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Identifying complexity measures that bound the communication complexity of a {0, 1}-valued matrix M is
one the most fundamental problems in communication complexity. Mehlhorn and Schmidt [1982] were the
first to suggest matrix-rank as one such measure. Among other things, they showed

log rankF(M) ≤ CC(M) ≤ rankF2 (M),

where CC(M) denotes the (deterministic) communication complexity of the function associated with M, and
the rank on the left-hand side is over any field F and on the right-hand side it is over the two-element
field F2. For certain matrices M, communication complexity equals the right-hand side, and this completely
settles the question of “communication complexity vs. F2-rank”.

Here we reopen this question by pointing out that, when M has an additional natural combinatorial
property—high discrepancy with respect to distributions which are uniform over submatrices—then commu-
nication complexity can be sublinear in F2-rank. Assuming the Polynomial Freiman-Ruzsa (PFR) conjecture
in additive combinatorics, we show that

CC(M) ≤ O(rankF2 (M)/ log rankF2 (M))

for any matrix M which satisfies this combinatorial property.
We also observe that if M has low rank over the reals, then it has low rank over F2 and it additionally

satisfies this combinatorial property. As a corollary, our results also give the first (conditional) sublinear
bound on communication complexity in terms of rank over the reals, a result improved later by Lovett
[2014].

Our proof is based on the study of the “approximate duality conjecture” which was suggested by Ben-
Sasson and Zewi [2011] and studied there in connection to the PFR conjecture. First, we improve the bounds
on approximate duality assuming the PFR conjecture. Then, we use the approximate duality conjecture
(with improved bounds) to get our upper bound on the communication complexity of low-rank matrices.
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1. INTRODUCTION

This article revisits the question of the relation between communication complexity
and matrix rank over the two-element field F2, a question that has laid dormant for
the past 30 years. It presents a new connection between communication complexity
and additive combinatorics, showing that a well-known conjecture from additive com-
binatorics known as the Polynomial Freiman-Ruzsa conjecture (PFR, in short) implies
nontrivial upper bounds on the deterministic communication complexity of a {0, 1}-
valued matrix M in terms of its rank over F2 and its discrepancy with respect to dis-
tributions that are uniform on submatrices. We view this result as interesting not only
because it reopens what in our mind is a fundamental problem, but also because (1) it
is the first advance since 1997 on the so-called “log rank conjecture”1 explained in
this article, and (2) it shows a new connection between the two vibrant, yet seemingly
unrelated, fields of communication complexity and additive combinatorics.

Our analysis relies on the study of approximate duality, a concept closely related to
the PFR conjecture, which was introduced in Ben-Sasson and Zewi [2011]. Our main
technical contribution improves the bounds on approximate duality, assuming the PFR
conjecture, and it does so with simpler a proof than in Ben-Sasson and Zewi [2011]. We
view this contribution as being of independent interest because of the growing number
of applications of the “approximate duality method” to theoretical computer science.
So far, these include the construction of two-source extractors [Ben-Sasson and Zewi
2011], communication complexity (this work), and the subsequent lower bounds for
matching vector codes [Bhowmick et al. 2013] (cf. the survey [Lovett 2013]).

1.1. On Communication Complexity and Matrix Rank over F2

In the two-party communication complexity model two parties — Alice and Bob —
wish to compute a function f : X × Y → {0, 1} on inputs x ∈ X and y ∈ Y where x is
known only to Alice and y is known only to Bob. In order to compute the function f ,
they must exchange bits of information between each other according to some (deter-
ministic) protocol. The (deterministic) communication complexity of a protocol is the
maximum total number of bits sent between the two parties, where the maximum is
taken over all pairs of inputs x, y. We henceforth omit the adjective “deterministic”
from our discourse because our results deal only with the deterministic model. The
communication complexity of the function f , denoted by CC(f ), is the minimum com-
munication complexity of a protocol for f .

For many applications, it is convenient to associate the function f : X × Y → {0, 1}
with the matrix M ∈ {0, 1}X×Y whose (x, y) entry equals f (x, y). For a {0, 1}-valued
matrix M, let CC(M) denote the communication complexity of the Boolean function
associated with M. For an arbitrary field F, let rankF(M) denote the rank of M over F;
we shall mostly consider the two-element field F2 and the field of reals R.

It is well known since the work of Mehlhorn and Schmidt [1982] that

log rankF(M) ≤ CC(M) ≤ rankF2(M). (1)

(Notice the left-hand side is rank over any field F.) Furthermore, for the inner-product
function IP given by IP(x, y) = 〈x, y〉 (mod 2), it holds that CC(IP) = rankF2(IP). So
that, in the worst case, the upper bound mentioned previously is tight for F2-rank, and

1Recently, the second author made further progress on this problem [Lovett 2014], cf. Section 1.2.
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this completely resolves the question of the worst-case relation between communica-
tion complexity and F2-rank.

The premise of this work is that the previously mentioned result actually leads to
an interesting question, to the best of our knowledge addressed here for the first time:

Under what conditions is communication complexity sublinear in F2-rank?

Our answer to this question is that — assuming the PFR conjecture — one such con-
dition is that M has high discrepancy with respect to distributions which are uniform
over submatrices. In technical terms, our main contribution is as follows.

Let M be a {0, 1}-valued matrix. For a distribution μ over the entries of M, the dis-
crepancy of M with respect to μ is defined as

discμ(M) = max
M′

∣∣∣∣∣∣
∑

(x,y)∈M′
(−1)Mx,yμ(x, y)

∣∣∣∣∣∣ ,

where M′ ranges over all submatrices of M. For a set D of distributions over the entries
of M, we define the discrepancy of M with respect to D as

discD(M) = min
μ∈D

discμ(M).

Our main theorem uses discU (M), where U denotes the set of uniform distributions
over submatrices of M.

THEOREM 1.1 (MAIN). For every constant η > 0 there exists a constant c = c(η)
such that the following holds. Suppose that M is a {0, 1}-valued matrix of rank at most r
over F2 which satisfies that discU (M) ≥ 2−r1−η

. Then, assuming the PFR Conjecture 1.7,
CC(M) ≤ c · r/ log r.

We remark that the IP function mentioned previously does not contradict
Theorem 1.1 because it satisfies discU (IP) ≤ 2−rankF2 (IP)/2 [Babai et al. 1986; Chor
and Goldreich 1988].

1.2. On Communication Complexity and Matrix Rank over R

The question of rank vs. communication complexity has received much attention over
the field of reals. This is because rankF2(M) ≤ rankR(M) for a {0, 1}-valued matrix M,
so equation (1) implies that

log rankR(M) ≤ CC(M) ≤ rankR(M) (2)

and it is a fundamental question to find out what is the true worst-case dependency
of CC(M) on the real-rank. The famous log-rank conjecture due to Lovász and Saks
[1988] postulates that communication complexity is always closer to the left hand side
of (2). (And recall that this is false for rankF2 .)

Conjecture 1.2 (Log-Rank). CC(M) = logO(1) rankR(M) for every {0, 1}-valued
matrix M.

Lovász and Saks [1988] also point out that Conjecture 1.2 has several other interest-
ing equivalent formulations. One of them, due to Van Nuffelen [1976] and Fajtlowicz
[1988], is the following.

Conjecture 1.3. For every graph G, χ(G) ≤ logO(1) rankR(G), where χ(G) is the chro-
matic number of the complement of G, and rankR(G) is the rank of the adjacency
matrix of G over the reals.

Journal of the ACM, Vol. 61, No. 4, Article 22, Publication date: July 2014.
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Though considerable effort has been made since 1982 in an attempt to narrow the
gap between lower and upper bounds in (2), till recently the state of the art was not
far from where it was 30 years ago and stood at

CC(M) = �(loglog3 6 rankR(M)) = �(log1.63··· rankR(M))

for some matrix M, and

CC(M) ≤ log(4/3)rankR(M) = (0.41 · · · )rankR(M) (3)

for every matrix M. The first bound is due to Kushilevitz (unpublished, cf. Nisan
and Wigderson [1995]) and improves on a previous bound of �(loglog2 3 rankR(M)) =
�(log1.58... rankR(M)) due to Nisan and Wigderson [1995]. The second bound is due to
Kotlov [1997] and improves on the previous best bound of CC(M) ≤ rankR(M)/2 by
Kotlov and Lovász [1996].

Our main Theorem 1.1 leads to the first (conditional) sublinear bound on communi-
cation complexity in terms of rank.

COROLLARY 1.4. Assuming the PFR Conjecture 1.7, for every {0, 1}-valued
matrix M,

CC(M) = O(rankR(M)/ log rankR(M)).

Recently, Lovett [2014] improved considerably on this by proving the following.

THEOREM 1.5 [LOVETT 2014]. For every {0, 1}-valued matrix M,

CC(M) = O(
√

rankR(M) log rankR(M)).

The proof of Corollary 1.4 differs significantly from that of Theorem 1.5; hence, we
provide it in Section 3.2. In a nutshell, Corollary 1.4 uses as its starting point the re-
sult of Nisan and Wigderson [1995] which shows that low rank over the reals implies
that discU (M) = minμ∈U discμ(M) is high, where U denotes the set of uniform distribu-
tions over submatrices of M. Observing that rankF2(M) ≤ rankR(M) for a {0, 1}-valued
matrix M, we quickly move to the two-element field and apply Theorem 1.1.

In contrast, Lovett [2014] starts with a much stronger observation due to Linial
et al. [2007] and Linial and Shraibman [2009]: that low rank over the reals implies
high discrepancy with respect to any distribution μ over the entries of M, namely
that disc(M) := minμ discμ(M) is high where μ ranges over all distributions over the
entries of M. As such, it leads to stronger and unconditional bounds on communication
complexity in terms of real rank. We stress however that Theorem 1.5 does not impact
our Main Theorem 1.1.

1.3. Additive Combinatorics and the Polynomial Freiman-Ruzsa Conjecture

Additive combinatorics is the area of mathematics which studies the combinatorial
estimates associated with the arithmetic operations of addition and subtraction. As
such, it deals with a variety of problems that aim to “quantify” the amount of additive
structure in subsets of additive groups. One such a problem is that which is addressed
by the Polynomial Freiman-Ruzsa conjecture (we shall encounter a different problem
in additive combinatorics when we get to “approximate duality” later on).

For A ⊆ F
n
2, let A + A denote the sum-set of A

A + A := {a + a′ | a, a′ ∈ A},
where addition is over F2. It is easy to see that |A + A| = |A| if and only if A is an affine
subspace of F

n
2. The question addressed by the Freiman-Ruzsa theorem is whether

the ratio of |A + A| to |A| also “approximates” the closeness of A to being a subspace,

Journal of the ACM, Vol. 61, No. 4, Article 22, Publication date: July 2014.



�

�

�

�

�

�

�

�

An Additive Combinatorics Approach Relating Rank to Communication Complexity 22:5

or in other words, whether the fact that A + A is small with respect to the size of A
also implies that span

(
A

)
is small with respect to the size of A. The Freiman-Ruzsa

theorem [Ruzsa 1999] says that this is indeed the case.

THEOREM 1.6 (FREIMAN-RUZSA THEOREM [RUZSA 1999]). If A ⊆ F
n
2 has |A +

A| ≤ K|A|, then |span
(
A

) | ≤ K22K4 |A|.
This theorem was improved in a series of works [Green and Ruzsa 2006; Green

and Tao 2009; Sanders 2008], culminating in the recent work [Even-Zohar 2012]
which proved an upper bound on the ratio |span(A)|

|A| of the form 22K/(2K). This bound

can be seen to be tight by letting A = ⋃t
i=1(ui + V), where u1, u2, . . . , ut ∈ F

n
2 are

linearly independent vectors and V ⊆ F
n
2 is a subspace of dimension d such that

span ({u1, . . . , ut}) ∩ V = {0}. Then, in this case, we have A = t · d and |A + A| ≈ t
2 |A|,

while |span
(
A

) | = 2t · d = 2t

t |A|.
This example also shows that the ratio |span(A)|

|A| must depend exponentially on K.
However, it does not rule out the existence of a large subset A′ ⊆ A for which the ratio
|span(A′)|

|A′| is just polynomial in K, and this is exactly what is suggested by the PFR
conjecture.

Conjecture 1.7 (Polynomial Freiman-Ruzsa (PFR)). There exists an absolute con-
stant r, such that if A ⊂ F

n
2 has |A + A| ≤ K|A|, then there exists a subset A′ ⊆ A of size

at least K−r|A| such that |span
(
A′) | ≤ |A|.

Note that this conjecture implies that |span
(
A′) | ≤ |A| ≤ Kr|A′|. The PFR conjecture

has many other interesting equivalent formulations, see the survey of Green [2005]
for some of them. It is conjectured to hold for subsets of general groups as well and
not only for subsets of the group F

n
2 but we will be interested only in the latter case.

Significant progress on this conjecture has been achieved recently by Sanders [2012],
using new techniques developed by Croot and Sisask [2010]. Sanders [2012] proved an
upper bound on the ratio |span(A′)|

|A′| which is quasi-polynomial in K.

THEOREM 1.8 (QUASI-POLYNOMIAL FREIMAN-RUZSA THEOREM (QFR) [SANDERS
2012]). Let A ⊂ F

n
2 be a set such that |A + A| ≤ K|A|. Then, there exists a subset A′ ⊆ A

of size at least K−O(log3 K)|A| such that |span
(
A′) | ≤ |A|.

We end this section by mentioning several other recent applications of the PFR con-
jecture to theoretical computer science. The first application, due to Samorodnitsky
[2007], is to the area of low-degree testing, with further results by Lovett [2012] and
Green and Tao [2010]. The second application is to the construction of two-source
extractors due to Ben-Sasson and Zewi [2011]. The latter paper also introduced the
notion of approximate duality which plays a central role in our proof method as well.
The PFR conjecture, as well as the approximate duality method, have recently found
another application to proving lower bounds on matching vector codes in the subse-
quent work by Bhowmick et al. [2013]. In the next section, we describe the approxi-
mate duality conjecture and our new contributions to its study.

1.4. Approximate Duality

Our main technical contribution (Lemma 1.11) is an improvement of the bounds on
approximate duality, assuming the PFR conjecture. The new bound lies at the heart
of our proof of Main Theorem 1.1. We believe that Lemma 1.11 and its proof are of
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independent interest since they improve and simplify the proof of Ben-Sasson and
Zewi [2011], and have already found new interesting applications to the study of locally
decodable codes [Bhowmick et al. 2013].

For A, B ⊆ F
n
2, we define the duality measure of A, B in (4) as an estimate of how

“close” this pair is to being dual

D(A, B) :=
∣∣∣∣Ea∈A,b∈B

[
(−1)〈a,b〉2

] ∣∣∣∣, (4)

where 〈a, b〉2 denotes the binary inner-product of a, b over F2, defined by 〈a, b〉2 =∑n
i=1 ai · bi where all arithmetic operations are in F2.
It can be verified that, if D(A, B) = 1, then A is contained in an affine shift of B⊥

which is the space dual to the linear F2-span of B. The question is what can be said
about the structure of A, B when D(A, B) is sufficiently large, but strictly smaller than
1. The following theorem from Ben-Sasson and Zewi [2011] says that if the duality
measure is a constant very close to 1 (though strictly smaller than 1), then there exist
relatively large subsets A′ ⊆ A, B′ ⊆ B, such that D(A′, B′) = 1.

THEOREM 1.9 (APPROXIMATE DUALITY FOR NEARLY-DUAL SETS, THEOREM 2.10
IN BEN-SASSON AND RON-ZEWI [2012]). For every δ > 0 there exists a constant ε > 0
that depends only on δ, such that if A, B ⊆ F

n
2 satisfy D(A, B) ≥ 1 − ε, then there exist

subsets A′ ⊆ A, |A′| ≥ 1
4 |A| and B′ ⊆ B, |B′| ≥ 2−δn|B|, such that D(A′, B′) = 1.

It is conjectured that a similar result holds also when the duality measure is rela-
tively small, and in particular when it tends to zero as n goes to infinity. Furthermore,
the following theorem from Ben-Sasson and Zewi [2011], Section 5.5 gives support to
this conjecture, by showing that such bounds indeed follow from the PFR conjecture.

THEOREM 1.10 (APPROXIMATE DUALITY ASSUMING PFR, EXPONENTIAL LOSS).
Assuming the PFR Conjecture 1.7, for every pair of constants α > δ > 0 there exists a
constant ζ > 0, depending only on α and δ, such that the following holds. If A, B ⊆ F

n
2

satisfy |A| > 2αn and D(A, B) ≥ 2−ζn, then there exist subsets A′ ⊆ A, |A′| ≥ 2−δn|A| and
B′ ⊆ B, |B′| ≥ 2−δn|B| such that D(A′, B′) = 1.

Our main technical contribution is the following generalization of the previous
theorem.

LEMMA 1.11 (MAIN TECHNICAL LEMMA). Assuming the PFR Conjecture 1.7, there
exists a universal integer r such that the following holds. Suppose that A, B ⊆ F

n
2 satisfy

D(A, B) ≥ ε. Then, for every K ≥ 1 and t = n/ log K, there exist subsets A′, B′ of A, B
respectively such that D(A′, B′) = 1, and

|A′| ≥
((

(ε/2)2t

nK

)
(4n)−t

)r

|A|, |B′| ≥
((

(ε/2)2t

nK

)
2−t

)r

|B|. (5)

The proof of this lemma appears in Section 2. To see that it is indeed a generalization
of Theorem 1.10, set K = 2δn/(3r), t = 3r/δ, ζ = δ/(3r · 2t) = δ/(3r · 23r/δ), ε = 2−ζn, and
note that, in this case, this lemma assures the existence of |A′| ≥ 2−δn|A|, |B′| ≥ 2−δn|B|
such that D(A′, B′) = 1. Note that Lemma 1.11 actually improves on the previous
Theorem 1.10 even in this exponential range of parameters in that its parameters do
not depend on the size of the set A as was the case in Theorem 1.10.

However, the main significance of Lemma 1.11 is that it allows one to trade off the
loss in the sizes of A′ and B′ with the value of ε for a wider range of parameters. More
specifically, it allows one to achieve a loss in the sizes of A′ and B′ which is only sub-
exponential in n by requiring ε to be a bit larger.

Journal of the ACM, Vol. 61, No. 4, Article 22, Publication date: July 2014.
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COROLLARY 1.12 (APPROXIMATE DUALITY ASSUMING PFR, SUBEXPONENTIAL
LOSS). For every constant η > 0, there exists a constant c = c(η) such that the fol-
lowing holds. Suppose that A, B ⊆ F

n
2 satisfy D(A, B) ≥ 2−n1−η

. Then assuming the PFR
Conjecture 1.7, there exist subsets A′, B′ of A, B respectively such that D(A′, B′) = 1, and
|A′| ≥ 2−cn/ log n|A|, |B′| ≥ 2−cn/ log n|B|.

PROOF OF COROLLARY 1.12. Follows from Lemma 1.11 by setting K = 2(2/η)n/ log n,
t = η log n

2 , ε = 2−n1−η
.

Note that, in Corollary 1.12, the ratios |A′|/|A|, |B′|/|B| are bounded from below by
2−cn/ log n, whereas, in Theorem 1.10, we only get a smaller bound of the form 2−δn

for some constant δ > 0. However, this improvement comes with a requirement that
the duality measure D(A, B) is larger — in this corollary we require that it is at least
2−n1−η

while in Theorem 1.10 we only require it to be at least 2−ζn � 2−n1−η
.

Remark 1.13 (2−O(
√

n) LOSS NECESSARY). Generally speaking, the bound on
min

{ |A′|
|A| , |B′|

|B|
}

— which in Corollary 1.12 is 2−cn/ log n — cannot be improved beyond

2−O(
√

n) even if we assume D(A, B) > 0.99. To see this, take A = B = ( n
c′√n

)
to be the

set of all {0, 1}-vectors with exactly c′√n ones, where c′ is a sufficiently small positive
constant that guarantees D(A, B) ≥ 0.99. It was shown in Babai et al. [1986] that if
A′ ⊂ A, B′ ⊂ B satisfy D(A′, B′) = 1 then min

{ |A′|
|A| , |B′|

|B|
}

is at most 2−�(
√

n).

We stress that a benefit of the proof of Lemma 1.11 is that it simplifies the original
proof of Theorem 1.10 in Ben-Sasson and Zewi [2011]. Indeed, we believe that the pre-
sentation of the proof that appears in this article is clearer and less involved than that
in Ben-Sasson and Zewi [2011]. Also, our new proof method allows us to deduce a new
equivalence between approximate duality and the PFR Conjecture in the exponential
range that was not previously known. We elaborate on this equivalence in Section 4.

1.5. Proof Overview

We briefly sketch the proof of our Main Technical Lemma 1.11. We use the spectrum of
a set as defined in Tao and Vu [2006, Chap. 4].

Definition 1.14 (SPECTRUM). For a set B ⊆ F
n
2 and α ∈[ 0, 1], let the α-spectrum of

B be the set

Specα(B) := {x ∈ F
n
2 | | Eb∈B

[
(−1)〈x,b〉2

] |≥ α}. (6)

Notice that A ⊆ Specε(B) implies D(A, B) ≥ ε (cf. (4)). In the other direction, a
standard averaging argument (using the fact that | (−1)〈x,b〉2 |= 1 for every x, b ∈ F

n
2)

can be used to deduce that D(A, B) ≥ ε implies the existence of A′ ⊆ A of relatively
large size — |A′| ≥ ε

2 |A| — such that A′ ⊆ Specε/2(B). To prove our lemma we start
with A1 = A′ and establish a sequence of sets

A2 ⊆ A1 + A1, A3 ⊆ A2 + A2, . . .

such that Ai ⊆ Specεi
(B) for all i. This holds by construction for A1 with ε1 = ε/2, and

we show that it is maintained throughout the sequence for increasingly smaller values
of εi (we shall use εi = ε2

i−1).
Each Ai is of size at most 2n so there must be an index i ≤ n/ log K for which

|Ai+1| ≤ K|Ai|, let t be the minimal such index. We use the Balog–Szemerédi–
Gowers Theorem 2.1 from additive combinatorics to show that our assumption that

Journal of the ACM, Vol. 61, No. 4, Article 22, Publication date: July 2014.
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|At+1| ≤ K|At| implies that a large subset Ãt ⊆ At satisfies |Ãt + Ãt| ≤ K ′|Ãt| for some
small K ′ (depending on K, t and ε). Applying the PFR conjecture to the set Ãt, we get
that a large subset A′′

t ⊆ Ãt ⊆ At has small span (over F2).
We now have in hand a set A′′

t which is a relatively large fraction of its span and
additionally satisfies D(A′′

t , B) ≥ εt because by construction A′′
t ⊆ Specεt(B). We use

an approximate duality claim from Ben-Sasson and Zewi [2011] (Lemma 2.2) which
applies when one of the sets is a large fraction of its span (in our case the set which is
a large fraction of its span is A′′

t ). This claim says that A′′
t and B each contain relatively

large subsets A′
t, B′

t satisfying D(A′
t, B′

t) = 1. Finally, recalling A′
t is a (carefully chosen)

subset of At−1 + At−1, we argue that At−1 contains a relatively large subset A′
t−1 that

is “dual” to a large subset B′
t−1 of B′

t ⊆ B, where by “dual” we mean D(A′
t−1, B′

t−1) = 1
(in other words A′

t−1 is contained in an affine shift of the space dual to span
(
B′

t−1

)
).

We continue in this manner to find pairs of “dual” subsets A′
i ⊆ Ai, B′

i ⊆ B for i =
t−2, t−3, . . . , 1 at which point we have found a pair of “dual” subsets of A, B that have
relatively large size, thereby completing the proof.

1.6. Discussion and Directions for Future Research

The new connection between additive combinatorics and communication complexity
seems to us worthy of further study. In particular, the exciting recent advances in
additive combinatorics [Croot and Sisask 2010; Even-Zohar 2012; Sanders 2012] use
a rich palette of tools that may yield further insights into problems in communica-
tion complexity. We end this section by briefly pointing out a few directions we find
interesting.

1.6.1. Improved Unconditional Bounds on Communication Complexity. Given the recent QFR
result of Sanders [2012] (Theorem 1.8) which comes very close to proving the PFR con-
jecture, it is interesting to see if it implies any unconditional improvement on commu-
nication complexity of low-rank matrices over F2 with high discrepancy with respect to
uniform distributions over submatrices. Looking at our proof of Lemma 1.11, we apply
the PFR conjecture to a subset Ãt of At which satisfies |Ãt + Ãt| ≤ K ′|Ãt| for K ′ ≈ K/ε2t

.
For ε < 1

2 , this gives a nontrivial bound only if t = O(log n). Since t could be as large as
n/ log K, we are forced to choose K = 2�(n/ log n) which implies in turn K ′ = 2�(n/ log n).
Thus, Sander’s QFR Theorem 1.8 does not yield any nontrivial bounds in our case.
However, for the purpose of proving an upper bound of, say, CC(M) ≤ rankF2(M)/4
in Theorem 1.1, it suffices to improve the loss in the size of A in Theorem 1.8 from
K−O(log3 K) to K−c log K for a sufficiently small constant c.

1.6.2. Improved Conditional Bounds. The bounds on approximate duality in Corol-
lary 1.12 can possibly be significantly improved. For all we know, an exponential
loss of 2−O(

√
n log n) obtained by the example shown in Remark 1.13 may be tight even

when the duality measure is at least 1/poly(n). This would lead to an improved ver-
sion of Corollary 1.12 in which the sizes of |A′|, |B′| are a 2−O(

√
n log n) fraction of |A|

and |B|, respectively, instead of the 2−O(n/ log n) loss we currently have. Such a result
would translate directly to an upper bound on communication complexity of the form
CC(M) ≤ O(

√
rankF2(M) log(rankF2(M)) for a matrix with high discrepancy with re-

spect to uniform distributions on submatrices, matching the result of Lovett [2014] for
R-rank, as well as giving a different proof for it.

1.6.3. Does the Log-Rank Conjecture Imply the PFR Conjecture? Alternatively, does it have
any other nontrivial consequences in additive combinatorics? We believe the answer to
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this question is positive and make a step in this direction by showing an equivalence
between approximate duality and PFR statements in the exponential range, namely,
when the losses in the sizes of sets in both approximate duality and PFR is exponential
in n. (See Section 4 for an exact statement and details of the proof.)

1.7. Organization of the Article

The next section contains the proof of the Main Technical Lemma 1.11. Section 3 con-
tains the proofs of Main Theorem 1.1 and Corollary 1.4., assuming Corollary 1.12. In
Section 4, we prove a new equivalence between approximate duality and the PFR con-
jecture in the exponential range.

2. IMPROVED BOUNDS ON APPROXIMATE DUALITY ASSUMING PFR

In this section, we prove our Main Technical Lemma 1.11. We start with some additive
combinatorics preliminaries.

2.1. Additive Combinatorics Preliminaries

In what follows, all arithmetic operations are taken over F2. For the proof of
Lemma 1.11 we need two other theorems from additive combinatorics. The first is the
well-known Balog–Szemerédi–Gowers Theorem of Balog and Szemerédi [1994] and
Gowers [1998].

THEOREM 2.1 (BALOG–SZEMERÉDI–GOWERS). There exist fixed polynomials
f (x, y), g(x, y) such that the following holds for every subset A of an abelian additive
group. If A satisfies Pra,a′∈A[ a + a′ ∈ S] ≥ 1/K for |S| ≤ C|A|, then one can find a subset
A′ ⊆ A such that |A′| ≥ |A|/f (K, C), and |A′ + A′| ≤ g(K, C)|A|.

The second is a lemma from Ben-Sasson and Zewi [2011] which can be seen as an
approximate duality statement which applies when one of the sets has small span.

LEMMA 2.2 (APPROXIMATE-DUALITY FOR SETS WITH SMALL SPAN, LEMMA 5.7
IN BEN-SASSON AND RON-ZEWI [2012]). If D(A, B) ≥ ε, then there exist subsets A′ ⊆
A, B′ ⊆ B, |A′| ≥ ε

4 |A|, |B′| ≥ ε2 |A|
|span(A)| |B|, such that D(A′, B′) = 1. If A ⊆ Specε(B),

then we have |A′| ≥ |A|/2 and |B′| ≥ ε2 |A|
|span(A)| |B| in this statement.

Finally, for S ⊂ F
n
2 and x ∈ F

n
2, let repS(x) be the number of different representations

of x as an element of the form s + s′ where s, s′ ∈ S. repS(x) can also be written, up to a
normalization factor, as 1S ∗ 1S(x) where 1S is the indicator function of the set S and ∗
denotes convolution.

2.2. The Sequence of Sets

We start by defining the sequence of sets A1, A2, . . . used in our proof. To be able to
“pull back” and construct a pair of large sets A′

i−1, B′
i−1 from the pair A′

i, B′
i we make

sure every element in Ai is the sum of roughly the same number of pairs in Ai−1 ×Ai−1.
Let ε1 := ε/2, A1 := A ∩ Specε1

(B). Assuming Ai−1, εi−1 have been defined set εi =
ε2

i−1/2 and let ji ∈ {0, . . . , n − 1} be an integer index which maximizes the size of
{
(a, a′) ∈ A2

i−1 | a + a′ ∈ Specεi
(B) and 2ji ≤ repAi−1

(a + a′) ≤ 2ji+1
}

. (7)

and set

Ai := {a + a′ | a, a′ ∈ Ai−1, a + a′ ∈ Specεi
(B) and 2ji ≤ repAi−1

(a + a′) ≤ 2ji+1}. (8)
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22:10 E. Ben-Sasson et al.

CLAIM 2.3. For i = 1, we have |A1| ≥ (ε/2)|A|. For i > 1, we have

Pr
a,a′∈Ai−1

[ a + a′ ∈ Ai] ≥ εi/n (9)

and additionally

| Ai| ≥ εi

2ji+1n
| Ai−1|2. (10)

PROOF. The case of i = 1 follows directly from the assumption that D(A, B) ≥ ε
using a standard averaging argument. For larger i, we argue that

Pr
a,a′∈ Ai−1

[ a + a′ ∈ Specεi
(B)] ≥ εi.

To see this, use Cauchy-Schwarz to get

Ea,a′∈ Ai−1 |Eb∈ B(−1)〈a+a′,b〉2 | = Eb∈ B(Ea∈Ai−1 [ (−1)〈a,b〉2 ] )2

≥ (Ea∈Ai−1,b∈B[ (−1)〈a,b〉2 ] )2 ≥ ε2
i−1

and apply a standard averaging argument to deduce that an εi-fraction of (a, a′) ∈
Ai−1×Ai−1 sum to an element of Specεi

(B). Selecting ji to maximize (7) yields inequality
(9). Since every element x ∈ Ai can be represented as x = a + a′ with a, a′ ∈ Ai−1 in at
most 2ji+1 different ways we deduce (10) from (9) and complete the proof.

2.3. The Inductive Claim

Since each of the sets in the sequence is of size at most 2n, there must be an index
i ≤ n/ log K for which

| Ai+1| ≤ K| Ai|. (11)

Let t be the minimal such index, t ≤ n/ log K. We shall prove the following claim by
backward induction.

CLAIM 2.4 (INDUCTIVE CLAIM). For i = t, t − 1, . . . , 1, there exist subsets

A′
i ⊆ Ai, B′

i ⊆ B,

such that D(A′
i, B′

i) = 1 and A′
i, B′

i are not too small:

| A′
i| ≥ poly

(
εt+1

nK

)
(4n)−(t−i)

( t∏
	=i

ε	+1

)
| Ai|, |B′

i| ≥ poly
(

εt+1

nK

)
2−(t−i)|B|.

We split the proof of the claim into two parts. The base case (Proposition 2.5) is
proved using the tools from additive combinatorics listed in the beginning of this sec-
tion. The inductive step is proved in Proposition 2.6 using a graph construction. Before
proving Claim 2.4, we show how it implies Lemma 1.11.

PROOF OF MAIN TECHNICAL LEMMA 1.11. Set i = 1 in Claim 2.4. Recall that
εi+1 = ε2

i /2 for all i, so

ε	+1 = ε2	

/22	−1 ≥ (ε/2)2	

.

Thus, we have εt+1 ≥ (ε/2)2t
and

∏t
	=1 ε	+1 ≥ (ε/2)2t+1

. This gives the bounds on A′, B′
stated in (5).
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PROPOSITION 2.5 (BASE CASE OF CLAIM 2.4 (i = t)). There exist subsets A′
t ⊆ At,

B′
t ⊆ B such that D(A′

t, B′
t) = 1 and A′

t, B′
t are not too small:

| A′
t| ≥ poly

(
εt+1

nK

)
| At|, |B′

t| ≥ poly
(

εt+1

nK

)
|B|.

PROOF. By assumption | At+1| ≤ K| At| and Pra,a′∈At[ a + a′ ∈ At+1] ≥ εt+1/n by (9).
Hence, we can apply the Balog–Szemerédi–Gowers Theorem (Theorem 2.1) to the set
At to obtain a subset Ãt ⊆ At such that

| Ãt| ≥ poly
(

εt+1

nK

)
| At|,

and

| Ãt + Ãt| ≤ poly
(

nK
εt+1

)
| At| = poly

(
nK
εt+1

)
| Ãt|.

Now we can apply the PFR Conjecture 1.7 to the set Ãt which gives a subset A′′
t ⊆ Ãt

such that

| A′′
t | ≥ poly

(
εt+1

nK

)
| Ãt| = poly

(
εt+1

nK

)
| At|,

and

| span
(
A′′

t
) | ≤ | Ãt| = poly

(
nK
εt+1

)
| A′′

t |.
Recall that A′′

t ⊆ Specεt(B). Applying Lemma 2.2 to the sets A′′
t and B, we conclude

that there exist subsets A′
t ⊆ A′′

t , B′
t ⊆ B such that D(A′

t, B′
t) = 1, and which satisfy

| A′
t| ≥ 1

2 | A′′
t | and

|B′
t| ≥ ε2

t
| A′′

t |
| span

(
A′′

t
) | |B| = poly

(
εt+1

nK

)
|B|.

This completes the proof of the base case.

PROPOSITION 2.6 (INDUCTIVE STEP OF CLAIM 2.4). For every i = t−1, . . . , 1, there
exist subsets A′

i ⊆ Ai, B′
i ⊆ B such that D(A′

i, B′
i) = 1 and A′

i, B′
i are not too small:

| A′
i| ≥ poly

(
εt+1

nK

)
(4n)−(t−i)

( t∏
	=i

ε	+1

)
| Ai|, |B′

i| ≥ poly
(

εt+1

nK

)
2−(t−i)|B|.

PROOF. Suppose that the claim is true for i and argue it holds for index i − 1. Let
G = (Ai−1, E) be the graph whose vertices are the elements in Ai−1, and (a, a′) is an
edge if a+a′ ∈ A′

i. We bound the number of edges in this graph from below. Recall from
(8) that every a ∈ A′

i (where A′
i ⊆ Ai) satisfies 2ji ≤ repAi−1

(a) ≤ 2ji+1. Using this we get

|E| ≥ 2ji · | A′
i| (repAi−1

(x) ≥ 2ji for all x ∈ A′
i)

≥ 2ji · poly
(

εt+1
nK

)
(4n)−(t−i)

( ∏t
	=i ε	+1

)
| Ai| (induction hypothesis)

≥ 2ji · poly
(

εt+1
nK

)
(4n)−(t−i)

( ∏t
	=i ε	+1

)
εi

2ji+1n
| Ai−1|2 (by (10))

= 2 · poly
(

εt+1
nK

)
(4n)−(t−(i−1))

(∏t
	=i−1 ε	+1

)
| Ai−1|2.
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Let M := poly
(

εt+1
nK

)
(4n)−(t−(i−1))

(∏t
	=i−1 ε	+1

)
. Since our graph has at least

2M| Ai−1|2 edges and | Ai−1| vertices, it has a connected component with at least
2M| Ai−1| vertices and denote by A′′

i−1 the set of vertices in it.
Choose an arbitrary element a in A′′

i−1. Partition B′
i into two sets B′

i,0 and B′
i,1 such

that all elements in B′
i,0 have inner product 0 with a, and all elements in B′

i,1 have inner
product 1 with a. Let B′

i−1 be the larger of B′
i,0,B′

i,1, and note that |B′
i−1| ≥ |B′

i|/2. Recall
that our assumption was that D(A′

i, B′
i) = 1. Abusing notation, let 〈A′

i, B′
i〉2 denote the

value of 〈a′, b′〉2 for some a′ ∈ A′
i, b′ ∈ B′

i (the choice of a′, b′ does not matter because
D(A′

i, B′
i) = 1). Next we consider two cases — the case where 〈A′

i, B′
i〉2 = 0, and the case

where 〈A′
i, B′

i〉2 = 1.
In the first case, we have that for every a, a′ ∈ A′′

i−1 which are neighbors in the graph,
a + a′ ∈ A′

i, and therefore 〈a + a′, b〉2 = 0 for every b ∈ B′
i−1. This implies in turn that

〈a, b〉2 = 〈a′, b〉2 for all elements a, a′ ∈ A′′
i−1 which are neighbors in the graph, b ∈ B′

i−1.
Since A′′

i−1 induces a connected component, and due to our choice of B′
i−1, this implies

that D(A′′
i−1, B′

i−1) = 1 so we set A′
i−1 = A′′

i−1.
In the second case, we have that 〈a + a′, b〉2 = 1 for every a, a′ ∈ A′′

i−1 which are
neighbors in the graph, b ∈ B′

i−1. In particular, this implies that 〈a, b〉2 = 〈a′, b〉2 + 1
for every elements a, a′ ∈ A′′

i−1 which are neighbors in the graph, b ∈ B′
i−1. This means

that A′′
i−1 can be partitioned into two sets A′

i−1,0, A′
i−1,1, where the first one contains

all elements in A′′
i−1 that have inner product 0 with all elements in B′

i−1, while the
second set contains all elements in A′

i−1 that have inner product 1 with all elements
in B′

i−1. We set A′
i−1 to be the larger of these two sets and get D(A′

i−1, B′
i−1) = 1 and

| A′
i−1| ≥ M| Ai−1|.
Concluding, in both cases we obtained subsets A′

i−1, B′
i−1 of Ai−1, B, respectively, such

that D(A′
i−1, B′

i−1) = 1 and A′
i−1, B′

i−1 are not too small:

| A′
i−1| ≥ poly

(
εt+1

nK

)
(4n)−(t−(i−1))

( t∏
	=i−1

ε	+1

)
| Ai−1|,

and

|B′
i−1| ≥ 1

2
|B′

i| ≥ 1
2

poly
(

εt+1

nK

)
2−(t−i)|B| = poly

(
εt+1

nK

)
2−(t−(i−1))|B|.

This concludes the proof of the inductive claim.

3. FROM APPROXIMATE DUALITY TO COMMUNICATION COMPLEXITY UPPER BOUNDS

3.1. Proof of Theorem 1.1

In this section, we prove our Main Theorem 1.1, based on Corollary 1.12. The proof
of Theorem 1.1 follows the high-level approach of Nisan and Wigderson [1995]. They
showed that in order to prove the log-rank conjecture (Conjecture 1.2) it suffices to
show that every {0, 1}-valued matrix of low rank over the reals has a large monochro-
matic submatrix (we say that a matrix is monochromatic if it is either the all-zeros or
the all-ones matrix).

We therefore start with the following lemma which says that assuming the PFR
conjecture, every {0, 1}-valued matrix M of low rank over F2 and of high discUM (M) has
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a large monochromatic submatrix, where UM denotes the uniform distribution over
the entries of M.

LEMMA 3.1. For every constant η > 0, there exists a constant c = c(η) such that the
following holds. Let M be a {0, 1}-valued matrix with no identical rows or columns and
of rank at most r over F2 which satisfies that discUM (M) ≥ 2−r1−η

. Then assuming the
PFR Conjecture (Conjecture 1.7), there exists a monochromatic submatrix M′ of M of
size at least 2−cr/ log r|M|.

PROOF. Denote the number of rows and columns of M by k, 	, respectively. It is well-
known that the rank of M over a field F equals r if and only if M can be written as the
sum of r rank one matrices over the field F. Since rankF2(M) ≤ r this implies in turn
that there exist subsets A, B ⊆ F

r
2, A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , b	} such that

Mi,j = 〈ai, bj〉2 for all 1 ≤ i ≤ k, 1 ≤ j ≤ 	. Since M has no identical rows or columns we
know that | A| = k, |B| = 	.

The assumption that discUM (M) ≥ 2−r1−η
implies that there exists a submatrix M̃ of

M such that

|M̃|
|M| ·

∣∣∣∣E(x,y)∈M̃(−1)Mx,y

∣∣∣∣ =
∣∣∣∣∣∣

∑
(x,y)∈M̃

(−1)Mx,y · 1
|M|

∣∣∣∣∣∣ ≥ 2−r1−η

.

In particular, we have that both |M̃|/|M| ≥ 2−r1−η
and

∣∣∣∣E(x,y)∈M̃(−1)Mx,y

∣∣∣∣ ≥ 2−r1−η
. Let

Ã, B̃ be the subsets of A, B, respectively, which correspond to the sets of rows and
columns of M̃, respectively. The main observation is that

D(Ã, B̃) =
∣∣∣∣E(x,y)∈M̃(−1)Mx,y

∣∣∣∣ ≥ 2−r1−η

.

Corollary 1.12 then implies the existence of subsets A′ ⊆ Ã, B′ ⊆ B̃, | A′| ≥
2−cr/ log r| Ã|, |B′| ≥ 2−cr/ log r|B̃| such that D(A′, B′) = 1. Let M′ be the submatrix of
M whose rows and columns correspond to the indices in A′ and B′, respectively. The
fact that D(A′, B′) = 1 implies that Mi,j = 〈ai, bj〉2 ≡ const for all ai ∈ A′, bj ∈ B′. So M′
is a monochromatic submatrix of M which satisfies

|M′| = | A′||B′| ≥ 2−2cr/ log r| Ã||B̃| ≥ 2−2cr/ log r · 2−r1−η · | A||B| ≥ 2−3cr/ log r|M|.
We proceed to the proof of Theorem 1.1. The proof is similar to that of Nisan and

Wigderson [1995], with the difference being that they analyzed the case in which M has
a monochromatic submatrix of density 2− logO(1)(rankR(M)) inside M, while we analyze the
case in which the density is 2−O(rankF2 (M)/ log(rankF2 (M))).

PROOF OF THEOREM 1.1. We shall show a deterministic protocol with 2O(r/ log r)

leaves. This will suffice since it is well-known that a protocol with t leaves has com-
munication complexity at most O(log t) (cf. Kushilevitz and Nisan [1997, Chapter 2,
Lemma 2.8]). We may assume, without loss of generality that M has no repeated rows
or columns; otherwise, we can eliminate the repeated row or column and the protocol
we construct for the “compressed” matrix (with no repeated rows/columns) will also be
a protocol for M.
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Now we describe the protocol. Let Q be the largest monochromatic submatrix of M.
Then Q induces a natural partition of M into four submatrices Q, R, S, T with R sharing
the rows of Q and S sharing the columns of Q:

M =
(

Q R
S T

)
.

Let U1 be a subset of the rows of (Q|R) whose restriction to the columns of R span the
rows of R over F2. Similarly, let U2 be a subset of the rows of (S|T) whose restriction
to the columns of S span the rows of S over F2. Note that if Q is the all zeros matrix
then the rows of U1 are independent of the rows of U2. Otherwise, if Q is the all ones
matrix, then the rows of U1 are independent of all the rows of U2 except possibly for
the vector in U2 whose restriction to the columns of S is the all ones vector (if such
vector exists). Thus, since Q is monochromatic, we have that rankF2(R) + rankF2(S) =
|U1| + |U2| ≤ rankF2(M) + 1.

If rankF2(R) ≤ rankF2(S), then the row player sends a bit saying if his input belongs
to the rows of Q or not. The players continue recursively with a protocol for the subma-
trix (Q|R) or the submatrix (S|T) according to the bit sent. If rankF2(R) ≥ rankF2(S),
the roles of the row and column players are switched.

Suppose, without loss of generality, that rankF2(R) ≤ rankF2(S) and let c′ be the
constant guaranteed by Lemma 3.1 for the constant η/2. Then, after sending one bit,
we continue with either the matrix (Q|R) which is of rank at most r/2 over F2 or with
the matrix (S|T) which - since discUM (M) ≥ 2−r1−η/2

and thanks to Lemma 3.1 — is of
size at most

(
1 − 2−c′·r/ log r)|M|.

Let L(m, r, γ ) denote the number of leaves in the protocol starting with a matrix
of size at most m, rank at most r over F2 and discU ≥ γ . Then, we get the following
recurrence relation:

L(m, r, γ ) ≤

⎧⎪⎨
⎪⎩

L(m, r/2, γ ) + L(m(1 − δ(r)), r, γ ), γ ≥ 2−r1−η/2

2r

1, m = 1,

where δ(r) = 2−c′r/ log r.
Applying the recurrence iteratively log m · δ−1(r) times to the rightmost summand in

the top case, we get

L(m, r, γ ) ≤ log m · δ−1(r) · L(m, r/2, γ ) + L(1, r, γ ),

assuming that γ ≥ 2−r1−η/2
.

Using the fact that L(1, r, γ ) = 1 and m ≤ 22r (since we may assume there are no
identical rows or columns in the matrix M), we thus have

L(m, r, γ ) ≤ 2r · δ−1(r) · L(m, r/2, γ ) + 1 ≤ 4r · δ−1(r) · L(m, r/2, γ ),

assuming that γ ≥ 2−r1−η/2
.

Applying this recursion iteratively log log r times and noting that in our case

γ ≥ 2−r1−η ≥ 2−(r′)1−η/2
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for every r′ ≥ r/ log r gives

L(m, r, γ ) ≤
[ log log r−1∏

i=0

4 · (r/2i) · δ−1(r/2i)

]
L(m, r/ log r, γ )

≤ (4r)log log r
[ log r log r−1∏

i=0

δ−1(r/2i)

]
· 2r/ log r.

This implies in turn that the number of leaves in the protocol is at most

O(r/ log r) +
log log r−1∑

i=0

log δ−1(r/2i).

Plugging δ(r) = 2−c′r/ log r in this equation, we get that the number of leaves is at
most

O(r/ log r)+ c′
log log r−1∑

i=0

r
2i · log(r/2i)

≤ O(r/ log r)+ c′

log(r/ log r)

log log r−1∑
i=0

r
2i = O(r/ log r),

which concludes the proof of the theorem.

3.2. Proof of Corollary 1.4

Corollary 1.4 is a simple consequence of Theorem 1.1 and the following theorem from
Nisan and Wigderson [1995], which says that every {0, 1}-valued matrix M of low
rank over the reals has high discrepancy with respect to uniform distributions over
submatrices.

THEOREM 3.2 (THEOREM 3 IN NISAN AND WIGDERSON [1995]). For every {0, 1}-
valued matrix M,

discU (M) = �(rankR(M)−3/2).

PROOF OF COROLLARY 1.4. Let r := rankR(M). Our first observation is that
rankF2(M) ≤ rankR(M) for every {0, 1}-valued matrix M and therefore we also have
that rankF2(M) ≤ r. Furthermore, Theorem 3.2 implies that discU (M) ≥ �(r−3/2) �
2−r1−η

for every constant η > 0. Hence, Theorem 1.1 applies and we have that
CC(M) = O(r/ log r) assuming the PFR conjecture.

4. EQUIVALENCE BETWEEN APPROXIMATE DUALITY AND THE PFR CONJECTURE
IN THE EXPONENTIAL RANGE

In this section, we show a new equivalence between approximate duality and
PFR statements in the exponential range which follows from our main technical
Lemma 1.11. Before we elaborate on this, we discuss the previously known relations
between approximate duality and the PFR conjecture. Recall first that Theorem 1.10
(which was proven in Ben-Sasson and Zewi [2011]) shows that the following version of
approximate duality is implied by the PFR conjecture.

Conjecture 4.1 (Approximate Duality Conjecture, Exponential Loss). For every pair
of constants α > δ > 0, there exists a constant ζ > 0, depending only on α and δ, such
that the following holds. If A, B ⊆ F

n
2 satisfy | A| > 2αn and D(A, B) ≥ 2−ζn, then there

exist subsets A′ ⊆ A, | A′| ≥ 2−δn| A| and B′ ⊆ B, |B′| ≥ 2−δn|B| such that D(A′, B′) = 1.

As to the converse direction, it was shown in Ben-Sasson and Zewi [2011] that this
conjecture implies the following weakening of the PFR conjecture.
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THEOREM 4.2 (SECTION 5.4 IN BEN-SASSON AND RON-ZEWI [2012]). Assuming
Conjecture 4.1, for every constant δ > 0, there exists an integer r which depends only on
δ, such that if A ⊂ F

n
2 has | A + A| ≤ K| A|, then there exists a subset A′ of A of size at

least 2−δnK−r| A| such that | span
(
A′) | ≤ K| A|.

Note that the conclusion in this theorem differs from the standard PFR conjecture
in that the loss in the size of A is multiplied by an exponential factor (however, this
exponential factor can be made arbitrarily small at the cost of enlarging r). An inter-
esting problem raised by the work of Ben-Sasson and Zewi [2011] was whether one
could find an approximate duality type conjecture which is equivalent to some PFR
type conjecture. In what follows, we give an example of a pair of such conjectures.

The approximate duality type conjecture that we shall work with is similar to
Conjecture 4.1 and the only difference is that the parameters in this conjecture do
not depend on the sizes of A and B. Given our main technical Lemma 1.11, this seems
like a reasonable conjecture.

Conjecture 4.3. For every constant δ > 0, there exists a constant ζ > 0, depending
only on δ, such that the following holds. If A, B ⊆ F

n
2 satisfy D(A, B) ≥ 2−ζn, then there

exist subsets A′ ⊆ A, | A′| ≥ 2−δn| A| and B′ ⊆ B, |B′| ≥ 2−δn|B| such that D(A′, B′) = 1.

We show that this conjecture is equivalent to the following weakening of the PFR
conjecture.

Conjecture 4.4 ( PFR Conjecture, Exponential Range). For every constant δ′, there
exists a constant ζ ′, depending only on δ′, such that, if A ⊆ F

n
2 has | A + A| ≤ 2ζ ′n| A|,

then there exists a subset A′ ⊆ A of size at least 2−δ′n| A| such that | span
(
A′) | ≤ | A|.

Note that the PFR Conjecture 1.7 implies this conjecture with ζ ′ = δ′/r for some
universal integer r. This conjecture is weaker than the PFR conjecture since we allow
ζ ′ to be an arbitrary function of δ′. Our main result in this section is that Conjectures
4.3 and 4.4 are equivalent.

THEOREM 4.5. Conjecture 4.3 is equivalent to Conjecture 4.4.

The fact that Conjecture 4.4 implies Conjecture 4.3 follows from our proof of the
main technical Lemma 1.11. We have already noted in Section 1.4 that Lemma 1.11
implies that Conjecture 4.3 holds assuming the PFR conjecture (by setting K = 2δn/(3r),
t = 3r/δ, ζ = δ/(3r ·2t) = δ/(3r ·23r/δ), ε = 2−ζn in Lemma 1.11). Inspecting the proof of
Lemma 1.11, it turns out that plugging the weaker Conjecture 4.4 instead of the PFR
conjecture in the proof of Lemma 1.11 suffices for obtaining Conjecture 4.3.

In the remainder of the section, we show that Conjecture 4.3 implies Conjecture
4.4. For the proof of this implication, we follow the approach of Ben-Sasson and Zewi
[2011]. In particular, we use the following lemma from Tao and Vu [2006] (appearing
there as Lemma 4.38) which shows that a set having a small sumset must have large
spectrum.

LEMMA 4.6 (SMALL SUMSET FORCES LARGE SPECTRUM). Let A be a subset of a
finite Abelian group Z, and let 0 < ε ≤ 1. Then, we have the following lower bound on
the sumset:

| A − A| ≥ | A||Z|
| A|| Specε(A)| + |Z|ε2

Note that in F
n
2 we have that A − A = A + A.
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PROOF OF (CONJECTURE 4.3 ⇒ CONJECTURE 4.4). The idea of the proof is as fol-
lows. Suppose that A has a small sumset. Then, Lemma 4.6 implies that A has large
spectrum, denote the spectrum set by B. Assuming Conjecture 4.3, we have that A and
B contain large subsets A′, B′ respectively which lie in affine shifts of dual subspaces.
But this implies in turn that dim(A′) ≤ n − dim(B′), that is, A′ has a small span, and
setting the parameters correctly we arrive at the desired result. Details follow.

Let ζ be the constant guaranteed by Conjecture 4.3 for the constant δ = δ′/3. Also,
let ζ ′ = min{δ′/6, ζ }, and suppose that | A + A| ≤ 2ζ ′n| A|. In Lemma 4.6, set ε = 2−ζn.
Then, from the lemma and the assumption that | A + A| ≤ 2ζ ′n| A|, we have

2ζ ′n| A| ≥ | A − A| ≥ | A|2n

| A||Specε(A)| + 2nε2 .

Rearranging, we obtain

| Specε(A)| ≥ 2n(1 − 2ζ ′nε2)

2ζ ′n| A| ≥ 2n(1 − 2−ζ ′n)

2ζ ′n| A| ≥ 2n

22ζ ′n| A| ,

where the second inequality is due to our choice of ε = 2−ζn ≤ 2−ζ ′n.
Conjecture 4.3 then implies (noting that ε = 2−ζn) the existence of subsets A′ ⊆ A,

B′ ⊆ Specε(A) which lie in affine shifts of dual spaces such that | A′| ≥ 2−(δ′/3)n| A|,
|B′| ≥ 2−(δ′/3)n| Specε(A)|.

But this implies in turn that dim(A′) + dim(B′) ≤ n, and consequently

| span
(
A′) | ≤ 2n

|B′| ≤ 2(δ′/3)n · 2n

| Specε(A)| ≤ 2(δ′/3)n22ζ ′n| A| ≤ 22δ′n/3| A|,

where the last inequality is due to our choice of ζ ′ ≤ δ′/6.
Concluding, we have that | span

(
A′) | ≤ 22δ′n/3| A| where A′ is a subset of A of size

at least 2−(δ′/3)n| A|. Write span
(
A′) as a direct sum of subspaces L1 and L2, where L2

is a subspace of size 22δ′n/3, and L1 is a subspace of size at most | A| which maximizes
the size of A′′ = A′ ∩ L1. We have that A′′ is a subset of A of size at least 2−δ′n| A|
such that | span

(
A′′) | ≤ |L1| ≤ | A| which concludes the proof that Conjecture 4.3 ⇒

Conjecture 4.4.
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