
INTERNATIONAL ECONOMIC REVIEW
Vol. 57, No. 1, February 2016

THE POWER OF WHISPERS: A THEORY OF RUMOR, COMMUNICATION,
AND REVOLUTION∗

BY HENG CHEN, YANG K. LU, AND WING SUEN 1

University of Hong Kong, Hong Kong; Hong Kong University of Science and Technology,
Hong Kong; University of Hong Kong, Hong Kong

We study how rumors mobilize individuals who take collective action. Rumors may or may not be informative,
but they create public topics on which people can exchange their views. Individuals with diverse private information
rationally evaluate the informativeness of rumors about regime strength. A rumor against the regime can coordinate a
larger mass of attackers if individuals can discuss its veracity than if they cannot. Communication can be so effective
that a rumor can have an even greater impact on mobilization than when the same story is fully believed by everybody.
However, an extreme rumor can backfire and discourage mobilization.

1. INTRODUCTION

Collective actions, such as riots, currency attacks, and bank runs, are often immersed in
rumors. Perhaps the most dramatic place to witness rumors in action is a political revolution.
Amid the recent Tunisian revolution, Ben Ali, the ex-Tunisian leader, was said to have fled his
country. This was confirmed after conflicting rumors about his whereabouts and finally led to
the end of street protests. A while later in Egypt, it was widely reported that Mubarak’s family
had left for London, which was believed by many as a clear sign of fragility of the regime. Similar
rumors about Qaddafi and his family appeared in Libya when the battle between the opposition
and the regime intensified. Rumors are not limited to the series of revolutions in the Arab
Spring. During the 1989 democracy movement in China, rumors repeatedly surfaced about
the death of the leaders, Deng Xiaoping and Li Peng, as well as the divide among communist
leaders.2

Are rumors just rumors? In many cases, yes. Rumors that spread during turmoils often
disappear quickly without a trace. This seems to be natural, as rational individuals may discount
unreliable information they receive in those situations. However, many historical incidents
suggest that rumors often turn out to be particularly effective in mobilization. The Velvet
Revolution in Czechoslovakia was described as a “revolution with roots in a rumor” (Bilefsky,
2009). At the dawn of the revolution, a prominent (false) rumor that a 19-year old student was
brutally killed by the police triggered many otherwise hesitant citizens to take to the streets. The
revolution gained huge momentum right after that and the regime collapsed a few days later.
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2 There were widespread rumors of many variants that Deng died of illness during the protest and that Li was shot to
death. It was also widely rumored in the media that some senior leaders in the Communist Party wrote an open letter
to oppose taking any action against students. See, for example, the news story in the daily newspaper Ming Pao on June
6, 1989.
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In the Arab Spring, the news about Mubarak’s family proved to be false, yet the opposition
credited it for “mark[ing] a new phase” in their campaign.3 Chinese history also offers many
anecdotes in which rumors mobilized mass participation, including the Boxer Uprising, the
Republican Revolution, and the May Fourth Movement (Zhang, 2009). Similarly, riots are
often amplified or even sparked by rumors as well: the 1921 Tulsa race riot, the 1967 Newark
riot, and the 2004 Rome riot provide dramatic examples.

A common interpretation of the role of rumors in mass movements is that individuals are just
blindly herded by them. However, we adopt the position that individuals are fully aware that
rumors circulating in times of turmoil may or may not be well founded and that they update
their beliefs in a Bayesian manner. Since rumors are widely circulated and commonly observed,
they may serve as a coordination device just like a public signal in a coordination game. We
explain why some rumors are effective in mobilizing participation in collective actions whereas
others are not.

In this article, we focus on two key aspects of rumors: that they may be true or false and
that people talk about them. Individuals in times of uncertainty and crisis often seek others’
opinions and discuss with peers about their judgment and evaluation of rumors. Information
from fellow citizens can influence their beliefs and even actions. The core of our article is to
show that communication among individuals centering around a public topic can substantially
change outcomes of collective actions.

Specifically, we model political revolution as a global game. Citizens are uncertain about the
regime’s strength and possess dispersed private information about it. A citizen’s incentive to
revolt increases with the aggregate action of all other citizens. If there are sufficient participants,
the regime collapses; otherwise, it survives. Before citizens take actions, they hear a rumor about
the regime. This rumor is a publicly observed message, which could be either an informative
signal about the regime’s strength or an uninformative noise unrelated to fundamentals. Citizens
assess the informativeness of the rumor based on their private information. As a consequence of
diverse private information among citizens, their assessments may also differ. Further, citizens
communicate with one another and tell their peers whether they believe the rumor or not.

In this model, the degree of skepticism is endogenous: Citizens whose private information
differs more from the rumor are more skeptical of it. Due to this skepticism, rumors against the
regime mobilize fewer attackers than when such news is known to be trustworthy. If a rumor
is far different from the fundamental, it will also differ from most citizens’ private information
and therefore be heavily discounted by them. As a result, extreme rumors have little impact on
equilibrium outcomes.

When citizens communicate, those whose private information is close to the rumor will tell
their peers that the rumor is informative. Recipients of confirmatory messages treat what their
peers say as evidence for the truth being close to what the rumor suggests and therefore become
more responsive to the rumor. Consider, for example, a rumor against the regime. A fraction
of the population (those with intermediate private information) will attack the regime if their
peers tell them that the rumor is informative and will not attack otherwise. If the rumor is
indeed near the true strength, more citizens will receive confirmatory messages from their
peers. Therefore, communication helps such a rumor to mobilize more attackers. By the same
mechanism, if the rumor is far from the truth, most citizens will express disbelief to their peers,
which discourages attacking. Therefore, communication overcomes or reinforces skepticism
about a rumor, depending on whether the rumor is close to the fundamental or not.

Interestingly and surprisingly, we find that communication could make rumors even more
powerful than trustworthy news in mobilizing individuals. For the same news against a regime,
it is possible that the regime would survive if all citizens believe that the news is informative and
fully trustworthy, but would collapse if citizens are skeptical about its veracity and talk about

3 World Tribune reported on January 28, 2011, that “confirmed by a Western diplomat, . . . Mubarak’s wife, Suzanne,
son, Gamal, and granddaughter arrived in London on a private jet as Egypt’s defense minister secretly flew to the
United States.”
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it. In the latter scenario, recipients of confirmatory messages react to the rumor very strongly,
and the mass of those recipients is considerably large.

Our work enriches the global games literature (Morris and Shin, 2003) in a couple of di-
rections. We offer a specification of public signals using mixture distribution that allows us to
capture people’s skepticism. Specifically, by allowing an additional layer of Bayesian updating
on the “quality” of the information source, our model captures the fact that individuals tend to
discount information that differs too much from their priors.4 We also show that this specifica-
tion is qualitatively different from having a public signal with low precision.5 In our model, the
dispersion in private information is crucial, not only because it guarantees equilibrium unique-
ness, but also because it generates diverse assessments on the informativeness of rumors, which
provides a ground for the study of communication among citizens. It is the core of this article.

In much of the global games literature, citizens are assumed to only respond to the signals
they observe; any further interactions among citizens are often left out for simplicity. In reality,
individuals do exchange information with one another before they make decisions and take
actions. This is especially true in collective actions such as protests, demonstrations, and revolu-
tions. We model direct interaction between citizens by allowing them to communicate privately
instead of just observing a public signal of what others are doing.6 The private information
exchange is assumed to take the form of coarsened communication.7

This article should not be interpreted as contradicting the literature that stresses structural
factors as root causes for a revolution (Skocpol, 1979). Structural factors, such as the state of the
economy and international pressure, make a society “ripe” for revolution but are not sufficient
for the outbreak of a successful revolt. In line with Bueno de Mesquita (2010), we argue that
some random factors also play a role in determining the fate of a revolution. In our model, the
realization of rumors serves as a source of randomness.

Our work is related to a small economics literature on rumors, e.g., Banerjee (1993) and
Bommel (2003). Unlike their models, in which a rumor is passed on to others sequentially, we
provide a model in a static setting, in which a rumor is heard by citizens simultaneously. We focus
on the effect of communication among citizens about the rumor instead of the transmission of
the rumor itself.

This article also contributes to a growing literature on revolutions in economics. Edmond
(2011) considers a coordination game where citizens’ private information about the regime’s
strength is contaminated by the regime’s propaganda. Our model differs in that private infor-
mation is uncontaminated, but the public signal may be false and unrelated to fundamentals.
Both Bueno de Mesquita (2010) and Angeletos and Werning (2006) study coordination games
with two stages, where public signals arise endogenously in the first stage. In our model, the
“attack stage” is preceded by a “communication stage,” where a private message endogenously
arises and enlarges citizens’ information set.

In other fields of social sciences, there is no lack of discussions on rumors (e.g., Allport and
Postman, 1947) and revolutions (e.g., Goldstone, 1994). However, there are few studies on the
relationship between these two. The idea seems to have been “up in the air” that rumors motivate
citizens to participate in social movements, but the precise mechanisms remain unspecified. Our
model is a step toward formalizing one such mechanism to explain explicitly how rumors affect
citizens’ beliefs, actions, and therefore equilibrium outcomes in revolutions.

4 Gentzkow and Shapiro (2006) show that individuals tend to believe that a news source is of high quality if it conforms
to their prior expectations. Also, see Suen (2010) for a model with similar features.

5 A common implicit assumption in the literature is that citizens believe that the public signal is informative. They
assign a constant weight on the public signal based on its relative precision to private signals and would not adjust the
weight even though the public signal is remarkably different from what their own private information suggests.

6 Angeletos and Werning (2006) explicitly acknowledge the importance of direct interaction between agents in
coordination models. They allow agents to observe a public signal about the aggregate attack, which conveniently
approximates the situation where agents could learn about the actions of others.

7 Information coarsening is a cost-effective way of exchanging casual information and is commonly used in real life.
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2. A MODEL OF RUMORS AND TALK ABOUT RUMORS

2.1. Players and Payoffs. Consider a society populated by a unit mass of citizens, indexed
by i ∈ [0, 1]. Citizen i chooses one of two actions: revolt (ai = 1) or not revolt (ai = 0). The
aggregate mass of population that revolt is denoted by A. Nature selects the strength of the
regime, θ, which is sometimes also referred to as the state. The regime survives if and only if
θ > A; otherwise, it is overthrown. A citizen’s payoff depends both on whether the regime is
overthrown and on whether she chooses to revolt. A cost c ∈ (0, 1) has to be paid if she revolts.
If the regime is overthrown, citizens who revolt receive a benefit b = 1, and those who do not
participate receive no benefit.8 A citizen’s net utility is therefore

u(ai, A, θ) =
⎧⎨
⎩

1 − c, if ai = 1 and A ≥ θ;
−c, if ai = 1 and A < θ;
0, if ai = 0.

2.2. Information Structure. Citizens are ex ante identical and have improper prior on θ. They
become ex post heterogeneous after each of them observes a noisy private signal:

xi = θ + εi,

where εi ∼ N (0, σ2
x) is independent of θ and is independently distributed across i. This assump-

tion captures the situation that citizens have diverse assessments of the regime’s strength before
they hear any rumor and communicate. This seemingly standard assumption in the global games
literature turns out to be crucial for our model, because citizens will not exchange information
if they share the same belief.

All citizens hear a rumor, z, concerning the strength of the regime. The key issue that we
focus on is how citizens evaluate and react to the rumor when the rumor could be totally
uninformative. Toward this end, the rumor is modeled as a public signal that may come from
two alternative sources: either a source that offers an informative signal on the strength of the
regime or a source that only produces uninformative noise. Formally, we model the random
variable z as coming from a mixture distribution:

z ∼
{

I = N (θ, σ2
z) with probability α,

U = N (s, σ2
U) with probability 1 − α,

where I indicates the informative source and U indicates the uninformative source. We assume
that α, s, σz, and σU are commonly known to all citizens.

The parameter s can be interpreted as the “sentiment” of the public, which captures their
perception of what uninformative messages would sound like.9 For example, if the public is
used to receiving propaganda materials telling them that the regime is strong, then they may
expect a high value of s.

We stress that our specification of rumor as a mixture distribution is different from an
informative public signal with low precision. According to the linear updating formula, all
citizens would react to an informative public signal in the same way regardless of their private
information. In our specification, however, citizens make an inference on the informativeness
of the rumor based on their own private information and therefore have diverse opinions on
the same rumor and react to it differently.

8 We abstract from free-riding issues, which have been carefully addressed by Edmond (2011) and Bernhardt and
Shadmehr (2011). The benefits from regime change can be modeled as a public good that all citizens would enjoy.
Edmond (2011) offers a general payoff structure to accommodate this concern. He shows that a condition can be
derived such that citizens still have incentives to act against the regime, despite the free-riding problem. To avoid being
repetitive, we adopt a simpler payoff structure in this article.

9 The assumption that s is common to all the citizens is made to simplify the exposition. Allowing them to possess
diverse sentiments will not change our results.
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While not dismissing the relevance of rumormongers, we choose to model rumors as exoge-
nous public signals in order to focus on their role in coordinating collective action. The origin
and the content of rumors are assumed to be exogenous because of their sheer diversity and
unpredictability. The possibility that rumors are cooked up strategically to influence individu-
als’ beliefs is an important reason that people tend to be skeptical. But even in this case, the
true sources of rumors are often shrouded in obscurity, making it difficult to infer whether they
are manufactured to defend the regime or to destabilize it.10 Moreover, studies also show that
rumors could be created unintentionally. For example, misunderstanding between individuals is
a usual source of rumors (Allport and Postman, 1947; Peterson and Gist, 1951; Buchner, 1965).

By modeling rumors as a public signal, we also abstract from the process of how rumors
travel from one person to another.11 It is implicitly assumed that rumors can reach every citizen
in the game.12 This assumption seems to be realistic for many revolutions in history: Rumors
against authorities did gain a substantial, even huge, amount of publicity under very repressive
regimes.13

We maintain the following parameter restrictions throughout this article:

σx < σ2
z

√
2π,(1)

σ2
U > σ2

x + σ2
z ≡ σ2

I .(2)

The first restriction is standard. When α = 1, the model reduces to the standard global game
model with public signal. Condition (1) is sufficient and necessary for the uniqueness of equi-
librium in that model; see Angeletos and Werning (2006).

The second restriction captures the idea that uninformative noise exhibits greater variability
than an informative signal. This assumption is motivated by the fact that an informative signal is
generated based on the true strength of the regime, and its realization is anchored by the truth,
whereas there are multiple possibilities that can generate an uninformative signal. Rumors may
be made up by friends or enemies of the regime, or by people with unknown motives that
are unrelated to regime survival. The possibility that rumors are often the result of mistakes
also adds to this uncertainty. In other words, since uninformative noise is drawn from a distri-
bution, which is not anchored by facts or fundamentals, it tends to be more unpredictable. In
Section 3, we show that this assumption is responsible for the result that citizens tend to discount
wild rumors.

2.3. Communication. After citizens observe their private signals and the rumor, they are
randomly paired up to communicate with each other about the informativeness of the rumor.
Specifically each citizen in a pair expresses her view on the likelihood that the rumor is drawn
from an informative source and hears her peer’s view on the same matter. We assume that
citizens can only convey their views in a binary fashion. Let yi represent the message sent to
citizen i by her peer k. The communication technology is characterized as follows:

yi =
{

1, if Pr[z ∼ I|z, xk] ≥ δ;
0, if Pr[z ∼ I|z, xk] < δ.

(3)

10 See Knapp (1944), Nkpa (1977), Elias and Scotson (1994), and Gambetta (1994) for related analysis. The incentives
of rumormongers could be unpredictable in the sense that they might be motivated by many different reasons (Turner
et al., 1992; Zhang, 2009).

11 Acemoglu et al. (2010) model how rumors spread in a network.
12 We can also assume that a certain fraction of citizens do not hear any rumor without affecting the main results in

our model.
13 The rumor that a student was killed by the police, which ignited the Velvet Revolution in Czechoslovakia, was

broadcasted by Radio Free Europe. In 2009, the Iranian postelection protest intensified after a rumor surfaced on the
Internet that police helicopters poured acid and boiling water on protesters (Esfandiari, 2010).
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The parameter δ is common to all citizens and can be interpreted as their threshold for plausi-
bility. Citizen k who sends the message yi = 1 to citizen i can be interpreted as saying, “I believe
the rumor is informative;” whereas the message yi = 0 can be interpreted as “I don’t believe
it.” A high value of δ means that citizens are unlikely to say they believe in the rumor unless
they are sufficiently confident of their assessments. To rule out the possibility that citizens will
never say they believe in the rumor, we impose an upper bound for the value of δ. Specifically,
we assume

δ <
ασ−1

I

ασ−1
I + (1 − α)σ−1

U

≡ δ.

The communication rule (3) is nonstrategic. Given that it is a game with a continuum of
citizens and that each citizen only talks to one other citizen, there is no incentive for citizens to
strategically manipulate their peers’ beliefs by lying. In a sense, truthful revelation is probably
a good description of the casual communication between acquaintances. However, we also
acknowledge that people may have other concerns when they communicate, and, as a result,
they may behave strategically. In Section 5.2, we study a model of strategic communication and
show that the key features of the communication rule in the nonstrategic setting still hold.

To simplify our analysis, we assume that conversations between citizens are conducted in
a binary fashion. However, what drives our results is not information coarsening, but the
assumption that citizens talk about the informativeness of the rumor. The main insights of our
model continue to hold if we allow people to exchange the exact values of their probability
assessment. Rumors usually anchor the topic of conversations, especially when people take
collective action. It is reasonable to assume that people are interested in their veracity and
are inclined to discuss them. A model that allows for exchanging private signals only, without
mentioning the rumor, will deliver very different results. Section 5.1 elaborates on the role of
alternative communication protocols in our model.

2.4. Posterior Beliefs, Decision Rules, and Equilibrium. This model can be analyzed in two
stages. In the communication stage, citizen i sends a message, yk ∈ {0, 1}, to her peer k based
on the information set {z, xi}, and receives a private message yi ∈ {0, 1} from her peer k. In the
attack stage, citizen i chooses to revolt or not, given the postcommunication information set
{z, xi, yi}, to maximize her expected utility.

Before communication, citizens update their beliefs on the mixture weight:

Pr[z ∼ I|z, xi] =
ασ−1

I φ
(
σ−1

I (z − xi)
)

ασ−1
I φ

(
σ−1

I (z − xi)
)

+ (1 − α)σ−1
U φ

(
σ−1

U (z − s)
) ≡ w(z, xi),(4)

where φ is the standard normal density function. The function w(z, xi) is single-peaked in xi,
reaching the maximum at xi = z. This means that a citizen is more likely to believe that the
rumor is informative if her private information is closer to the rumor. There exists x(z) and
x(z) such that w(z, x(z)) = w(z, x(z)) = δ. Therefore, the communication decision rule can be
written as

y(z, xi) =
{

1, if xi ∈ [x(z), x(z)] ;
0, otherwise.

(5)

After communication, citizens update their beliefs with the message yi received from their
peers. Their beliefs will be reweighted by the likelihood of receiving yi for each state. Let
P(·|z, xi, yi) be the cumulative distribution of the state, with the corresponding posterior density
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z xi

xiθ

x(z)x(z)

J(θ, z)

δ

w(z, xi)

FIGURE 1

CITIZENS WITH xi ∈ [x(z), x(z)] SAY THEY BELIEVE THE RUMOR. IN THE AGGREGATE, THE MASS OF SUCH CITIZENS IS J (θ, z)

p(·|z, xi, yi). By Bayes’ rule, citizen i who receives the message yi = 1 from her peer revises her
belief about the state to

P(θ|z, xi, 1) =
∫ θ

−∞ J (t, z)p(t|z, xi) dt∫∞
−∞ J (t, z)p(t|z, xi) dt

.(6)

In this formula, p(·|z, xi) is the density associated with the belief P(·|z, xi) before communication,
and J (t, z) is the probability of receiving message yi = 1 in state t:

J (t, z) = 	

(
x(z) − t

σx

)
− 	

(
x(z) − t

σx

)
,(7)

where 	 is the standard normal distribution function. See Figure 1 for an illustration. Similarly,
a citizen i who receives the message yi = 0 revises her belief to

P(θ|z, xi, 0) =
∫ θ

−∞(1 − J (t, z))p(t|z, xi) dt∫∞
−∞(1 − J (t, z))p(t|z, xi) dt

.

In this article, we focus on monotone equilibrium in which, for any z, there is a survival
threshold θ∗(z) such that the regime collapses if and only if θ ≤ θ∗(z). For any fixed regime
survival threshold θ̂, the expected payoff from attacking the regime given the information set
{z, xi, yi} decreases in xi, because the posterior belief about θ is stochastically increasing in xi

(Milgrom, 1981). Thus, there exist unique cutoff types x̂I and x̂U such that the indifference
conditions hold:

P(θ̂|z, x̂I, 1) = c,(8)

P(θ̂|z, x̂U , 0) = c.(9)

Citizen i chooses to attack the regime when xi ≤ x̂I and yi = 1 or when xi ≤ x̂U and yi = 0.
Let A(θ; x̂I, x̂U , z) be the mass of attackers when the state is θ and when citizens adopt the

cutoff rules x̂I and x̂U :

A(θ; x̂I, x̂U , z) = J (θ, z)	
(

x̂I − θ

σx

)
+ (1 − J (θ, z))	

(
x̂U − θ

σx

)
.
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The regime survival threshold must satisfy the critical mass condition,

A(θ̂; x̂I, x̂U , z) = θ̂.(10)

A monotone equilibrium is characterized by a triple (θ∗(z), x∗
I (z), x∗

U(z)) that solves Equations
(8)–(10).

3. RUMORS WITHOUT COMMUNICATION

Our model departs from the standard global game model in two respects: (1) The public signal
may be uninformative and (2) citizens can exchange messages concerning the informativeness
of the public signal. To highlight the effects of these two features separately, we discuss in this
section a model with feature (1) only by setting δ = 0, so that everyone always sends the same
message and communication becomes irrelevant. We refer to this special case as the “mute
model” and let (θ∗

m, x∗
m) represent the equilibrium regime survival threshold and cutoff type.

The mute model nests two important benchmarks. When α = 0, citizens believe that the
rumor is completely uninformative. We label it the “pure noise model” and use (θ∗

ms, x∗
ms) to

denote the equilibrium pair. When α = 1, the rumor is known to be trustworthy. We refer to
this case as the “public signal model” and use (θ∗

ps, x∗
ps) to denote the equilibrium pair. In this

case, θ∗
ps(z) monotonically decreases in z.14

In the mute model, the posterior belief about θ upon hearing a rumor z is a mixture of the
posterior distribution in the public signal model and that in the pure noise model, with weights
given by the posterior belief that the rumor is informative or not. In other words,

P(θ|z, xi) = w(z, xi)	
(

θ − Xi√
βσx

)
+ (1 − w(z, xi))	

(
θ − xi

σx

)
,(11)

where citizen i’s posterior mean upon observing an informative public signal is Xi = βxi + (1 −
β)z with β = σ2

z/(σ2
z + σ2

x), and the posterior variance is βσ2
x . Since communication is ineffective,

the critical mass condition reduces to the standard one.

LEMMA 1. There exists a unique neutral rumor z′ such that θ∗
m(z′) = θ∗

ps(z′) = θ∗
ms and θ∗

ps(z) >

θ∗
ms for all z < z′ and θ∗

ps(z) < θ∗
ms for all z > z′.

The proof of this and other technical lemmas is in the Technical Appendix. In what follows,
we say that a rumor is against the regime or negative if z < z′ and that the rumor is for the regime
or positive if z > z′. Further, we say that a negative rumor is moderate if z is slightly below z′,
and is extreme if z approaches negative infinity. In the mute model, upon hearing the neutral
rumor z′, the cutoff citizen is indifferent as to whether the rumor is informative or not, because
the likelihood of success is the same in both cases. This is why the equilibrium pair (θ∗

ms, x∗
ms) of

the pure noise model also solves the mute model when z = z′.
Skepticism is the key feature of the mute model: Citizens take into account the possibility

that the rumor could just be uninformative noise. Skepticism toward rumors is manifest in three
aspects.

PROPOSITION 1. (a) Extreme rumors have no impact, i.e., limz→±∞ θ∗
m(z) = θ∗

ms. (b) For any z,
θ∗

m(z) is between θ∗
ms and θ∗

ps(z). (c) θ∗
m(z) is nonmonotone in z.

14 The subscript ms stands for “Morris–Shin,” ps for “public signal,” and m for “mute.”
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If a rumor in circulation is extreme, almost all citizens consider it to be uninformative noise
because it is so far from their own private information. Therefore, the equilibrium is identical
to that in the pure noise model.15

The effect of skepticism also manifests itself in the fact that θ∗
m(z) is between θ∗

ms and θ∗
ps(z)

for any z. In the mute model, citizens are less responsive to the rumor than when they are sure
that it is informative, but are more responsive to it than when they are sure that it is not. This,
however, does not mean that the mute model is simply a public signal model with a less precise
public signal.

In fact, an interesting aspect of skepticism is that θ∗
m(z) is not monotonic, in contrast to the

monotonicity of θ∗
ps(z). To see the intuition, observe that from Equation (12):

∂P(θ∗
m|z, xi)
∂z

= −w
β√
βσx

φI + (	I − 	U)
∂w

∂z
,(12)

where the subscripts I and U mean that the functions are evaluated at the points (θ∗
m −

Xi)/(
√

βσx) and (θ∗
m − xi)/σx, respectively. If the rumor is informative, an increase in z is an

indication that the regime is strong, which lowers the probability that the regime will collapse.
Hence, the first term is negative. This is the standard public signal effect. The second term
captures the skepticism effect, which is positive for extreme values of z. For instance, when z is
sufficiently large, ∂w/∂z < 0, which reflects greater skepticism toward the rumor when it moves
further away from the citizen’s private signal. Moreover, 	I − 	U < 0, because the probability
that the regime will collapse is lower if a rumor for the regime is informative than if it is not.

For z sufficiently close to z′, the magnitude of 	I − 	U is small, because it does not matter
to the cutoff type whether the neutral rumor is informative or not. Therefore, the public signal
effect dominates and the survival threshold decreases in z: A rumor suggesting a moderately
stronger regime discourages mobilization. For zsufficiently extreme, the magnitude of the public
signal effect is small but that of the skepticism effect is large. When the second term dominates
the first term, a wild rumor suggesting a very strong regime raises doubt about its veracity and
may actually encourage mobilization.16

4. RUMORS WITH COMMUNICATION

In this section, we let δ ∈ (0, δ) so that there is meaningful communication among the citizens.
We focus on three key results in this “communication model.” First, communication makes
citizens even more skeptical of extreme rumors. When an extreme rumor against the regime
circulates, communication discourages attackers. Second, communication makes citizens more
responsive to rumors that are close to neutral. When a rumor moderately against the regime
circulates, communication encourages attackers and can cause the regime to collapse, even
though it could have survived had citizens remained silent. Third, the effect of communication
can be so potent that a rumor can mobilize even more attackers than when the same story is
regarded by everybody as fully trustworthy.

In the analysis of rumors that are close to neutral, we rely on an interesting special case where
c = 0.5. In this case, the cutoff type under all the four types of information structure is the same
when the neutral rumor is in circulation. In other words, neutral rumors are not only those
that cutoff-type citizens do not care about from which source they are drawn (z ∼ I or z ∼ U),
but also those that they do not care about what their peers say (y = 1 or y = 0). As a result,

15 This property follows from our parameter restriction (2), under which, for any finite xi, w(z, xi) approaches 0 when
z is extreme. When σI < σU , an extreme z is infinitely more likely to be generated from an uninformative source than
an informative one. But if we assume the opposite, w(z, xi) has a single trough and approaches 1 when z is extreme. In
that case, citizens would regard rumors that are further away from their private information to be more plausible.

16 The properties of x∗
m(z) are similar to those of θ∗

m(z): It increases, then decreases, and then increases in z. This
follows from the critical mass condition, which can be written as x∗

m(z) = θ∗
m(z) + σx	

−1(θ∗
m(z)). Under parameter

restriction (1), x∗
m(z) is increasing in θ∗

m(z).
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equilibrium thresholds are also the same across all the four models when z = z′. We study the
role of communication by letting z deviate from z′ and comparing the equilibrium results with
the other three benchmarks. This special case offers tractability for our analysis and facilitates
the exposition of how communication matters for the equilibrium outcomes. We discuss the case
where c = 0.5 in Section B of the Technical Appendix and show that the qualitative properties
are the same.

4.1. Communication and Aggressiveness.

PROPOSITION 2. Suppose c = 0.5.

(a) If the rumor is neutral, communication has no effect on the decision rule of the citizens,
i.e., x∗

I (z′) = x∗
U(z′) = x∗

m(z′).
(b) If the rumor is against the regime, citizens are more aggressive in attacking when receiving

a confirmatory message than when receiving a contradictory message; i.e., x∗
I (z) > x∗

U(z)
for all z < z′. Similarly, x∗

I (z) < x∗
U(z) for all z > z′.

When a negative rumor is in circulation, citizens with private information xi < x∗
U attack the

regime regardless of the message they receive. We label this group of citizens revolutionaries.
Citizens with private information xi > x∗

I do not revolt regardless. This group is labeled as
bystanders. The group of citizens with xi ∈ [x∗

U , x∗
I ] is called the swing population. Their revolt

decisions are influenced by their peers’ assessments of the rumor: They choose to revolt if
they receive yi = 1 and not to revolt otherwise. To see why citizens from the swing population
become more aggressive when receiving a confirmatory message of a negative rumor, we need
the following lemma.

LEMMA 2. At z = z′ and θ̂ = θ∗(z′), the cutoff types who are indifferent between attacking and
not attacking satisfy

∂x̂I

∂z
<

∂x̂m

∂z
<

∂x̂U

∂z
< 0,(13)

∂x̂I

∂θ̂
>

∂x̂m

∂θ̂
>

∂x̂U

∂θ̂
> 0.(14)

When the rumor is neutral, the cutoff citizen is indifferent between receiving y = 1 or y = 0
from her peer, i.e., x∗

I = x∗
U = x∗

m. The ordering of ∂x̂/∂z (direct effect) implies that a citizen
who receives y = 1 reacts more to the rumor than she does without such communication.17 The
reason is that a confirmatory message (y = 1) causes a citizen to believe that states close to the
rumor are more likely to be the true strength of the regime. In other words, the message leads
to a more concentrated posterior density for states around θ = z′. This effect can be seen from
Equation (6), which implies that

p(θ|z′, x, 1)
p(θ|z′, x)

= J (θ, z′)∫∞
−∞ J (t, z′)p(t|z′, x) dt

.(15)

The likelihood J (θ, z′) in the numerator is increasing, then decreasing in θ, with a peak at θ = z′.
The denominator is just the expected value of J (θ, z′). Therefore, the ratio in (15) is greater

17 The direct effect comes from the response of individuals, without taking into account the resulting change in
equilibrium survival threshold, and its magnitude depends on ∂x̂/∂z.
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EQUILIBRIUM REGIME SURVIVAL THRESHOLDS AND EQUILIBRIUM CUTOFF CITIZEN TYPES IN THE COMMUNICATION MODEL IN

COMPARISON TO OTHER MODELS

than 1 when θ is close to z′ and smaller than 1 when θ is far from it. Moreover, the same increase
in the value of z shifts the density function p(·|z, xi, 1) to the right by a greater amount than
it does to the density function p(·|z, xi). This explains why, in response to the same amount of
change in z, x̂I has to decrease by a larger amount than x̂m in order to restore the indifference
condition.

Consider next the ordering of ∂x̂/∂θ̂ (multiplier effect).18 When c = 0.5, J (θ, z′) reaches a
peak at θ = θ∗(z′). Thus, Equation (15) implies that p(θ∗(z′)|z′, x, 1) > p(θ∗(z′)|z′, x). The term
p(θ∗(z′)|z′, x) reflects the increase in payoff from attacking in the mute model when the regime
survival threshold is marginally raised above θ∗(z′). Since raising the survival threshold increases
the incentive to attack by a greater amount for citizens who receive a confirmatory message, x̂I

also has to increase by a greater amount than x̂m does to keep the cutoff types indifferent.

4.2. Does Communication Help or Hurt? The goal of our analysis is to shed light on why
some rumors can be so effective while others are not. We show that communication among
citizens is the key with the following two results: Communication encourages mobilization
when the rumor is moderately negative, but it discourages mobilization when the rumor is
extremely negative.19 See Figure 2 for a comparison of the regime survival thresholds under
the communication model and the mute model.20 Interestingly, these two contrasting results
are driven by the same mechanism. To explain, we start with how communication affects the
total mass of attackers and then elaborate on how it translates into the ranking of equilibrium
thresholds.

Communication among citizens allows them to be better informed regarding where θ lies.
They know better about whether θ is close to or far away from z than their counterparts in the

18 The multiplier effect arises because of the complementarity in action among citizens, which amplifies the direct
effect: When citizens become more aggressive, the regime survival threshold has to increase, which, in turn, raises the
payoff from revolting and hence further increases the cutoff type. The magnitude of the multiplier effect depends on
∂x̂/∂θ̂.

19 An alternative question is which information structure—with or without communication—will be preferred by the
regime ex ante, i.e., before the rumor is heard. In order to answer this question, we can compute the ex ante survival
probability for each θ, by integrating over z using the mixture distribution. However, once we pool together all these
effective and ineffective rumors as well as positive and negative rumors, the answer to this question depends on the
parameters of the model and no general conclusion can be made.

20 To compute the numerical examples in the figures, unless otherwise specified, we use the following set of parameters:
c = 0.5, s = 0.5, α = 0.5, δ = 0, σ2

U = 1, σ2
z = 0.5, and σ2

x = 0.4 for the pure noise model, public signal model, and mute
model. For the communication model, we set δ = 0.5.
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FIGURE 3

COMMUNICATION INCREASES THE MASS OF ATTACKERS IN STATES CLOSE TO z BUT LOWERS IT IN STATES FAR AWAY FROM z

mute model. The key is that the fraction of citizens who send confirmatory messages, J (θ, z),
is larger if the regime strength is closer to what the rumor suggests and achieves a maximum
when θ = z. Therefore, more citizens will hear confirmatory messages when θ is near z and fewer
when θ is far away from z.

Recall that citizens from the swing population revolt when receiving a confirmatory message
of a negative rumor. If the rumor says that the regime is fragile and the regime is indeed weak,
a larger fraction of the swing population will receive the message y = 1 from their peers and
decide to join the revolutionaries and attack the regime, which results in a larger total mass of
attackers A(θ) in the communication model. On the other hand, the total mass of attackers will
be smaller if the true regime strength is very different from what the rumor says, because only
a very small fraction of the swing population will attack the regime.

Figure 3 plots the mass of attackers A(θ) against the regime strength θ, holding the cutoff rules
constant. Figure 3(a) shows the situation for z being slightly below z′: A larger mass of attackers
are mobilized than that in the mute model when the regime strength θ is near z, and the mass is
smaller when the true θ is far away from z. For the same reason, if the rumor indicates that the
regime is extremely fragile, it mobilizes more attackers when the regime is indeed extremely
weak. But the mass of attackers falls relative to that in the mute model when the regime is
indeed strong and far away from what the rumor suggests. Figure 3(b) illustrates this situation.

In Figure 3, the mass of attackers A(θ) in the communication model is larger than its coun-
terpart in the mute model for states close to z. Since the equilibrium regime survival threshold
is given by the intersection of A(θ) and the 45º line, this figure shows that θ∗(z) > θ∗

m(z) for
moderately negative z, and θ∗(z) < θ∗

m(z) for extremely negative z.

PROPOSITION 3. When an extreme negative rumor is in circulation, communication among
citizens makes the regime less vulnerable to attacks, i.e., θ∗(z) < θ∗

m(z). Similarly, θ∗(z) > θ∗
m(z)

when z is extremely positive.

Consider an extreme negative rumor. The cutoff citizens who receive y = 0 will be less
aggressive than the cutoff type in the mute model, who is, in turn, less aggressive than the
cutoff citizens receiving y = 1. That is, x∗

U < x∗
m < x∗

I .21 Because z is extremely negative, unless
the true regime strength is extremely weak, the fraction of citizens who receive confirmatory

21 The first inequality is established in the proof of Lemma 8, and the second follows from part 1 of Lemma 10 of the
Technical Appendix.
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messages, J (θ, z), will be very small. Therefore, only a negligible fraction of the swing population
will join the revolutionaries and attack the regime. As a result, the mass of attackers in the
communication model is smaller than in the mute model. That is,

J (θ, z)
[
	

(
x∗

I − θ

σ

)
− 	

(
x∗

U − θ

σ

)]
+ 	

(
x∗

U − θ

σ

)
< 	

(
x∗

m − θ

σ

)
,

or A(θ) < Am(θ).22 As a result, Proposition 3 is implied.

PROPOSITION 4. When a moderately negative rumor is in circulation, communication among
citizens makes the regime more vulnerable to attacks, i.e., θ∗(z) > θ∗

m(z). Similarly, θ∗(z) < θ∗
m(z)

when z is moderately positive.

To understand this proposition, we study the change in total mass of attackers when z deviates
from z′. In the communication model, a slight decrease in z from z′ leads to an increase in the
size of swing population by σ−1

x φ(·)(dx∗
I /dz − dx∗

U/dz). A fraction J of the swing population
would receive a confirmatory message from their peers and decide to join the revolutionaries
and attack the regime. The change in the mass of revolutionaries is σ−1

x φ(·)dx∗
U/dz. In the mute

model, the increase in the mass of attackers is σ−1
x φ(·)dx∗

m/dz. For communication to increase
the size of attack given a moderate rumor against the regime, we must have

1
σx

φ(·)
[

J (·)
(

dx∗
I

dz
− dx∗

U

dz

)
+ dx∗

U

dz

]
<

1
σx

φ(·)dx∗
m

dz
< 0.(16)

To see why inequality (16) holds, it is sufficient to show that both direct and multiplier effects
are larger in the communication model than those in the mute model.23 That is, at the point
z = z′ and θ̂ = θ∗(z′),

J
∂x̂I

∂z
+ (1 − J )

∂x̂U

∂z
<

∂x̂m

∂z
< 0;(17)

J
∂x̂I

∂θ̂
+ (1 − J )

∂x̂U

∂θ̂
>

∂x̂m

∂θ̂
> 1.(18)

Inequalities (17) and (18) are stronger than Lemma 2. They hold because a large fraction of
the population will receive confirmatory messages when the rumor is close to the true state.
As a result, the population as a whole is better informed given the extra information from
communication. Further, consistent with inequality (16), we establish in the proof that θ∗ is
more responsive to the change in z around z′ than is θ∗

m, which therefore implies Proposition 4.

4.3. The Power of Whispers: Rumors versus Trustworthy News. Strikingly, the effect of
communication can be so large that when a rumor against the regime circulates, the regime
could survive when all citizens believe that it is trustworthy, but could collapse when citizens
know that the rumor may be uninformative.

In this comparison, communication is also allowed in the public signal model, but it is com-
pletely ineffective. Given everybody believes that the rumor is informative (i.e., α = 1), the

22 The proof of Proposition 3 shows that as z gets sufficiently negative, the first term of the left-hand side varnishes
much quicker than the difference between the second term and the term on the right-hand side.

23 We note that dx∗/dz = ∂x∗/∂z + (∂x∗/∂θ̂)(dθ∗/dz). Therefore, the magnitude of dx∗/dz depends on both direct
and multiplier effects. At the aggregate level, the direct effect in the communication model is the weighted average of
∂x̂I/∂z and ∂x̂U/∂z, with the weights being J and 1 − J , respectively. The multiplier effect is the weighted average of
∂x̂I/∂θ̂ and ∂x̂U/∂θ̂.
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PRECISION

posterior belief of the informativeness is always w(z, xi) = 1. Therefore, for any plausibility
threshold δ, everybody would send to and receive from her peers the message y = 1. Paradoxi-
cally, communication takes no effect in the absence of skepticism.

Figure 4 shows that θ∗ can be higher than θ∗
ps for z slightly below z′.24 To see why this

possibility could arise, we need to compare A(θ) with Aps(θ) at θ = θ∗(z′) when z deviates from
z′ to a slightly more negative value. Similar to the previous analysis, the response of the mass
of attackers to a change in z is governed by the direct and multiplier effects. In the following
analysis, we just focus on the multiplier effect, i.e., ∂x̂/∂θ̂.25

We have shown the following two mechanisms separately: Due to the effect of skepticism,
∂x̂ps/∂θ̂ > ∂x̂m/∂θ̂, and due to the effect of communication, ∂x̂I/∂θ̂ > ∂x̂m/∂θ̂ > ∂x̂U/∂θ̂. Inter-
estingly, under some conditions, the fraction of population who receive confirmatory messages
can be large, such that the average response of the population is larger than that in the public
signal model. That is, at the point z = z′ and θ̂ = θ∗(z′),

J
∂x̂I

∂θ̂
+ (1 − J )

∂x̂U

∂θ̂
>

∂x̂ps

∂θ̂
.(19)

This result is interesting in that skepticism provides the ground for communication, but its effect
can also be undone by communication.

PROPOSITION 5. Suppose the relative precision β of private information is not too low, and the
threshold δ for sending a confirmatory message is neither too high nor too low. A regime is more
vulnerable to a moderately negative rumor z when citizens believe that it could be false than when
they consider it fully trustworthy, i.e., θ∗(z) > θ∗

ps(z).

To understand Proposition 5, note that communication is not very informative when the value
of δ is very large or very small, because most citizens would send the same message. Figure 5
shows that the multiplier effect in the communication model (the left-hand side of inequality
(19)) is the same as the multiplier effect in the mute model when δ is close to its bounds. Figure
5 also shows that the effect of communication is hump shaped: For intermediate values of δ,
the multiplier effect in the communication model is larger than that in the mute model, and can
even exceed that in the public signal model.

Recall that δ determines the fraction of population J who send confirmatory messages. When
the plausibility threshold δ is low, J is high, because citizens are less cautious in saying that they

24 In plotting this figure, we set δ = 0.5 and use the value of σ2
x = 0.2, which is lower than that used in Figure 2(a).

25 Lemma 6 of the Technical Appendix establishes that the direct and multiplier effects sum up to 1. A stronger
multiplier effect implies that the direct effect is also stronger.
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believe the rumor. Given that receiving a confirmatory message is so expected, recipients of
such messages would not update their belief that much. Therefore, ∂x̂I/∂θ̂ will be quite close to
∂x̂m/∂θ̂.

When δ is larger, citizens become more careful about sending their peers confirmatory mes-
sages, and such messages will be stronger evidence that θ is close to z′. In this case, recipients of
confirmatory messages can be even more responsive than those in the public signal model, i.e.,
∂x̂I/∂θ̂ > ∂x̂ps/∂θ̂. This effect can be so strong that inequality (19) holds.

For δ very large, however, J becomes so small that only a negligible fraction of the population
receives confirmatory messages. The weighted average, J∂x̂I/∂θ̂ + (1 − J )∂x̂U/∂θ̂, would dip
below ∂x̂ps/∂θ̂ again.

Proposition 5 also says that the relative precision of private information has to be reasonably
high for communication to take a strong effect. When the noise is smaller in private information,
citizens’ private signals will be on average closer to the true θ. A confirmatory message will be
stronger evidence for the true strength being close to what the rumor says. Therefore, recipients
of confirmatory messages will be more responsive to the rumor, making the left-hand side of
(19) bigger. In the public signal model, on the other hand, a higher precision of the private
signals means that citizens will rely more on their private signal and be less responsive to the
rumor, making the right-hand side of (19) smaller.

Our analysis of rumors suggests that for outcomes of collective actions, it matters little
whether rumors reflect the truth or have no basis in fact. What matters is that rumors create
public topics that people can talk about. By communication, people learn from what others
believe regarding the rumor and can better coordinate their actions. That explains why some
false rumors could mobilize citizens very effectively when collective actions take place.

4.4. Prior Belief and Sentiment. Similar to Proposition 5, we can also establish that the effect
of communication is smaller when α is closer to 1 or 0, and is bigger when it takes intermediate
values. If citizens have strong priors, their peers’ assessments about the rumor have little effect.
In contrast, if citizens are less certain about the source of rumors, information exchange among
citizens has a stronger effect on the equilibrium.

The effect of changing α can be decomposed into three mechanisms. First, when the prior
belief α is higher, the posterior belief w that the rumor is informative is higher. Second, as a
result, the fraction of citizens with w ≥ δ is also higher. That is, J increases when w increases.
Third, the counteracting effect is that when the message sending interval widens and a larger
fraction of citizens send confirmatory messages to their peers, recipients become less responsive.
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When α is sufficiently small and becomes slightly larger, the first two effects dominate the
third such that the effect of communication becomes larger. However, when α is large enough,
both w and J are close to 1, and the increments to both are very small when α increases further.
Therefore, the third effect dominates, and recipients of confirmatory messages do not update
their beliefs that much. That is, the effect of communication decreases as α increases beyond a
certain point.

Similar analysis can be applied to the effects of changes in sentiment s. Consider the case
where s increases from “neutral sentiment” s = z′ to infinity.26 If s increases from the neutral
value, citizens believe that a rumor against the regime is more likely to have come from an
informative source. The aforementioned three mechanisms are still at work: Both w and J
increase, and citizens are more reactive to a negative rumor, but the resulting wider message
sending interval implies that recipients of confirmatory messages become less responsive. The
first two effects dominate the third if the sentiment is close to neutral. If s is sufficiently large,
both w and J are close to 1. Since almost everybody thinks that a negative rumor is informative
and says so to their peers, information exchange becomes less useful for citizens. In sum, the
effect of communication also responds to s in a nonmonotone fashion.

5. DISCUSSION

5.1. The Topic of Conversations Matters. In the baseline model, we have assumed that
communication takes the form of exchanging coarse (binary) signals about the informativeness
of the rumor. In this subsection, we demonstrate that information coarsening is not a crucial
assumption. It is the exchange of views on the rumor’s informativeness that drives our results.
This mechanism is qualitatively different from the case where the content of conversation
is unrelated to the rumor. To stress this point, we explore two alternative communication
protocols, which allow citizens to exchange the exact value of w(z, xi) or the exact value of xi,
respectively. We then discuss the case where both protocols are allowed.

Exchange w(z, xi). Suppose citizens can tell each other the value of w (instead of just whether
w is greater than or less than δ). Citizen i updates her belief in a Bayesian fashion when she
receives the message wk = w(z, xk) from her peer k:

Pr[θ < θ̂|z, xi, wk] =
∫ θ̂

−∞ j(t, z, wk)p(t|z, xi) dt∫∞
−∞ j(t, z, wk)p(t|z, xi) dt

,

where

j(t, z, wk) = 1
σx

φ

(
xl − t

σx

)
+ 1

σx
φ

(
xr − t

σx

)
,

with xl and xr being the two values of xk that solve the equation w(z, xk) = wk.
The function j(t, z, wk) reaches a local maximum at t = z if wk is high (xl and xr are

near z) or a local minimum at t = z if wk is low (xl and xr are far from z). Moreover,
at z = z′, there exists a ŵ such that the ratio j(θ = z′, z′, wk)/

∫∞
−∞ j(t, z′, wk)p(t|z′, x′) dt is

greater than 1 if wk > ŵ. Therefore, citizens who receive a message wk > ŵ in this model
are similar to citizens who receive a message y = 1 in the baseline model. Similarly, the ratio
j(θ = z′, z′, wk)/

∫∞
−∞ j(t, z′, wk)p(t|z′, x′) dt is less than 1 if wk < ŵ. Therefore, citizens who re-

ceive a message wk < ŵ in this model are similar to citizens who receive a message y = 0 in the
baseline model.

26 The sentiment s = z′ is considered neutral, since the equilibrium regime survival threshold is symmetric in s about
the point s = z′.
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Intuitively, when citizen k conveys a high assessment that the rumor is likely to be informative,
i.e., wk > ŵ, her peer i assigns a higher probability weight (density) to states close to z. Similarly,
when citizen k does not believe that the rumor is sufficiently informative, i.e., wk < ŵ, citizen
i assigns lower weight to states close to z and higher weight to states far away from z. Recall
that this mechanism of probability reweighting is precisely the key that drives our results in
the baseline case. Therefore, the model of exchanging the exact probability assessments is not
qualitatively different from our model of exchanging coarse information.

Exchange xi. Now we turn to the case where citizens directly exchange their private infor-
mation. To be more general, we assume that the communication process is noisy: Each citizen
receives her peer’s private signal with an additive noise. That is, the message yi received by the
citizen i from her peer k is given by yi = xk + ξk, where the noise ξk ∼ N (0, σ2

ξ ) is independent
of xk and independently distributed across k. After communication, each citizen possesses an
information set that consists of the rumor z and two private signals xi and yi. This information
set is equivalent to {z, vi}, where vi is a private signal with higher precision than xi. That is,

vi ≡ σ2
x + σ2

ξ

2σ2
x + σ2

ξ

xi + σ2
x

2σ2
x + σ2

ξ

yi,

σ2
v ≡ σ2

x + σ2
ξ

2σ2
x + σ2

ξ

σ2
x < σ2

x.

In other words, this setting is observationally equivalent to the mute model, with private signals
of higher quality. An increase in the precision of private information causes citizens to be less
responsive to the rumor in the “mute model.”

The contrast between these two alternative models highlights that the topic of conversations
matters: When citizens talk about what they privately know, they put less emphasis on public
information; when they exchange views on the public signal that they commonly observe, they
rely more on the public information.

Exchange both. Our analysis of communication is not affected if we allow citizens to ex-
change their private signal as long as conversation about the rumor is also allowed. Consider a
hybrid model by allowing citizen i to exchange private information with a random peer k and
to exchange views on the informativeness of the rumor with another random peer k′. As the
previous analysis suggests, the exchange of private information only improves its precision.

Because our analysis holds true for any precision of private information, changing its precision
would not affect our results. One might conjecture that our results will be undermined once
we allow for private-information exchange, but this is not necessarily the case either. In fact,
Proposition 5 implies that more precise private information (higher β) can strengthen the effect
of the rumor under certain conditions.

5.2. Strategic Communication. There are two key features of communication protocol in the
benchmark model that drive our main results regarding the effect of rumors. First, citizens follow
an “interval” message sending rule, i.e., they send confirmatory messages when their private
signals are within a certain interval. Second, this interval is not fixed. Instead, it is anchored
by the rumor: The interval is symmetric around and shifts with the rumor’s realization. The
implication is that people confirm the veracity of the rumor when what they know is sufficiently
close to it. We have seen how these two features contribute to making communication a potent
mechanism to coordinate collective action.

Although nonstrategic communication can be a realistic description of many conversations
between acquaintances, especially when each individual has a negligible effect on the aggregate
outcome, there are situations when strategic concerns also play a role. In times of turmoil, a
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TABLE 1
PLAYER i’S COST MATRIX

Player k

“yes” “no”

Player i “yes” 1{z ∼ U} · c1 1{z ∼ U} · c1 + d1
“no” 1{z ∼ I} · c0 + d0 1{z ∼ I} · c0

citizen may not know who is a friend or an enemy, and she may have to be careful about what she
tells her peer. In this subsection, we provide a model of strategic communication that captures
some of these concerns. The resulting equilibrium communication rule is not mechanical as in
the benchmark model, but still delivers the two key features of the benchmark communication
protocol that drive our main results.

Assume that citizens are randomly paired up and play a communication game. Each citizen
can choose to say “Yes, I believe it,” or “No, I do not believe it.” In contrast to the costless mes-
sage sending setup in the benchmark model, citizens may incur two types of cost. First, if one’s
message is subsequently contradicted by the facts, the sender may face penalties for spreading
false rumors or for instilling skepticism toward legitimate news. This is especially relevant in
autocratic regimes where the authority tends to punish people who express sympathetic views
on unverified rumors. Alternatively, the sender may also incur a psychological cost when she
realizes that she has misled her peer. We let c1 be the expected cost to a citizen when she says
“yes” but the rumor turns out to be uninformative and c0 be the expected cost when she says
“no” but the rumor turns out to be informative. Second, one does not fully know who one is
talking to in a casual conversation. If a sender’s assessment is at odds with that of her peer’s,
then she may face a chance that her peer may turn her in to the regime or to the rebels, so
that she is singled out and punished.27 Thus, in sending a message to her peer, a citizen’s cost
depends on what the other citizen’s message is. We let d1 be the expected cost to a citizen if she
says “yes” but her peer says “no,” and let d0 be the expected cost if she says “no” but her peer
says “yes.” The cost is normalized to 0 if both citizens express the same assessment. The cost
matrix to player i is summarized in Table 1, where 1{·} is the indicator function.28

A message sending rule is a set S such that a player chooses to express a confirmatory view if
and only if her private information is in S. Given that player i expects her peer player k to adopt
the message sending rule S, her assessment that player k will send a confirmatory message is

q(S; z, xi) ≡ w(z, xi) Pr[xk ∈ S|z, xi, z ∼ I] + (1 − w(z, xi)) Pr[xk ∈ S|z, xi, z ∼ U].

Using the cost matrix in Table 1, player i chooses to say “yes” if and only if

q(S; z, xi) ≥ d1 + c1 − w(z, xi)(c0 + c1)
d0 + d1

.(20)

The equilibrium message sending rule S∗ is a fixed point: Given citizens follow the message
sending rule S∗, inequality (20) holds if and only if xi ∈ S∗.

PROPOSITION 6. If c1 > d0 > c1 − w(z, z)(c0 + c1), there exists an interval equilibrium message
sending rule S∗, and it is symmetric about the rumor z.

27 When they have different assessments on the same rumor, one of them can be considered as being unfriendly to
the regime. There is a chance that the other citizen betrays her and turns her in to the regime. Moreover, a citizen who
expresses assessments that are sympathetic to the regime can also be turned in by her peer and punished by the rebels
for betraying the cause of the revolution.

28 Note that the cost parameters cl and dl can be functions of z. But it does not affect the equilibrium results, since
citizens play this game after they observe the rumor.
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When d0 ≥ c1, it is an equilibrium that everybody endorses the rumor. If citizen i expects
that her peer will say “yes” and the cost c1 of being punished for endorsing a false rumor is
smaller relative to the cost d0 of disagreeing with one’s peer and being turned in to the regime or
rebels, citizen i chooses to say “yes” as well, and no meaningful communication occurs. On the
other hand, when d0 ≤ c1 − w(z, z)(c0 + c1), even the most “confident” citizen whose private
information is confirmed by the rumor (i.e., xi = z) finds it costly to endorse its veracity. In that
case, no citizen would say “yes” even if she expects her peer to say “yes.”

If d0 is neither too high nor too low (i.e., it satisfies the restriction stated in Proposition 6),
then it can support an equilibrium in which citizens who find the rumor sufficiently plausible
would choose to say that they believe the rumor. To see this, suppose that the message sending
rule takes the form of an interval: S = [x, x]. Then,

q(S; z, xi) = w(z, xi)

(
	

(
x − βxi − (1 − β)z√

β + 1σx

)
− 	

(
x − βxi − (1 − β)z√

β + 1σx

))

+ (1 − w(z, xi))
(

	

(
x − xi√

2σx

)
− 	

(
x − xi√

2σx

))
.

If S is symmetric about z, q(S; z, xi) increases in xi from zero, peaks at xi = z, and then decreases
toward zero. Intuitively, when xi is extreme, player i tends to believe that player k’s private
signal is also very extreme, and the probability that xk falls in any intermediate interval S is
low. Thus, the left-hand side of inequality (20) is hump-shaped in xi. Because of the property
of w(z, xi), the right-hand side of (20) is inverted hump-shaped in xi. Proposition 6 shows that
there exists an interval [x, x] such that the left-hand side exceeds the right-hand side if and only
if xi belongs to this interval. Further, this interval must contain z and is symmetric about it. For
any symmetric decision rule S, both q(S; z, ·) and w(z, ·) are symmetric about the rumor z. Given
the symmetry of both sides of (20), the equilibrium message sending rule S∗(z) is symmetric as
well.

Depending on the cost parameters, the endogenous decision interval S∗(z) may be larger
or smaller than that specified in the benchmark case with exogenous plausibility threshold δ.
Instead of reporting whether they believe a rumor mechanically, citizens choose their messages
depending on expected costs and on what they believe their peers will report. However, this
equilibrium communication rule shares the same key features as the exogenous communication
rule in the benchmark case. In terms of the effect of communication on equilibrium in the attack
stage of the game, the two alternative communication protocols deliver the same qualitative
results.

5.3. Robustness. Our baseline specification on communication is the simplest possible one
that allows citizens to exchange views on the informativeness of the rumor. When we relax
various simplifying assumptions, our main results still hold. We discuss three examples.

Finer messages. First, we investigate the case where citizens can exchange finer messages,
instead of simply y = 1 or 0. Specifically, if citizens decide to send their peers contradictory
messages y = 0, we allow them to justify and explain why they do not believe that the rumor is
informative. When xk < x(z), citizen k can send her peer a message y = 0L, interpreted to mean
“the rumor is not informative because it indicates that the regime is too much stronger than I
believe;” she sends a message y = 0R when xk > x(z); and she sends y = 1 when xk ∈ [x(z), x(z)].

In the baseline model, the key result that rumors can be even more potent than trustworthy
news is driven by the fact that the effect of communication can dominate skepticism when a
confirmatory message is received and by the fact that the fraction of population who receive
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those messages can be sufficiently large. The same driving force can also dominate in this
specification and lead to a similar result.

Meeting with like-minded citizens. Second, in our benchmark model, we assume that citizens
meet in a completely random manner. However, one may argue that in reality, people are more
likely to meet someone who shares similar beliefs. To capture the spirit of such a semirandom
meeting technology, we assume that citizens split into two groups after they hear the rumor:
Those whose private information is lower than the value of z form a group L and the rest form
a group R. Then, citizens are randomly matched in pairs in each group. Citizen k from L sends
her peer a message y = 0 when xk < x(z) or y = 1, when x(z) < xk < z. Similarly, citizen k′ from
R sends her peer y = 0 when xk′ > x(z) or y = 1 when z < xk′ < x(z).

This setup is quite similar to the specification of exchanging finer messages discussed above.
The difference is that the group of citizens who receive y = 1 in that case splits into two in this
case. However, recipients of confirmatory messages in both groups consider those messages as
evidence for θ being close to z. The same logic of the “finer messages” case continues to apply
here, and rumors can still be more potent than trustworthy news in this case.

Meeting with more than one citizen. Third, we can also extend our model to the case where
citizens meet up and communicate in a group. Specifically, N citizens are randomly grouped
together in the communication stage, and then each of them sends one message to and receives
N − 1 messages from his N − 1 group members simultaneously. Naturally, there are N types of
citizens after they communicate, depending on the number of confirmatory messages received,
n, where n ∈ {0, 1, . . . , N − 1}. It turns out that the posterior densities of citizens that receive a
larger number of confirmatory messages are more concentrated around the rumor, and therefore
become more responsive to it. It is also similar to the benchmark case in that the fraction of
citizens who receive a high number of confirmatory messages is larger if the rumor happens to
be closer to the true fundamental. Therefore, our key results can still extend.29

5.4. Censorship: The Power of Silence. As rumors can be powerful in mobilizing citizens to
revolt, autocratic governments may want to block rumors against them and to stop citizens from
talking about these rumors. However, does it always help the regime to survive if censorship
is adopted to screen out all negative information? When citizens hear no rumor about the
regime, silence itself becomes a public signal about the regime strength, and it is not obvious
that censorship necessarily increases the chances of regime survival.

Assume that the regime blocks any rumor z if z < K and citizens are aware of this censorship
rule. When z is observable, the equilibrium is the same as in our communication model. When
citizens hear no rumor, they understand that the authority has blocked the rumor and z < K.
Taking θc as the threshold for regime survival, citizens calculate the expected payoff of revolt
in a Bayesian fashion,

Pr[θ ≤ θc|z < K, xi] =
∫ θc

−∞
[
α	

(
K−t
σz

)
+ (1 − α)	

(
K−s
σU

)]
1
σx

φ
(

t−xi
σx

)
dt∫∞

−∞
[
α	

(
K−t
σz

)
+ (1 − α)	

(
K−s
σU

)]
1
σx

φ
(

t−xi
σx

)
dt

.

Now we examine the effect of censorship on regime survival when the regime blocks any
negative rumors against it, i.e., K = z′. The “censorship model” is a variant of the mute model
when rumors are blocked, since citizens cannot communicate when there is no rumor to talk
about. In a sense, citizens pool the effects of negative rumors, both more and less dangerous

29 A formal characterization and results from the case with N = 3 are available upon request. Note that the case
where infinitely many citizens can meet up and exchange information is different. If citizens receive infinitely many
messages, by the law of large numbers, they can back out the fundamental θ given the fraction of confirmatory messages
they receive and the message sending rule.
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FIGURE 6

THE DASHED LINE SHOWS THE EQUILIBRIUM SURVIVAL THRESHOLD IN THE CENSORSHIP MODEL, WHEREAS THE SOLID LINE

REPRESENTS THAT IN THE COMMUNICATION MODEL. CENSORSHIP CAN HURT THE REGIME BY RAISING THE SURVIVAL THRESHOLD

ABOVE THAT IN THE COMMUNICATION MODEL

ones, and use an average to make a decision, given that they cannot observe the censored rumor
z. Therefore, censorship does help the regime to survive when the blocked rumors happen to
be the most dangerous ones (i.e., when θ∗(z) is around the peak value), but hurts the regime
when they are extreme or close to neutral.30 See Figure 6 for an illustration.

6. CONCLUSION

Social interaction is an important source of information for individuals, especially when the
coordination motive is important. Our article highlights the significance of this channel and
contributes to this interesting but underexplored topic.

It is not news that revolutions in history are often intertwined with rumors. However, what
strikes us is why some rumors, which often turned out to be false later, could be so effective
for mobilization while others were simply ignored. We offer an analysis of this phenomenon
by focusing on two key aspects of rumors: that they may or may not be true and that peo-
ple talk about them. In this model, individuals’ skepticism toward rumors arises as a ratio-
nal response instead of a behavioral assumption. Moreover, we explicate a novel mechanism
where the effect of citizens’ skepticism can be undone or reinforced by communication among
themselves.

To the best of our knowledge, our model is the first attempt to explicitly investigate the
role of rumors in a regime change game. Our theory is interpreted in the context of political
revolution, but it can also be extended to model rumors in bank runs, financial crises, and
currency attacks. We have not, however, addressed questions about how rumors originate or
how they spread. Although we explore a number of communication protocols in this article, our
analysis is confined to decentralized communication with pairwise matching. The role played
by social networks, mass media, and modern communication technologies in promulgating or
abating rumors remains to be studied.

30 Our analysis specifically highlights the effects of censoring rumors on the survival of the regime. More detailed
analysis can be obtained upon request. The optimal censorship strategy is not the focus of this article, and it is
systematically characterized in a more general setup, developed by Shadmehr and Bernhardt (2015). They study state
censorship in a model with a ruler, a representative citizen, and media, where a similar mechanism also arises, that “no
news” becomes “bad news.”
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APPENDIX

Proof of Proposition 1.

Part (a). Combining the indifference condition and the critical mass conditions in the mute
model, we get

θ∗
m = (1 − c) +

[
	

(
θ∗

m − (βx∗
m + (1 − β)z)√

βσx

)
− c

]
· w(z, x∗

m)
1 − w(z, x∗

m)
.

For any finite x∗
m, limz→∞ w(z, x∗

m) = 0. Therefore,

lim
z→∞ θ∗

m(z) = 1 − c = θ∗
ms.

As z goes to infinity, x∗
m(z) must remain finite. To see why this is the case, suppose z is

sufficiently large and x∗ goes to negative infinity; the equation above implies that θ∗
m =

1 − c and A(θ∗
m; z) = 0. The critical mass condition is violated. Next, suppose that z is

sufficiently large and x∗ goes to infinity. The equation above implies that θ∗
m < 1 − c,

but the fact that x∗ is sufficiently large implies that A(θ∗
m; z) = 1. The critical mass

condition is again violated. A similar argument establishes that limz→−∞ θ∗
m(z) = θ∗

ms.
Part (b). We first show that if z < z′, then θ∗

m(z) < θ∗
ps(z). From the critical mass condition

in the mute model, we have 	(σ−1
x (θ∗

m − x∗
m)) = 1 − θ∗

m. Therefore, the indifference
condition in the mute model can be written as

c = w(z, x∗
m)	

(
θ∗

m − (βx∗
m + (1 − β)z)√

βσx

)
+ (1 − w(z, x∗

m))(1 − θ∗
m).

From the indifference condition of the public signal model and from the fact that
1 − θ∗

ms = c, we also have

c = w(z, x∗
m)	

(
θ∗

ps − (βx∗
ps + (1 − β)z)√
βσx

)
+ (1 − w(z, x∗

m))(1 − θ∗
ms).

These two equations, together with the fact that θ∗
ps > θ∗

ms when z < z′, imply

w(z, x∗
m)	

(
g(θ∗

m) − (1 − β)z√
βσx

)
+ (1 − w(z, x∗

m))(1 − θ∗
m)

>w(z, x∗
m)	

(
g(θ∗

ps) − (1 − β)z√
βσx

)
+ (1 − w(z, x∗

m))(1 − θ∗
ps),

where

g(θ∗) ≡ θ∗ − βx∗ = θ∗ − β(θ∗ + σx	
−1(θ∗)).

To show θ∗
m < θ∗

ps from the above inequality, it suffices to show that dg(θ∗)/dθ∗ ≤ 0.
We have

dg(θ∗)
dθ∗ = 1 − β − βσx

φ (	−1(θ∗))
≤ 1 − β − βσx

√
2π,

which is negative by Assumption (1). Hence, θ∗
m < θ∗

ps when z < z′.
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Next, we show that θ∗
m(z) > θ∗

ms if z < z′. Suppose this is not true. Then, 	(σ−1
x (θ∗

m −
x∗

m)) = 1 − θ∗
m ≥ 1 − θ∗

ms = c, which implies

	

(
θ∗

m − (βx∗
m + (1 − β)z)√

βσx

)
≤ c.

Moreover, the fact that (θ∗
ms, x∗

ms) satisfies the indifference condition of the public
signal model at z = z′ implies

	

(
θ∗

ms − (βx∗
ms + (1 − β)z′)√

βσx

)
= c.

These two conditions can be combined to give

g(θ∗
m) − g(θ∗

ms) ≤ (1 − β)(z − z′) < 0.

Since dg(θ∗)/dθ∗ < 0, this inequality implies θ∗
m > θ∗

ms, a contradiction. Thus, when
z < z′, we must have θ∗

m(z) ∈ (θ∗
ms, θ

∗
ps(z)). When z ≥ z′, the proof is symmetric.

Part (c). The following is to show that (i) θ∗
m(z) is increasing and then decreasing for z ∈

(−∞, z′) and (ii) θ∗
m(z) is decreasing and then increasing for z ∈ (z′,∞). Fix a z0 ∈

(−∞, z′).
Define

f (z) ≡ P(θ∗
m(z0)|z, x∗

m(z0)).

We show that f is single-peaked in z for z ∈ (−∞, z′). It suffices to verify that
df (z)/dz = 0 implies d2f (z)/dz2 < 0. To simplify the notation, we use the subscript
I or U to denote the posterior distribution (or density) when z is known to be infor-
mative or uninformative, respectively. We have

df (z)
dz

= (	I − 	U)
∂w

∂z
− w

∂	I

∂z

=
[

(1 − w)
(

z − s

σ2
U

+ x∗
m(z0) − z

σ2
I

)(
1 − 	U

	I

)
− 1 − β√

βσx

φI

	I

]
w	I .

When df (z)/dz = 0, the second derivative is given by

1
w	I

d2f (z)
dz2

= −w(1 − w)
(

z − s

σ2
U

+ x∗
m(z0) − z

σ2
I

)2 (
1 − 	U

	I

)

+ (1 − w)
(

1

σ2
U

− 1

σ2
I

)(
1 − 	U

	I

)

− (1 − w)
(

z − s

σ2
U

+ x∗
m(z0) − z

σ2
I

)(
∂ (	U/	I)

∂z

)

−
(

1 − β

σx
√

β

)
∂ (φI/	I)

∂z
.

The first term is negative because 	I > 	U for z < z′. To see this, suppose the contrary
is true. Then, 	I ≤ 	U implies

θ∗
m(z0) +

√
βx∗

m(z0) ≤ (1 +
√

β)z.
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But for z0 ≤ z′, the left-hand side is greater than θ∗
ms + √

βx∗
ms, which is equal to (1 +√

β)z′, a contradiction. The second term is negative because σ2
U > σ2

I from parameter
restriction (2). The third term is negative because (z − s)/σ2

U + (x∗
m(z0) − z)/σ2

I > 0
whenever df (z)/dz = 0 and because 	U/	I is increasing in z. The fourth term is also
negative because the function φI/	I is increasing in z.

The single peakedness of f (z) for z ∈ (−∞, z′) implies that in this range, there can
be at most one z1 = z0 such that θ∗

m(z1) = θ∗
m(z0). Suppose otherwise. Let z1 = z2 = z0

be such that θ∗
m(z1) = θ∗

m(z2) = θ∗
m(z0). By the critical mass condition, this implies

x∗
m(z1) = x∗

m(z2) = x∗
m(z0). Since (θ∗

m(z0), x∗
m(z0)) satisfies the equilibrium conditions

for z ∈ {z1, z2, z0}, the equation f (z) = c has at least three solutions, which contradicts
the single peakedness of f .

In parts (a) and (b) of the proposition, we have already established that θ∗
m(z) is

higher than θ∗
ms for z ∈ (−∞, z′) and approaches it when z goes to minus infinity or

to z′. Thus, θ∗
m(z) must be increasing for z sufficiently negative and decreasing for z

sufficiently close to z′. Together with the fact that for any z0 in this range, there can
be at most one z1 such that θ∗

m(z0) = θ∗
m(z1), this implies that θ∗

m(z) must be increasing
then decreasing in this range.

For the case z ∈ (z′,∞), write

df (z)
dz

=
[

(1 − w)
(

z − s

σ2
U

+ x∗
m(z0) − z

σ2
I

)(
1 − 	U

1 − 	I
− 1

)
− 1 − β√

βσx

φI

1 − 	I

]
w(1 − 	I).

We can show that the bracketed term is increasing when it is equal to zero, because
	I < 	U when z > z′ and because φI/(1 − 	I) is decreasing in z. Hence, f (z) must
be decreasing, then increasing in z in this range. Following similar reasoning as in the
earlier case, this implies that θ∗

m(z) is decreasing, then increasing for z ∈ (z′,∞). �

Proof of Proposition 2.

Part (a). We first show that there exists unique z̃ such that xI(z̃) = xU(z̃) = xm(z̃), and then
show that z̃ = z′ when c = 0.5.

From Lemma 10 in the Technical Appendix, x∗
I (z) > x∗

U(z) for z sufficiently neg-
ative and x∗

I (z) < x∗
U(z) for z sufficiently large. Both x∗

I (z) and x∗
U(z) are continuous.

Therefore, there exists a z̃ such that x∗
I (z̃) = x∗

U(z̃).
Let θ∗(z̃) = θ̃ and x∗

I (z̃) = x∗
U(z̃) = x̃. We proceed to establish that (θ̃, x̃) solves the

mute model as well. To see this, we first note that x∗
I = x∗

U implies that the critical
mass condition (10) of the communication model reduces to its counterpart in the
mute model. Next, note that for any value of z̃, x̃, and θ̃, we have

P(θ̃|z̃, x̃) = Pr[yi = 1|z̃, x̃]P(θ̃|z̃, x̃, 1) + Pr[yi = 0|z̃, x̃]P(θ̃|z̃, x̃, 0).

Thus, if z̃, x̃, and θ̃ satisfy the indifference conditions P(θ̃|z̃, x̃, 1) = c and
P(θ̃|z̃, x̃, 0) = c in the communication model, then they must satisfy the indiffer-
ence condition P(θ̃|z̃, x̃) = c in the mute model as well.

Let (θ′, x′) solve the mute model at z = z′. To show z′ = z̃ when c = 0.5, it suffices
to show that P(θ′|z′, x′, 1) = c. That is because, given that P(θ′|z′, x′) = c, these two
conditions would imply that P(θ′|z′, x′, 0) = c. Hence, the indifference condition (9)
for the communication model is satisfied. Given that x∗

I (z′) = x∗
U(z′) = x′, the critical

mass condition (10) holds as well.
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To see why this condition holds, note that both J (t, z′) and p(t|z′, z′) are symmetric
about the point t = z′, which gives

∫ z′

−∞
J (t, z′)p(t|z′, z′) dt = 0.5

∫ ∞

−∞
J (t, z′)p(t|z′, z′) dt.

Hence, P(z′|z′, z′, 1) = 0.5. For c = 0.5, θ′ = x′ = z′. Therefore, we have
P(θ′|z′, x′, 1) = c. This establishes that θ∗(z′) = θ∗

m(z′) and x∗
I (z′) = x∗

U(z′) = x∗
m(z′).

Part (b). We show that x∗
I (z) > x∗

U(z) for z < z′. Suppose otherwise. Then, since
limz→−∞ x∗

I (z) > limz→−∞ x∗
U(z), there must exist some z0 < z′ such that x∗

I (z0) =
x∗

U(z0). According to Lemma 5 in the Technical Appendix, for any z0, there exists
a unique pair (θ̂0, x0) such that P(θ̂0|z0, x0, 1) = P(θ̂0|z0, x0, 0) = c. It is easy to ver-
ify that such a pair is (θ̂0, x0) = (z0, z0). However, such a pair does not satisfy the
critical mass condition, because A(z0; z0, z0, z0) = z0, a contradiction. A symmetric
argument shows that x∗

I (z) < x∗
U(z) for z > z′. �

Proof of Proposition 3. We prove the second half of this proposition; the proof of the first
part is analogous. We proceed by constructing a contradiction. Suppose θ∗(z) ≤ θ∗

m(z) for z
sufficiently large. By Lemma 7 in the Technical Appendix, 0 < ∂x̂m/∂θ̂ < 1 when z is sufficiently
large. This implies

x∗
m (θ∗

m(z)) − θ∗
m(z) ≤ x∗

m (θ∗(z)) − θ∗(z).

Since 	 is monotone, the above inequality together with the critical mass condition for the mute
model implies

θ∗
m(z) = 	

(
x∗

m (θ∗
m(z)) − θ∗

m(z)
σx

)
≤ 	

(
x∗

m (θ∗(z)) − θ∗(z)
σx

)
.

Lemma 8 in the Technical Appendix establishes that for z sufficiently large and for any θ̂,

(
1 − J (θ̂, z)

)
	

(
x̂U(θ̂) − θ̂

σx

)
> 	

(
x̂m(θ̂) − θ̂

σx

)
,

which implies that

J (θ̂, z)	

(
x̂I(θ̂) − θ̂

σx

)
+ (

1 − J (θ̂, z)
)
	

(
x̂U(θ̂) − θ̂

σx

)
> 	

(
x̂m(θ̂) − θ̂

σx

)
.

Evaluating both sides at θ̂ = θ∗(z), it follows that

θ∗(z) > 	

(
x∗

m (θ∗(z)) − θ∗(z)
σx

)
≥ θ∗

m(z),

a contradiction. �

Proof of Proposition 4. Recall that θ′ = θ∗(z′) and x∗
I (z′) = x∗

U(z′) = x′ from the proof of
Proposition 2. By Claim 2 in the proof of Lemma 2,
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J
∂x̂I

∂θ̂
+ (1 − J )

∂x̂U

∂θ̂

= − p(θ′|z′, x′)

⎡
⎣J (θ′, z′)

1∫ θ′
−∞

J (t,z′)
J (θ′,z′)

∂p(t|z′,x′)
∂x dt

+ (1 − J (θ′, z′))
1∫ θ′

−∞
1−J (t,z′)
1−J (θ′,z′)

∂p(t|z′,x′)
∂x dt

⎤
⎦

> − p(θ′|z′, x′)
1

J (θ′, z′)
∫ θ′
−∞

J (t,z′)
J (θ′,z′)

∂p(t|z′,x′)
∂x dt + (1 − J (θ′, z′))

∫ θ′
−∞

1−J (t,z′)
1−J (θ′,z′)

∂p(t|z′,x′)
∂x dt

= −p(θ|z′, x′)∫ θ′
−∞

∂p(t|z′,x′)
∂x dt

= ∂x̂m

∂θ̂
,

where the inequality follows from Jensen’s inequality and the fact that the function 1/t is concave
for t < 0. This establishes the first inequality of (18). Moreover, since

Px = −p + (1 − β)w√
βσx

φ

(
θ′ − X ′
√

βσx

)
< 0,

we have ∂x̂m/∂θ̂ = −p/Px > 1. This establishes the second inequality of (18).
Inequality (17) follows from (18) and from Lemma 6 in the Technical Appendix, which shows

that ∂x̂/∂z = 1 − ∂x̂/∂θ̂. Finally, using the fact that x̂I(θ′, z′) = x̂U(θ′, z′), we can differentiate the
critical mass condition (10) to obtain

dθ∗(z′)
dz

=
1
σx

φ(·)
(

J ∂x̂I
∂z + (1 − J ) ∂x̂U

∂z

)
1 − 1

σx
φ(·)

(
−1 + J ∂x̂I

∂θ̂
+ (1 − J ) ∂x̂U

∂θ̂

) .

Comparing this equation with its counterpart in the mute model (which is obtained by letting
J = 1 and replacing ∂x̂I/∂z and ∂x̂I/∂θ̂ with ∂x̂m/∂z and ∂x̂m/∂θ̂), and using inequalities (17) and
(18), we have

dθ∗(z′)
dz

<
dθ∗

m(z′)
dz

< 0.

Proposition 4 follows. �

Proof of Proposition 5. We show that for β larger than a threshold β̂, there exists an interval
[δ1, δ2] such that for any δ ∈ [δ1, δ2], θ∗(z) > θ∗

ps(z) if z < z′.
We write the difference between ∂x̂ps/∂θ̂ and ∂x̂m/∂θ̂ as

∂x̂ps

∂θ̂
− ∂x̂m

∂θ̂
=
(

1 − β

β

1 − w

w 1√
β

+ (1 − w)

)
∂x̂m

∂θ̂
≡ Lps

∂x̂m

∂θ̂
,

and we write

(
J

∂x̂I

∂θ̂
+ (1 − J )

∂x̂U

∂θ̂

)
− ∂x̂m

∂θ̂
=
(

D2

(JPx − D) ((1 − J ) Px + D)

)
∂x̂m

∂θ̂
≡ L

∂x̂m

∂θ̂
,
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where

D =
∫ θ′

−∞

∂J (t, z′)
∂t

∂P(t|z′, x′)
∂x

dt.

Lemma 9 in the Technical Appendix shows that there always exists δ such that the lower
bound of L is increasing in β and is bounded above 0 when β approaches 1. On the other hand,
Lps is bounded from above with an upper bound (1 − β)/β. Observe that (1 − β)/β is decreasing
in β and approaches 0 when β approaches 1. There must exist a threshold β̂ such that for any
β > β̂, there exists δ so that L > Lps. By continuity, for any β > β̂, there exists an interval [δ1, δ2]
so that for any δ ∈ [δ1, δ2], L > Lps, which implies that inequality (19) holds. Using the same
logic as in Proposition 4, we obtain dθ∗(z′)/dz < dθ∗

ps(z′)/dz < 0. The proposition follows. �

Proof of Proposition 6. Consider a symmetric communication rule S = [z − , z + ]. It
is straightforward to see that both w(z, ·) and q(S; z, ·) are symmetric about z. Therefore, if
xi = x < z solves (20) with equality, then xi = x = z + (z − x) > z also does.

To establish the existence of interval decision rules, we denote q̃() = q(S; z, z − ) and
w̃() = w(z, z − ). We need to establish that there exists  > 0, such that

q̃() = d1 + c1 − w̃()(c0 + c1)
d0 + d1

.

Note that w̃(0) = w(z, z) and lim→∞ w̃() = 0, while lim→0 q̃() = 0 and lim→∞ q̃() = 1.
Therefore, given the condition stated in the proposition, there exists ∗ > 0 such that the
equation holds. Moreover, given S∗ = [z − ∗, z + ∗], q(S∗; z, xi) is increasing, then decreasing
in xi, with a peak at xi = z. Thus,

q(S∗; z, xi) ≥ q(S∗; z, x) = d1 + c1 − w(z, x)(c0 + c1)
d0 + d1

≥ d1 + c1 − w(z, xi)(c0 + c1)
d0 + d1

,

if and only if xi ∈ S∗. �

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the
publisher’s website:

Technical Appendix
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