans, 
but machine and human are independent of each other. For 
example, human-based LSMR includes retrieval on multi-
media data that are annotated by humans in advance, as cur-
rent image and video hosting sites rely on manually provided 
text descriptions. Human-based LSMR also includes inter-
active approaches in which a classifier is iteratively refined 
by judging the relevance or irrelevance of currently retrieved 
examples. It should be noted that this interaction does not 
affect the algorithm of the classifier, but provides external 
data (i.e., judgement) to tune its parameters. Compared to 
this, human-machine cooperation addresses the collabora-
tion of humans and machines at the algorithm level.

The survey approach of this paper is significantly differ-
ent from those of existing papers in the field of multimedia 
processing. Most survey papers adopt a progressive approach 
to derive future research directions from the progress of 
component technologies. Specifically, recent survey papers 

Figure 3. An example of the internal dissimilarity and the external similarity for examples displaying cars.
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(e.g., Liu, Zhang, Lu, and Ma (2007), Bhatt and Kankan-
halli (2011), Datta et al. (2008), Lew, Sebe, Djeraba, and Jain 
(2006), Snoek and Worring (2009), and Jiang, Bhattacharya, 
Chang, and Shah (2013)) mainly reviewed the following four 
component technologies: (1) feature extraction, representa-
tion, and transformation methods; (2) classifiers based on 
knowledge bases, machine learning techniques, similarities 
in terms of features, and data mining techniques; (3) user 
interaction methods such as query specification, browsing 
(visualization), and feedback; and (4) benchmark datasets 
for objectively evaluating the retrieval performance. Then, 
these papers suggest future problems that should be further 
explored or should receive more attention, such as improve-
ment of component technologies, design of application-
oriented (human-centric) interfaces, scalability with both 
high-performance computing and algorithm sophistication, 
synergy between different media like text, image, video, and 
audio, and utilization of user-generated web data like tagged 
images and videos.

Compared to such existing surveys, this paper conducts a 
survey taking a retrospective approach. By tracing the prog-
ress of LSMR from classical heuristic-based (or manual-
based) approaches to recent machine learning-based (or 
web-based) approaches, we detect missing links from the 
latter, which were addressed by the former. That is, recent 
approaches consider knowledge about human interpreta-
tion of semantic meanings only to a certain degree, while 
it was fully used in classical approaches. Then, we discuss 
three directions of human-machine cooperation. The first 
one, based on knowledge about the human visual system, 
implements the mechanism of how human brains process 
visual information. The second direction, based on knowl-
edge about human inference, effectively uses detectable 
semantic meanings (e.g., objects) to infer higher-level ones 
(e.g., events caused by objects’ interaction). The last direc-
tion, based on knowledge about human learning, adap-
tively controls components of LSMR methods in an inter-
active process. To sum up, this paper advocates a “return” 
to the classical approaches, but we also need to consider 
much larger and much more structured knowledge in the 
future of LSMR.

Finally, this paper complements another survey paper 
that we have recently published, taking the above-men-
tioned retrospective approach in the field of multimedia 
processing (Shirahama & Grzegorzek, 2014). In that sur-
vey, we realized that the development of human-machine 
cooperation requires interdisciplinary expertise such as 
cognitive science, neuroscience, and ontology engineering. 
Consequently, this paper aims to disseminate the problem 
of human-machine cooperation in LSMR to many research-
ers in different fields to stimulate interdisciplinary collabo-
rations. To this end, rather than covering various existing 

methods like Shirahama and Grzegorzek (2014), this paper 
concentrates on providing intuitive explanations of repre-
sentative methods. Specifically, the next section focuses on 
three types of popular machine-based LSMR methods: clas-
sical methods using heuristically defined templates, meth-
ods that build classifiers using user-provided examples, and 
their extension in terms of features and classifiers. The fol-
lowing section addresses three types of standard human-
based LSMR methods: classical methods based on manual 
annotation, their extension to the web-scale, and the most 
popular interactive methods based on user feedback. With 
respect to the material covered in these two sections, Shi-
rahama and Grzegorzek (2014) assume familiarity with 
multimedia processing, presenting various machine-based 
and human-based methods using only one figure. In con-
trast, this paper graphically elaborates core ideas of all these 
methods (except intuitive manual annotation methods). In 
the LSMR based on Human-Machine Cooperation section, 
we also graphically illustrate methods that include not only 
notable utilization of knowledge about human interpreta-
tion, but also fundamental elements to understand the other 
methods described in Shirahama and Grzegorzek (2014). In 
addition, considering the research in cognitive science, this 
section provides several new ideas to achieve novel human-
machine cooperation. Finally, readers can refer to Shirahama 
and Grzegorzek (2014) for diverse variants and extensions of 
methods described in this paper, and a detailed categoriza-
tion and history of LSMR methods.

MachIne-Based LsMr

This section surveys machine-based LSMR methods. We 
firstly review classical heuristic approaches, and then present 
current popular machine learning approaches. Finally, we 
discuss the insufficiency of machine-based LSMR to bridge 
the semantic gap.

Note that most of the discussion in this section focuses 
on video data, but it is rather straightforward to apply 
it to image data. Before this discussion, let us define shot 
and scene, which are basic terminologies in video process-
ing (Monaco, 1981). A shot is a sequence of video frames 
recorded continuously by a single camera. This is a basic 
physical unit where the content is spatially and temporally 
continuous. A scene is defined as a sequence of shots which 
are coherent to a certain semantic meaning such as location, 
action, or theme. For example, a conversation scene between 
two persons is presented by connecting a shot where one 
of the persons appears with a shot where the other person 
appears (see Figure 4). That is, scenes show higher-level 
semantic meanings than shots. In accordance with the defi-
nitions of shot and scene, we discuss machine-based LSMR 
methods below.
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heurIstIc approaches

Classical heuristic approaches utilize prior knowledge about 
contents and structures of specific videos. A general overview 
of heuristic approaches is illustrated in Figure 4, where the 
key idea is to prepare templates that individually character-
ize a certain semantic meaning. For example, a conversation 
scene is characterized by a sequence of shots, where shots 
showing one person alternate with shots showing another 
person. A home run scene in a baseball video is presented by a 
shot sequence, where the first shot is taken behind the pitcher, 
the second shot follows the ball, and the third shot shows 
the batter running. Furthermore, a shot showing an explo-
sion is marked by many white-colored pixels, a short dura-
tion, and a loud sound, because the explosion involves the 
flash, smoke, and explosive sound, and occurs in a moment. 
By preparing templates based on such prior knowledge, heu-
ristic approaches retrieve shots or scenes which match those 
templates. Thus, templates work as classifiers in Figure 2.

The main research topic of heuristic approaches is the 
preparation of templates. We explain this below by using 
three examples in Figure 4. First, persons do not move in 
most conversation scenes. Thus, shots where each person 
appears have similar features (i.e., these shots are visually 
similar), so a template for conversation scenes is defined as 
the alternation between two types of shots where each type is 
characterized by similar features (Yoshitaka, Ishii, Hirakawa, 
& Ichikawa, 1997; Zhai, Rasheed, & Shah, 2004). To improve 
the retrieval performance, face detection developed in Viola 
and Jones (2001) is used in Zhai et al. (2004). Second, a base-
ball video is taken by a small number of cameras located at 
certain places in the stadium. This means that shots captured 
by one camera have similar features, and can be easily distin-
guished from shots captured by other cameras. Based on this, 
Chang, Han, and Gong (2002) and Ando, Shonida, Furui, and 
Mochizuki (2006) modeled a template for home run scenes 

as a Hidden Markov Model (HMM), where each state repre-
sents the probability distribution of features of shots taken 
by a camera, and such states are connected with transition 
probabilities. This approach can be used to prepare templates 
for other scenes like hit, catch, and infield play scenes. Last, 
Shirahama, Otaka, and Uehara (2007) represented a tem-
plate for explosions as a logical conjunction of characteristic 
features regarding color, shot duration, and sound volume.

The aforementioned heuristic approaches can only pro-
cess a limited number of a priori known queries. In contrast, 
users issue a variety of queries that cannot be assumed in 
advance. To overcome this, some research effort has been 
made on video data mining, where videos are analyzed using 
data mining techniques that extract previously unknown, 
interesting patterns in underlying data (Shirahama et al., 
2006). This enables us to extract patterns for retrieving shots 
and scenes showing a variety of semantic meanings. We have 
developed a method that extracts sequential patterns for 
associating adjacent shots related to a certain meaning (Shi-
rahama et al., 2006). Such sequential patterns are extracted 
by connecting statistically correlated features in temporally 
close shots. However, the extraction of sequential patterns 
is computationally expensive because numerous sequences 
of features have to be examined as candidates for patterns. 
Hence, time constraints, called “semantic event bound-
ary” and “temporal locality,” are adopted to eliminate many 
semantically irrelevant sequences of features. Our video data 
mining method extracted 16 patterns characterizing battle, 
hunting, explosion, indoor, outdoor, and so on (Shirahama 
et al., 2007).

However, heuristic approaches intrinsically have two 
critical problems. First, even using video data mining, it is 
practically impossible to prepare all patterns (templates) that 
can respond to a variety of queries issued by users. Second, 
templates which are defined by targeting specific videos lack 

      Figure 4. A general overview of heuristic approaches.



docs.lib.purdue.edu/jps  2015 | Volume 8

K. Shirahama, M. Grzegorzek, & B. Indurkhya Human-Machine Cooperation in LSMR

41

the generality. For example, all conversation scenes are not 
necessarily presented by the alternation between two types 
of visually similar shots in Figure 4. In addition, the tem-
plate for home run scenes in Figure 4 targets baseball vid-
eos created by professional editors, but videos created by 
amateurs express these scenes in different forms. Moreover, 
other meanings may be displayed in shots that contain fea-
tures represented by the template for explosions (e.g., these 
features are contained in shots showing snow and involving 
background music). Like this, predefined templates are not 
so useful for large-scale video data including various genres 
of videos. Thus, the research focus was shifted to machine 
learning approaches as described in the next section. For 
the first problem, these approaches construct a classifier on 
the fly, every time a query is issued by a user. The second 
problem can be alleviated by devising sophisticated features 
that have high discrimination powers as well as robustness to 
changes in visual appearances.

MachIne LearnIng approaches

Machine learning is a technique to construct a classifier 
using training examples, which are already labeled with 
classes, and predict classes of unknown test examples. This 
is applied to LSMR as Query By Example (QBE) (also called 
content-based retrieval) (Izquierdo, Chandramouli, Grze-
gorzek, & Piatrik, 2007; Petkovic & Jonker, 2002), where a 
user provides some examples to represent a query. That is, 
these are training examples labeled as relevant to the query. 
Then, a classifier is built to examine whether examples in the 
database (i.e., test examples) are relevant or irrelevant to the 
query. It should be noted that we consider QBE as a general 
approach that can be used for any example. Here, features 
are extracted directly from the example by applying physical 

metrics or mathematical transformations to pixels or audio 
signals. In other words, we do not consider approaches that 
use features obtained from external resources like closed 
captions, transcripts, and web documents, because they are 
available only for limited examples. (See Yan and Hauptmann 
(2007) for approaches based on external text resources.) Fur-
thermore, QBE considered in this section is triggered only 
by a query represented with examples, and does not use any 
keyword query. In the Ontological Approaches section, we 
will present an approach that can be regarded as an extension 
of QBE and accepts a multimodal query specification by a 
combination of examples and keywords.

Figure 5 illustrates an overview of QBE where three exam-
ples are given for the query, “a person appears with a com-
puter.” Note that this textual description of the query is just 
a label for the sake of explanation, and only user-provided 
examples are used in QBE. From each example, features are 
extracted and organized into a vector. That is, the example 
is located in the multidimensional space as depicted by the 
arrows connected to the blue points in Figure 5. Similarly, 
test examples are represented as points in this multidimen-
sional space, like white points in Figure 5. Under this setting, 
a classifier is constructed to distinguish test examples rele-
vant to the query from the others. Intuitively, QBE retrieves 
test examples that are similar to training ones in terms of 
features, by assuming that examples with similar features dis-
play the same or similar semantic meanings.

Classical QBE methods use a nearest neighbor classi-
fier that considers the similarity between training and test 
examples. More concretely, in Figure 5, test examples within 
the dashed circles are regarded as relevant to the query and 
retrieved. These kinds of classical QBE methods have been 
studied by assiduously addressing the following two research 

Figure 5. A general overview of Query By Example (QBE).
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topics. The first is the development of good similarity mea-
sures between training and test examples. Many similarity 
measures such as a histogram-based measure (Jain, Vailaya, 
& Wei, 1999), psychology-based measure (Liu, Zhuang, & 
Pan, 1999), a measure based on weighted graph matching 
(Peng & Ngo, 2005), and a measure based on longest com-
mon subsequence (LCS) (Kim & Chua, 2005) have been 
developed. The other topic is the speed-up of the similarity 
calculation. For example, Kashino, Kurozumi, and Murase 
(2003) developed a method that avoids unnecessary similar-
ity calculation by estimating the upper bound of similarity, 
and Yuan, Tian, and Ranganath (2004) devised a two-phase 
hierarchical method that first computes a coarse similarity 
on subsampled video frames, and then verifies the similarity 
using fine audio features.

However, classical QBE methods cannot achieve a sat-
isfying retrieval accuracy. One reason is the weakness of 
global features, which are extracted from the whole region 
of an example. In other words, they only express overall 
characteristics of an example. As an example of global fea-
tures, Figure 6 shows a color feature indicating the distribu-
tion of colors included in the example. This kind of overall 
representation loses a lot of information in an example. For 
instance, from the color feature in Figure 6, appearances of 
the car, road, and vegetation cannot be deduced any more. In 
addition, the overall characteristic of an example can easily 
change depending on camera techniques and shooting envi-
ronments. For instance, the color feature of the example in 
Figure 6 changes substantially if it is taken in a brighter or 
darker lighting condition.

To overcome the weakness of global features, Schmid and 
Mohr (1997) proposed to represent an example as a collec-
tion of local features, each of which is extracted from a local 
region of the example. The top right of Figure 6 illustrates 
local features extracted from local regions, circled in yellow. 
In addition, Lowe (1999) developed a local feature called 
Scale-Invariant Feature Transform (SIFT), which represents 
the shape in a local region, reasonably invariant with respect 

to changes in illumination, rotation, scaling, and viewpoint. 
By extracting a large number of such local features from an 
example, we can ensure that at least some of them represent 
characteristic regions of a meaning. More specifically, even if 
the car in Figure 6 is partially masked by other objects, local 
features that characterize a wheel, window, or headlight are 
extracted from the visible part of the car.

Based on local features, Csurka, Bray, Dance, Fan, and Wil-
liamowski (2004) developed a simple and effective example 
representation called Bag of Visual Words (BoVW), where 
each example is represented as the collection of characteris-
tic local features, called visual words. In BoVW, millions of 
local features are first grouped into clusters where each clus-
ter center is a visual word representing a characteristic local 
region. Then, each local feature extracted from an example is 
assigned to the most similar visual word. As a result, as seen 
from the bottom right of Figure 6, the example is represented 
as a vector (histogram) where each dimension represents the 
frequency of a visual word. This way, the example is sum-
marized into a single vector where the detailed information 
is maintained by visual words (local features) that are robust 
with respect to varied visual appearances. The effectiveness 
of BoVW has been validated by many researchers (Csurka 
et al., 2004; Sande, Gevers, & Snoek, 2010; Jiang, Yang, Ngo, 
& Hauptmann, 2010; Shirahama, Matsuoka, & Uehara, 2012; 
Zhang, Marszalek, Lazebnik, & Schmid, 2007).

Another reason for the unsatisfactory performance 
of classical QBE methods is the insufficiency of training 
examples. A classification boundary between relevant and 
irrelevant examples to a query is supported only by training 
examples labeled as relevant (i.e., user-provided examples) 
(Juszczak & Duin, 2003). Below, for simplicity, we call these 
training examples positive examples because they serve as 
representatives of relevant examples to the query. Classical 
QBE methods just extract dense regions of positive exam-
ples in the multidimensional space. This requires a large 
number of positive examples to accurately shape regions of 
relevant examples to the query, but it is impractical for a 
user to provide many positive examples. Therefore, negative 
examples, which serve as representatives of irrelevant exam-
ples to the query, should also be used in QBE. Li and Snoek 
(2009) present that classifiers using both positive and nega-
tive examples are considerably superior to the ones only 
using positive examples.

However, a huge number of diverse examples can be nega-
tive because they only have to be irrelevant to a query. Thus, 
providing such negative examples is difficult for a user. With 
respect to this, Natsev, Naphade, and Tešić (2005) assumed 
that only a small number of examples in the database are rel-
evant to the query, and all the others are irrelevant. Based on 
this, they proposed an approach that selects negative exam-
ples as randomly sampled examples because almost all of 

Figure 6. A comparison between a global feature and a local 
feature.
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them should be irrelevant to the query. This approach works 
reasonably well and has been utilized in many existing meth-
ods (Ngo et al., 2009; Snoek et al., 2009).

Using positive and negative examples, Natsev et al. (2005) 
proposed a QBE method that uses a Support Vector Machine 
(SVM) as a classifier. The SVM constructs a classification 
boundary based on the “margin maximization” principle so 
that it is placed in the middle between positive and nega-
tive examples. In other words, the distance (margin) of the 
boundary to the nearest positive (or negative) example is 
maximized (Vapnik, 1998). Figure 5 illustrates this mar-
gin maximization in the same multidimensional space to 
the nearest neighbor classifier. Here, in addition to three 
positive examples represented by blue points, four negative 
examples are selected as marked by red triangles. With the 
margin maximization, the classification boundary depicted 
by the dashed line is extracted by considering locations of 
three positive and three negative examples associated with 
arrows (one negative example is regarded as unnecessary). 
This “moderate” boundary, which is biased toward neither 
positive nor negative examples, is suitable for BoVW. Spe-
cifically, many visual words (i.e., thousands of visual words) 
are required to maintain the discrimination power of BoVW. 
That is, an example is represented as a high-dimensional 
vector. This renders the nearest neighbor classifier ineffec-
tive because of many irrelevant dimensions to similarity cal-
culation. In contrast, the margin maximization makes the 
generalization error of an SVM independent of the number 
of dimensions, if this number is sufficiently large (Vapnik, 
1998). Actually, SVMs have been successfully applied to 
BoVW with thousands of dimensions (Csurka et al., 2004; 
Jiang et al., 2010; Sande et al., 2010; Shirahama et al., 2012).

Note that any feature or classifier can be used in the frame-
work of QBE in Figure 5. (See Jiang et al. (2013) for various 
global, local and audio features, and extensions of BoVW.) 
Regarding classifiers, although researchers have proposed 
many classifiers like tree-type classifiers, probabilistic classi-
fiers and ensemble of classifiers (Bhatt & Kankanhalli, 2011; 
Jiang et al., 2013), SVM is currently considered as a standard 
classifier because of its simplicity and widely proven perfor-
mance (Jiang et al., 2013; Snoek & Worring, 2009).

Below, we discuss machine learning approaches in object 
recognition on large-scale data. This can be formulated in 
the same way to QBE. That is, a classifier is built using posi-
tive and negative examples annotated with the presence or 
absence of a certain object, and is then used to distinguish test 
examples where this object appears from the rest of the test 
examples. However, object recognition needs to be performed 
on the “category level.” (To be precise, this is called generic 
object recognition. In contrast, specific object recognition is the 
task of identifying the same instance of an object in different 
examples. Please refer to Grauman and Liebe (2011) for details 

of generic and specific object recognitions.) Although local 
features are useful for managing diverse visual appearances 
associated with the same or similar instances of the object, 
instances with significantly different appearances are included 
in the same object category. Taking Figure 3 (a) as an example, 
all the saloon cars, buses, and trucks should be recognized as 
cars. Regarding this, a classifier can conduct accurate recogni-
tion on test examples where instances of an object are similar 
to those in training examples. But recognition is not accurate 
on test examples where instances have significantly different 
characteristics from those in training examples. Thus, a large 
number of training examples are required to address the diver-
sity attributed to the difference in instance types of an object. 
In general, the recognition performance is proportional to 
the logarithm of the number of positive examples, although 
each object has its own complexity of recognition (Naph-
ade & Smith, 2004). This means that ten times more positive 
examples improve the performance by 10%. Considering the 
importance of the number of training examples, online sys-
tems for efficiently collecting large-scale training data have 
been developed where users on the web collaboratively anno-
tate a large number of examples as positive or negative (Ayache 
& Quénot, 2008; Volkmer, Smith, & Natsev, 2005).

Another important issue for object recognition is the 
question of how to sample local features. In general, local 
feature extraction consists of two modules, region detector 
and region descriptor (Zhang et al., 2007). The former detects 
regions useful for characterizing objects, and the latter rep-
resents each of the detected regions as a vector. For example, 
SIFT features are typically extracted using a Harris-laplace 
(or Harris-affine) detector to identify regions where pixel 
values largely change in multiple directions. Such regions are 
regarded as useful for characterizing local shapes of objects, 
like corners of buildings, vehicles, and human eyes. Then, 
each detected region is described as a 128-dimensional vec-
tor representing the distribution of edge orientations. How-
ever, an object is shown in significantly different regions, and 
in videos, it does not necessarily appear in all video frames. 
Considering this “uncertainty” of object appearances, it is 
necessary to extract the BoVW representation of an exam-
ple by exhaustively sampling local features in both the spa-
tial and temporal dimensions. Actually, the performance is 
improved as the number of sampled local features increases 
(Nowak, Jurie, & Triggs, 2006). In addition, Snoek, Worring, 
Geusebroek, Koelma, and Senstra (2005) compared two 
methods. One extracts features only from one video frame in 
each shot (one shot contains more than 60 frames), and the 
other extracts features every 15 frames. They found out that 
the latter exceeds the former by 7.5 to 38.8%.

However, it requires expensive computational costs to 
process a large number of training examples and exhaustively 
sampled local features. So far, many methods for reducing 
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these computational costs have been developed based on 
special hardware like computer cluster (Yan, Fleury, Mer-
ler, Natsev, & Smith, 2009) and General-Purpose comput-
ing on Graphics Processing Units (GPGPU) (Sande, Gevers, 
& Snoek, 2011), or based on algorithm sophistication with 
sub-problem decomposition (Fan, Chen, & Lin, 2005) and 
tree structures (Inoue & Shinoda, 2012). In this context, we 
utilized matrix operations to develop a fast SVM training 
and test method, and a fast probabilistic BoVW extraction 
method (Shirahama & Uehara, 2012). The former reformu-
lates similarity computation, which enables batch computa-
tion of similarities among many examples. The latter refor-
mulates probability density computation, so that probability 
densities for many local features can be computed in a batch. 
Based on these, SVM training and test and BoVW extraction 
become about 10–37 and 5–7 times faster than the normal 
implementation, respectively. By processing a large number 
of training examples and exhaustively sampled local features 
using these methods, we achieved the highest performance 
in the TRECVID 2012 Semantic Indexing (light) task, which 
is one of the most famous worldwide competitions on object 
recognition (Shirahama & Uehara, 2012).

dIscussIon

We have reviewed machine-based LSMR methods by put-
ting them into heuristic and machine learning approaches. 
The above discussion reveals that, despite much research 
effort invested in machine learning approaches, the underly-
ing framework remains the same. That is, a classifier is built 
by statistically analyzing locations of training examples in a 
multidimensional space defined by features. One main rea-
son why this framework is favored is that researchers priori-
tize the generality and scalability, so that the same method 
can be used to search large-scale data for a variety of queries. 
However, we claim that this framework is limited because 
real-world examples are “unconstrained” in the sense that 
they can be taken by arbitrary camera techniques, and in 
arbitrary shooting environments (Jiang et al., 2013). Thus, 
a certain semantic meaning can be potentially associated 
with an infinite number of visual appearances that cannot 
be encompassed by training examples, even if they are pro-
vided in abundance as in object recognition. In other words, 
humans do not rely on a large number of training examples 
to interpret semantic meanings. Like this, the mechanism of 
recent LSMR methods prioritizing the generality and scal-
ability has become completely different from the mechanism 
of human’s semantic meaning interpretation.

By considering the chronological transition from heuris-
tic to machine learning approaches, we can find that knowl-
edge about human interpretation was utilized in the former, 
but was left out in the latter. With respect to this, the biggest 
disadvantage of heuristic approaches is that knowledge is 

represented just as a list of predefined templates. This clearly 
limits the generality to apply heuristic approaches to a vari-
ety of semantic meanings. In other words, each template is 
useful only for one meaning. Instead, we stress the neces-
sity of knowledge that describes some “general” mechanism 
of how humans interpret semantic meanings. By utilizing 
such knowledge at the algorithm level in machine-based 
approaches, we expect that it is possible to achieve LSMR 
based on human interpretation without sacrificing the gen-
erality. We will discuss this in the LSMR based on Human-
Machine Cooperation section.

huMan-Based LsMr

This section first presents LSMR methods based on manual 
annotation of multimedia data. Then, we review approaches 
that enable users to interactively refine retrieval results. 
Finally, we discuss the problems of manual annotation and 
interactive approaches.

ManuaL annotatIon approaches

These manual annotation approaches search over examples 
manually annotated with text descriptions. In the early years, 
this topic was investigated as a database problem to flexibly 
respond to various queries. In particular, video retrieval 
based on manual annotation was explored by addressing the 
following three issues (Tanaka, Ariki, & Uehara, 1999):

1. Identification of meaningful segments: Videos 
are known as continuous media where sequences 
of media quanta (i.e., video frames and audio 
samples) convey semantic meanings when con-
tinuously played over time (Gemmell, Vin, Kand-
lur, Rangan, & Rowe, 1995). Due to this temporal 
continuity, any segment of a video can become a 
meaningful unit.

2. Annotation that should be provided: A video 
contains many meanings ranging from primitive 
ones like color and shape to deep ones like story 
and event. It is difficult to annotate the video with 
all the semantic meanings contained in it.

3. Discrepancy between annotation and user expec-
tation: This focuses on segments that are annotated 
and segments that are expected to be retrieved by 
users. Let us consider the query “person A and 
person B are talking to each other.” One intuitive 
answer to this query is a shot that is annotated with 
both A’s and B’s presences. However, a sequence of 
shots can be another answer where shots annotated 
only with A’s presence and shots annotated only 
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with B’s presence are repeated one after the other. 
Thus, dynamic organization of annotated shots (seg-
ments) is required to correctly respond to queries.

In accordance with these issues, Oomoto and Tanaka (1993) 
developed Object-Oriented Video Information Database 
(OVID) where a segment and text descriptions are regarded 
as a video object and attribute values, respectively. Such attri-
bute values of a video object are inherited by another object 
based on their temporal inclusion relationship. This way, text 
descriptions are shared among video objects so that manual 
annotation effort is significantly reduced. Uehara, Oe, and 
Maehara (1996) proposed an approach that represents the 
story of a video using a binary tree, called a story graph. In 
this graph, each node represents the relation (e.g., sequen-
tial, physically causal, and psychologically causal) between 
two successive segments, and edges are labeled with seman-
tic constraints. This enables users to retrieve arbitrary-length 
scenes specified by natural language, and retrieve causes or 
consequences of queries based on causal relationships.

Pattanasri, Chatvichienchai, and Tanaka (2005) developed 
a video retrieval method using a knowledge base (ontology) 
about contexts. This knowledge base represents relationships 
among verbs, such as “kill” implies “die.” Thereby, video seg-
ments that are related in terms of causes and effects of per-
son’s actions can be linked together and retrieved as a whole. 
François, Nevatia, Hobbs, Bolles, and Smith (2005) devel-
oped an extensible and hierarchical framework for represent-
ing events in videos. Here, complex events are constructed 
from simpler events by operations, such as sequencing, itera-
tion, and alternation, which are defined in a knowledge base. 
Like this, various complex events can be defined only using 
relatively few primitive events.

Since manual annotation is a laborious task, the afore-
mentioned approaches have the limitation in the scalability 
for large-scale data. Thus, they have been extended by dis-
tributing manual annotation of large-scale multimedia data 
to many users on the web. The following two issues are cru-
cial for devising this web-based annotation:

1. Usability: This means whether users can easily 
annotate multimedia data or not. If this is insuf-
ficient, it cannot be expected that many users par-
ticipate in annotation.

2. Annotation quality: When utilizing unfamiliar 
users on the web, meaningless annotation may be 
provided by malicious users or operation mistakes. 
In addition, different descriptions may be anno-
tated to indicate the same meaning. For example, 
one user may annotate an example showing a car 
with the description “car,” while it may be anno-
tated with “automobile” by another user.

Considering these issues, Volkmer et al. (2005) developed 
a system for annotating a large number of shots with objects’ 
presences or absences. To improve the usability, users are 
allowed to customize their annotation styles, such as the num-
ber, size, and layout of shots displayed per page, using mouse 
and/or keyboard, and annotating one or more objects at a 
time. In addition, the system informs the user how difficult 
the annotation of each object is based on the disagreement 
in past annotations by different users, so that the annotation 
quality is improved. Ayache and Quénot (2008) extended this 
system by combining manual annotation with shot selection 
based on active learning. Here, shots for which the recogni-
tion by the classifier of an object is the most uncertain are 
preferentially annotated by users. In other words, it is redun-
dant to annotate shots for which the recognition seems con-
fident, so that annotation cost can be significantly reduced. 
Russell, Torralba, Murphy, and Freeman (2008) developed 
LabelMe, a web-based system for annotating object regions 
in images. Given an image, a user labels an object region by 
creating a polygonal region by mouse, then types the object 
name. To improve the usability and maintain the annotation 
quality, the researchers considered several extensions, such 
as the lexical knowledge base (WordNet) for expanding and 
disambiguating freely typed object names, and the object 
relation for suggesting candidate objects where their regions 
frequently overlap a user-specified region.

Web-based annotation approaches described above have 
been further enhanced by considering the motivation of 
users. That is, regular users on the web are unlikely to vol-
unteer to annotate when no benefit or no reason is given. 
To overcome this, Ahn and Dabbish (2004, 2008) proposed 
a Games With a Purpose (GWAP) approach where users 
play a game, and as a side effect, a computationally difficult 
task is solved. More concretely, users play a fun game with-
out knowing that they conduct image annotation. Based on 
this idea, an ESP game is developed where randomly paired 
users are first given the same image, then each user guesses a 
label that another user is likely to provide (Ahn & Dabbish, 
2004, 2008). If labels provided by both users agree, they get 
a certain number of points, and the next image is given. This 
way, users are encouraged to get more points and play the 
ESP game many times. Since users know nothing and can-
not communicate with each other, the easiest way for them 
to earn points is to provide labels relevant to given images. 
Thus, annotations obtained by the ESP game are likely to be 
meaningful. The quality of annotation is further improved 
using taboo words that users are not allowed to type. As of 
July 2008, 200,000 users contributed to assigning more than 
50 million labels to images on the web (Ahn & Dabbish, 
2008). Several variants of the ESP game have been devel-
oped, such as games for object region annotations (Ahn, Liu, 
& Blum, 2006; Steggink & Snoek, 2011), video annotation 
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(Zwol, Garcia, Ramirez, Sigurbjornsson, & Labad, 2008), 
music annotation (Barrington, O’Malley, Turnbull, & Lanck-
riet, 2009) and geographically referenced photo annotation 
for landmark objects (Bell et al., 2009).

Another web-based annotation approach that motivates 
users is crowdsourcing which outsources problems per-
formed by designated human (employee) to users on the 
web (Quinn & Bederson, 2011). In the field of multimedia 
processing, one of the most famous crowdsourcing systems 
is Amazon’s Mechanical Turk, where anyone can post small 
tasks and specify prices paid for completing them (Kittur, 
Chi, & Suh, 2008). For example, Deng et al. (2009) used this 
to annotate 3.2 million images in terms of presences of 5,247 
objects.

InteractIve approaches

We now focus on interactive approaches where a user itera-
tively refines the performance based on the current retrieval 
result. Interactive approaches are needed because of the user 
individuality, which means that even for the same query, dif-
ferent users may be interested in different examples (Zhou 
and Huang 2003). For example, for the query “horse,” one 
user may look for examples showing “adult horse,” while 
another may look for examples showing “child horse.” In 
addition, it is often difficult for a user to precisely express 
his/her intent because of the poor lexical vocabulary or the 
lack of proper positive examples for QBE. For example, when 
the user wants to search for a specific model of a Porsche car, 
it often happens that he/she does not know the model name. 
Only specifying the keyword “Porsche” leads to retrieve 
examples showing different models. In the case of QBE, if 
a user queries a database for Barack Obama using a positive 
example showing him in front of a car, the retrieval result 
will contain not only examples where he appears, but also 
examples showing different cars. This is called the intention 
gap, which is the discrepancy between the user’s search intent 
and the query specified by him/her (Zha et al,. 2010). Thus, 
the interactive refinement of retrieval results is necessary to 
overcome the user individuality and intention gap.

One of the most popular interactive approaches is Rele-
vance Feedback (RF), which asks a user to provide feedback 
regarding the relevance or irrelevance of currently retrieved 
examples (Zhou & Huang, 2003). Using these newly anno-
tated examples, the current classifier is refined. RF is closely 
related to active learning to select the most informative 
examples for improving the performance of a classifier, and 
asks the user to annotate them (Wang & Hua, 2011). Such RF 
(or active learning) methods enable us to achieve accurate 
retrieval with reduced manual annotation effort.

Figure 7 illustrates a typical RF based on an SVM. For 
the query “flowers,” Figure 7 (a) shows a retrieval result 
where blue circles and red triangles are positive and 

negative examples to obtain the SVM’s classification bound-
ary depicted by the dashed line (see the Machine Learning 
Approaches section for the detail of SVM-based retrieval). 
Among test examples represented by circles, the ones in the 
left side of the boundary are currently retrieved. It is intui-
tive that the classification of the SVM is the most uncertain 
for the test example closest to the boundary (Tong & Chang, 
2001; Wang & Hua, 2011). In Figure 7 (a), such a test exam-
ple is indicated together with the image, which has the visual 
appearance like flowers, but does not show them. This test 
example is presented to the user and is annotated as negative. 
Using this as an additional training example, the boundary 
of the SVM is modified as shown in Figure 7 (b). Like this, 
the SVM is efficiently refined by asking the user to annotate 
the most uncertain test example. In other words, examples 
far from the boundary are regarded as being reasonably clas-
sified, thus labeling them is redundant. (See Wang and Hua 
(2011) and Shirahama and Grzegorzek (2014) for other types 
of RF approaches.)

dIscussIon

We have reviewed two types of human-based LSMR: manual 
annotation and interactive approaches. The development of 
the former has both the strength and weakness. Compared 
to classical manual annotation approaches, recent web-based 
approaches are much more scalable for annotating large-
scale data. However, the latter cannot offer flexible retrieval 
based on scenes and causal relations, while this was sup-
ported by the former based on annotation of deep seman-
tic meanings. That is, recent web-based approaches have to 
make annotation simple in order to maintain the usability. 
In addition, GWAP approaches have a drawback in which 
users tend to maximize their scores, so collected descriptions 
only represent general properties of examples (e.g., color and 
shape) (Gupta, Li, Yin, & Han, 2010). Also, crowdsourcing 
requires huge monetary cost. To the best of our knowledge, 
web-based approaches only support annotation of primitive 

Figure 7. An illustration of Relevance Feedback (RF) based 
on an SVM.
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semantic meanings like objects, and do not support annota-
tion of deep ones like scenes and causal relationships. This 
chronological transition of manual annotation approaches 
is similar to the one of machine-based approaches, where 
knowledge about human interpretation used in classical 
approaches was left out in recent ones prioritizing the gener-
ality and scalability for large-scale data.

It should be noted that all the manual annotation 
approaches leave the most difficult tasks (i.e., interpretation 
of semantic meanings) to humans, and do not contribute 
to bridging the semantic gap. However, they have impor-
tant roles in LSMR research. First, annotation obtained by 
web-based approaches such as those by Ayache and Quénot 
(2008), Deng et al. (2009), and Russakovsky et al. (2014) 
are recently used as training examples in machine learning 
approaches for object recognition. In addition, the final goal 
of human-machine cooperation, discussed in the next sec-
tion, is to achieve automatic annotation of deep semantic 
meanings used in classical approaches.

Finally, interactive (RF) approaches somehow improve 
the retrieval performance using newly annotated examples 
as additional training examples. However, features and clas-
sifiers are substantially the same as those in machine learn-
ing approaches. In other words, interactive approaches just 
tune parameters of machine learning approaches. Instead, 
we argue that interactive approaches need to iteratively refine 
features and classifiers that are currently insufficient for rep-
resenting complex semantic meanings. In the next section, 
we will discuss these approaches based on knowledge about 
human learning.

LsMr Based on huMan-MachIne cooperatIon

In this section, we discuss human-machine cooperation 
methods by putting them into three categories: cognitive, 
ontological, and adaptive. We relate these categories as illus-
trated in Figure 8. First, cognitive methods utilize knowl-
edge about the human visual system, where functional-
ities of the human brain are modeled to detect primitive 
semantic meanings like objects, and concepts defined in the 
Ontological Approaches section. The arrow (1) in Figure 8 
represents that ontological methods using knowledge about 
human inference detect high-level semantic meanings based 
on relations of primitive ones detected by cognitive meth-
ods. On the other hand, the arrow (2) indicates that these 
relations can be used to validate and refine detection results 
by cognitive methods. The two arrows marked with (3) in 
Figure 8 present that adaptive methods based on knowledge 
about human learning take as input the information of fea-
tures and classifiers in cognitive and ontological methods 
(metalevel features defined in the Adaptive Approaches sec-
tion). The arrows denoted by (4) indicate that these features 

and classifiers are adaptively refined based on user feed-
back. Below, for each of the categories, we firstly describe 
the existing methods and then discuss how to extend them 
in the future.

cognItIve approaches

Existing Approaches. Cognitive science is an interdisciplin-
ary study of mind and intelligence in order to theoretically 
explain how the human mind (thinking) works (Ogiela & 
Tadeusiewicz, 2010; Pizlo, 2010, 2014). In other words, cog-
nitive science tries to grasp the complex human mind by 
utilizing methods in different research fields, such as phi-
losophy, psychology, artificial intelligence, neuroscience, 
linguistics, and anthropology. In particular, owing to psy-
chological and neurological experiments, the human visual 
system is intensively investigated from the “sensation” pro-
cess, which transduces the light (stimulus) received by the 
eye into neural signals, to the “perception” process, which 
translates neural signals into meanings. Thus, incorporating 
methods and knowledge in cognitive science into LSMR is 
beneficial for bridging the semantic gap.

When recognizing an object, humans are known to use 
two processes, bottom-up and top-down. The former process 
is driven by stimuli acquired from the external environment. 
More specifically, the bottom-up process starts with group-
ing visual attributes (e.g., color, brightness, and texture) in 
examples to form homogeneous regions. Typically, this does 
not provide an accurate result where the entire region of the 
object is fragmented into small regions due to various chang-
ing factors, such as camera technique, lighting condition, 
object shape deformation, and occlusion. On the other hand, 
the top-down process is driven by prior knowledge and 
expectations in the mind. An example of prior knowledge 
is the contour of the object. In addition, it has been empiri-
cally proven that humans use the symmetrical property of 
an object as prior knowledge, so that the 3D shape of this 
object can be efficiently recovered from its 2D appearance 

Figure 8. An illustration of the relation among cognitive, on-
tological, and adaptive approaches.
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in an image (Pizlo, 2014). However, the top-down process is 
difficult to conduct under the condition where the appear-
ance of the object is vague due to various changing factors. 
Therefore, an intermediate representation is necessary for 
mediating the bottom-up and top-down processes. This not 
only represents the arrangement of fragmented regions for 
the bottom-up process, but also defines possible transforma-
tions of the object for the top-down process (Kimia, 2003).

One of many promising intermediate representations is 
skeletonization, where the skeleton of an object is extracted 
as a one-dimensional line representation, like the red line in 
Figure 9. The skeleton is formed by points that have at least 
two closest points on the object boundary (Cornea, Silver, & 
Min, 2007; Kimia, 2003). Green circles in Figure 9 illustrate 
that these points are centers of circles that are maximally 
inscribed within the boundary. Then, parts of the object are 
defined by skeleton branches, each of which is a line seg-
ment with no branch to multiple directions. Such parts can 
be consistently observed for different appearances of the 
object so they are useful for assembling fragmented regions 
in the bottom-up process. In addition, different configura-
tions of parts represent various appearances of the object, 
and support the top-down process. Kimia (2003) presented 
the validity of skeletons from the psychophysical and neu-
rophysiological perspectives. Also, researchers are exploring 
methods that recognize objects by appropriately matching 
parts of their skeletons (Bai & Latecki, 2008; Feinen, Yang, 
Tiebe, & Grzegorzek, 2014). Furthermore, these methods 
are being extended to realistic images with cluttered back-
grounds, where an object is detected by applying contours of 
its parts to edges extracted for an image (Bai, Wang, Latecki, 
Liu, & Tu, 2009).

Traditional features are “hand-crafted” or “human-
crafted” in the sense that their representations are specified 
in advance (Bengio, 2009). For instance, a SIFT feature is 
described as a 128-dimensional vector where each dimen-
sion represents the frequency of a certain edge orientation 
in a local region. However, such a hand-crafted feature is 

insufficient for representing diverse object appearances. 
This is because all of these appearances cannot be assumed 
in advance and cannot be appropriately represented by the 
feature. In the human brain, objects are recognized in a hier-
archical fashion, where simple cells are gradually combined 
into more abstract, complex cells (Kruger et al., 2013). This 
hierarchical brain functionality is recently implemented as 
deep learning that constructs a feature hierarchy with higher-
level features formed by the composition of lower-level fea-
tures (Bengio, 2009; Bengio, Courville, & Vincent, 2013). 
Such a feature hierarchy is represented as a multilayer neural 
network. In every layer, each of the artificial neurons com-
poses a more abstract feature based on outputs of neurons at 
the previous layer.

Figure 10 shows a conceptual comparison between a tra-
ditional machine learning approach using a hand-crafted 
feature and a deep learning approach. The former, in Figure 
10 (a), uses a “shallow architecture” consisting of two layers, 
where the first layer transforms an example into a feature rep-
resented by a high-dimensional vector, and the second layer 
aggregates values of this feature into a detection result of a 
meaning. On the other hand, the deep learning in Figure 10 
(b) first projects an example into the most primitive features 
at the bottom layer, and then these features are projected into 
more abstract ones at the second layer. This abstraction of 
features is iterated to obtain a detection result of a mean-
ing. For examples, features at the bottom and second layers 
correspond to typical edges and their combinations, respec-
tively. Moreover, features at an upper layer represent parts 
of a car, and the ones at the top layer indicate the whole car. 
Like this, the workflow from processing pixels to recogniz-
ing a meaning is unified into a deep architecture, which is 
extracted from large-scale data. One of the biggest advan-
tages of this deep architecture is its discrimination power 
compared to the shallow one in the traditional machine 
learning approach. The latter requires )(NO  parameters to 
distinguish )(NO  examples, while the former can represent 
up to )2( NO  examples using only )(NO  parameters (Ben-
gio et al., 2013). Intuitively, a huge first layer is required for 
the traditional approach to discriminate diverse examples. In 
contrast, the discrimination power of the deep architecture 
is exponentially increased based on the combination of fea-
tures at two consecutive layers.

For a long time, building such a deep architecture with a 
satisfying performance was difficult, but Hinton, Osindero, 
and Teh (2006) have developed an algorithm for reasonably 
solving this problem. The algorithm greedily builds one layer 
at a time so that outputs of the previous layer can be recon-
structed with the minimal error rate. Using this as initializa-
tion, the deep architecture is finely tuned with training exam-
ples. In several worldwide competitions on image, video, 
and audio classification, the performance of deep learning Figure 9. An illustration of skeletonization.
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methods has been proven to be much higher than traditional 
machine learning methods (Krizhevsky, Sutskever, & Hin-
ton, 2012; Lee, Pham, Largman, & Ng, 2009). Furthermore, 
in the field of neuroscience, it is well known that neurons 
encode sensory information using only 1–4% of active neu-
rons (Bengio, 2009; Bengio et al., 2013). This idea is imple-
mented as sparse coding and incorporated into deep learn-
ing by penalizing the output of each neuron.

Selective attention is the brain’s mechanism that deter-
mines which part of sensory data is currently of most inter-
est (Frintrop, Rome, & Christensen, 2010; Borji & Itti, 2013). 
This enables humans to conduct real-time decision-making 
by closely analyzing selected parts in a large amount of sen-
sory data, such as sights and sounds captured by eyes and 
ears. Visual attention (also called focus of attention) imple-
ments selective attention on images and videos, that is, it 
detects salient regions that are likely to attract users (Frintrop 
et al., 2010; Borji & Itti, 2013). A detection result of such a 
salient region is usually represented as a saliency map, which 
represents the saliency of each pixel in an example. Figure 11 
shows two examples of saliency maps where pixels associated 
with higher saliencies are depicted as brighter. It can be seen 
that the examples in Figure 11 (a) and (b) are appropriately 
associated with salient regions where a car and a person are 
shown, respectively. Since non-salient regions can be consid-
ered as irrelevant and redundant for interpreting semantic 

meanings, visual attention is useful for not only improving 
the retrieval performance, but also reducing the computa-
tional cost.

In addition, visual attention facilitates analyzing the 
subjective property of examples. There is a big discrepancy 
between the goal of object recognition and that of retrieval. 
The former aims to recognize objects irrespective of various 
changing factors, such as directions, rotations, sizes, light-
ing conditions, and occlusion. However, this goal does not 

Figure 10. A conceptual comparison between traditional machine learning and deep learning approaches.

Figure 11. Examples of saliency maps.
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fit user needs in retrieval. Let us consider a user retrieving 
examples where cars are shown. Clearly, he/she is not inter-
ested in an example where a car moves in a small background 
region (i.e., non-salient region), like the example in Figure 11 
(b) in which the region of the car is marked by the red rect-
angle. Instead, an example where a car is shown in a salient 
region like the example in Figure 11 (a) should interest the 
user. Hence, visual attention is useful for evaluating the sub-
jective property of each retrieved example and achieving 
meaningful retrieval for humans.

Most of the visual attention methods are based on the psy-
chological theory called “feature integration theory,” where 
different features (e.g., brightness, color contrast, and cur-
vature) extracted for each pixel in an example are processed 
in parallel and fused into a saliency map (Borji & Itti, 2013; 
Frintrop et al., 2010). Typically, pixels which are irregular 
compared to surrounding ones are regarded as salient. How-
ever, this kind of bottom-up approaches relying only on fea-
tures do not work well. Hence, researchers are exploring how 
to incorporate top-down approaches using prior knowledge 
into visual attention. For example, Li, Tian, Huang, and Gao 
(2010) proposed a method based on “contextual cueing,” 
meaning that a human can easily find a target object when 
the visual context (i.e., spatial layout of objects) is similar 
to the past. This suggests that visual attention is guided by 
scenes that the human saw in the past. To implement con-
textual cueing, the method in Li et al. (2010) uses training 
examples where salient regions are labeled in advance. It 
detects salient regions in a test example by referring to the 
training example that has the most similar spatial layout.

Future Directions. Existing cognitive methods described 
above only utilize a small amount of knowledge ascertained 
in cognitive science. Below, we discuss further utilization of 
this knowledge in LSMR. One of the groundbreaking ideas 
that have emerged from the research on human categoriza-
tion is the prototype theory (Lakoff, 1987; Mervis & Rosch, 
1981; Rosch, 1975, 1978; Tversky, 1977). According to this 
theory, humans organize their concepts and categories into 
a radial structure centered around a prototype, with items 
closer to the prototype being deemed more central than 
those farther off. For instance, a pigeon is considered a more 
prototypical bird than a penguin. We can add to this the 
notion of “family resemblance” proposed by Wittgenstein 
(2009). The idea here is that members of a category have 
overlapping attributes, but there may be nothing that they 
all have in common.

Incorporating these features in an LSMR system requires 
that we are able to automatically cluster and label huge sets of 
images with large feature sets. This is an active area of research 
(Reed, Bifet, Holmes, Pfahringer, 2011; Spyromitros-Xioufis, 
Spiliopoulou, tsoumakas, & Vlahavas, 2011; Tsoumakas & 
Katakis, 2007), but we need to configure these techniques to 

produce structured clusters with different underlying simi-
larity metrics, and design tools to explore and retrieve mul-
timodal data from these clusters. (See, for instance, Koduri, 
Gali, and Indurkhya (2010) and Mala and Geetha (2009)).

Taking a different point of departure, Dastani and Indur-
khya (1997) used Structural Information Theory and its 
notion of information load to introduce the measures of 
descriptor complexity and member complexity that drive 
categorization in opposite directions. They proposed a sim-
ple additive function to find an optimum balance between 
these two, and used it to model similarity and categorization. 
However, further research needs to be done to explore how 
these ideas scale up to huge databases.

As a pioneering work on automatic clustering/labeling 
of Internet scale data, Chen, Shrivastava, and Gupta (2013) 
developed NEIL (Never Ending Image Learner), which con-
tinuously explores those data to extract knowledge (positive 
images and relations for visual categories like objects, scenes, 
and attributes). First, for each category, seed images are col-
lected through Google Image Search to build the initial classi-
fier. Second, relations among categories are extracted by com-
puting co-occurrences based on classifiers’ outputs. Third, 
NEIL selects additional positive images, each of which has 
large outputs of both the classifier for a category and classi-
fiers for its related categories. Then, NEIL updates classifiers 
with additional positive images and continuously repeats the 
second and third processes. As a result of running NEIL for 
2.5 months, it could discover 400,000 positive examples and 
1,700 relations for 2,237 categories. It seems possible to extend 
NEIL by adopting the prototype and structural information 
theories described above, so that more structured knowledge 
can be continuously extracted from Internet scale data.

Similarity, which is at the heart of LSMR, has been studied 
extensively from a cognitive science point of view (Goldstone 
& Son, 2005; Hahn, Chater, & Richardson, 2003; Rodriguez 
& Egenhofer, 2003; Schwering, 2008; Tversky, 1977). Thus, it 
would be useful to take advantage of some of these insights 
in designing LSMR systems. We cannot review here all the 
numerous cognitive studies on similarity, but we would like 
to make one comment on how they can help in LSMR. If 
we look at most of the existing formulations of similarity in 
LSMR systems, they are essentially feature based. In other 
words, certain features of the images are extracted, and then 
some similarity metric is applied on them. These features 
can be low-level perceptual features, or high-level semantic 
features. Needless to say, humans also use such features, but 
one distinguishing cognitive aspect of similarity is that it is 
highly dynamic and contextual. Moreover, depending on the 
context and the goal of the agent, new features can be created 
or discovered in an image that were not obvious or relevant 
before (Indurkhya, 1998; Indurkhya & Ojha, 2013). There 
has been some previous work in modeling these dynamic 
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processes (Hofstadter, 1995; O’Hara & Indurkhya, 1994), but 
we need to scale up these techniques, or come up with new 
techniques, so that they can be applied to huge databases.

In this regard, it would be useful to incorporate insights 
from the study of biological visual systems. Kruger et al. (2013), 
based on a thorough review of the existing literature on the 
primate visual system, have proposed three key mechanisms 
that need to be incorporated in computer vision systems:

1. Hierarchical processing: Features need to be grouped 
and organized in hierarchies. Moreover, these hierar-
chies need to be dynamic in the sense that they incor-
porate learning (with respect to both grouping and 
hierarchical structure), and are capable of evolving 
based on ongoing interactions with the environment.

2. Separate information channels depending on different 
needs for different behaviors or different requirements.

3. Feedback and feedforward: There should be both 
top-down and bottom-up mechanisms so that 
higher-level features can affect grouping of lower-
level ones, and also lower-level features can evoke 
different higher-level ones.

Considering these key mechanisms, the current deep learn-
ing approach only implements the hierarchical processing 
of features. We expect that one important future direction 
for deep learning is to develop a mechanism that adapts (or 
projects) the feature hierarchy depending on images, so that 
high-level (semantic) features are consistently obtained in 
different situations (e.g., bright, dark, and foggy) where low-
level perceptual features are dissimilar.

Also, the above kind of hierarchical architecture would 
be similar to the one proposed some years ago for model-
ing creativity in legal reasoning (Indurkhya, 1997). There is 
also more recent work on how perceptual and conceptual 
similarities interact together, and how perceptual similarities 
can give rise to new (hitherto unseen) conceptual similarities 

(Indurkhya & Ojha, 2013; Ojha & Indurkhya, 2009), which 
can be modeled with such an architecture.

ontoLogIcaL approaches

Existing Approaches. An ontology is a machine-readable 
representation of knowledge to explicitly specify concepts, 
properties of concepts, and relations among concepts in a 
given domain (Horridge, Knublauch, Rector, Stevens, & 
Roe, 2004; Staab & Struder, 2009). Concepts in multimedia 
data are defined as textual descriptions of semantic mean-
ings that can be recognized by humans, such as objects like 
Person and Car, actions like Walking and Airplane_Flying, 
events like Car_Crash and Explosion_Fire, and scenes like 
Beach and Desert. Below, concept names are written in ital-
ics to distinguish them from the other terms. Ontological 
(also called concept-based) approaches have been developed 
where examples relevant to a query are retrieved based on 
detection results of concepts (Snoek & Worring, 2009).

Figure 12 illustrates an overview of an ontological 
approach based on the QBE framework in Figure 5. First of 
all, for each concept, a detector is built to detect its presence 
in an example. The detector associates the example with a 
detection score that represents a scoring value between 0 and 
1. Large and small detection scores highlight the concept’s 
presence and absence, respectively. For example, in Figure 
12, the detector for Person provides the upper positive (user-
provided) example with the score 0.9, meaning that a person 
probably appears in this example. On the other hand, the 
score 0.1, obtained by the detector for Outdoor, indicates that 
the upper positive example is unlikely to show an outdoor 
scene. By aggregating such detection scores for various con-
cepts, an example is represented as a multidimensional vec-
tor and projected into the multidimensional space, as shown 
in the middle of Figure 12.

Given positive examples for a query (its text description 
can also be used as described in the classifier construction 
task below), a classifier is constructed in the multidimen-
sional space of concept detection scores. Since the detector 

      Figure 12. An overview of an ontological approach.
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for each concept is built using a large amount of training 
examples, the concept can be robustly detected regardless of 
its sizes, positions, and directions on the screen. This enables 
us to collectively retrieve examples where concepts related to 
the query are present with diverse appearances. For example, 
positive examples in Figure 12 only show frontal views of 
Computers. But, as shown in the bottom right of Figure 12, the 
example showing the side view of Computers can be retrieved 
because the detector based on many training examples can 
assign high detection scores to examples showing different 
views of Computers. Please see Figure 5 where positive exam-
ples showing frontal views of Computers lead to only retrieve 
examples showing the same or very similar views. Like this, 
compared to the multidimensional space of features where 
each dimension just represents a physical characteristic of an 
example, ontological approaches take advantage of the space 
where each dimension represents the presence of a seman-
tically meaningful concept. This facilitates retrieving exam-
ples that have dissimilar visual appearances, but show simi-
lar semantic meanings. This kind of ontological approaches 
achieve state-of-the-art retrieval performance (Li, Wang, Li, 
& Zhang, 2007; Natsev, Haubold, Těsić, Xie, & Yan, 2007; 
Ngo et al., 2009; Snoek et al., 2009; Wei, Jiang, & Ngo, 2011).

The following three tasks are crucial for ontological 
approaches. The first task is the question of how to define a 
vocabulary of concepts. Since a query is characterized by a 
set of concepts, a concept vocabulary should be sufficiently 
rich for covering various queries. One of the most popular 
ontologies is Large-Scale Concept Ontology for Multimedia 
(LSCOM), which defines a standardized set of 1,000 concepts 
in the broadcast news video domain (Naphade et al., 2006). 
These concepts are selected based on their “utility” for clas-
sifying content in videos, their “coverage” for responding to a 
variety of queries, their “feasibility” for automatic detection, 
and the “availability” (observability) of large-scale training 
data. It is estimated that if the number of concepts in LSCOM 
reaches an amount of 3,000, granting the quality of the new 
concepts remains similar to the existing ones, the retrieval 
performance approaches that of one of the best web search 
engines in text information retrieval (Hauptmann, Yan, Lin, 
Christel, & Wactlar, 2007). Apart from LSCOM, ImageNet, a 
large-scale ontology for images, is being developed (Deng et 
al., 2009). It is an extension to its predecessor, WordNet, which 
is a large lexical ontology where concepts (called synonym 
sets or synsets) are interlinked based on their meanings (Fell-
baum, 1998). ImageNet aims to assign an average of 500 to 
1,000 images to each WordNet concept. In Deng et al. (2009), 
3.2 million images are associated with 5,247 concepts through 
Amazon’s Mechanical Turk, where the assignment of images 
has been outsourced to web users (see the Manual Annota-
tion Approaches section). The developers of ImageNet plan to 
assign 50 million images to 80,000 concepts in the near future.

The second task is figuring out how to accurately detect 
the presence of a concept in examples. It should be noted 
that concepts themselves are just linguistic terms. To utilize 
them in LSMR, we need to examine whether each concept 
is contained in the audiovisual form of an example. Hence, 
detectors serve as mediators between linguistic concepts and 
their audiovisual forms. As described in the Machine Learn-
ing Approaches section, much research effort has been made 
on developing accurate concept detectors (object recogniz-
ers) by mainly taking advantage of a large number of train-
ing examples and features exhaustively sampled in both the 
spatial and temporal dimensions. Concept detectors can be 
further improved by exploiting knowledge about the human 
visual system based on cognitive methods described in the 
previous section.

The last task concerns the utilization of detection scores 
to construct an accurate classifier for a query. This classifier 
fuses detection scores for multiple concepts into a single “rel-
evance score,” which indicates the relevance of an example 
to the query. Existing methods are roughly classified into 
four categories: linear combination, discriminative, similar-
ity-based, or probabilistic. Linear combination computes the 
relevance score of an example by weighting detection scores 
for multiple concepts. One popular method is to use concept 
detection scores in positive examples. If the average detection 
score for a concept in positive examples is large, this con-
cept is regarded as related to the query and associated with 
a large weight (Natsev et al., 2007; Wei et al., 2011). Another 
popular method is text-based weighting, where a concept is 
associated with a large weight if its name is lexically similar 
to a term in the text description of the query (Natsev et al., 
2007; Wei et al., 2011). The lexical similarity between a con-
cept name and a term can be measured using a lexical ontol-
ogy like WordNet. Discriminative methods construct a clas-
sifier (typically, SVM) using positive examples (Natsev et al., 
2007; Ngo et al., 2009) (see Figure 12). The relevance score of 
an example is obtained as the classifier’s output. Similarity-
based methods compute the relevance score of an example 
as the similarity between positive examples and the example 
in terms of concept detection scores. Li et al. (2007) use the 
cosine similarity and a modified entropy as similarity mea-
sures. Probabilistic methods estimate a probabilistic distri-
bution of concepts using detection scores in positive exam-
ples, and use it to compute the relevance score of an example. 
Rasiwasia, Moreno, and Vasconcelos (2007) compute the 
relevance score of an example as the similarity between the 
multinomial distribution of concepts estimated from posi-
tive examples and the one estimated from the example.

Future Directions. Ontological approaches described 
above lack reasoning to precisely infer higher-level semantic 
meanings based on properties of concepts and their relations. 
Even though some works consider hierarchical relations 
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among concepts, they only use is-a (generalization/special-
ization) connections among concepts (Deng, Berg, & Fei-Fei, 
2011; Zhu, Wei, & Ngo, 2013). Reasoning based on concept 
properties and relations is necessary because concept detec-
tion itself has the following two limitations. First, concepts are 
too general to identify examples that users want to retrieve. 
Secondly, most of the existing methods use concepts in isola-
tion. For example, various semantic meanings are displayed 
in examples where the concepts Person, Hand, and Ball are 
present. In other words, examples that users really want can-
not be identified by independently examining presences of 
Person, Hand, and Ball. Instead, if we consider that the Hand 
of a Person is moving and the Ball is separating from the Per-
son, the higher-level meaning “throwing” can be derived.

Note that reasoning was explored in classical manual 
annotation approaches described in the Manual Annotation 
section. However, in LSMR, it has received little research 
attention due to the poor performance of concept detec-
tion in the past. Considering its recent improvement, we 
argue that reasoning should be addressed in LSMR. For this, 
Chen, Zhou, and Prasanna (2012) developed an interest-
ing approach that optimally specializes detected concepts 
and their relations, so that they are the most probable and 
ontologically consistent. This approach, which formulates 
reasoning as an optimization problem based on constraints 
defined by the ontology, can be considered as a promising 
future direction of LSMR.

Reasoning requires overcoming the crucial problem of 
how to manage “uncertainties” in concept detection. Tradi-
tional ontology formalisms do not account for uncertainties, 
where an ontology itself is not uncertain. In other words, it 
is a presentation of prior knowledge that has been accepted 
to be true. Compared to this, even using the most effective 
detectors, it is still difficult to accurately detect various kinds 
of concepts. For example, our method, which performed the 
best at the concept detection competition in TRECVID 2012 
(Shirahama & Uehara, 2012), can achieve high performances 
for concepts such as Male_Person and Walking_Running 
(with average precisions greater than 0.7). On the other hand, 
the detection of concepts like Bicycling and Sitting_down was 
difficult (with average precisions less than 0.1). In addition, 
real-world examples are “unconstrained” in the sense that 
they can be taken by arbitrary camera techniques and in 
arbitrary shooting environments (Jiang et al., 2013). Hence, 
even in the future, it cannot be expected to detect concepts 
with 100% accuracy. If one relies on uncertain concept detec-
tion results, detection errors for some concepts damage the 
whole reasoning process.

We have developed a method that can handle uncertain-
ties based on Dempster-Shafer Theory (DST) (Shirahama, 
Kumabuchi, Grzegorzek, & Uehara, 2015). DST is a general-
ization of Bayesian theory where a probability is not assigned 

to a variable, but instead to a subset of variables (Denoeux, 
2013). Given a set of concepts, C, and S, a subset of C, we 
define a “mass function” m(S) over an example to indicate the 
probability that one concept in S is present in the example. 
For instance, m({Person,Car}) represents the probability that 
either Person or Car could be present in an example. In the 
extreme case, m(C) represents the probability that every con-
cept could be present, that is, it is unknown which concept 
is present. Using such a mass function, DST can represent 
uncertainties in concept detection much more powerfully 
than Bayesian theory, because the latter can only represent 
uncertainties by assigning 0.5 to the probability of a concept’s 
presence. However, the derivation of a mass function is quite 
intractable, because it is very subjective or impossible to pre-
pare training examples by annotating them from the per-
spective that one of a set of concepts could be present. Thus, 
based on the set-theoretic operation in DST, we have proved 
that a probabilistic classifier using a mass function can be 
transformed into the one using “plausibilities.” A plausibility 
is an upper bound probability that a concept could possibly 
be present in an example. By modeling these plausibilities 
based on the distribution of positive and negative examples 
for each concept, a classifier is constructed in the framework 
of maximum likelihood estimation. We have shown that 
this classifier yields about 19% performance improvement 
compared to a classifier that uses concept detection scores 
without considering uncertainties. One useful future direc-
tion might be to incorporate a reasoning mechanism into 
the above-mentioned classifier, where concept properties 
and relations are used as constraints in maximum likelihood 
estimation.

Furthermore, a large repository of concept properties and 
relations is required to reason various semantic meanings. In 
the text processing field, researchers are exploring Informa-
tion Extraction (IE), which is the process of extracting rela-
tions between entities from natural language text (Alfonseca, 
Filippova, Delort, & Garrido, 2012). For example, the relation 
triples Founding_location(University of Siegen, Germany) and 
Founding_year(University of Siegen, 1972) are extracted from 
the sentence “University of Siegen in Germany was founded 
in 1972.” By applying such an IE to multimedia data, we could 
create a large repository of concept properties and relations 
with or without a small amount of user intervention. We call 
this Multimedia Information Extraction (MIE) and consider 
it as a very important future direction. MIE can be consid-
ered as a “second generation” of video data mining described 
in the Heuristic Approaches section. Because of the poor per-
formance of past concept detectors, video data mining could 
only analyze features (Shirahama et al., 2006). As a result, it 
failed to extract patterns characterizing high-level semantic 
meanings. MIE offers an opportunity to rethink video data 
mining by utilizing recent concept detectors that are much 
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more accurate than old ones. We have implemented a pre-
liminary MIE system in which detection results for 351 con-
cepts are probabilistically analyzed to extract higher-level 
meanings (Shirahama, Grzegorzek, & Uehara, 2015). We 
demonstrated that the high-level meaning Birthday_Party 
is appropriately characterized by concepts like Moonlight, 
Nighttime, Entertainment, Singing, and Dancing.

While our preliminary MIE system used concept detec-
tors that merely identify the presence or absence of a concept, 
several detectors that can localize their regions are currently 
available (Felzenszwalb, Girshick, Mcallester, & Ramanan, 
2010; Simonyan & Zisserman, 2014). Thus, we hope that 
MIE is further extended to consider spatio-temporal rela-
tions among concepts. For this, an example only displays the 
original 3D space, which is projected onto a 2D image plane. 
In other words, it does not hold the depth information in the 
original 3D space. For example, a 2D image or video frame 
may show that the regions of a Person and a Table are over-
lapping, even though the former stands in front of the latter. 
In addition, a Ball kicked hard and far by a Football_Player 
may still overlap with the player’s 2D region. Compared 
to this, humans can easily interpret the depth information 
in 2D examples. This has inspired researchers to develop 
depth estimation methods, which estimate depths from 2D 
examples (Karsch, Liu, & Kang, 2012; Saxena, Chung, & Ng, 
2008). Roughly speaking, some features are useful for pre-
dicting depths in an example: a grass field viewed at a short 
distance has fine textures, while such textures are blurred 
when it is viewed at a large distance. Furthermore, parallel 
lines have larger variations in edge orientations, as they are 
viewed from a more distant position. Based on such features, 
a classifier is built using training examples where the depth 
of each pixel is annotated (recorded) with a depth sensor like 
Microsoft Kinect. Intuitively, the classifier estimates depths 
in a test example by referring to those in visually similar 
training examples. We expect that depth estimation is nec-
essary for MIE to analyze meaningful spatio-temporal rela-
tions among concepts.

adaptIve approaches

Existing Approaches. One way that a human gets to solve 
diverse problems is the repetition of the following process: 
Given a new problem, the human first monitors his/her per-
formance, recognizes a deficiency, and uses knowledge that 
he/she already has to overcome the deficiency. By repeat-
ing this, the human can accumulate knowledge for solving 
diverse problems. In this context, metacognition is a disci-
pline to explore the process of how a human addresses a 
problem (Anderson & Oates, 2007). Assuming a cognitive 
system that simulates a functionality of human mind, meta-
cognition aims to monitor, model, and control the behav-
ior of that system to effectively solve a problem. We define 

adaptive approaches as applications of metacognition to 
LSMR. The development of an LSMR system requires vari-
ous decision-making capabilities, such as choosing a set of 
features, selecting a classifier, setting parameters, collecting 
training examples, selecting a performance evaluation mea-
sure, and so on. Adaptive approaches automate or optimize 
one or more decision-making tasks based on user feedback. 
This is an extension of Relevance Feedback (RF), described 
in the Interactive Approaches section.

The traditional RF relies on the very restrictive commu-
nication between a classifier and a user, where the user only 
informs the classifier whether an example is relevant to a cer-
tain semantic meaning or not. In the real world, a teacher 
makes much more complex communication with a learner. 
In particular, if the learner makes a mistake, the teacher tells 
him/her the reason for it. Based on this idea, Parkash and 
Parikh (2012) developed an Attribute-based Feedback (AF), 
which realizes the complex communication between a user 
and a classifier. Here, attributes are semantically meaning-
ful descriptions, such as parts (e.g., “propeller”), shapes (e.g., 
“round”), textures (e.g., “stripe”), rough scene categories 
(e.g., “natural”), and nonverbal properties (e.g., “properties 
that dogs have but cats do not”) (Farhadi, Endres, Hoiem, 
& Forsyth, 2009; Lampert, Nickisch, & Harmeling, 2009). 
Similar to concept detection, a detector for each attribute 
is built to identify its presence in an example. As a result, 
the example is represented as a vector, where each dimen-
sion represents the output of the detector for one attribute. 
For example, in Figure 13, the example (a) is associated with 
the large output value 0.6 for the attribute “natural” because 
trees and the grass are displayed in a large region. Note that 
the example representation based on attributes is similar to 
the one based on concepts (see Figure 12). But the attributes 

Figure 13. An overview of Attribute Feedback (AF).
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represent lower-level semantic meanings, and are therefore 
relatively easier to detect automatically (Zhang et al., 2013).

AF uses attributes as a language between a classifier and a 
user to implement their complex communication (Parkash 
& Parikh, 2012). Specifically, if an example that the classifier 
regards as relevant to a meaning is judged to be irrelevant by 
a user, he/she can explain the reason for this misclassifica-
tion. Let us consider Figure 13, where examples are repre-
sented as points in the multidimensional space defined by 
the detector outputs for different attributes. For simple visu-
alization, only two dimensions are shown in Figure 13, where 
the horizontal dimension represents detector outputs for the 
attribute “natural.” Assume that for the query “street scene,” 
a classifier (SVM) with the boundary depicted by the dashed 
line is built using three positive and four negative examples, 
which are marked by blue circles and red triangles, respec-
tively. Test examples are represented by white circles. Based 
on the criteria of RF, the user is asked to give feedback to the 
test example (a) because it is the closest to the classification 
boundary. Under this setting, the user can not only annotate 
the test example (a) as negative in terms of the query, but also 
explain “this example is too natural as a street scene.” This 
implies that test examples that have higher detector outputs 
for the attribute “natural” than the test example (a) should 
be also negative. In Figure 13, these test examples like (c) 
and (d) are located in the red rectangle. Like this, based on 
the attribute explained in a reason, the annotation for one 
example can be propagated to other examples. That is, mul-
tiple examples are annotated through one feedback, so that 
the performance of a classifier can be effectively improved.

Furthermore, attributes, which are used as features of the 
classifier, can be refined based on user feedback (Biswas & 
Parikh, 2013). In Figure 13, the above exemplified explana-
tion has another implication that the detector for the attri-
bute “natural” should output lower values for positive exam-
ples than the one for the test example (a). Using this as a 
constraint, the detector is refined so that the positive exam-
ple in the red rectangle is associated with a lower value than 
the one for the test example (a). This way, both the classifier 
and attributes (features) are refined by AF.

Future Directions. Adaptive approaches have plenty of 
room to explore. First, the current AF only targets the efficient 
refinement of classifiers for object-level meanings (concepts) 
based on attributes, but we expect that AF can be flexibly 
used for various levels of semantic meanings. Here, classi-
fiers for a certain level of meanings are efficiently refined by 
regarding one lower level of meanings as attributes. In partic-
ular, AF seems to be useful for ontological approaches where 
concepts are considered as attributes, and accurate classifiers 
for high-level meanings can be built with reduced manual 
annotation effort. This is equivalent to effective knowledge 
extraction of MIE (see the Ontological Approaches section), 

because concept relations characterizing high-level meanings 
can be obtained by analyzing the built classifiers. Further-
more, by viewing these high-level meanings as attributes, AF 
may succeed in effortlessly extracting their causal relations, 
which were used in classical manual annotation approaches 
with huge manual labor.

Apart from AF, one important future direction for gaining 
the benefit from metacognition is to design metalevel features 
that are used to select an effective strategy for improving the 
retrieval performance. For example, Bensusan, Giraud-Car-
rier, and Kennedy (2000) suggested that the performance of a 
decision tree can be evaluated based on the number of nodes, 
depth, shape, and so on. Thus, using these as metalevel features, 
the decision tree that yields the best performance on given 
data can be estimated. In addition, Kumar, Packer, and Koller 
(2010) proposed “self-paced learning,” which is inspired by the 
fact that children start with learning easier concepts, and then 
build up more complex ones. To implement this, the research-
ers developed a metalevel feature to assess the difficulty level 
of examples based on how easily their labels are predicted by 
the current classifier. From this, an accurate classifier can be 
constructed by gradually introducing training examples from 
easier to harder. We expect that various types of metalevel fea-
tures are needed to characterize the usefulness of features, clas-
sifiers, and parameters in the LSMR processing pipeline.

Another major insight from metacognition is that humans 
conceptualize things in divergent ways. For example, while 
a frying pan is typically used for frying, it can also be used 
for hammering, fighting, or playing musical instruments. 
This kind of adaptive conceptualization in the human mind 
has been investigated as gestalt projection (Indurkhya, 2006; 
Koffka, 1935; Kubovy & Gepshtein, 2000). Gestalts are top-
down structures that are used for modeling expectation-
based approaches to how context affects the conceptualization 
of low-level sensory data. More specifically, we define gestalt 
projection as an extension of ontological approaches, and rep-
resent a gestalt as a structured set of concepts that are interre-
lated based on their postural, spatial, and temporal relations.

Let us consider that for the query “a person hammering,” 
a user provides a positive example that shows “a person ham-
mering a nail with a frying pan” (Guerin, Ferreira, & Indur-
khya, 2014). In this case, the ontological approach in Figure 
12 would retrieve examples having high detection scores for 
Person and Frying_Pan. However, this leads to retrieve many 
undesirable examples where a Frying_Pan is being used for 
cooking, is being washed, is being advertised, and so on. 
Thus, for accurate retrieval, we need to adaptively estimate 
that Frying_Pan in this positive example is being used for 
hammering. This “hammering” gestalt is evoked in the fol-
lowing way: For the positive example, the regions of Person 
and Frying_Pan are identified with the relational concept 
Holding (i.e., the former holds the latter). In addition, the 
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pose of Person suggests the action concept Hitting (which is 
not observed in most examples showing Frying_Pan). The 
above pattern of concepts and their interrelationships trig-
ger the “hammering” gestalt. In this way, gestalt projection 
dynamically organizes the concepts detected in an example 
to yield the imaginative and playful conceptualization.

The following two tasks are the key to implementing 
the mechanism of gestalt projection. The first is to build 
a large-scale knowledge base about gestalts. This is exactly 
the task of Multimedia Information Extraction (MIE), dis-
cussed in the previous section. Furthermore, the computer 
vision community has started to develop methods that can 
identify group actions derived from the contextual rela-
tionships among multiple objects (Lan, Wang, Yang, Robi-
novitch, & Mori, 2012), expected social roles and actions of 
persons (Lan, Sigal, & Mori, 2012), and functionalities of 
objects (Zhu, Fathi, & Fei-Fei, 2014). These research efforts 
are beneficial to efficiently building a large-scale gestalt 
knowledge base.

The second task is to develop a method for applying 
an evoked gestalt to candidate examples. We feel that this 
does not require creating new technology, but rather to 
configure existing tools and mechanisms in new ways to 
bridge the semantic gap. One such platform might be the 
Blackboard System, which allows an interaction of bottom-
up and top-down processes in a competition-cooperation 
paradigm to arrive at an interpretation of given percep-
tual data (Corkill, Lesser, & Hudlicka, 1982; Hayes-Roth, 
1985). The blackboard architecture was originally proposed 
for speech understanding (Erman, Hayes-Roth, Lesser, & 
Reddy, 1980), but since then has been successfully applied 
in diverse domains (Corkill, 1991). This architecture may 
be visualized by the metaphor of a group of independent 
experts with diverse knowledge who are sharing a com-
mon workspace, namely the blackboard. They work on the 
solution together and each of them adds some contribu-
tion to the blackboard, whenever possible, until the prob-
lem is solved. The blackboard model provides an efficient 
platform for problems that require many diverse sources 
of knowledge. It allows a range of different experts repre-
sented as diverse computational agents and provides an 
integration framework for them. It enables an incremental 
progress toward a solution, and a flexible control for prob-
lem-solving. Integrating these two tasks in current LSMR 
technology would allow us to retrieve relevant examples to 
queries in an intuitive and humanlike way.

concLusIon

In this paper, we reviewed existing LSMR methods, includ-
ing those that we have developed. By tracing the history 
of machine-based and human-based LSMR methods, we 

argued that due to prioritizing the generality of methods 
and the scalability for large-scale data, current methods lack 
knowledge about human interpretation, which was used in 
classical methods. We then discussed human-machine coop-
eration methods by classifying them into cognitive methods 
using knowledge about the human visual system, ontologi-
cal methods using knowledge about human inference, and 
adaptive methods using knowledge about human learning. 
The future direction that we finally suggest is the develop-
ment of a framework to unify cognitive, ontological, and 
adaptive methods into a single LSMR system by considering 
their relationships as shown in Figure 8. In this system, every 
process is based on knowledge about human interpretation 
of semantic meanings. We hope that this paper will be a trig-
ger to disseminate the LSMR problem to other research fields 
and solve it in an interdisciplinary approach.
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