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Abstract: The aim of this study is to introduce a new scheme, based on a compressive sampling technique, for the
reconstruction of lost data in multimedia streaming. The audio streaming data are encapsulated in different packets, at
the sender, by using an interleaving technique. The compressive sampling technique is used to recover audio
information in case of lost packets, at the receiver. Experimental results are presented for speech and musical audio
signals which illustrate the performances and the capabilities of the proposed methodology.

1 Introduction

Streaming technologies and increased bandwidth in access networks
have facilitated the transmission of multimedia content on the
Internet [1]. This new service gives possible, for example, Internet
TV or audio/video services on demand, which in turn creates a
great interest in various fields. Users are increasingly turning to this
type of services and providers try to offer better quality to meet
such needs. The main limitation of this technology is the need for
stable transmission conditions to guarantee a certain degree of
quality of service. Over the last few years new classes of scalable
audio and video streaming applications have been introduced but in
most cases the quality of the multimedia content is affected by
packet loss, delay and network congestion [1, 2]. Recently, several
methodologies for recovering multimedia contents from packet loss
have been studied and proposed [2–5]. Voice over internet protocol
(VoIP) systems, for example, have become a basic tool on modern
Internet phones. However, a high percentage of packet loss can
often make speech unintelligible [6–8]. For this reason, VoIP
applications regularly incorporate a packet loss recovering or
concealment mechanism (packet loss concealment (PLC)).

Over the last few years, several techniques for audio concealment
and reconstruction have been introduced. In [9, 10] a loss
concealment scheme based on sinusoidal extrapolation and
mean-square error criterion is proposed. In [11] the authors
introduce an algorithm for audio loss concealment, designed for
MPEG-audio streaming, based only on the data available at the
receiver. Bahat et al. [12] introduced an inpainting-based
mechanism to fill the missing data using samples taken from prior
recorded audio from the same user. A different study is proposed
in [13] where a coded amplitudes scheme suited for quantisation
of sinusoidal parameters is used for robust parametric audio
coding. Sinusoidal interpolation is also employed in [14]. In [15,
16] different approaches are used based on linear predictive coding
and immittance spectral frequency, respectively. In [17, 18] a
compressive sampling technique is proposed for audio inpainting
and coding, respectively.

The compressive sampling or compressed sensing enables a
faithful recovery of signals, images and other data from what
appears to be highly sub-Nyquist-rate samples [19]. In real-world
applications, most signals are sparse and then compressible with
low information loss. Compressible signals can be captured via
sampling or sensing protocols that directly condense signals into a
small amount of data. In this work, we use an optimisation

approach based on the L1 norm [19, 20] in order to recover
signals. There are, however, other algorithmic approaches to
compressive sampling based on greedy algorithms such as
orthogonal matching pursuit [21, 22], iterative thresholding [23],
compressive sampling matching pursuit [24] and many others.

In this paper we propose a new scheme for data loss reconstruction
in audio streaming (named packed loss recovery based on
compressive sensing, (PLRCS)). In the streaming model, the audio
data are encapsulated, at the sender, in different packets using an
interleaving technique. At the receiver the information of the lost
packets is reconstructed by means of a compressive sampling
technique.

The paper is organised as follows. In Section 2 some aspects of the
streaming and lost packets are introduced. The compressive
sampling methodology is briefly outlined in Section 3. In Sections
4 and 5 we present the proposed methodology and some
experimental results, respectively. Finally in Section 6 some
conclusions and future remarks are provided.

2 Real-time protocol and interleaving

Multimedia applications require services that differ substantially
from the standard ones. These applications are particularly
sensitive to the end-to-end delay and they can tolerate only
occasional loss of data. Generally real-time applications (e.g.
VoIP, real-time events) use the real-time transport protocol [25],
which is able to support an IP multicast and data distribution to a
group of receivers. Multicast technologies permit the sharing of
links between different classes of traffic, generating loss patterns
[2, 26]. Routers congestion is one of the main causes for loss
packets, as studied in [26].

A multicast channel is typically characterised by high latency, and
a large variation in end-to-end delay. The delay variation is a great
problem for interactive and loss-tolerant real-time applications (e.g.
VoIP, conferences, wireless streaming communications). In fact,
packets with a large delay will have to be discarded in order to
satisfy the timing requirements of the applications. There are two
main classes of methodologies for recovery: active retransmission
and passive channel coding. Channel coding techniques can be
grouped into the traditional forward error correction and the
interleaving-based schemes. Interleaving-based schemes are mainly
used for interactive applications (e.g. VoIP) and it is the
mechanism applied in our work.
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2.1 Interleaving

Interleaving can significantly improve the quality with which we
perceive an audio stream [2, 27]. For example, over the last few
years, it has been widely adopted for mitigating the bursty losses
[6, 8] and in particular in VoIP streaming transmissions [7].

During the interleaving phase, frames of audio signals are
sequenced in packets before transmission. In particular, originally
adjacent frames are separated in the transmitted stream and
returned to their original order at the receiver. This mechanism
redistributes the effect of packet losses. If, for example, frames are
5 ms in length and packets 20 ms (i.e. 4 frames/packet), then the
first packet will contain units 1, 5, 9, 13; the second units 2, 6, 10,
14; and so on, as illustrated in Fig. 1. We note that the loss of a
single packet from an interleaved stream does not cause a single
large gap as in a non-interleaved stream, but multiple small gaps
in the reconstructed stream. This can be particularly useful for
audio tools where transmitted packets are generally similar in
length to phonemes in human speech [28]. Interleaving, however,
increases latency and its major advantage is that it does not
increase the bandwidth requirements of a stream.

3 Compressive sensing

One of the main features of the compressive sensing (CS) or
compressed sensing theory is the possibility to recover signals
from much fewer measurements with respect to traditional
methods [19, 29]. The two principles to satisfy in CS are: sparsity
of the source signals and incoherence, which is related to sensing
modality and the representation of the signals. To design efficient
sensing or sampling protocols, useful information content,
embedded in a sparse signal, must be captured and condensed into
a small amount of data. These protocols are non-adaptive and
simply require the correlation of the signal with a small number of
fixed waveforms.

3.1 The sensing problem

We suppose to use linear functionals to obtain information about a
signal f (t)

yk = kf , fk l (1)

with k = 1, …, m. In fact, we consider a correlation between the
signal and the waveforms fk(t). In this work, we focus on discrete

signals f [ Rn and a sensing orthogonal matrix F = [f1,
f2, . . . , fn] [ Rn×n. Now we consider that the number m of
available measurements is much smaller than the dimension n of
the signal f . Letting Φs denote the m × n sensing matrix, m≤ n,
with the vectors f∗

1, . . . , f
∗
m as rows (a* is the complex transpose

of a), the process of recovering f [ Rn from

y = Fs f [ Rm (2)

is ill-posed in general when m < n, since there are infinitely many
candidate signals f̂ for which Fs f̂ = y.

3.2 Sparse representation

Many real signals have condensed representations if expressed in an
appropriate basis. Mathematically speaking, a vector f [ Rn is
expanded in an orthonormal basis Ψ = [Ψ1, …, Ψn] (compressed
basis)

f =
∑n
i=1

xiyi = Cx (3)

where x = [x1, . . . , xn]
T is the representation of f with respect to the

basisΨ. If most of the components of x are zero, then x is referred to
as a sparse representation of f , andΨ is a sparsifying basis. Now we
consider the pair (Φ,Ψ) of orthobases of Rn. The first basisΦ is used
for sensing the object f as in (1) and (2), and the second is used to
represent f . The coherence μ(Φ, Ψ) measures the largest correlation
between any two elements of Φ and Ψ. Considering m
measurements, uniformly at random, in the Φ domain, the smaller
the coherence the fewer m samples are needed [19, 29]. In this
case, we can measure any set of m coefficients without
information loss [19, 29]. For this reason, in CS, one concentrates
on low coherence. Since, in our case, Φ is the identity matrix and
Ψ is the discrete cosine transform (DCT) basis, then a maximal
incoherence is obtained. Moreover, the m rows of the Φs matrix
are randomly selected in the Φ domain.

3.3 Undersamplig and sparse signal recovery

We suppose to observe a subset of the n coefficients of f and collect
the data as in (2).

With this information, the source signal is recovered by solving an
L1-norm constrained minimisation problem. The proposed
reconstruction �f is given by �f = C�x, where �x is the solution to

Fig. 1 Interleaving units across multiple packets
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the convex optimisation program (‖x‖L1 =
∑

i |xi|):

min
x[Rn

‖x‖L1 s.t. yk = kfk , Cxl ∀k [ M (4)

That is, among all vectors x consistent with the data, we pick the one
with minimal L1-norm.

The keys to CS are sparsity and the L1 norm. If the expansion of
the original signal as linear combination of the selected basis
functions has many zero coefficients, then it is often possible to
reconstruct the signal exactly (see [19, 29] for more details and
proofs). In principle, computing this reconstruction should
minimise the L0 pseudo-norm of x, i.e., the number of its non-zero
components. The latter is a combinatorial problem whose
computational complexity is NP-hard. Fortunately, in [19, 29] it
has been shown that, in most cases, L0 can be replaced by L1.

4 Signal reconstruction

In order to explain the proposed methodology, we consider a
multimedia streaming scheme as shown in Fig. 2, where a client
receives packets from a server. A signal f(t) is sampled, on the
server, by means of a PCM encoding technique (e.g. 64 kbit/s). We
suppose, for example, that the server collects data every 20 ms, thus
obtaining four packets composed of 160 bytes (or 160 samples). A
raw signal can be regarded as a vector f that can be represented as
a linear combination of certain basis functions, as in (3)

f = Cx. (5)

The basis functions must be suitable for a particular application (e.g.
wavelet, gammatone etc.) and in our experiments,Ψ is the DCT. We
remark that in order to use DCT as sparsifying basis, we have to rely
on a moderately low number of samples (640 samples, 20 ms).
Before applying the interleaving approach, the components of f
are randomly permuted to ensure a random distribution of the

missing information. If we consider a random permutation matrix
Pp, then the resulting sequence is

f p = Pp f . (6)

Applying the interleaving mechanism described in Fig. 1
(permutation matrix Ip) to f p, then from the sequence f p a new
sequence f I of four blocks f

(i)
I , with i = 1, 2, 3, 4 is obtained:

f I = Ip f p = [f (1)I f (2)I f (3)I f (4)I ]T. (7)

Now we could consider that in a streaming communication process
some packets may be lost (for example, two lost packets in
Fig. 2). In this case, the client receives only two packets

f̃ I = [f (1)I Null f (3)I Null]T. (8)

The client applies the inverse of the interleaving process, obtaining a
subset of coefficients of f p

f̃ p = ITp f̃ I. (9)

Moreover, applying the inverse of the permutation process, the
following subset of samples of f are obtained:

f̃ = PT
p f̃ p. (10)

We note that, in this way, the signal received by the client is a vector
containing few random samples of f (not null elements of f̃ ).
Mathematically, we can consider a linear operator Φs [as in (2)]
such that

f̃ = Fs f . (11)

Fig. 2 Multimedia streaming process
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In our case, Φs is a subset of the rows of the identity operator,
with row indexes corresponding to the not null elements of f̃ . To
reconstruct the signal, the client recovers the sparse representation
coefficients by solving the undetermined linear system

Ax = f̃ (12)

where A = FC is the CS matrix, i.e., by computing the solution �x to
the convex optimisation problem in (4). Then one can recover the
original signal f by means of the approximated reconstructed signal

�f = C�x. (13)

In the next section, we also compare the solution obtained by using
the L1 norm with the one obtained by using an optimisation approach
based on the L2 norm (‖x‖L2 =

∑
i x

2
i ), i.e., the least-squares

solution of (12).

5 Experimental results

In this section, we show some experimental results obtained by
applying PLRCS for reconstructing streaming audio signals
(e.g. VoIP and musical audio streaming). We consider audio signals
codified by a PCM encoding scheme (sampling frequency of
8000 Hz and 8-bit quantisation).

The first results are presented by comparing the source signals
with those obtained from the optimisation approaches based on the
L1 and L2 norms (named PLRCS-L1 and PLRCS-L2, respectively).
The software, the source and the reconstructed wav files are
available on request.

The first audio recording corresponds to a female voice reading the
news in English. The audio recording has duration of 6.25 s.
Streaming data are collected each 20 ms, obtaining a stream of
four packets (or windows) composed by 160 samples (4 × 160 =
640 samples totally) as in the schemes of Figs. 1 and 2.

We stress that in our approach the overall recording duration is
irrelevant since the reconstruction is made at the receiver on the
effectively received stream without considering any other temporal
information. Fig. 3 shows a section of this audio signal. In Fig. 4
a stream of 640 samples [̃f in (11)] after the interleaving phase
and the loss of three packets is shown. In Fig. 5 we compare a
source frame of this audio signal with those recovered by using
both PLRCS-L1 and PLRCS-L2, when the loss of three packets is
considered. In this case the parameters n and m of the CS scheme
(see Section 3.2) are 640 and 160, respectively. In Fig. 6 the
residua between the entire source signal and the reconstructed ones
are visualised, when the random loss of zero, one, two or three

packets is simulated. Finally, we compare the cross-correlation
coefficients between the entire source signal and the recovered
ones simulating the random loss of zero, one, two or three packets

Fig. 3 Audio signal of a female speaker Fig. 4 Frame information: three packets loss

Fig. 5 Comparison between a frame of the source signal and those of the
reconstructed signals by using L1 and L2 norms

Fig. 6 Residua between the source signal and the reconstructed signals by
using L1 and L2 norms
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for each interleaving block. The results of 100 simulations are
visualised in Fig. 7.

In the second experiment the audio recording is a male voice
reading the news in English (the recording duration is 6.25 s). The
cross-correlation coefficients obtained after 100 simulations are
shown in Fig. 8.

In a further experiment we consider an example of musical audio
signal. In particular, we consider a piece of the Jazz song played by
Chet Baker, titled ‘Blue Room’ (the recording duration is 50 s). The
results of the cross-correlation coefficients are presented in Fig. 9.
We can observe that in all the cases PLRCS-L1 provides the best
results.

Finally, we compare PLRCS (both L1 and L2 based optimisation
approaches) and ITU-G.723.1 [12, 30], a standard designed for
VoIP applications [31], which contains a PLC mechanism. The
performances are compared considering the cross-correlation
coefficients and a speech quality assessment approach. For the
latter, we observe that the goal of the PLRCS and G.723.1
methodologies is to produce a perceptually plausible audio signal.
Degradation in perceived audio quality can be measured by speech
quality assessment approaches (e.g. mean opinion score [32]). A
notable disadvantage of some of these methods is that they are
very time consuming. We have used an automatic perceptual
evaluation of speech quality (PESQ) measure [32, 33], in order to

assess the quality of the speech enhancement algorithms. This
method gives the best results in the sense of the highest correlation
with subjective measures [34] and the quality is estimated on a
fixed interval ([0, 4.5]). In our experiments the number of samples
for each packet is 240.

In Table 1 we report the PESQ values obtained on the female
audio recording in the first experiment. We simulated the
percentage of loss packets, on the overall stream, from 5 to 80%.
Table 2 shows the comparisons also considering the
cross-correlation coefficients.

We highlight that the proposed methodology has been also
compared with the techniques proposed in [35] and iLBC [36]
(one of the codecs used by several streaming products). These two
methodologies give low reconstruction quality and in particular
when the packet loss rates are higher than 10%, this low quality is
clearly perceived. We also remark that similar experiments and
comparisons have been carried out on several other voice and
musical audio recordings. In all cases we observed that PLRCS-L1
provides the best results even for a high percentage of loss packets.

Fig. 7 Cross-correlation coefficients after 100 simulations: audio female
speaker

Fig. 8 Cross-correlation coefficients after 100 simulations: audio male
speaker

Fig. 9 Cross-correlation coefficients after 100 simulations: audio song

Table 1 PESQ quality evaluations: G.7.231 and PLRCS with L1 and L2
norms

Loss packets, % G.723.1 PLRCS-L2 PLRCS-L1

5 3.21 2.68 3.87
10 2.65 2.09 3.59
15 2.39 1.90 3.03
20 2.07 1.71 2.84
30 1.80 1.49 2.43
50 0.95 1.01 1.72
70 0.34 0.22 0.59
80 0.07 0.00 0.33

Table 2 Cross-correlation coefficients: G.7.231 and PLRCS with L1 and
L2 norms

Percentage G.723.1 PLRCS-L2 PLRCS-L1

5 90.33 97.35 99.48
10 88.86 91.95 99.04
15 79.18 92.11 98.41
20 68.25 88.39 97.67
30 58.39 81.89 93.63
50 46.40 72.52 90.55
70 24.72 58.42 80.07
80 18.57 46.45 71.08
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6 Conclusions

In this paper a new scheme for data loss reconstruction, based on a
CS technique, in multimedia streaming has been introduced. Audio
streaming data are encapsulated, at the sender, in different packets by
using an interleaving technique. Information contained in the loss
packets is recovered, at the receiver, by using a compressive
sampling technique based on the L1 norm. The experimental
results highlighted that L1 norm in the optimisation scheme
performs better than L2 norm. In particular, the methodology
based on the L1 norm, gives a better performance comparing to
other known methodologies even when considering a high
percentage of loss packets. In the future, the authors will focus on
the use of different optimisation approaches and on the application
of the proposed scheme for real-life situations (e.g. VoIP,
conferences, wireless streaming communications), also in the case
of dedicated hardware.
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