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Multi-party communication complexity involves distributed computation of a function over inputs held by
multiple distributed players. A key focus of distributed computing research, since the very beginning, has
been to tolerate failures. It is thus natural to ask “If we want to compute a certain function in a fault-tolerant
way, what will the communication complexity be?” For this question, this article will focus specifically on (i)
tolerating node crash failures, and (ii) computing the function over general topologies (instead of, e.g., just
cliques).

One way to approach this question is to first develop results in a simpler failure-free setting, and then
“amend” the results to take into account failures’ impact. Whether this approach is effective largely depends
on how big a difference failures can make. This article proves that the impact of failures is significant, at least
for the SUM aggregate function in general topologies: As our central contribution, we prove that there exists
(at least) an exponential gap between the non-fault-tolerant and fault-tolerant communication complexity
of SUM. This gap attests that fault-tolerant communication complexity needs to be studied separately from
non-fault-tolerant communication complexity, instead of being considered as an “amended” version of the
latter. Such exponential gap is not obvious: For some other functions such as the MAX aggregate function,
the gap is only logarithmic.

Part of our results are obtained via a novel reduction from a new two-party problem UNIONSIZECP that
we introduce. UNIONSIZECP comes with a novel cycle promise, which is the key enabler of our reduction. We
further prove that this cycle promise and UNIONSIZECP likely play a fundamental role in reasoning about
fault-tolerant communication complexity.
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1. INTRODUCTION

1.1. Background and Motivation

Fault Tolerance in Communication Complexity and Our Focus. Multi-party commu-
nication complexity [Chandra et al. 1983] involves distributed computation of a function
over inputs held by multiple distributed players. A key focus of distributed computing
research, since the very beginning, has been to tolerate failures. It is thus natural to
ask “If we want to compute a certain function in a fault-tolerant way, what will the
communication complexity be?” Here the computation is allowed to ignore/omit the
inputs held by those players that have failed. For this question, this paper will focus
specifically on (i) tolerating node crash failures, and (ii) computing the function over
general topologies (instead of for example, just cliques). Our focus is driven by the
following key practical setting, which is also driving many other distributed computing
research efforts today.

Practical Motivations. Our focus here on fault-tolerant communication complexity is
motivated by emerging large-scale wireless sensor networks and large-scale wireless
ad hoc networks—the rapid advance of hardware technologies in the past decade or so
have made their large-scale deployment a reality. Such networks consist of many low-
cost nodes (sensors or wireless routers) distributed over a large physical area. Due to
the limited wireless transmission range of these nodes, only nearby nodes can directly
communicate with each other. This results in a multi-hop network topology that is often
beyond the control of the protocol designer. For example, wireless sensor networks may
be deployed simply by airplanes dropping sensors onto a target region [McGlynn and
Borbash 2001], or deployed according to the specific physical environment that they
monitor. The physical nature of these networks thus naturally requires one to consider
general topologies.

Distributed computation of functions is of fundamental importance in these wireless
sensor networks and wireless ad hoc networks. For example, consider a sensor network
for temperature monitoring in a forest. In such a setting, the temperature reading
of a single sensor often bears limited importance. Instead, we often need aggregate
information such as the average temperature in a certain region [Madden et al. 2002].
This then corresponds to the computation of certain aggregate functions [Gray et al.
1997; Madden et al. 2002] over the sensor readings.

Communication complexity also has significant practical relevance in this setting
since (i) wireless communication usually consumes far more energy than local compu-
tation, and needs to be minimized for nodes operating on battery power or nodes relying
on energy harvesting, and (ii) the (bandwidth) capacity of these wireless networks does
not scale well [Gupta and Kumar 2000].

Finally, as in most large-scale distributed systems, failures are the norm instead
of exception in these sensor networks and wireless ad hoc networks. In fact, this is
particularly so because the nodes are often exposed to harsh physical environments.

Other Related Focuses on Fault-Tolerant Communication Complexity. Our focus on
fault-tolerant communication complexity (i.e., tolerating crash failures in general
topologies) has not been thoroughly studied by previous researchers. Related to our
focus, there have been prior work on the communication complexity of secure multi-
party computation [Beaver 1991; Beerliová-Trubı́niová and Hirt 2006, 2008; Ben-Or
et al. 1988, 1993; Chaum et al. 1988a, 1988b; Franklin and Yung 1992; Galil et al. 1987;
Goldreich et al. 1987; Hirt et al. 2000; Hirt and Nielsen 2006; Rabin and Ben-Or 1989;
Yao 1982, 1986] and fault-tolerant distributed consensus [Berman and Garay 1993;
Chlebus et al. 2009; Gilbert and Kowalski 2010; King et al. 2006a, 2006b, 2010; King
and Saia 2009, 2010; Pietro and Michiardi 2008]. While they do consider failures, their
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main focuses are on separate challenges such as privacy requirements or dealing with
byzantine failures, which are different from our focus. Given such different emphases,
most of them assume that the players form a clique. Section 2 provides a more detailed
discussion on related work.

1.2. Our Exponential Gap Result

We have so far motivated our specific focus (i.e., tolerating crash failures in general
topologies) on fault-tolerant communication complexity. One way to approach the sub-
ject is to first develop results in a simpler failure-free setting, and then “amend” the
results to take into account failures’ impact. Whether this approach is effective largely
depends on how big a difference failures can make. This paper proves that the impact
of failures is significant, at least for the SUM aggregate function. Here the SUM func-
tion is defined over a synchronous wireless network with N nodes and some arbitrary
topology. Each node has a binary value, and the goal is simply to determine the sum of
all the values. The function is allowed to freely ignore/omit the inputs held by failed or
disconnected nodes. (See Section 3 for a more formal description.) Note that SUM can
be easily reduced to and from many other interesting aggregate functions [Gray et al.
1997] such as SELECTION.1

As the central contribution of this work, we prove that there exists (at least) an
exponential gap between the non-fault-tolerant (NFT) and fault-tolerant (FT) commu-
nication complexity of SUM. Here FT communication complexity is the smallest com-
munication complexity among all fault-tolerant protocols that can tolerate an arbitrary
number of failures, while NFT communication complexity corresponds to all protocols.
To our knowledge, ours is the first such gap result between FT communication com-
plexity and NFT communication complexity over general topologies. This exponential
gap attests that FT communication complexity needs to be studied separately from
NFT communication complexity, instead of being considered as an “amended” version
of NFT communication complexity.

It is worth noting that such exponential gap is far from obvious: For some other
functions such as the MAX function, there is no large gap—the gap is only logarithmic.
See Appendix A for more details.

Existing Results on SUM. In a failure-free setting, by leveraging in-network process-
ing, a trivial tree-aggregation protocol (see Section 4) can compute SUM with zero-error
while requiring each node to send O(log N) bits. Since we consider general network
topologies, we will naturally define communication complexity of a protocol as the
number of bits sent by the bottleneck node (see Section 3 for formal discussion), in-
stead of by all nodes combined. Hence, for zero-error results, the NFT communication
complexity of SUM is upper bounded by O(log N). For (ε, δ)-approximate results, where
with probability at least 1 − δ the result has at most ε relative error, it is possible to
further reduce the communication complexity to O(log 1

ε
+ log log N) bits per node for

constant δ (see Section 4).
In comparison, to tolerate arbitrary failures, we are not aware of any zero-error SUM

protocol that is better than trivially having every node flood its id together with its

1The SELECTION function returns the xth largest value among the N values, where x is an input parameter.
Here each value is an integer whose domain is polynomial with N. One can reduce SUM to SELECTION by
finding i, via a binary search over [1, N], such that the ith largest value is 1 while the i + 1th largest value
is 0. Hence, by solving a logarithmic number of SELECTION instances, we can solve SUM. On the other hand,
one can also reduce SELECTION to SUM by doing a binary search over the value domain. At each step of the
binary search, we count the number of nodes whose value is larger than the value we are examining. The
process stops when the count is exactly x. Here again, by solving a logarithmic number of SUM instances, we
can solve SELECTION.
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value and thus requiring each node to send O(N log N) bits. For (ε, δ)-approximate
results, researchers have proposed some protocols [Bawa et al. 2007; Considine et al.
2004; Mosk-Aoyama and Shah 2006; Nath et al. 2008; Yu 2011] where each node needs
to send roughly O( 1

ε2 ) bits for constant δ (after omitting logarithmic terms of 1
ε

and N).
All these protocols conceptually map the value of each node to geometrically weighted
positions in some bit vectors, and then estimate the sum from the bit vectors. Same
as in one-pass distinct element counting algorithms in streaming databases [Alon
et al. 1996; Flajolet and Martin 1985], doing so makes the whole process duplicate-
insensitive. In turn, this allows each node to push its value along multiple directions
to guard against failures. Note however, that duplicate-insensitive techniques do not
need to be one-pass, and furthermore tolerating failures does not have to use duplicate-
insensitive techniques. For example, one could repeatedly invoke the tree-aggregation
protocol until one happens to have a failure-free run. There is also a large body of
work [Aysal et al. 2009; Boyd et al. 2006; Chen et al. 2005; Chen and Pandurangan
2010; Jelasity et al. 2005; Kashyap et al. 2006; Kempe et al. 2003] on computing SUM

via gossip-based averaging (also called average consensus protocols). They all rely on
the mass conservation property [Kempe et al. 2003], and thus are vulnerable to node
failures. There have been a few efforts [Eyal et al. 2011; Jesus et al. 2009] on making
these protocols fault-tolerant. But they largely focus on correctness, without formal
results on the protocol’s communication complexity in the presence of failures. Despite
all these efforts, no lower bounds on the FT communication complexity of SUM have
ever been obtained, and thus it has been unknown whether the existing protocols can
be improved.

Our Results. Our main results in this paper are the first lower bounds on the FT
communication complexity (or FT lower bounds in short) of SUM, for public-coin ran-
domized protocols with zero-error and with (ε, δ)-error. These FT lower bounds are
(at least) exponentially larger than the corresponding upper bounds on the NFT com-
munication complexity (or NFT upper bounds in short) of SUM, thus establishing an
exponential gap. Private-coin protocols and deterministic protocols are also fully but
implicitly covered, and our exponential gap still applies.

Specifically, since there is a tradeoff between communication complexity and time
complexity, Figure 1 summarizes our FT lower bounds when the time complexity of the
SUM protocol is within b aggregation rounds, for b from 1 to ∞. The notion of aggregation
rounds is introduced to isolate the effects of the topology on the time complexity, and
will be formally defined later in Section 3. Intuitively, each aggregation round consists
of x rounds, where the value x captures factors such as the diameter of the topology.
For b ≤ N0.25−c or b ≤ 1

ε0.5−c where c is any positive constant below 0.25, the NFT upper
bounds are always at most logarithmic with respect to N or 1

ε
, while the FT lower

bounds are always polynomial.2 For b > N0.25−c or b > 1
ε0.5−c , the NFT upper bounds

drop to O(1), while the FT lower bounds are still at least logarithmic. Our results
also imply that under small b values (i.e., b ≤ 2 − c), the existing fault-tolerant SUM

protocols [Bawa et al. 2007; Considine et al. 2004; Mosk-Aoyama and Shah 2006; Nath
et al. 2008; Yu 2011] (incurring O(N log N) or O( 1

ε2 ) bits per node) are actually optimal
within polylog factors.3

2Here for (ε, δ)-approximate results, we only considered terms containing ε. Even if we take the extra terms
with N into account, our exponential gaps continue to exist as long as 1

εc = �(log N).
3Note that prior efforts analyzed these protocols in a model where (i) wireless network communication
collisions are ignored, and (ii) the failure adversary (for determining which nodes fail at what time) is
oblivious. The optimality hence refers to the optimality under that model. This article actually uses a
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Fig. 1. Summary of our exponential gaps. All NFT upper bounds are either well-known or are obtained
via standard tricks—they are described in Section 4. All FT lower bounds are novel and are our main
contributions. They are obtained in Section 5 (for 1 ≤ b ≤ 2 − c), Section 6 (for 2 − c < b ≤ N0.25−c or
2 − c < b ≤ 1

ε0.5−c ), and Section 8 (for b > N0.25−c or b > 1
ε0.5−c ).

Our Approach. Our FT lower bounds for b ≤ 2 − c are obtained via a simple but
interesting reduction from a two-party communication complexity problem UNIONSIZE,
where Alice and Bob intend to determine the size of the union of two sets. In the re-
duction, without knowing Bob’s input, Alice can only simulate the SUM oracle protocol’s
execution in part of the network. Furthermore, this part is continuously shrinking due
to the spreading of such unknown information. Failures play a fundamental role in the
reduction—they hinder the spreading of unknown information. The FT lower bounds
under b ≤ N0.25−c or b ≤ 1

ε0.5−c are much harder to obtain. There we introduce a new
two-party problem called UNIONSIZECP, which is roughly UNIONSIZE extended with a
novel cycle promise. Identifying this promise is a key contribution of this work, which
enables the continuous injection of failures to further hinder the spreading of unknown
information. We then prove a lower bound on UNIONSIZECP’s communication complexity
via information cost [Bar-Yossef et al. 2004]. This lower bound, coupled with our reduc-
tion, leads to FT lower bounds for SUM. We further prove a strong completeness result
showing that UNIONSIZECP is complete among the set of all two-party problems that
can be reduced to SUM in the FT setting via oblivious reductions (defined in Section 7).
Namely, we prove that every problem in that set can be reduced to UNIONSIZECP. Our
proof also implicitly derives the cycle promise, thus showing that it likely plays a fun-
damental role in reasoning about the FT communication complexity of many functions
beyond SUM. Finally, our FT lower bounds under b > N0.25−c or b > 1

ε0.5−c are obtained by
drawing a connection to an interesting probing game, and then proving a lower bound
on the probing game.

1.3. Roadmap

Section 2 discusses related work. Section 3 defines the SUM problem and various com-
plexity measures. Section 4 presents the upper bounds on the NFT communication

different model where (i) collision is considered, and (ii) the failure adversary is adaptive. However, our
lower bounds for b ≤ 2 − c continues to hold under their model. (In fact, all our lower bounds hold under
their model except the lower bounds for b > N0.25−c or b > 1

ε0.5−c , which require an adaptive adversary.)
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complexity of SUM. Section 5 proves the lower bounds on the FT communication com-
plexity of SUM for b ≤ 2 − c, while Section 6 proves the corresponding lower bounds for
b ≤ N0.25−c and b ≤ 1

ε0.5−c . Next, Section 7 proves the completeness result for UNION-
SIZECP, showing that the polynomial dependency on b in Section 6’s lower bounds might
be inherent in Section 6’s overall approach. Section 8 proves the lower bounds on the
FT communication complexity of SUM for all b. Finally, Section 9 discusses various
extensions of our results, and Section 10 draws conclusions and proposes future work.

2. RELATED WORK

Section 1 already thoroughly discussed previous efforts on the communication com-
plexity of computing SUM. In the following, we will discuss several prior efforts that are
related to our work in the broader sense.

Secure Multi-Party Computation. Our fault-tolerant communication complexity is re-
lated to the topic of secure multi-party computation [Beaver 1991; Beerliová-Trubı́niová
and Hirt 2006, 2008; Ben-Or et al. 1988, 1993; Chaum et al. 1988a, 1988b; Franklin and
Yung 1992; Galil et al. 1987; Goldreich et al. 1987; Hirt et al. 2000; Hirt and Nielsen
2006; Rabin and Ben-Or 1989; Yao 1982, 1986]. Secure multi-party computation also
aims to compute a function whose inputs are held by multiple distributed players.
Different from our work, secure multi-party computation mainly focuses on the pri-
vacy requirement. Namely, when computing the function, a player should not learn
any information about the inputs held by other players, except what can already be
inferred from the output of the function. Research on secure multi-party computation
usually investigates whether it is possible to compute a certain class of functions, and
if yes, what is the communication complexity. The failure model considered by secure
multi-party computation, given the security nature of the subject, is more diverse than
our simple crash failure model. For example, researchers have considered players that
(i) are curious but follow the protocol [Ben-Or et al. 1988; Franklin and Yung 1992; Galil
et al. 1987; Goldreich et al. 1987; Yao 1982, 1986], (ii) may crash [Ben-Or et al. 1993;
Franklin and Yung 1992], or (iii) may experience byzantine failures [Beaver 1991;
Beerliová-Trubı́niová and Hirt 2006, 2008; Ben-Or et al. 1988, 1993; Chaum et al.
1988a, 1988b; Franklin and Yung 1992; Galil et al. 1987; Goldreich et al. 1987; Hirt
et al. 2000; Hirt and Nielsen 2006; Rabin and Ben-Or 1989]. In terms of the topol-
ogy among the players, to the best of our knowledge, research on secure multi-party
computation almost always assumes that the players are fully connected and form a
clique.

The central difference between our SUM problem and secure multi-party computation
is that the latter’s key challenge is to preserve privacy. If privacy is not a concern, then
secure multi-party computation problems usually become trivial (i.e., with trivial and
matching upper/lower bounds). In comparison, our SUM problem is not concerned with
privacy—the key challenge instead is to compute SUM over general topologies (rather
than just cliques). If we only consider cliques, then SUM becomes trivial (i.e., with trivial
and matching upper/lower bounds).

Such central difference between the two problems implies that they are
incomparable—neither of them is easier than the other. Furthermore, upper bounds,
lower bounds, and proof techniques for one problem usually cannot carry over to the
other. For example, the lower bounds in secure multi-party computation are usually
derived from the privacy requirement, while we prove lower bounds on SUM by con-
structing proper lower bound topologies (i.e., worst-case topologies).

Communication Complexity under Unreliable Channels. Other than in the topic
of secure multi-party computation, tolerating node failures has not been considered
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in various developments on different models for communication complexity (e.g.,
Braverman and Rao [2011], Chandra et al. [1983], Impagliazzo and Williams [2010],
Rajagopalan and Schulman [1994], and Schulman [1996]). Among these develop-
ments, the closest setting to tolerating node failures is perhaps unreliable channels
[Braverman and Rao 2011; Gargano and Rescigno 1993; Rajagopalan and Schulman
1994; Schulman 1996]. For example, the channels may flip the bits adversarially, flip
each bit independently with the same probability (i.e., a binary symmetric channel),
or drop a certain number of messages. Under the binary symmetric channel model,
there have also been some information-theoretic lower bounds on the rates of dis-
tributed computations [Ayaso et al. 2010; Giridhar and Kumar 2006]. The specific tech-
niques and insights for unreliable channels have limited applicability to tolerating node
failures.

Bit Complexity of Other Distributed Computing Tasks in Failure-Prone Settings.
Related to the computation of functions, distributed computing researchers have also
studied the communication complexity (usually called bit complexity here) of other
distributed computing tasks in failure-prone settings. For example, there has been a
large body of work [Chlebus et al. 2009; Gilbert and Kowalski 2010; King et al. 2006a,
2010; King and Saia 2009, 2010; Pietro and Michiardi 2008] on the bit complexity
of distributed consensus and leader election. Compared to our work, all these efforts
assume that the players are fully connected and form a clique. As explained earlier,
for our SUM problem, the key challenge is exactly to do the computation over general
topologies instead of just cliques. On the other hand, these problems have their own
unique challenges such as tolerating byzantine failures (instead of just tolerating crash
failures as in SUM). Because of this, again, distributed consensus/leader election and
SUM are incomparable—neither of them is easier than the other.

Some researchers feel that cliques may not be “realistic” topologies in some cases.
Hence, they explicitly construct low-degree network topologies, and then propose
novel distributed consensus and leader election protocols specifically for those topolo-
gies [Berman and Garay 1993; King et al. 2006b]. In some sense, the performance of
these protocols are defined over the best-case topology that is low-degree. This corre-
sponds to a setting where the topology is within the control of the protocol designer, and
then a protocol is designed specifically for that topology. In comparison, as motivated
in Section 1, our SUM problem considers general topologies where the performance (i.e.,
time complexity and communication complexity) of a SUM protocol is defined over the
worst-case topology.

3. MODEL AND DEFINITIONS

This section describes the system model and formal definitions used throughout this
article, except in Section 9. For clarity, we defer to Section 9 various relaxed/extended
versions of the system model and definitions, under which our exponential gap results
continue to hold. Table I summarizes the key notations. All “log” in this article means
log2.

System Model. We consider a wireless network with N nodes and an arbitrary undi-
rected and connected graph G as the network topology. Each node has a unique id. We
assume that the topology G (including the ids of each of the N nodes in G) is known to
all nodes. The system is synchronous and a protocol proceeds in synchronous rounds.
All nodes simultaneously start executing the protocol in round 1, with no activation
needed. In each round, a node (which has not failed) first performs some local com-
putation, and then does either a send or receive operation (but not both). We also say
that the node is in a sending state or a receiving state in that round, respectively. By
doing a send, a node (locally) broadcasts one message to all its neighbors in G. For
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Table I. Key Notations in This Article

G the undirected and connected graph representing the network topology
N number of nodes (i.e., vertices) in G
�(G) number of rounds in an aggregation round in G
λ maxG′∈G �(G′) where G is the set of topologies appearing during some given

execution
n (except in Section 8) the size of a two-party problem
n (in Section 8) a basic parameter in the lower bound construction
ε and δ as in (ε, δ)-approximate result
b time complexity of a SUM protocol, in terms of the number of aggregation

rounds
t time complexity of a two-party problem, in terms of (synchronous) rounds
c positive constant whose range depends on the context
NFT0 communication complexity for zero-error results
NFTε,δ communication complexity for (ε, δ)-approximate result
FT0 same as NFT0 except that fault-tolerance is required
FTε,δ same as NFTε,δ except that fault-tolerance is required

our upper bounds, we require that the size of the message is O(log N). For our lower
bounds, we do not restrict the size of the message. Such treatment serves to make our
results stronger. Our results are insensitive to whether wireless network communica-
tion collisions are possible, but to make everything concrete, we still adopt and stick to
the following commonly used collision model. By doing a receive, the node receives the
message sent by one of its neighbors j iff node j is the only sending node among all
node i’s neighbors. If multiple neighbors of i send in the same round, a collision occurs
and node i does not receive anything. All our results hold regardless of whether node i
can distinguish silence from collision.

Failure Model. Any nodes in G may experience crash failures (but not byzantine
failure), and the total number of failures can be up to N − 1. (See Section 9 for more
discussion on the number of failures.) To model worst-case behavior, we have an adver-
sary determine which nodes fail at what time. The adversary can be adaptive to the
behavior of the protocol (including the coin flips) so far, but it cannot predict future coin
flip results.

Recall that we eventually aim to prove lower bounds on the fault-tolerant com-
munication complexity of SUM, and also to show some (trivial) upper bounds on the
non-fault-tolerant communication complexity of SUM. For the upper bounds, the failure
model is irrelevant since we will be considering a failure-free setting. For proving the
lower bounds, we will allow the existence of a well-known root node in the topology that
never fails. Having such a special root node only makes it easier to compute SUM, and
hence makes our lower bound stronger. In fact, proving our lower bound while allowing
such a root will shed additional light onto the problem: Even having such a root does
not remove the exponential gap. As a side benefit, having such a root node also helps
to simplify our discussions later. Hence, we will use such a concept of a root node in the
rest of the article, though one should keep in mind that none of our results rely on the
fact that the root does not fail.

The SUM Problem. Here, each node i in G has a binary value wi, which is initially
unknown to any other node. Let s2 = ∑N

i=1 wi, and let s1 be the sum of w j ’s where by the
end of the protocol’s execution, node j has not failed or been disconnected from the root
due to other nodes’ failures. Following the same definitions from Bawa et al. [2007], a
zero-error result of SUM is any s where s1 ≤ s ≤ s2, and an (ε, δ)-approximate result of
SUM is any ŝ such that for some zero-error result s, Pr[|ŝ − s| ≥ εs] ≤ δ.
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Time Complexity of SUM Protocols. We will consider only public-coin randomized
protocols. By default, a “randomized protocol” in this article is a public-coin randomized
protocol. For a randomized SUM protocol and with respect to a topology G, we define
the protocol’s time complexity under G to be the number of rounds needed for the
protocol to terminate, under the worst-case values of the nodes in G, the worst-case
failures (for fault-tolerant cases), and the worst-case random coin flips in the protocol.
The protocol terminates when the root outputs the SUM result. The topology G has a
large impact on time complexity, and we use the notion of aggregation rounds to isolate
such impact. We will describe the time complexity in terms of aggregation rounds. This
is analogous to describing it as a multiple of, for example, the diameter of G.

In failure-free settings, an aggregation round in G consists of �(G) rounds, where
�(G) is a function of the connected graph G. We will define �(G) precisely later in
Section 4, which describes a simple deterministic tree-aggregation protocol and then
defines �(G) as the number of rounds needed for that protocol to finish on G. When
failures are possible, the network topology may change during execution. Let G be the
set of all topologies that have ever appeared during the given execution. Note that a
G′ ∈ G may or may not be connected. For any such G′ that is not connected, we define
�(G′) to be �(G′′) where G′′ is the connected component of G′ that contains the root.
To allow a fair comparison between NFT and FT communication complexity, we define
an aggregation round in an execution with failures to be maxG′∈G �(G′) rounds. Since
G ∈ G and thus maxG′∈G �(G′) ≥ �(G), an aggregation round for an FT protocol is either
the same or longer than that for an NFT protocol, making our gap results stronger.

NFT and FT Communication Complexity of SUM Protocols. Classic multi-party com-
munication complexity problems [Kushilevitz and Nisan 1996] usually consider the
total number of bits sent by all players, since they usually use the whiteboard model
where the whiteboard is the bottleneck. In our distributed computing setting with a
topology G, as in other problems in such a setting, it is more natural to consider the
number of bits sent by the bottleneck player. Given a randomized SUM protocol, a topol-
ogy G, a value assignment to the nodes in G, and a failure adversary (if failures are
considered), define ai to be the expected (with the expectation taken over coin flips in
the protocol) number of bits that node i sends. The protocol’s average-case communica-
tion complexity under G is defined as the largest ai, across all value assignments of the
nodes in G, all failure adversaries (if failures are considered), and all i’s (1 ≤ i ≤ N).
The protocol’s worst-case communication complexity under G is similarly defined by
considering worst-case coin flips instead of taking the expectation over the coin flips.

We define NFT0(SUMG, b) to be the smallest average-case communication complex-
ity under G across all randomized SUM protocols that can generate, in a failure-free
setting, a zero-error result on G within a time complexity of at most b aggregation
rounds.4 Similarly, we define NFTε,δ(SUMG, b) to be the smallest worst-case communi-
cation complexity under G across all randomized SUM protocols that can generate, in
a failure-free setting, an (ε, δ)-approximate result on G within a time complexity of
at most b aggregation rounds. Here, note that (i) the length of an aggregation round
depends on G, and (ii) using the worst-case communication complexity for defining
NFTε,δ is standard practice [Bar-Yossef et al. 2004; Kushilevitz and Nisan 1996]. With
respect to any topology G, we similarly define FT0(SUMG, b) and FTε,δ(SUMG, b) across
all fault-tolerant randomized SUM protocols.

4To make the discussion more accessible, here we use the notation NFT and FT instead of R (for random-
ized communication complexity) loaded with various superscripts, as in classic communication complexity
literature.
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For any given integer N, we define SUM’s NFT communication complex-
ity NFT0(SUMN, b) and NFTε,δ(SUMN, b) to be the maximum NFT0(SUMG, b) and
NFTε,δ(SUMG, b), respectively, across all topology G’s where G is connected and has ex-
actly N nodes. Similarly define SUM’s FT communication complexity FT0(SUMN, b) and
FTε,δ(SUMN, b).

Communication Complexity of Two-Party Problems. Our proofs will also need to rea-
son about the NFT communication complexity of some two-party problems. In such a
problem �, Alice and Bob each have an input X and Y respectively, and the goal is to
compute the function �(X, Y ). For all two-party problems in this article, we only require
Alice to learn the final result. We will often use n to denote the size of �, as compared to
N which describes the number of nodes in G. The communication complexity of a ran-
domized protocol for computing � is defined to be either the average-case or worst-case
(over random coin flips) number of bits sent by Alice and Bob combined. In the classic
setting without synchronous rounds and time complexity constraints [Kushilevitz and
Nisan 1996], similar as earlier, we define NFT0(�) to be the smallest average-case com-
munication complexity across all randomized protocols that can generate a zero-error
result for �, and define NFTε,δ(�) to be the smallest worst-case communication com-
plexity across all randomized protocols that can generate an (ε, δ)-approximate result
for �. We will also need to consider a second setting with synchronous rounds,5 adapted
from Impagliazzo and Williams [2010]. Here Alice and Bob proceed in synchronous
rounds, where in each round Alice and Bob may simultaneously send a message to the
other party. Alice, or Bob, or both may also choose not to send a message in a round. The
time complexity of a randomized protocol for computing � is defined to be the number
of rounds needed for the protocol to terminate, over the worst-case input and the worst-
case coin flips. We define NFT0(�, t) to be the smallest average-case communication
complexity across all randomized protocols for � that can generate a zero-error result
within a time complexity of at most t rounds. Similarly, we also define NFTε,δ(�, t) to be
the smallest worst-case communication complexity across all randomized protocols for
� that can generate an (ε, δ)-approximate result within a time complexity of at most t
rounds.

4. UPPER BOUNDS ON NFT COMMUNICATION COMPLEXITY OF SUM

This section describes the NFT upper bounds on SUM, which are from well-known
tree-aggregation protocols coupled with some standard tricks. These are not our main
contribution—instead, they serve to show the exponential gap from our FT lower
bounds.

Tree-Aggregation Protocol and Defining �(G). Since the topology G is known, every
node can locally and deterministically construct a breadth-first spanning tree (with the
root of G being the tree root) as the aggregation tree. With this tree in place, a node
becomes ready when it receives one aggregation message from each of its children. Each
aggregation message encodes the partial sum of all the values in the corresponding
subtree. Leaf nodes are ready from the beginning. A ready node will combine all these
aggregation messages, together with its own value, and then send a single aggregation
message to its parent. With the known topology, the protocol easily avoids collision
via the following simple deterministic scheduling: Out of all ready nodes, the protocol
greedily and deterministically chooses a maximal set of nodes to send messages without
incurring collision. A message does not need to include the sender’s id—since everything

5These synchronous rounds are different from interaction rounds which correspond to message exchanges.
A protocol using x synchronous rounds incurs x or fewer interaction rounds since a synchronous round may
or may not have any message.
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is deterministic, the receiver can locally determine the sender. The function �(G) is
formally defined to be the number of rounds needed for this deterministic protocol to
finish on G. Thus, by definition, this protocol has a time complexity of one aggregation
round.

NFT Upper Bounds. If each aggregation message uses O(log N) bits to encode the
exact partial sum, then the above protocol is a deterministic protocol for SUM with
O(log N) communication complexity and one aggregation round time complexity. For
(ε, δ)-approximate results, it is possible to reduce the size of the aggregation message
to O(log 1

ε
+ log log N) bits, using a simple private-coin protocol with similar tricks

as in AMS synopsis [Alon et al. 1996] (see Appendix B). One can further reduce the
communication complexity if the time complexity is b aggregation rounds with b > 1,
since we can now spend b rounds in sending all the bits previously sent in one round.
It is known [Impagliazzo and Williams 2010] that an a-bit message sent in one round
can be encoded using a/ log b

a bits sent over b rounds, for b ≥ 2a. To do so, one bit is
sent every b

a · log b
a rounds. Leveraging the round number during which the bit is sent,

each such bit can encode log( b
a · log b

a ) ≥ log b
a bits of information. Combining all of these

leads to the following.

THEOREM 4.1. For any b ≥ 1, we have:

NFT0(SUMN, b) = O
(

a/ log
(

b
a

+ 2
))

, where a = log N

NFTε, 1
3
(SUMN, b) = O

(
a/ log

(
b
a

+ 2
))

, where a = log
1
ε

+ log log N, for ε = �

(
1
N

)
.

5. LOWER BOUNDS ON FT COMMUNICATION COMPLEXITY OF SUM FOR b ≤ 2 − c

This section aims to eventually prove the following theorem.

THEOREM 5.1. For any b ∈ [1, 2 − c] where c is any positive constant, we have:

FT0(SUMN, b) = �

(
N

log2 N

)

FTε, 1
3
(SUMN, b) = �

(
1

ε2 log N

)
, for ε = �

(√
log N√

N

)
.

This theorem establishes the FT lower bounds for the leftmost region of b in Figure 1
(i.e., for 1 ≤ b ≤ 2 − c). In the following, Section 5.1 first gives an overview of our
proof for this theorem, which is based on a reduction from UNIONSIZE to SUM. In other
words, given any oracle protocol for solving SUM, we will construct a protocol for solving
UNIONSIZE. Section 5.2 elaborates the concrete intuitions behind our reduction. The
formal reasoning and proofs then follow: Section 5.3 develops a formal framework for
our reasoning and Section 5.4 proves Theorem 5.1 using that framework.

5.1. Overview of Our Proof

The UNIONSIZE Problem. As discussed in Section 1, one possible approach to achieve
fault tolerance when computing SUM is for the nodes to simultaneously propagate
their values along multiple directions. But doing so will lead to duplicates which
must be addressed. Thus, it is natural to consider a potential reduction from the
two-party communication complexity problem UNIONSIZE, which was used for ob-
taining the optimal �( 1

ε2 ) lower bound on the space complexity of one-pass distinct
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element counting [Woodruff 2004]. In the two-party problem UNIONSIZEn, Alice and
Bob have length-n binary strings X and Y , respectively. Let Xi (Yi) denote the ith
bit of X (Y ). Alice aims to determine |{i | Xi �= 0 or Yi �= 0}|. If X and Y are the
characteristic vectors of two sets, then this is the size of the union of the two sets.
Trivially combining a few recent results [Chakrabarti and Regev 2011; Impagliazzo
and Williams 2010; Woodruff 2004] tells us that NFT0(UNIONSIZEn, O(poly(n))) = �( n

log n)
and NFTε, 1

3
(UNIONSIZEn, O(poly(n))) = �( 1

ε2 log n) for ε = �( 1√
n) (see Corollary A.4 in

Appendix A).

Overview of Our Reduction and Its Novelty. While the well-known reduc-
tion [Woodruff 2004] from UNIONSIZE to the (centralized) one-pass distinct element
counting problem is straightforward, we seek a reduction from UNIONSIZE to SUM, which
is less so. In particular, it is not immediately clear what a role failures can play. Our
simple yet interesting reduction here will answer this question, which prepares for our
trickier reduction in Section 6. Our reduction is based on a certain topology G. Given
inputs X and Y to UNIONSIZE, each node in G has some value so that their sum is exactly
UNIONSIZE(X, Y ). The values of some of the nodes are uniquely determined by X, and
thus are known by Alice from her local knowledge of X. If the value of a node τ cannot
be uniquely determined by X, then τ is spoiled (rigorously defined in Section 5.3) for
Alice, in the sense that Alice cannot simulate τ . As the simulation proceeds, a spoiled
node τ may causally affect its neighbor node τ ′, rendering Alice unable to simulate τ ′
and thus making τ ′ spoiled as well. Since the SUM protocol may have internal state, if
Alice cannot simulate a node for some round, then Alice cannot simulate the node for
later rounds either. In this sense, a spoiled node can never get “unspoiled” later. For
each round, Alice will simply simulate the (shrinking) group of all those nodes that
have not been spoiled for Alice. Bob similarly simulates all unspoiled nodes for Bob.
Alice’s group and Bob’s may intersect.

We want the root of G to remain unspoiled for Alice when the SUM protocol ends, so
that it provides the SUM result to Alice for her to determine UNIONSIZE(X, Y ). To achieve
this, in the reduction, Alice and Bob will need to strategically simulate the failures of
certain nodes, to block the spreading of spoiled nodes. This showcases the fundamental
role of failures in our reduction. At the same time, we need to avoid failing/disconnecting
nodes with a value of 1—failing/disconnecting them would enable the SUM protocol to
ignore their values and potentially return a result that cannot be used to determine
UNIONSIZE(X, Y ). (Recall from Section 3 that a zero-error result for SUM can be any value
between s1 and s2.) In fact, if we were not concerned with this, then simply failing all
nodes except the root would keep the root unspoiled forever. Finally, it is also necessary
to enlist help from Bob, who can simulate certain nodes that are spoiled for Alice. By
forwarding to Alice messages sent by those nodes, Bob can further hinder the shrinking
of Alice’s group. The communication (between Alice and Bob) spent in doing so will be
the communication complexity incurred for solving UNIONSIZE. Simulating a shrinking
group of nodes and properly using failures to hinder such shrinking is the main novelty
in our simple reduction.

5.2. Intuitions for Our Reduction from UNIONSIZE to SUM

We now intend to develop some concrete intuitions for our reduction from UNIONSIZE to
SUM. For better understanding, we first describe here a topology (Figure 2) that allows
a reductions from UNIONSIZE to SUM for b ≤ 10

9 . Later, Section 5.4 will use an improved
topology so that b can be any value below 2 − c, with c being any positive constant.
Given UNIONSIZEn with n being a power of 2, the topology G here has n parallel chains
of nodes. Each chain has 6 log n + 1 nodes. We use γ α

i , τi, and γ
β

i to denote the first,
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Fig. 2. FT lower bound topology for b ≤ 10
9 .

Fig. 3. Values of valued nodes and failure times of flaky nodes, for X = 0011 and Y = 0101.

middle, and last node on the ith chain, respectively. Next, we construct a perfect binary
tree with all the γ α

i ’s being the leaves, and let node α denote the tree root. Similarly
construct a second perfect binary tree whose leaves are all the γ

β

i ’s, and let β be the
tree root. Finally, we connect α and β with a single edge, and let α be the root of the
topology. This topology has total N = �(n log n) nodes.

The inputs X and Y to UNIONSIZEn will determine the values of the τi ’s, which are
called valued nodes. Specifically, τi has a binary value of 1 iff Xi �= 0 or Yi �= 0 (Figure 3).
All other nodes (i.e., nonvalued nodes) have values of 0. X and Y also determine the
failure times of the γ α

i ’s and γ
β

i ’s, which are called flaky nodes. If Xi = 0, then γ α
i fails

at the beginning of round t0 = 3 log n+ 1. Otherwise, it never fails. Intuitively, t0 is the
very first round where τi may causally affect γ α

i . Similarly, γ
β

i fails at the beginning
of round t0 iff Yi = 0 (Figure 3). Non-flaky nodes never fail. It is worth noting that
this failure adversary (i) is actually oblivious to the SUM protocol, and (ii) fails only a
vanishingly small fraction (i.e., o(N)) of all the nodes in G.

As a key property in the above construction (and later constructions), a τi whose
value is 1 is never disconnected from the root. This is because if τi ’s value is 1, then it
must be unspoiled (by our construction) for either Alice or Bob, and thus can remain
connected to α or β (and thus to the root). This in turn ensures that a zero-error result
of SUM is always exactly UNIONSIZE(X, Y ).

In each round, Alice simulates the group of all the unspoiled nodes for Alice, including
node α. Bob similarly simulates the unspoiled nodes for Bob, including node β. These
two groups are made precise later in Section 5.4. Whenever α in the SUM protocol sends
a message (whose intended recipient may or may not be β) Alice always forwards that
message to Bob. Bob does the same whenever β sends a message. Alice and Bob do not
exchange any additional messages. Thus, the number of bits sent by Alice and Bob for
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solving UNIONSIZE is exactly the same as the number of the bits sent by α and β in the
SUM protocol.

The need for α (β) to remain unspoiled for Alice (Bob) determines that this simulation
cannot last forever. For example, let us consider some i where Xi = 0 and Yi = 1. This
makes τi spoiled for Alice, since Alice cannot determine τi ’s value based on Xi. To
prevent τi from causally affecting α and thus spoiling α, Alice simulates the failure
of γ α

i before this can happen. Interestingly, since based on Yi Bob cannot determine
whether γ α

i fails, γ α
i becomes spoiled for Bob when it fails. Once the failure of γ α

i can
causally affect β (at round 10 log n + 1), Bob can no longer simulate β. The simulation
must end before this happens, which is guaranteed under b ≤ 10

9 since an aggregation
round here has no more than 8 log n + 1 rounds.

5.3. A Formal Framework for Reasoning about Reductions to SUM

Having provided the overview and intuitions, we are now ready for the formal rea-
soning. To facilitate our proof in Section 5.4, we develop a formal framework in this
section.

Because FT communication complexity has not been formally studied before, many of
the concepts in this framework need to be defined from scratch. This formal framework
will also be used for the proofs in later sections; hence, the framework developed here
will be more general than what is needed for proving Theorem 5.1. A significantly
simplified version of our framework, which does not involve failures, is implicitly used
by Sarma et al. [2011] for a reduction from the DISJOINTNESS two-party problem to
distributed spanning tree verification. Applying the simplified version of our framework
to their context would also streamline their proof.

Rounds and Failures. The execution of the SUM oracle protocol starts at round 1. We
sometimes for convenience also discuss round 0, during which the SUM protocol does
nothing. Note that one can assume, without loss of generality, that all failures happen
at the beginning of various rounds:6 If a node v fails sometime within round r, since
v can (locally) broadcast at most one message in a round, the failure can be viewed
as happening at the beginning of round r + 1 if the failure occurs after v sends the
message. Otherwise, the failure can be viewed as happening at the beginning of round
r.7 Thus, from now on, we will assume that all failures happen at the beginning of
various rounds. If a node fails at the beginning of round r, we say that the failure time
of that node is round r.

Simulating a Node. To properly simulate a node (i.e., simulate the execution of the
SUM oracle protocol on that node) in a certain round, Alice (Bob) needs to feed all
necessary parameters to the oracle protocol running on that node. The execution of a
randomized oracle protocol on a node in a given round is uniquely determined by the
(public) coin flips, the topology (since the topology is known), the id of the node, the
(initial) value of the node, the failure time of the node (i.e., a failed node should not
send out messages and the oracle protocol should not be invoked on such a node), and
all the incoming messages to this node since round 1. Alice can easily generate the
coin flips, and she already knows the topology and node id. For some nodes, Alice can
uniquely determine their values and failure time based on Alice’s input X. Finally, the
incoming messages to a node v will have to be obtained via Alice’s simulation of v’s

6This implies that our failure adversary in Section 5.2, which injects failures only at the beginning of various
rounds, has already fully exploited the flexibility on failure time.
7For wired network settings with point-to-point communication, this assumption will no longer be without
of loss of generality. While all our final results will still hold without any modification, the formal framework
needs to be slightly different.
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neighbors or directly from Bob if β is the sender of that message. Recall that in a round,
a node first performs some local computation, and then does either a send or a receive.
In particular, the potential message received by a node can only affect its behavior
starting from the next round, since the node does not do any further local computation
in the current round after the receive operation. Thus, regardless of whether v does a
send or receive in round r, to simulate v in round r, we (only) need all the incoming
messages to v from round 1 to round r − 1 (inclusive).

Epicenters and Their Occurrence Time. The following concepts are always defined
with respect to a given input X of Alice’s. A node v in the topology G is a value epicenter
if v’s value is not uniquely determined by X. Namely given X, there exists Bob’s inputs
Y and Y ′ such that v’s value is different under the simulated execution of the SUM oracle
protocol (used in the reduction) for (X, Y ) and (X, Y ′). A node v is a failure epicenter if
v is not already a value epicenter and if v’s failure time is not uniquely determined by
X. Value epicenters and failure epicenter are all called epicenters.

The occurrence time of a value epicenter v is defined to be round 1. The occurrence
time of a failure epicenter v is defined to be v’s earliest failure time, across all valid
Y ’s given the current X. To get some intuition behind the occurrence time, consider a
failure epicenter v. Suppose that given X, the only possible inputs to Bob are Y and
Y ′. Imagine that v fails at the beginning of round 3 if Bob’s input is Y , and fails at
the beginning of round 8 if Bob’s input is Y ′. Since Alice does not know Bob’s input,
starting from round 3, Alice no longer knows whether v is still alive and thus can no
longer simulate v. This also explains why a value epicenter v has an occurrence time
of round 1—Alice cannot simulate v even for round 1.

Spoil Paths and Spoiled Nodes. All the following concepts are still with respect to
a given input X of Alice’s. If a node’s failure time r is uniquely determined by X, we
say that the node fails stably at the beginning of round r. We also call such a failure a
stable failure. A spoil path from an epicenter u0 (occurring at round r0) to a node v is a
sequence of nodes u0, u1, u2, . . . , uk, v where

—for 0 ≤ i ≤ k, ui �= α and ui �= β,
—v is uk’s neighbor and ui is ui−1’s neighbor for 1 ≤ i ≤ k,
—v has not failed stably before the beginning of round r0 + k + 2, and ui has not failed

stably before the beginning of round r0 + i+1 for 0 ≤ i ≤ k. Intuitively, this enables ui
to potentially send a message to ui+1 (and also ui+1 to receive this message) in round
r0 + i + 1. In turn, starting from round r0 + i + 2, ui+1’s behavior may potentially be
affected by this message.

We define the length of a spoil path u0, u1, u2, . . . , uk, v to be k+ 1. Intuitively, a spoil
path is a potential path for u0 to causally affect v, without going through α or β. Since
Alice (Bob) will send to the other party all messages sent by α (β), paths going through
α (β) are already taken care of. We intentionally define spoil paths in such a way that
they can only be “blocked” by stable failures. This makes this definition consistent
with the following intuition: If a node on a spoil path fails and if that failure is not a
stable failure, then that node must be an epicenter itself and will already cause the
spreading of spoiled nodes. Thus, intuitively, such a nonstable failure can never block
the spreading of spoiled nodes. The spoil distance of a node v from an epicenter u0
occurring at round r0 is simply the length of the shortest spoil path from u0 to v, or
infinite if there is no such spoil path. For any epicenter u0, we also define the spoil
distance of u0 from itself to be 0. For any given round r, a node v is spoiled in round
r with respect to Alice’s input X if v is within spoil distance of r − r0 hops from some
epicenter occurring at round r0 where r0 ≤ r. By such definition, an epicenter with
occurrence time of r becomes first spoiled in round r, which is consistent with the
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intuition. We use SA,X(r) to denote the set of all spoiled nodes at round r with respect
to Alice’s input X. We will prove in the next section that in each round r, Alice with
input X can simulate all unspoiled nodes (i.e., all nodes in SA,X(r)).

We similarly define the notion of epicenters, spoil paths, spoiled nodes, and SB,Y (r)
for Bob and his input Y .

The Simulatability Lemma. Given the formal framework, we can now prove the
following simple but useful lemma which we will repeatedly invoke later.

LEMMA 5.2. Let X be Alice’s input and Y be Bob’s. Let R be any positive integer
where α ∈ SA,X(R) and β ∈ SB,Y (R). Assume that Alice (Bob) always forwards to the
other party the message sent by α (β) in a round whenever Alice (Bob) is able to simulate
the execution of the SUM oracle protocol on α (β) for that round. Then, for all 0 ≤ r ≤ R,
Alice can properly simulate the execution of the SUM oracle protocol on all nodes in
SA,X(r) for round r and Bob can properly simulate all nodes in SB,Y (r) for round r.

PROOF. We do an induction on r. First, α ∈ SA,X(R) and β ∈ SB,Y (R) imply α ∈ SA,X(r)
and β ∈ SB,Y (r) for all 0 ≤ r ≤ R. SA,X(0) simply contains all nodes, since there are no
epicenters occurring in round 0. Clearly, Alice can simulate all nodes for round 0 since
the SUM protocol does nothing in round 0 and no failures happen in round 0. Similarly,
for round 0, Bob can simulate all nodes in SB,Y (0).

Assume that the claim holds for round r, and consider any node v ∈ SA,X(r + 1). We
distinguish two cases.

—v is not an epicenter for Alice’s input X. Then, Alice can uniquely determine both the
(initial) value and the failure time of v. If the failure time is round r + 1 or earlier,
then Alice trivially simulates v in round r + 1 by doing nothing and we are done.
Otherwise, Alice knows that v is alive in round r + 1.

—v is an epicenter for Alice’s input X. We claim that it is impossible for the occurrence
time of this epicenter to be round r + 1 or earlier, since otherwise v would have been
spoiled in round r +1 and thus would not be in SA,X(r +1). Given that the occurrence
time is round r + 2 or later, it means that the occurrence time is not round 1. Thus,
v is not a value epicenter and Alice must know v’s initial value. Furthermore, while
Alice cannot determine v’s exact failure time, Alice knows for sure that the failure
time of v is round r + 2 or later, and that v is alive in round r + 1.

Now we only need to prove that Alice can simulate v in round r + 1, given that Alice
knows v’s initial value and that v is alive in round r + 1.

We trivially have v ∈ SA,X(r) and by inductive hypothesis, Alice can simulate v from
round 1 to r (inclusive). It thus suffices to prove that Alice can generate the potential
message that v receives in round r from some neighbor u, so that Alice can simulate
v in round r + 1. We distinguish three cases for u. If u is β and since β ∈ SB,Y (r),
by inductive hypothesis, Bob can properly simulate β for round r. By condition of the
lemma, Bob must have forwarded the message from β to Alice. Similarly, if u is α

and since α ∈ SA,X(r), Alice can properly simulate α for round r and generate the
message herself. Finally, if u �= α and u �= β, we first show that u must be in SA,X(r),
via a contradiction. Since u sends a message in round r, u must have not failed in
round r or earlier. In turn, u must have not failed stably in round r or earlier. Thus, if
u /∈ SA,X(r) (i.e., u is spoiled in round r), then v must be spoiled in round r + 1, which
contradicts with v ∈ SA,X(r + 1). Now, given that u ∈ SA,X(r), by inductive hypothesis
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Fig. 4. FT lower bound topology for b ≤ 2 − c.

Alice can simulate u for round r and generate u’s message locally. Thus, Alice has all
the information needed to simulate v for round r + 1.

Similar arguments apply to Bob.

5.4. Proof for Theorem 5.1

To prove Theorem 5.1 using the previous formal framework, we use an improved topol-
ogy G as in Figure 4. The n chains in the topology in Figure 2 are now replaced with
n T-structures, where n is still a power of 2. The ith T-structure has three sequences
of 3

c log n nodes (total 9
c log n nodes) attached to a degree-3 node in the middle. For the

first sequence, the last node at the other end is a valued node τi. Let γ α
i and γ

β

i denote
the last node at the other end of each of the remaining two sequences, respectively.
Both of them are flaky nodes. Same as in Figure 2, we next construct a perfect binary
tree with all the γ α

i ’s being the leaves, and let node α denote the tree root. Similarly
construct a second perfect binary tree whose leaves are all the γ

β

i ’s, and let node β
denote the tree root. Finally, we connect α with β using a single edge, and let α be the
root of the topology. It is easy to verify that there are N = 9

c n log n+ 3n− 2 nodes in the
topology. The valued node τi has a binary value of 1 iff Xi �= 0 or Yi �= 0. If Xi = 0, then
the flaky node γ α

i fails at the beginning of round t0 = 6
c log n + 1. Otherwise, it never

fails. Similarly, γ
β

i fails at the beginning of round t0 iff Yi = 0.
We now prove a series of lemmas, which will eventually lead to a proof for

Theorem 5.1. The first simple lemma (Lemma 5.3) shows that, in this construction,
α (β) will always remain unspoiled for Alice (Bob) in round R, where R is large enough
for the SUM oracle protocol to have terminated.

LEMMA 5.3. Consider the topology, valued nodes (with their values), and flaky nodes
(with their failure times), as described in Section 5.4. Under this construction and under
R = 12

c log n + log n, for all possible input X of Alice’s, we have α ∈ SA,X(R). Similarly,
for all possible input Y of Bob’s, we have β ∈ SB,Y (R).
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PROOF. Without loss of generality, we prove α ∈ SA,X(R). With respect to X, there are
only two kinds of epicenters. The flaky node γ

β

i (1 ≤ i ≤ n) is always a failure epicenter,
occurring at round t0 = 6

c log n + 1. One can easily verify that the spoil distance from
γ

β

i to α is at least 6
c log n + log n. If Xi = 0, then τi is a value epicenter with respect to

X. The spoil distance from τi to α is at least 12
c log n + log n, since the shortest possible

spoil path (of length 6
c log n + log n) is blocked by the stable failure of γ α

i .

The next lemma is the main lemma, which proves the reduction from UNIONSIZEn to
SUM on an N-node topology. Given any n that is a power of 2, the topology as constructed
in Figure 4 has total N = 9

c n log n+3n−2 nodes. The lemma will first prove the reduction
for such values of N. To reason about the asymptotic lower bound with respect to N
later, however, we need to cover all values of N. Thus, the lemma moves on to prove a
reduction for those values of N where the equation 9

c n log n+ 3n− 2 = N does not have
a power-of-2 solution for n.

LEMMA 5.4. Consider any positive constant c, any b ∈ [1, 2 − c], and any sufficiently
large integer N. Let n be the largest integer such that n is a power of 2 and 9

c n log n +
3n − 2 ≤ N. There exists a connected topology G with N nodes, such that:

FT0(SUMG, b) ≥ 1
2

NFT0(UNIONSIZEn, bN),

FTε, 1
3
(SUMG, b) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, bN).

PROOF. We first prove the lemma for N = 9
c n log n + 3n − 2. We construct G as in

Figure 4, and let R = 12
c log n + log n. Under the failure adversary constructed in

Section 5.4, let λ = maxG′∈G �(G′) where G is the set of topologies that have ever
appeared during the execution. We first prove that R ≥ (2 − c)λ for all n ≥ 2. Since
in our construction all failures are injected at the same time, G actually only contains
two topologies: one before failures and one after failures. It is easy to verify that for
either G′ ∈ G, �(G′) is at most 6

c log n + 2 log n + 1. Here, the 2 log n term takes care of
the need to avoid collision on the internal trees nodes—without collision, it would be
only log n rounds. We now have

R
λ

≥
12
c log n + log n

6
c log n + 2 log n + 1

> 2 − c.

Next we reduce the UNIONSIZEn problem (in the synchronous rounds setting) to SUM.
Consider any (black-box) oracle protocol for SUM. Given input X to Alice in UNIONSIZEn,
Alice will simulate the execution of the oracle protocol on all nodes in SA,X(r) at round
r for 0 ≤ r ≤ R. Similarly, given input Y to Bob, Bob simulates all nodes in SB,Y (r).
Furthermore, whenever α sends a message, Alice will forward that message to Bob.
The same applies to Bob and β. Note that it is possible for Alice and Bob to send
each other a message simultaneously in one round. By Lemma 5.2 and Lemma 5.3,
such simulation is possible. When the oracle protocol terminates, which must be no
later than round (2 − c) λ ≤ R since the time complexity of the oracle protocol is no
larger than 2 − c, α and thus Alice will know the final result of the sum. By our
construction, the zero-error result of the sum on G exactly equals UNIONSIZE(X, Y ), and
thus any (ε, δ)-approximate result of the sum is also an (ε, δ)-approximate result of
UNIONSIZE(X, Y ). The total amount of communication between Alice and Bob is exactly
the total number of bits sent by α and β combined in the above simulation. Thus either
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α or β must have sent at least half of the total number of bits sent by Alice and Bob.
Together with the trivial property that λ ≤ N, we now have

FT0(SUMG, b) ≥ 1
2

NFT0(UNIONSIZEn, bλ) ≥ 1
2

NFT0(UNIONSIZEn, bN),

FTε, 1
3
(SUMG, b) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, bλ) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, bN).

We still need to prove the lemma for N > 9
c n log n+3n−2. Let N1 = 9

c n log n+3n−2.
We first construct a connected topology G1 with N1 nodes as in Figure 4. Next, we add
N2 = N − N1 = O(n log n) extra nodes to G1 to obtain the topology G with N nodes.
Those N2 nodes will always have a value of 0 and will never fail. Since we want G to
be connected, we need to attach those N2 nodes to some existing nodes in G1. We want
to do so carefully so that (i) Lemma 5.3 continues to hold after adding those nodes, and
(ii) the length of an aggregation round is not affected by adding those nodes. These
two properties will allow our earlier proof (for N = 9

c n log n + 3n − 2) to carry over
without modification. Specifically, we partition the N2 nodes into n equal-sized groups,
with each group having O(log n) nodes. We then have each group form a binary tree of
height O(log log n). Finally, we attach the root of the ith binary tree to the middle node
(i.e., the degree-3 node) of the ith T-structure in G1.

It is trivial to verify that Lemma 5.3 continues to hold after adding those N2 nodes in
this way. Next to understand why the length of an aggregation round is never affected
by those extra N2 nodes, consider a given T-structure and the binary tree attached to
the middle node of that T-structure. Recall that the length of an aggregation round
is the number of rounds needed for the deterministic tree-aggregation protocol in
Section 4 to terminate. When running that protocol, the root of the binary tree here
will send an aggregation message to the middle node of the T-structure in round
O(log log n). On the other hand, under any G′ in G where G is the set of topologies that
have ever appeared during the execution, that middle node will never receive any
other aggregation message before round 3

c log n − 1. Thus, this extra binary tree (i) is
itself not a bottleneck for the tree-aggregation protocol to terminate, and (ii) never
potentially collides with other aggregation messages. In turn, this means that the
length of an aggregation round in the execution under G is the same as the length of
an aggregation round in the execution under G1.

With these two properties in G, we now know that our earlier proof for N =
9
c n log n + 3n − 2 carries over to N > 9

c n log n + 3n − 2 without modification.

The following proof for Theorem 5.1 follows naturally from the Lemma 5.4.

PROOF FOR THEOREM 5.1. For any sufficiently large N, consider the N-node connected
topology G as constructed by Lemma 5.4. We trivially have

FT0(SUMN, b) ≥ FT0(SUMG, b) ≥ 1
2

NFT0(UNIONSIZEn, bN),

FTε, 1
3
(SUMN, b) ≥ FTε, 1

3
(SUMG, b) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, bN).

By Lemma 5.4, the n in these inequalities is the largest integer that is a power of 2 and
satisfies 9

c n log n + 3n − 2 ≤ N. Thus, we have N = �(n log n). Applying Corollary A.4
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gives

FT0(SUMN, b) ≥ 1
2

NFT0(UNIONSIZEn, bN) ≥ 1
2

NFT0(UNIONSIZEn, (2 − c)N)

= �

(
n

log n

)
= �

(
N

log2 N

)

FTε, 1
3
(SUMN, b) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, bN) ≥ 1

2
NFTε, 1

3
(UNIONSIZEn, (2 − c)N)

= �

(
1

ε2 log n

)
= �

(
1

ε2 log N

)
, for ε = �

(√
log N√

N

)
.

6. LOWER BOUNDS ON FT COMMUNICATION COMPLEXITY OF SUM FOR b ≤ N0.25−c

OR b ≤ 1/ε0.5−c

This section aims to eventually prove the following theorem.

THEOREM 6.1. For any b ≥ 1, we have:

FT0(SUMN, b) = �

( √
N

b2 log N

)

FTε, 1
3
(SUMN, b) = �

(
1

εb2 log N

)
, for ε = �

(
1

4
√

N

)
.

This theorem establishes the FT lower bounds for the middle region of b in Figure 1
(i.e., for 2 − c < b ≤ N0.25−c or 2 − c < b ≤ 1

ε0.5−c ). Note that while the theorem applies to
all b ≥ 1, the result in the previous section is stronger when 1 ≤ b ≤ 2−c. Similarly, for
b > N0.25−c or b > 1

ε0.5−c , the theorem only gives trivial lower bounds. In the following,
Section 6.1 first gives an overview of our proof for this theorem, which is based on
a reduction from UNIONSIZECP to SUM. Section 6.2 elaborates the concrete intuitions
behind our reduction. The formal reasoning and proofs then follow: Section 6.3 proves
our lower bound on the communication complexity of UNIONSIZECP, and Section 6.4
proves Theorem 6.1.

6.1. Overview of Our Proof

Why the Previous Construction Cannot be Extended. The FT lower bounds in Section 5
no longer hold for larger b since the failure of γ α

i (as simulated by Alice) makes γ α
i spoiled

for Bob, which will in turn spoil β under larger b. A natural attempt to fix this is to
inject new failures to prevent such propagation of spoiled nodes, as in Figure 5. Here,
when Yi = 1, Bob simulates a new failure to the left8 of τi, to prevent the propagation of
spoiled nodes due to γ α

i . Similarly, Alice needs to simulate a new failure on the right side
of τi, when Xi = 1. This eventually implies that when Xi = Yi = 1, both of these two new
failures will be introduced, disconnecting τi. One could avoid this problem by adding a
promise and disallowing Xi and Yi to simultaneously be 1. Unfortunately, such a naive
promise decreases the communication complexity of UNIONSIZEn to O(log n), failing to
yield the exponential gap that we hope for.

The UNIONSIZECP Problem. To overcome this problem, we will introduce
and reduce from a new two-party communication complexity problem called

8This new failure cannot be to the right of τi because otherwise when Xi = 0 (implying the failure of γ α
i ) and

Yi = 1, τi has a value of 1 and is disconnected from the root. As explained in Section 5, this prevents us from
using the SUM result to determine UNIONSIZE.
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Fig. 5. Why the construction from Section 5 cannot be extended to larger b.

Fig. 6. The cycle promise for q = 4.

UNIONSIZECP. UNIONSIZECP is intuitively UNIONSIZE extended with a novel promise
which we call the cycle promise. This promise is not constructed ad hoc—rather, we
will later see that it can be derived. In UNIONSIZECPn,q where q ≥ 2, Alice and Bob
respectively have length-n strings X and Y . The characters in the strings are integers
in [0, q − 1]. Let Xi and Yi denote the ith character of X and Y , respectively. X and Y
satisfy the following cycle promise where for all i: If Xi = 0, then Yi must be 0 or 1; if
Xi = q − 1, then Yi must be q − 2 or q − 1; if 0 < Xi < q − 1, then Yi must be Xi − 1
or Xi + 1. This promise is illustrated in Figure 6 as a bipartite promise graph, where
values for Xi and Yi are vertices and two values are connected by an edge if they satisfy
the promise. Note that this promise graph is actually a cycle. Same as in UNIONSIZE,
the goal in UNIONSIZECP is for Alice to determine |{i | Xi �= 0 or Yi �= 0}|. When q = 2,
UNIONSIZECP degrades to UNIONSIZE. Later, we will show that different from the ear-
lier naive promise, the cycle promise does not reduce the communication complexity of
UNIONSIZECP to O(log n). In our reduction to SUM, the cycle promise will enable us to
continuously introduce new failures to block the spreading of spoiled nodes caused by
old failures, without disconnecting any node in G with a value of 1. Those newly failed
nodes then become spoiled themselves, requiring further failures to be injected, until
the end of the simulation.

6.2. Intuitions for Our Reduction from UNIONSIZECP to SUM

We now intend to develop some concrete intuitions for our reduction from UNIONSIZECP
to SUM. Figure 7 illustrates the topology used in our reduction from UNIONSIZECPn,q,
which has n parallel chains of nodes, with each chain having 2n+ 3 nodes. We connect
the first node of each chain directly to a node α, and the last node of each chain directly
to a node β.9 Finally, we connect α and β with a single edge, and let α be the root of the
topology. This topology has total N = �(n2) nodes. As before, Alice (Bob) will simulate
a continuously shrinking group of nodes including α (β). As illustrated in Figure 8, the

9Using binary trees will not work here. Consequently, here an aggregation round will contain more rounds
than in Section 5, and in turn each chain needs to have more nodes.
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Fig. 7. FT lower bound topology for b ≤ N0.25−c or b ≤ 1
ε0.5−c .

Fig. 8. Values of valued nodes and failure times of flaky nodes, for q = 4, X = 00221, and Y = 01132.

middle node τi of the ith chain is a valued node whose value is 1 iff Xi �= 0 or Yi �= 0.
There are four flaky nodes on the chain from left to right: the first node of the chain,
the two neighbors of τi, and the last node of the chain. We use γ α

i , σ
β

i , σα
i , and γ

β

i to
denote these four nodes, respectively. Let tj = ( j +1)n+1 for all 0 ≤ j ≤ q−1. The flaky
node γ α

i fails at the beginning of round tXi iff Xi is even, while σα
i fails at the beginning

of round tXi iff Xi is odd (Figure 8). Similarly, γ
β

i (σβ

i ) fails at the beginning of round tYi

iff Yi is even (odd). Again the failure adversary here is actually oblivious to the SUM

protocol, and fails only a vanishingly small fraction (i.e., o(N)) of all the nodes in G.
To see intuitively why this reduction works, consider the example in Figure 9. Recall

from Section 5.3 the notion of epicenters: A node in the topology is an epicenter for
Alice’s input X if it is a valued node (or a flaky node) whose value (or failure time) is
not uniquely determined by X. Essentially, an epicenter is the source of the spreading
of spoiled nodes. When Xi = 0, τi is an epicenter for Alice and thus Alice simulates
the failure of γ α

i at t0 to block the influence of such τi (i.e., the top/middle scenarios in
Figure 9). Next, since the failure of γ α

i depends on Xi and is not uniquely determined
by Y , the node γ α

i itself now becomes an epicenter for Bob. With the cycle promise and
since Xi = 0, Yi must be 0 or 1. If Yi = 0, then Bob does not need to be concerned, since
Bob has already simulated the failure of γ

β

i at t0 and thus blocked the potential influ-
ence of γ α

i (i.e., the top scenario). If Yi = 1 however, Bob needs to simulate the failure of
σ

β

i at t1 (i.e., the middle scenario) to block the influence of γ α
i . Now σ

β

i again, becomes
an epicenter for Alice (i.e., the middle/bottom scenarios). Given the cycle promise and
since Yi = 1, we must have Xi = 0 or Xi = 2. If Xi = 0, then Alice has already simulated
the failure of γ α

i at t0 and has already blocked the potential influence of σ
β

i (i.e., the
middle scenario). If Xi = 2 however, Alice needs to simulate a new failure of γ α

i at t2
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Fig. 9. Failures prevent the spreading of spoiled nodes. Dashed arrows labeled A (B) indicate the spreading
of spoiled nodes for Alice (Bob).

Fig. 10. The alternative form of the cycle promise for q = 4, used only in Section 6.3 and Appendix C.

(i.e., the bottom scenario). Extending such reasoning can show that, by continuously
injecting new failures, we can always manage to block the spreading of spoiled nodes.

Finally, note that the simulation still cannot continue forever. Under the cycle
promise, it is possible for Xi = Yi = q − 1. Thus, we need the SUM protocol to stop
by round tq−1 − 1, since otherwise at the beginning of round tq−1, Alice and Bob would
simulate failures such that τi (with a value of 1) would be disconnected. This means
that q needs to be chosen based on the SUM protocol’s time complexity b: A larger q is
needed when b is larger. Since the communication complexity of UNIONSIZECP depends
on q (as shown later), as expected, our lower bounds here will be a function of b.

6.3. Communication Complexity of UNIONSIZECP

Having provided the overview and intuitions, we are now ready for the formal rea-
soning. This section proves a lower bound on the communication complexity of UNION-
SIZECP. Since UNIONSIZECP has never been studied, there are no existing results on
its communication complexity. Proving these results is thus also a contribution of our
work, which may be of independent interest. This lower bound, together with our
reduction, enables us to later prove Theorem 6.1 in Section 6.4.

An Alternative Form of the Cycle Promise. For discussion in this section, it will be
convenient to consider an alternative form of the cycle promise (Figure 10). Consider
any two length-n strings X and Y where the characters in the strings are integers in
[0, q − 1]. X and Y satisfy the alternative form of the cycle promise iff for all i’s where
1 ≤ i ≤ n, either Yi = Xi or Yi = (Xi + 1) mod q.

Given X′ and Y ′ satisfying the original cycle promise, Alice and Bob can always locally
generate X and Y , such that X and Y satisfy the alternative form of the cycle promise
and UNIONSIZECP(X, Y ) = UNIONSIZECP(X′, Y ′). Specially to do so, Alice sets Xi = X′

i/2

Journal of the ACM, Vol. 61, No. 3, Article 19, Publication date: May 2014.



19:24 B. Chen et al.

for even X′
i and Xi = q− (X′

i +1)/2 for odd X′
i. Bob sets Yi = (q−Y ′

i /2) mod q for even Y ′
i

and Yi = (Y ′
i + 1)/2 for odd Y ′

i . Clearly, we have Xi = 0 iff X′
i = 0, and Yi = 0 iff Y ′

i = 0,
which implies that UNIONSIZECP(X, Y ) = UNIONSIZECP(X′, Y ′). It is easy to verify that
X and Y satisfy the alternative form of the cycle promise. Finally, since this mapping
from X′ (Y ′) to X (Y ) is a bijection, one can also construct a reverse mapping from
X (Y ) to X′ (Y ′). Given such mappings in both directions, we trivially know that the
communication complexity of UNIONSIZECP with the original cycle promise is exactly
the same as the communication complexity of UNIONSIZECP with the alternative form
of the cycle promise.

This section will always consider UNIONSIZECP under this alternative form of the
cycle promise.

An O( n
q ) upper bound protocol for UNIONSIZECP. On the surface, it may appear that

the communication complexity of UNIONSIZECP should not be very different from that
of UNIONSIZE. This first thought turns out to be incorrect. For q ≤ n, the following
presents a O( n

q ) upper bound protocol for NFT0(UNIONSIZECPn,q, poly(n)), implying that
its communication complexity drops at least linearly with 1

q .
In this protocol, given input X to Alice, let j (0 ≤ j ≤ q − 1) be the integer with the

smallest occurrence count in X. (If there are multiple such j’s, simply pick an arbitrary
one.) Alice first sends Bob the value of j and the set Z = {i | Xi = j}. This takes at most
O(log q + n

q log n) bits in one round, or O( log q
log n + n

q ) bits in poly(n) rounds [Impagliazzo
and Williams 2010]. For q ≤ n, this becomes O( n

q ). Now we only need to worry about
indices not in the set. For those indices, the promise graph (Figure 10) degrades to a
chain, since two edges are removed from the cycle. The problem becomes easy to solve
under the degraded chain promise.

Specifically, Bob will now know both Xi and Yi for all i ∈ Z. If j = 0 or j = q −1, then
Bob can already determine {i | Xi = Yi = 0}, and can locally compute the final result.
If j �= 0 and j �= q − 1, then for any index i′ /∈ Z, Bob knows that Xi′ �= j. Thus, if
Yi′ = j + 1, then Xi′ must be j + 1 as well. This observation enables the following trick.
Alice locally calculates hA = |{i′ | i′ /∈ Z and j + 1 ≤ Xi′ ≤ q − 1}| and sends hA to Bob,
using log n bits in one round, or O(1) bits in poly(n) rounds [Impagliazzo and Williams
2010]. Bob calculates hB = |{i′ | i′ /∈ Z and ( j + 1 ≤ Yi′ ≤ q − 1 or Yi′ = 0)}|. Given that
Xi′ �= j for i′ /∈ Z, one can easily verify from the cycle promise that hB − hA is exactly
the total number of indices i where Xi = Yi = 0. The result for UNIONSIZECP(X, Y ) is
thus n − (hB − hA).

Lower bounds of �(n/(q2 log n)) and �(1/(εq2 log n)) for UNIONSIZECP. To lower bound
UNIONSIZECP’s communication complexity, we find that the cycle promise makes it
challenging to apply classic arguments based on rectangles [Kushilevitz and Nisan
1996].10 But we also find that UNIONSIZECP is rather amenable to information cost
arguments [Bar-Yossef et al. 2004], which lead to the following theorem. We leave its
proof, which largely uses standard techniques, to Appendix C.

THEOREM 6.2. We have

NFT0(UNIONSIZECPn,q, O(poly(n))) = �

(
n

q2 log n

)
,

NFTε, 1
5
(UNIONSIZECPn,q, O(poly(n))) = �

(
1

εq2 log n

)
, for ε = �

(
1√
n

)
.

10Leveraging some strong results on the sperner capacity of the cyclic q-gon [Blokhuis 1993], we managed
to obtain some results on NFT0(UNIONSIZECP), but not on NFTε,δ(UNIONSIZECP).
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6.4. Proof for Theorem 6.1

Having obtained a lower bound on UNIONSIZECP’s communication complexity, we now
move on to prove Theorem 6.1 using the framework established in Section 5.3. The proof
follows a rather similar structure to the proof in Section 5.4. Specifically, Lemma 6.3
first proves that in the construction in Section 6.2, α (β) will always remain unspoiled
for Alice (Bob) in round R, where R is large enough for the SUM oracle protocol to have
terminated. Lemma 6.4 then proves the reduction from UNIONSIZECP to SUM, while
taking care of those values of N that does not correspond to the topology in Figure 7
for any integer n. Combining this lemma with the earlier lower bound on UNIONSIZECP
directly gives us Theorem 6.1.

LEMMA 6.3. Consider the topology, valued nodes (with their values), and flaky nodes
(with their failure times), as constructed in Section 6.2. Under this construction and
under R = qn, for all possible input X of Alice’s, we have α ∈ SA,X(R). Similarly, for all
possible input Y of Bob’s, we have β ∈ SB,Y (R).

PROOF. Without loss of generality, we prove α ∈ SA,X(R). We exhaustively consider
all the epicenters with respect to Alice’s input X. First, if Xi = 0 (implying Yi must be
0 or 1), then τi, σ

β

i , and γ
β

i are the only epicenters on the ith chain. The spoil distance
from all these epicenters to α is infinite, since γ α

i fails stably at the beginning of round
t0 and thus blocks the only possible spoil path.

Next if Xi = q − 1, then Yi must be q − 1 or q − 2. If q − 1 is even, then σ
β

i (poten-
tially occurring at round tq−2) and γ

β

i (potentially occurring at round tq−1) are the only
epicenters on the ith chain. Again, γ α

i fails stably at the beginning of round tq−1 and
thus blocks the only possible spoil path from those two epicenters to α. If q − 1 is odd,
then σ

β

i (potentially occurring at round tq−1) and γ
β

i (potentially occurring at round
tq−2) are the only epicenters on the ith chain. Since σα

i fails stably at the beginning of
round tq−1, the only possible spoil path from γ

β

i to α is blocked. The epicenter of σ
β

i has
an occurrence time of tq−1 = qn + 1 > R. Thus, it can never cause α to be spoiled in
round R.

Finally, if Xi is even and 0 < Xi < q − 1, then Yi must be odd and thus σ
β

i is the
only epicenter on the ith chain, with an occurrence time of round tXi−1. (Recall that
the occurrence time is the earliest possible failure time.) But since Xi is even, γ α

i fails
stably at the beginning of round tXi . This failure blocks the only possible spoil path
from σ

β

i to α. The case where Xi is odd and 0 < Xi < q − 1 is similar.

LEMMA 6.4. Consider any b ≥ 1 and any sufficiently large integer N. Let n be the
largest integer such that 2n2 + 3n + 2 ≤ N and let q = 5b. There exists a connected
topology G with N nodes, such that:

FT0(SUMG, b) ≥ 1
2

NFT0(UNIONSIZECPn,q, bN),

FTε, 1
5
(SUMG, b) ≥ 1

2
NFTε, 1

5
(UNIONSIZECPn,q, bN).

PROOF. We first prove the lemma for N = 2n2 + 3n + 2. We construct G as in
Section 6. Let R = tq−1 − 1 = qn = 5bn. Under our constructed failure adversary,
let λ = maxG′∈G �(G′) where G is the set of topologies that have ever appeared during
the execution. We first prove that R ≥ bλ. It is easy to verify that even if we pessimisti-
cally assume that all messages to α and β have to be sent sequentially one by one, we
still have λ ≤ (2n+3)+ (n+1)+n = 4n+4. Thus, we have R = 5bn ≥ bλ for sufficiently
large n.
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Next we reduce the UNIONSIZECPn,q problem (in the synchronous rounds setting) to
SUM, which will prove the lemma for N = 2n2 + 3n+ 2. This part of the proof is exactly
the same as in the proof of Lemma 5.4, after substituting Lemma 5.3 with Lemma 6.3.
Thus, we do not repeat it here.

Finally, we still need to prove the lemma for N > 2n2 + 3n+ 2. Let N1 = 2n2 + 3n+ 2.
We first construct a connected topology G1 with N1 nodes as in Section 6. Next, we add
N2 = N − N1 = O(n) extra nodes to G1 to obtain the topology G with N nodes. Those
N2 nodes will always have a value of 0 and will never fail. Same as in the proof of
Lemma 5.4, We want to add those N2 nodes carefully so that (i) Lemma 6.3 continues
to hold, and (ii) the length of an aggregation round is not affected. To do so, we partition
the N2 nodes into n groups of size O(1). All nodes in the ith group have a degree of 1
and directly attach to the n

2 th node (from left to right) on the ith chain in G1.
It is trivial to verify that Lemma 6.3 continues to hold after adding those N2 nodes

in this way. For the length of an aggregation round, note that each group has only O(1)
nodes and thus all nodes in the group will finish sending their aggregation messages
by round O(1). On the other hand, the n

2 th node on a chain will not receive any other
aggregation messages before round n

2 − 1, under any G′ in G where G is the set of
topologies that have ever appeared during the execution. Same as in the proof of
Lemma 5.4, these properties ensure that our earlier proof for N = 2n2 + 3n+ 2 carries
over to N > 2n2 + 3n + 2 without modification.

The following proof for Theorem 6.1 follows naturally from the Lemma 6.4:

PROOF FOR THEOREM 6.1. Since the theorem trivially holds for b > N, we only need
to prove the theorem for b ≤ N. For any sufficiently large N, consider the N-node
connected topology G as constructed by Lemma 6.4. We trivially have

FT0(SUMN, b) ≥ FT0(SUMG, b) ≥ 1
2

NFT0(UNIONSIZECPn,q, bN),

FTε, 1
5
(SUMN, b) ≥ FTε, 1

5
(SUMG, b) ≥ 1

2
NFTε, 1

5
(UNIONSIZECPn,q, bN).

By Lemma 6.4, in these inequalities, q = 5b and n is the largest integer satisfying
2n2 + 3n + 2 ≤ N. Thus, we have n = �(

√
N). Applying Theorem 6.2 gives

FT0(SUMN, b) ≥ 1
2

NFT0(UNIONSIZECPn,q, bN)

= �

(
n

q2 log n

)
= �

( √
N

b2 log N

)

FTε, 1
5
(SUMN, b) ≥ 1

2
NFTε, 1

5
(UNIONSIZECPn,q, bN)

= �

(
1

εq2 log n

)
= �

(
1

εb2 log N

)
, for ε = �

(
1

4
√

N

)
.

7. THE FUNDAMENTAL ROLES OF CYCLE PROMISE AND UNIONSIZECP

Our reduction from UNIONSIZECP so far has led to the exponential gap result for SUM,
when b ≤ N0.25−c or b ≤ 1

ε0.5−c for any positive constant c < 0.25. This restriction
on b comes from the 1

q2 term in the lower bound of the communication complexity of
UNIONSIZECP. Our upper bound on UNIONSIZECP indicates that such a polynomial de-
pendency on 1

q is unavoidable because of the cycle promise. It is thus natural to ask:
Can we reduce from problems without promises? Or can we reduce from problems with
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a different promise, to weaken the polynomial dependency on 1
q to log 1

q ? For any pos-
sible oblivious reduction (defined next) from any two-party communication complexity
problem � to SUM, this section answers these questions in the negative. Specifically,
we will prove the completeness of UNIONSIZECP in the sense that such a � can always
be reduced to UNIONSIZECP and must have a communication complexity no larger than
that of UNIONSIZECPN,	

√
b/3
. Thus, any FT lower bound on SUM, obtained in such a way

via �, must contain some polynomial term of 1
b . Overcoming this polynomial term in

the lower bound might still be possible, but one would have to resort to methods other
than oblivious reductions from two-party problems. Our proof also (implicitly) shows
that the cycle promise can be derived and that the promise likely plays a fundamental
role in reasoning about many functions beyond SUM.

In the following, Section 7.1 defines the notion of oblivious reductions. Section 7.2
presents the completeness theorem and its proof overview. Finally, Section 7.3 proves
the theorem.

7.1. Oblivious Reductions

Consider any two-party communication complexity problem �, where (only) Alice aims
to learn �(X, Y ). In a (general) reduction from � to SUM, Alice and Bob are given
some black-box oracle fault-tolerant protocol for SUM, and they are supposed to use this
oracle to solve � with any given input pair (X, Y ). Since the (global) oracle protocol is
distributed, it will be convenient to imagine that each node in the topology has its own
oracle protocol, and invoking these protocols in a “consistent” fashion will enable the
root to produce a meaningful result.

In an oblivious reduction to SUM, there is some fixed topology G and for each (X, Y )
pair, there exists some reference setting specifying the value and failure time of each
node in G. The reference settings are oblivious to the oracle. As explained in Section 5,
a reference setting here should not fail or disconnect nodes with a value of 1. The
zero-error SUM result in the reference setting should be the same as �(X, Y ), so we can
directly use it for solving �. The reduction protocol is required to be oblivious as well.
Specifically, Alice and Bob first pick a (public) random string. Next before invoking the
oracle and purely based on X (Y ), Alice (Bob) decides for each node in G, exactly up to
which round she (he) will invoke the oracle. Note that to invoke the oracle for a certain
round, Alice/Bob needs to invoke the oracle for all previous rounds as well. Alice (Bob)
also decides the (initial) value of each node for which she (he) will invoke the oracle
for at least one round. Requiring Alice and Bob to make these decisions beforehand
is the most important aspect of oblivious reductions. We define the reference execution
for (X, Y ) to be the (global) oracle’s execution under the reference setting for (X, Y ) and
under the chosen random string. To enable the root to generate a meaningful result,
we require that the initial value, incoming messages, and coin flips fed by Alice/Bob
into the oracle protocol on a node be the same as those fed into that node’s oracle in
the reference execution for (X, Y ). Furthermore, after a node has failed in the reference
execution, Alice/Bob must not invoke that node’s oracle any more (since that node can
no longer help out). Finally, there are two special nodes α and β in G, such that Alice
and Bob will always invoke the oracle on α and β (respectively) until the root generates
a result. Here, α must be the root of G,11 while β can be any other node. During the
reduction, Alice (Bob) may only send to the other party all those outgoing messages
generated by the oracle invocation on node α (β). This allows the establishment of a
simple factor-2 relation between the communication complexity of � and SUM.

11This is largely for clarity, and can be relaxed if desired.

Journal of the ACM, Vol. 61, No. 3, Article 19, Publication date: May 2014.



19:28 B. Chen et al.

Our previous reductions from UNIONSIZE and UNIONSIZECP to SUM are both oblivious
reductions. Besides those two specific instances, the broad class of oblivious reductions
further captures reductions from any two-party problem � with any promise, using
any topology G with any proper reference settings.

7.2. The Completeness of UNIONSIZECP

We now present a strong result on the completeness of UNIONSIZECP, in oblivious
reductions.

THEOREM 7.1. Consider any two-party communication complexity problem � that
can be obliviously reduced to SUM for some topology G with N nodes, with the SUM oracle
protocol having a time complexity of up to b aggregation rounds where b ≥ 12. For all
t ≥ 1, we have

Rsyn
0 (�, t) ≤ Rsyn

0

(
UNIONSIZECPN,	

√
b/3
, t

)
,

Rsyn
ε,δ (�, t) ≤ Rsyn

ε,δ

(
UNIONSIZECPN,	

√
b/3
, t

)
.

The following gives an overview of the proof of this theorem, and also defines some
useful concepts. Let X be Alice’s input domain in �, and Y be Bob’s. Let L ⊆ X × Y
be the set of all valid input pairs, given the promise in �. If � has no promise, then
L = X × Y. Given (X, Y ) ∈ L, an oblivious reduction has a reference setting specifying
the value of each node in G. For any node τ where τ �= α and τ �= β, we define τ ’s (value)
assignment graph to be the bipartite graph where X ∪Y are vertices and an edge (X, Y )
exists iff (X, Y ) ∈ L. In addition, each edge (X, Y ) has a binary label which is the value
of τ in the reference setting for (X, Y ).

We will prove that it is always possible to partition the vertices in τ ’s assignment
graph into 2b′ (where b′ = 	√b/3
 ≥ 2) disjoint subsets with strong properties as
illustrated in Figure 11. Intuitively, this is because otherwise the reference setting for
some input pair would need to have so many failures in G such that τ (with a value
of 1) would be disconnected from the root. Those failures are needed to ensure that
Alice (Bob) can invoke the oracle on α (β) throughout the execution.

At this point, we already have something close to the cycle promise—if we view each
subset as a super vertex, then all the 2b′ super vertices form a subgraph of a length-2b′
cycle. It is now possible to reduce � to UNIONSIZECPN,b′ , by mapping an input X for �
to an input X ′ for UNIONSIZECP as following: Each τ in G corresponds to a unique i
(1 ≤ i ≤ N − 2), and X ′

i is set to be the index of the subset in τ ’s assignment graph to
which X belongs. Finally, X ′

N−1 is set to be the (initial) value of α in the given oblivious
reduction, which can be obtained purely based on X. X ′

N is set to be 0. The conversion
from Y to Y ′ is similar, with Y ′

N−1 = 0 and Y ′
N being the value of β.

7.3. Proof for Theorem 7.1

This section will prove Theorem 7.1, after formalizing various concepts and proving a
number of lemmas. We first formalize the notion of a node τ being disconnected from
the root in a simulation. Consider any input pair (X, Y ) ∈ L and the corresponding
reference setting in the oblivious reduction from � to SUM. Define �(X, Y ) to be the
execution of the SUM oracle protocol under that reference setting and under the (public)
random string chosen by Alice and Bob in the oblivious reduction. For a given node τ
in G where τ �= α and τ �= β, we say that τ is disconnected from the root in an execution
�(X, Y ), if either τ fails during �(X, Y ), or the root and τ are no longer in the same
connected component at the end of �(X, Y ). We have the following trivial lemma.
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Fig. 11. Example assignment graph for a given node τ and for b′ = 4.X (0),Y(0), . . . ,X (3), and Y(3) are the
8 subsets, which may have different sizes and different numbers of incidental edges. All edges without labels
indicated have a label of 1. We will later prove that in all assignment graphs, there must be no edges labeled
1 between X (0) and Y(0), and no edges between X (i) and Y(i) for all 1 ≤ i ≤ b′ − 2.

LEMMA 7.2. For any (X, Y ) ∈ L, if τ has a value of 1 under the reference setting for
(X, Y ), then in �(X, Y ), τ is never disconnected from the root.

PROOF. Trivially follows from the requirement on the reference settings in oblivious
reductions.

Next consider the assignment graph of any node τ where τ �= α and τ �= β. Let b′ =
	√b/3
, which implies b′ ≥ 2 since b ≥ 12. We partition the vertices of τ ’s assignment
graph into 2b′ disjoint subsets of X (0),Y(0), . . . ,X (b′ − 1), and Y(b′ − 1) in the following
way. For all integer i ∈ [0, b′ − 3], we recursively define:

X (0) = {X | τ (X, Y ) = 0 for some (X, Y ) ∈ L},
Y(0) = {Y | τ (X, Y ) = 0 for some (X, Y ) ∈ L},

X (i + 1) = (
X \ ∪i

j=0X ( j)
) ∩ {X | τ (X, Y ) = 1 for some (X, Y ) ∈ L where Y ∈ Y(i)},

Y(i + 1) = (
Y \ ∪i

j=0Y( j)
) ∩ {Y | τ (X, Y ) = 1 for some (X, Y ) ∈ L where X ∈ X (i)},

X (b′ − 1) = X \ ∪b′−2
j=0 X ( j),

Y(b′ − 1) = Y \ ∪b′−2
j=0 Y( j).

Figure 11 illustrated these sets for a given τ for b′ = 4. Intuitively, any vertex with
some 0-labeled incidental edge belongs to X (0) or Y(0). Thus, an edge (X, Y ) always has
a label of 1 if X /∈ X (0) or Y /∈ Y(0). We say that there are edges between two sets X (i)
and Y( j) iff there exists some edge (X, Y ) in the assignment graph for some X ∈ X (i)
and some Y ∈ Y( j).

We now prove the following lemma regarding τ ’s assignment graph, showing that
there must be no edges labeled 1 between X (0) and Y(0), and no edges between X (i)
and Y(i) for all 1 ≤ i ≤ b′ −2. (It is still possible for edges to exist between X (b′ −1) and
Y(b′−1).) Intuitively, this lemma holds because if there existed such an edge connecting
Alice’s input X and Bob’s input Y , then the reference setting for (X, Y ) would need to
have so many failures in G such that τ would be disconnected from the root. Those
failures are needed to ensure that Alice (Bob) can invoke the oracle on α (β) throughout
the execution (i.e., to ensure that α and β remain unspoiled). On the other hand, τ
must have a value of 1 in the reference setting for such (X, Y ). This contradicts with
Lemma 7.2.
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LEMMA 7.3. In any oblivious reduction from � to SUM, consider any node τ in G
where τ �= α and τ �= β. In τ ’s assignment graph, there must be no edges labeled 1
between X (0) and Y(0), and no edges between X (i) and Y(i) for all 1 ≤ i ≤ b′ − 2.

PROOF. The lemma trivially holds for b′ = 2, and thus we only consider b′ ≥ 3, or
equivalently b ≥ 27. We prove via a contradiction and assume that the lemma does not
hold. Intuitively, we will construct a path in τ ’s assignment graph (not a path in G)
where vertices on the path are individual inputs. Since it is a path in the assignment
graph, by the definition of τ ’s assignment graph, any two adjacent inputs on that path
must form a valid input pair in L. The path will start from some vertex in X (0) and
end with some vertex in Y(0). Furthermore, all edges on the path have a label of 1, and
the path has no more than 2(b′ − 1) − 1 hops. These properties can be later used to find
a contradiction.

We now present the formal arguments. If the lemma does not hold, then in the
assignment graph of τ , either there is an edge labeled 1 between X (0) and Y(0), or
there is an edge (which must have a label of 1) between X ( j) and Y( j) for some j ∈
[1, b′ − 2]. We claim that in either case, we can find in the assignment graph a path
X(0), Y (1), X(1), Y (2), . . . , X(k), Y (k+1) for some k ∈ [0, b′ − 2], such that:

—X(i) ∈ X for 0 ≤ i ≤ k, and Y (i) ∈ Y for 1 ≤ i ≤ k + 1,
—X(0) ∈ X (0) and Y (k+1) ∈ Y(0), and
—all edges in the path have a label of 1.

If there is an edge labeled 1 between X (0) and Y(0), we simply set k = 0 and let
X(0) and Y (1) be the two endpoints of that edge, respectively. Our claim then trivially
holds. If there is an edge (X, Y ) where X ∈ X ( j) and Y ∈ Y( j) for some j ∈ [1, b′ − 2],
then we set k = j. First consider the case where k is even. By the construction of the
assignment graph, X must be connected with some vertex in Y( j − 1), and that vertex
must be connected to some vertex in X ( j − 2), and so on. Since k is even, there must be
some path (with exactly k hops) in the assignment graph from X to some X(0) ∈ X (0).
Similarly, there must be some path (with exactly k hops) in the assignment graph from
Y to some Y (k+1) ∈ Y(0). These two paths, together with the edge between X and Y ,
exactly form the path needed by our claim. The case for odd k is similar.

Given this path X(0), Y (1), X(1), Y (2), . . . , X(k), Y (k+1) (satisfying all these properties),
we define I (where I ⊆ L) to be the set of input pairs (X, Y ) such that (X, Y ) is an
edge in that path. We also call I as the problematic input set. By construction of I, we
know that τ has a value of 1 in the reference setting for any (X, Y ) ∈ I. Lemma 7.4
next proves that for all (X, Y ) ∈ I, τ is disconnected from the root by the end of the
execution of �(X, Y ). This leads to a contradiction with Lemma 7.2.

LEMMA 7.4. Suppose b ≥ 27. Consider the problematic input set I as constructed in
the proof of Lemma 7.3. For all (X, Y ) ∈ I, τ is disconnected from the root by the end of
the execution of �(X, Y ).

PROOF. This technical lemma is challenging to prove. We leave its elementary but
involved proof to Appendix D.

We can now use Lemma 7.3 to prove Theorem 7.1.

PROOF FOR THEOREM 7.1. By the condition in the theorem, there exists some oblivious
reduction P from � to SUM for some topology G. Let the N − 2 nodes other than α and
β in G be τ1, τ2, . . . , τN−2. Consider any input pair (X, Y ) ∈ L. Let τi(X, Y ), α(X, Y ), and
β(X, Y ) be the values of τi, α, and β in P ’s reference setting for (X, Y ), respectively. Since
the zero-error SUM result under the reference setting must be the same as �(X, Y ) and
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since the reference setting never fails or disconnects nodes with a value of 1, we have:

�(X, Y ) = α(X, Y ) + β(X, Y ) +
N−2∑
i=1

τi(X, Y ).

We intend to reduce � to UNIONSIZECPN,b′ . To do so, Alice converts her input X
for � to a corresponding input X ′ of length N for UNIONSIZECP in the following way,
using only local knowledge. Let X ′

i be the ith character in the string X ′. Alice sets
the last character X ′

N to be 0. Alice next leverages P to obtain the value of α(X, Y ),
without communicating with Bob. To do so, Alice invokes P using X and then stops
once P needs to invoke the SUM oracle protocol (which Alice does not have). Doing so
clearly does not incur any communication. By definition of oblivious reductions, P at
this point must have decided, based on X, the (initial) value of node α. Furthermore,
this value must be the same as α(X, Y ). Alice now obtains α(X, Y ) purely based on
local knowledge. Alice sets X ′

N−1 to this value. Next, Alice needs to determine X ′
i for

1 ≤ i ≤ N − 2. By definition of oblivious reductions, P needs to specify the reference
setting corresponding to each input pair (X, Y ) ∈ L. Using such information in P, Alice
can determine the assignment graph of τi for 1 ≤ i ≤ N − 2. In τi ’s assignment graph,
Alice’s current input X must belong to exactly one of the subsets of vertices. Let X ( j)
be the subset to which X belongs. Alice then sets X ′

i = j.
Bob constructs input Y ′ of length N for UNIONSIZECP similarly, using only his local

knowledge of Y . Specifically, Bob sets Y ′
N−1 = 0 and Y ′

N = β(X, Y ). Same as earlier,
Bob can obtain β(X, Y ) via P, without communicating with Alice. Next for each i where
1 ≤ i ≤ N − 2, Bob sets Y ′

i to be j where Y( j) is the subset to which Y belongs to, in τi ’s
assignment graph.

We next show that X ′ and Y ′ are strings satisfying the cycle promise with q = b′.
First, for i = N − 1 or N, obviously X ′

i and Y ′
i satisfy the cycle promise. Next consider

any i ∈ [1, N − 2] and τi ’s assignment graph. Clearly, X ′
i and Y ′

i are integer in [0, b′ − 1]
for all such i. By construction of the assignment graph, we know that there are

—no edges between X (0) and Y( j) for all j ≥ 2,
—no edges between X (b′ − 1) and Y( j) for all j ≤ b′ − 3, and
—no edges between X ( j1) and Y( j2) for all 1 ≤ j1 ≤ b′ − 2 and | j1 − j2| ≥ 2.

Furthermore, Lemma 7.3 shows that there are no edges between X ( j) and Y( j) for
all 1 ≤ j ≤ b′ − 2. Since (X, Y ) ∈ L, there must exist an edge between X and Y in τi ’s
assignment graph. Thus, X ′

i and Y ′
i must satisfy the cycle promise.

Finally, consider any given protocol for UNIONSIZECPN,b′ . Alice and Bob invoke that
protocol using X ′ and Y ′ as inputs, respectively. We claim that UNIONSIZECP(X ′, Y ′) can
be used directly as the result of �(X, Y ), since

UNIONSIZECP(X ′, Y ′)
= |{i | (1 ≤ i ≤ N) and (X ′

i �= 0 or Y ′
i �= 0})|

= α(X, Y ) + β(X, Y ) + |{i | (1 ≤ i ≤ N − 2) and (X /∈ X (0) for τi or Y /∈ Y(0) for τi)}|
= α(X, Y ) + β(X, Y ) + |{i | 1 ≤ i ≤ N − 2 and τi(X, Y ) = 1}|

(by construction of the assignment graph and Lemma 7.3)

= α(X, Y ) + β(X, Y ) +
N−2∑
i=1

τi(X, Y ) = �(X, Y ).

In this derivation, we have leveraged Lemma 7.3, which shows that there are no edges
labeled 1 between X (0) and Y(0). Together with the construction of the assignment
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graph, this means that τi(X, Y ) = 1 if and only if in τi ’s assignment graph, X /∈ X (0) or
Y /∈ Y(0).

8. LOWER BOUNDS ON FT COMMUNICATION COMPLEXITY OF SUM FOR ALL b
Our previous FT lower bounds from Section 6 become trivial when b > N0.25 or b > 1

ε0.5 .
Section 7 has suggested that such limitation might be inherent in the approach used
in Section 6. This section uses a different approach to obtain logarithmic FT lower
bounds for such b, which is more than exponentially far away from the corresponding
O(1) NFT upper bounds for such b. Specifically, this section aims to eventually prove
the following theorem.

THEOREM 8.1. For any b ≥ 1, we have

FT0(SUMN, b) = �(log N),

FTε, 1
3
(SUMN, b) = �

(
log

1
ε

)
, for ε = �

(
1
N

)
.

This theorem establishes the FT lower bounds for the right-most region of b in Figure 1
(i.e., for b > N0.25−c or b > 1

ε0.5−c ). While the theorem applies to all b ≥ 1, the results
in the previous sections are stronger when b ≤ N0.25−c or b ≤ 1

ε0.5−c . Also note that
under sufficiently large b, a message of any given size can be encoded using a single
bit. Hence, �(log N) and �(log 1

ε
) actually lower bound the number of messages, and

the theorem can only be proved by reasoning about the number of messages.
In the following, Section 8.1 first gives some intuitions and reveals the key challenge

in proving the theorem. Next, Section 8.2 describes the topology and the failure adver-
sary used for proving the theorem. Section 8.3 defines a simple single-player probing
game, and then proves a connection (or a reduction in the general sense) between the
probing game and the SUM problem. This is the key step since it enables us to focus on
lower bounding the “performance” of the probing game, which is much easier to study
than the SUM problem. Section 8.4 then proves a lower bound on the “performance” of
the probing game. This lower bound, together with the connection established earlier,
enables us to prove Theorem 8.1 finally in Section 8.5.

8.1. Obtaining Some Intuitions under the Gossip Assumption

We first provide some intuitions for Theorem 8.1 under a strong gossip assumption.
Doing so also helps to reveal the key technical challenges to be addressed by our proof
later.

Under the gossip assumption, the root computes the sum by explicitly collecting
from each node a gossip containing its value. We will intuitively show that to do so,
some node will need to send �(log N) messages, and hence �(log N) bits even if the
gossips can be fully aggregated/compressed. Here the lower bound topology will be an
N-node clique with one of nodes being the root (Figure 12). Imagine for now that the
adversary can fail edges in this topology, and further there is never more than one
node sending messages in a round. These assumptions can be easily removed later
once we insert some dummy nodes into each edge. Our adaptive adversary waits until
exactly N−1

2 nonroot nodes have sent a message (e.g., nodes 1 and 2 in Figure 12). Call
these N−1

2 nodes as marked nodes. The adversary then fails enough edges so that each
unmarked nonroot node (e.g., node 3) is paired up with a marked node (e.g., node 1)
and the marked node is the only gateway for the unmarked node to reach the root. Now
each marked node has already sent a message, and yet it has one new gossip (from
the corresponding unmarked node) to forward to the root. Next apply this procedure
recursively on these N−1

2 marked nodes, and inject a second batch of edge failures
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Fig. 12. Example FT lower bound topology for N = 5 and unrestricted b.

when exactly N−1
4 of them (e.g., node 2) have sent a second message. Continuing this

argument can easily show that, for all the gossips to reach the root, some node needs
to send at least log(N − 1) + 1 messages.

Formalizing these arguments would be sufficient to prove Theorem 8.1, if the gossip
assumption were valid. Unfortunately, the gossip assumption is actually rather strong
and nodes can communicate “via silence”. For example, a protocol may be such that if
a node’s value is 0, then the root does not need to collect a gossip from that node and
simply uses 0 as the default value. It is also possible that node i sends a message to
node j iff node i’s value is 1, and then node j conceptually relays i’s value to the root,
by sending a message to the root iff this value is 0. Here, the root never collects a gossip
from node i. Properly capturing all such possibilities will be the key challenge in our
proof.

8.2. Topology and Adversary for Proving Theorem 8.1

Having explained the basic intuition and challenges, we now construct the topology
and failure adversary for later proving Theorem 8.1. We assume that each node can
take an integer value in the domain of [0, 3n − 1]—this assumption will be removed
later in Section 8.5. We construct the lower bound topology starting from a clique with
n + 1 nodes, with n being a power of 2. One of these nodes will be the root, while all
other nodes are called worker nodes. We next insert a degree-two dummy node in the
middle of each edge in the previous clique, so that failing the dummy node essentially
fails the corresponding edge.12 The topology thus has total (n+1)(n+2)

2 nodes. Each worker
node has an integer value in [0, 3n−1]. All other nodes have value of 0. We use a vector
W = (w1, w2, . . . , wn) to denote the input (to the system), where wi ∈ [0, 3n − 1] is the
input value of worker node i.

Our deterministic and adaptive failure adversary here is the same as the simple
failure adversary in the previous section, except that the adversary here fails the
dummy nodes instead of failing the edges. Specifically, our adversary here conceptually
partitions the worker nodes into groups, where each group has some group members
and one group member is the group leader. Group membership and leadership change
whenever the adversary inject failures. Initially, each worker is in its own group, with
itself being the sole member (and thus the leader). The adversary keeps track of the set
L of current leaders. A leader in L is marked once it sends a message. Once the number
of marked leaders reaches |L|

2 , the adversary pairs up each unmarked leader node j
with a distinct marked leader node i. In cases where multiple leaders send messages
in the same round, the adversary will mark them sequentially (by their ids), until the
number of marked leaders becomes exactly |L|

2 . Next, for each such node j, consider
each of its neighboring dummy nodes. The dummy node may connect j with (i) the root,

12Under this construction, the total number of failures injected by our adversary later will reach �(N), where
N is the graph size. To obtain the same asymptotic FT lower bound while injecting only o(N) failures, one
only needs to instead insert log n dummy nodes on each edge and fail only one of them.
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(ii) some leader node other than node i, (iii) leader node i, or (iv) some nonleader node.
If the dummy node connects j with the root or with some leader node other than node i,
then at the beginning of the next round, the adversary fails that dummy node. After all
these failures are injected, node i’s group and node j’s group are conceptually merged
into one new group, with node i being the new group leader. Finally, the adversary
updates L to be the set of those |L|

2 leaders of the new groups, clears all the marks on
those leaders, and repeats this process until |L| reaches 1 or the protocol terminates.

8.3. The Probing Game and Its Connection to SUM

We next define a simple probing game. We will draw a connection (or a reduction in the
general sense) between this game and deterministic SUM protocols, when we run such
SUM protocols under the topology and failure adversary as constructed in the previous
section.

The probing game is played by a single player, against an input W = (w1, w2, . . . , wn)
where wi is an integer in [0, 3n − 1]. W is initially not known to the player, but the
player knows n. The player proceeds in rounds. In each round, the player may choose
to sequentially do zero, one, or multiple probes, where each probe is in the form of a
tuple (i, j). The outcome of the probe (i, j) is a hit if wi = j. Otherwise, it is a miss. For
each probe, the player may adaptively choose what probe to do, based on the probing
outcomes in previous rounds and so far in the current round. The goal of the player is
to determine

∑n
i=1 wi based on the outcomes of the probes, while minimizing the total

number of hits. Note that the player is not concerned with the total number of probes.
For convenience later, we require that the player never does the same probe multiple
times. In addition, if there has been a hit (i, j), then the player does not further probe
(i, j ′) for any j ′ since the player has already learned wi precisely.

Consider any deterministic SUM protocol running under the topology and adversary
as constructed in the previous section. The protocol can obviously play various tricks
to minimize communication (e.g., by communicating “via silence”). But Theorem 8.2
reveals that what the protocol fundamentally can do is no different from a virtual
player playing the probing game and upon a hit, having some leader node in the
topology send a message. In turn, the total number of messages sent by the leaders
will be no smaller than the number of hits in the probing game.

THEOREM 8.2. Given any deterministic SUM protocol P, there always exists a deter-
ministic (adaptive) probing strategy S for the player in the probing game that satisfies
the following property. For any input W, the player using S in the probing game against
W always generates the same result as the result generated by the SUM protocol P run-
ning against W under the topology and adversary in Section 8.2. Furthermore, if the
total number of hits in the probing game reaches n when using S against W, then the
maximum number of bits sent by a node (across all nodes), when running P against W
under the topology and adversary in Section 8.2, is at least log n + 1.

PROOF. We will construct S based on the given (black-box) deterministic protocol P.
The constructed strategy S will determine the sequence of probes that the player should
do in each round r, so that the probing outcomes will enable the player to simulate the
execution of P in round r. During the course of the probing game, we say that a worker
node i has been hit if there has been some probe (i, j) that is a hit. In any given round
r of P ’s execution, we say that a group leader node i sends an influential message in
round r if node i sends (i.e., locally broadcasts) a message in round r and the adversary
does not fail the dummy node connecting node i with the root at the beginning of round
r + 1. Note that since node i is a group leader in round r, it is guaranteed (by design of
our adversary) that the dummy node connecting i with the root has not failed in round
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r or earlier. If the adversary indeed fails that dummy node at the beginning of round
r + 1, then node i will no longer be a group leader in round r + 1. Furthermore, node i
(and node i’s group) will be merged with another group, with another node being the
new (merged) group’s leader.

We will prove that when the player uses our constructed probing strategy S, all the
following properties hold for all round r where 0 ≤ r ≤ R. Here R is the total number
of rounds in P ’s execution over W , which must be finite. Recall that round 1 is the first
round where there can possibly be a message sent in P ’s execution.

Property 1. In round r of the probing game, if the player does a probe (i, j) and if this
probe is a hit, then in round r of P ’s execution, nodes i’s group leader must send an
influential message.

Property 2. In P ’s execution, if a group leader sends an influential message in round
r, then all nodes in that group have been hit by the player in the probing game by the
end of round r.

Property 3. In P ’s execution, immediately after the adversary injects potential fail-
ures at the beginning of round r + 1, in each group there is at most one worker node
that has not been hit by the player in the probing game.13

Property 4. In round r, the player in the probing game can generate all influential
messages sent by all group leaders in round r of P ’s execution.

Lemma 8.3 proves that these four properties indeed hold under a properly con-
structed probing strategy S. Now, by Property 4, since the influential messages from
group leaders are the only messages that can affect the root via the dummy nodes, the
player will be able to simulate those dummy nodes and all incoming messages to the
root throughout the execution. Then, the root will be able to produce a final result in
round R, and the player simply uses this result as the result for the probing game.
Next, if the total number of hits in the probing game reaches n, then all nodes must
have been hit since each node can only contribute one hit. By Property 3, we know
that in any round, each group can have at most one worker node that has not been hit.
Initially there are n groups, and thus there must exist at least n

2 groups where each
group contributes a hit. By Property 1, the n

2 leaders of these n
2 groups will each send

an influential message. Once all these influential messages are sent, our adversary
will introduce failures so that there will be n

2 new groups, with these n
2 nodes as new

leaders. Since we still need to have n
2 more hits and since each group can contribute

at most one hit, among those n
2 groups, there must exist n

4 groups whose leaders will
each send a second influential message. Continuing such argument will show that in
order for the total number of hits in the probing game to reach n, some node in the SUM

protocol P will have to send at least a influential messages, where a is the total number
of terms in the summation of n = n

2 + n
4 + · · · + 2 + 1 + 1. Observing that a = log2 n+ 1

and that a messages translate to at least a bits completes the proof.

LEMMA 8.3. Under the conditions of Theorem 8.2, there exists a probing strategy S
such that the four properties described in the proof of Theorem 8.2 hold for all round r
where 0 ≤ r ≤ R. Here R is the total number of rounds in P ’s execution over W.

PROOF. We prove via an induction on r. For r = 0, we construct S such that no probes
are done in round 0. The four properties trivially hold for round 0. Now consider any
round r > 0, while assuming that they hold for all rounds before r.

13First, we explicitly mention “after failure injection” since group membership is affected by failures. Second,
we consider the beginning of round r + 1 instead of the beginning of round r to facilitate our later proof by
induction.
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We first construct the set of probes that the player should do in round r. Consider
any group g in round r of P ’s execution, after the adversary injects potential failures
at the beginning of round r. (Note that failures affect group membership, and thus
we explicitly state that g is defined after the failures have been injected in round r.)
By inductive hypothesis on Property 3, there is at most one worker node miss(g) in
g that has not been hit. Thus, the player knows the value of all other nodes in g. If
miss(g) exists, then the player will exhaustively enumerate all j’s such that there has
not been a probe (miss(g), j). Intuitively, j has not been ruled out as a possible value
for miss(g). For each such j, the player tries simulating P ’s execution on all nodes in
g, from round 0 to round r (inclusive). Doing so will enable the player to determine
the message (if any) sent in round r by g’s group leader. Such simulation is possible
since the player has the values of all the nodes in that group, and also because by
inductive hypothesis on Property 4, the player can generate all influential messages
sent by other group leaders up to round r−1. In particular for a node i in g, all incoming
messages from nodes outside of g must be sent from those dummy nodes connecting
node i with those group leaders in round 1 through round r − 1. The reason is that in
any round from 1 through r − 1, nonleader group members can only have neighboring
dummy nodes connecting them to other nodes in their own groups and not to node
i. Furthermore, noninfluential messages from a group leader can never affect either
the root or nodes in other groups (via the corresponding dummy nodes), since those
dummy nodes will be failed right after they receive those noninfluential messages.
Finally, we do not yet know what influential messages other group leaders will send
in round r, but those will not affect the potential message sent in round r by g’s group
leader.

We say that a (miss(g), j) combination is a candidate probe if miss(g) exists and by
this process, the player has determined that there will be a message sent in round r
by g’s group leader if j is the value of node miss(g). (We do not yet know whether this
message will be influential.) Next, the player orders all candidate probes, using g as the
primary key and j as the secondary key. In round r, the player sequentially issues the
probes in this ordered list, subject to the following two constraints. First, if a certain
(miss(g), j) probe is a hit, then the player will skip all following probes in the form of
(miss(g), j ′) for all j ′. Second, if the number of hits so far is such that the adversary is
ready to inject the next batch of failures, the player skips all the remaining probes in
the ordered list.

We next prove that such a probing strategy does satisfy the four properties. Property
1 clearly holds since a hit of (miss(g), j) means that node miss(g) indeed has a value
of j. Given the trial simulation and since everything is deterministic, miss(g)’s group
leader will send a message in round r of P ’s execution. Furthermore, since the probes
are done sequentially and since the player must have encountered this hit before the
adversary is ready to inject the next batch of failures, the adversary will not fail the
dummy node connecting miss(g)’s group leader to the root at the beginning of round
r + 1.

For Property 2, we need to prove that if a group g’s group leader sends an influential
message in round r, then all nodes in g have been hit by the end of round r. If miss(g)
does not exist, we already hit all nodes in g. If miss(g) exists, let j be the value of the
node miss(g). Clearly, there has never been a probe (miss(g), j). By our construction
of the probing strategy in round r, (miss(g), j) will be a candidate probe. If the player
indeed probes (miss(g), j) in round r, then miss(g) will be hit in round r and we are
done. If the player does not probe (miss(g), j) in round r, the only possibility is that the
adversary is ready to inject the next batch of failures at the beginning of round r + 1.
In such a case, the adversary will fail the dummy node connecting g’s group leader to
the root, making the message (if any) sent by g’s group leader noninfluential.
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For Property 3, if the adversary does not inject failures at the beginning of round
r+1, then clearly the property inherited from the beginning of round r continues to hold
at the beginning of round r + 1. If the adversary does inject failures at the beginning
of round r + 1, then the group membership in round r and the group membership in
round r + 1 are different. Let g1, g2, . . . , gl be the l groups in round r, immediately
after the adversary potentially inject failures at the beginning of round r. Without loss
of generality, assume that after the failures are injected, gi+l/2 is merged with gi (for
1 ≤ i ≤ l/2) to form a new group, with gi ’s leader being the leader of the new group. By
inductive hypothesis on Property 3, immediately after the adversary potentially injects
failures at the beginning of round r, gi+l/2 (1 ≤ i ≤ l/2) has at most one node that has
not been hit. Given how the adversary injects failures, we know that the leader of gi
(1 ≤ i ≤ l/2) must have sent an (influential) message in round r or earlier and after
group gi is formed. By Property 2 (both in round r and in earlier rounds), we know
that all nodes in group gi have been hit by the end of round r. This means that after
merging gi and gi+l/2, the new group still only has at most one node that has not been
hit.

Finally, for Property 4, consider any given group g whose leader sends an influential
message in round r. By Property 2, we know that all nodes in g have been hit by the
end of round r, and thus the player knows all their values. Same as in the earlier
trial simulation, by inductive hypothesis on Property 4, the player can generate all
influential messages sent by other group leaders up to and including round r − 1. This
means that the player can generate all incoming messages (up to and including round
r − 1) that may affect nodes in g. By same arguments as earlier, the player will be able
to simulate P ’s execution on all nodes in g from round 0 to round r (inclusive). Also
note that the messages received in round r, which we do not know yet, will not affect
the messages sent by g’s group leader in round r. Thus, the player can generate that
influential message sent by the group leader in round r.

8.4. Lower Bound on the Number of Hits in the Probing Game

With the connection between SUM and the probing game proved in the previous section,
we now intend to obtain a lower bound on the number of hits in the probing game. Such
lower bound will later translate to a lower bound on the communication complexity of
SUM. A simpler version of this probing game was analyzed in Dhulipala et al. [2010] to
reason about silence-based communication, in a failure-free setting. There the player
is not allowed to interleave probes on wi with probes on wi′ . Thus, for our purpose, we
prove the following lower bound result on the probing game where the probes may be
arbitrarily interleaved.

LEMMA 8.4. Consider the set U of all the (3n)n possible inputs to the probing game
(n ≥ 2) and any given (adaptive) deterministic probing strategy that can give correct
(zero-error) results for at least 2

3 fraction of those inputs. There must exist an input such
that using that strategy, the player encounters n hits under that input.

PROOF. We prove by contradiction, and assume that there exists a deterministic
probing strategy S that gives correct results for at least 2

3 fraction of inputs and has at
most n − 1 hits for all inputs.

Consider any given input W = (w1, w2, . . . , wn) ∈ U , which is initially unknown to the
player. At any point of time during the game, we define wi ’s residual domain (denoted
as Di) to be the set { j} if there has been a probe (i, j) so far which is a hit. Otherwise,
wi ’s residual domain Di is defined to be the set:

{0, 1, 2, . . . , 3n − 1} \ { j | there has been a probe (i, j) that is a miss}.
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Intuitively, wi ’s residual domain is the possible domain of wi given the probe outcomes
so far. When the game ends under S, W has a unique residual domain vector D =
(D1, D2, . . . , Dn), where Di is the residual domain of wi. We next prove a simple useful
property on W ’s residual domain vector to facilitate later reasoning. We claim that for
any input Z = (z1, z2, . . . , zn) where zi ∈ Di, the probes done by the player and all the
probe outcomes must be identical under input W and input Z. This in turn implies that
Z will have the same residual domain vector as well as the same final output as that
of W . We prove this claim for the kth probe, via a simple induction on k. The induction
base for the zeroth probe clearly holds. Now consider the kth probe. We already know
that all previous probes and their outcomes are identical under W and under Z. Since
the player is deterministic, we know that the kth probe will be the same under W and
Z. Let this probe be (i, j). If (i, j) is a hit for W , then we must have Di = { j}. Since
zi ∈ Di, we know that zi = j and the probe (i, j) will be a hit for Z as well. If (i, j) is a
miss for W , then we must have j /∈ Di. Since zi ∈ Di, we know that zi �= j and thus the
probe will be a miss for Z as well. Thus, the outcome of the kth probe will be identical
under input W and input Z.

We now leverage this property to prove the following claim. Define U ′ to be that set
of inputs such that for each input W ∈ U ′, when the game ends, in W ’s residual domain
vector D = (D1, D2, . . . , Dn) there exists some Di where |Di| ≥ 2. We claim that in order
for the player to generate results correctly for at least 2

3 fraction of all the inputs, |U ′|
must be no larger than 2

3 |U |.
We prove this claim by contradiction and assume that |U ′| > 2

3 |U |. We partition U ′
into disjoint subsets such that all inputs in the same subset have the same residual
domain vector. Consider any such subset U ′

D where all inputs in the set has the same
D = (D1, D2, . . . , Dn) as their residual domain vectors. By the earlier property on resid-
ual domain vector, we know that U ′

D contains at least all those inputs Z where zi ∈ Di
for 1 ≤ i ≤ n, and all such inputs Z will result in the same output. Furthermore, if
an input Z′ is such that z′

i /∈ Di for some i, then it is impossible for Z′ to be in U ′
D. In

other words, U ′
D must be exactly the set of those inputs Z where zi ∈ Di for 1 ≤ i ≤ n.

Next, without loss of generality, assume that |D1| ≥ 2. Consider any given j2 ∈ D2,
j3 ∈ D3, . . . , jn ∈ Dn. For each j ∈ D1, Z = ( j, j2, j3, . . . , jn) must be in U ′

D, and the
player will produce the same output. Such output can be correct for at most one j. This
in turn means that the player can generate a correct result for at most 1

2 fraction of the
inputs in U ′

D. Therefore, for all the inputs in the set U ′, the player can generate correct
results for at most 1

2 fraction as well. Thus, the player can generate a result correctly
for at most 1

2 |U ′| + |U \ U ′| = 1
2 |U ′| + |U | − |U ′| = |U | − 1

2 |U ′| < 2
3 |U | inputs.

We have just proved that |U \U ′| ≥ 1
3 |U |. We next use this result to prove that under

some input in U \U ′, the number of hits will be n. For every input W ∈ U \U ′, we
know that W ’s residual domain vector D = (D1, D2, . . . , Dn) satisfies |Di| = 1 for all i.
Essentially, the player has “pinpointed” the value of each wi and knows W precisely,
instead of only its sum. This means that in the probing game, the player actually needs
to learn the input precisely for at least 1

3 fraction of all the inputs. We next prove that
for the player to achieve such a goal, there will be n hits on at least one of the inputs
in U \U ′.

Given such a goal, consider any given point of time where the player decides to do a
probe (i, j). (This necessarily means that there has not been a hit on wi, and also means
that j ∈ Di where Di is current residual domain of wi.) Since the goal is to learn the
input precisely, doing such a probe is no different from doing any other probe (i, j ′) as
long as j ′ ∈ Di. With such an observation, we can now make the following without loss
of generality assumption: For any given input W and any given i, consider all probes
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done by the player in the form of (i, j0), (i, j1), (i, j2), . . . . Without loss of generality, we
can assume that j0 = 0, j1 = 1, j2 = 2, . . . . We know that under the probing strategy S,
there are at most n− 1 hits under all inputs, including all inputs W ∈ U \U ′. Consider
any given W ∈ U \U ′ and let i be the index of the component that has not been hit.
Since |Di| = 1 and by our earlier without loss of generality assumption, we know that
wi = 3n − 1. However, the number of such inputs is

|{W | W ∈ U and ∃i such that wi = 3n − 1}| = (3n)n − (3n − 1)n <
1
3

(3n)n, for n ≥ 2.

This contradicts with |U \U ′| ≥ 1
3 |U |. Thus, under some W ∈ U \U ′, there will be n

hits.

8.5. Proof for Theorem 8.1

We are now ready to prove a series of lemmas, which directly lead to Theorem 8.1.
The following lemma is proved by first establishing a connection between randomized
complexity and distributional complexity via well-known techniques [Kushilevitz and
Nisan 1996], and then using Theorem 8.2 and Lemma 8.4 to obtain a lower bound on
the distributional complexity. In the following, the notation of FT0,δ simply means FTε,δ

with ε = 0.

LEMMA 8.5. Consider any b ≥ 1 and any integer N = (n+1)(n+2)
2 where n is a power of

2. If in the SUM problem each node may take an integer value in {0, 1, . . . , 3n − 1}, then
there exists a connected topology G with N nodes, such that:

FT0, 1
3
(SUMG, b) ≥ log n + 1.

PROOF. We let G be the topology constructed in Section 8.2, and consider the de-
terministic and adaptive adversary described there. It will be convenient to view this
adversary as part of the SUM protocol. Namely, given any randomized SUM protocol, we
can consider a randomized “augmented protocol” which repeatedly executes one round
of the randomized SUM protocol and then invokes the (deterministic) adversary to po-
tentially inject failures. We thus no longer need to discuss the adversary separately.

Now consider the optimal randomized augmented protocol that generates a zero-
error result with probability at least 2

3 for all input W , while incurring a worst-case
(over the coin flips) communication complexity of FT0, 1

3
(SUMG, b). If we subject this

protocol against an input chosen uniformly at random out of all possible inputs, then
trivially the protocol still generates a zero-error result with probability at least 2

3 , where
the probability is taken over both the input distribution and the random coin flips. Now,
let us view this randomized augmented protocol as a distribution over deterministic
augmented protocols. Then, there must exist at least one deterministic protocolP which
can generate a zero-error result with probability at least 2

3 under this uniform input
distribution, since otherwise the expectation taken over all deterministic augmented
protocols cannot reach 2

3 . Finally, let a denote the maximum number of bits sent by a
node, across all nodes when we run P against the worst-case input (that maximizes
a). Since P is selected by the randomized algorithm with positive probability and since
FT0, 1

3
(SUMG, b) is defined over worst-case coin flips, we have a ≤ FT0, 1

3
(SUMG, b).

On the other hand, Theorem 8.2 tells us that given such a P, there exists a corre-
sponding probing strategy S in the probing game so that using S, the player in the
probing game can generate the same result as P. Since P generates a zero-error result
for at least 2

3 fraction of the inputs, we know that the player using S generates a zero-
error result for so many inputs as well. Next, by Lemma 8.4, there exists some input
W such that the player encounters n hits. In turn, Theorem 8.2 now tells us that, when
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running the SUM protocol P against this input W , some node sends at least log n + 1
bits. Thus, we have FT0, 1

3
(SUMG, b) ≥ a ≥ log n + 1.

The following corollary extends this lemma to our standard setting where nodes only
have binary values and also where N can be any integer.

COROLLARY 8.6. Consider any b ≥ 1 and any integer N ≥ 5. Let n be the largest
integer that is a power of 2 and satisfies (n+1)(n+2)

2 + n(3n − 1) ≤ N. There exists a
connected topology G with N nodes, such that:

FT0, 1
3
(SUMG, b) ≥ log n + 1.

PROOF. Let N1 = (n+1)(n+2)
2 and we first construct a connected topology G1 with N1

nodes as described in Section 8.2. Next, we attach (3n − 1) degree-1 follower nodes to
each worker node in G1, and attach (N − N1 − n(3n − 1)) degree-1 nodes to the root of
G1. All those degree-1 nodes attached to G1’s root will always have value 0. Let G be
the resulting N-node connected topology. One can trivially obtain a reduction from the
SUM problem on G1 (where each worker node has an integer value in {0, 1, . . . , 3n− 1})
to the SUM problem on G (where each node has a binary value). In particular in the
reduction, the root in G1 will simulate the root in G and also all the degree-1 neighbors
of the root in G. Each worker node in G1 will simulate the corresponding worker node
and its (3n − 1) followers in G. If the worker node i in G1 has a value of wi, then
in G the first wi of the corresponding worker node’s follower nodes will have value
1 and the remaining (3n − 1 − wi) follower nodes will have value 0. Combining this
reduction with the lower bound on the SUM problem on G1 from Lemma 8.5, we have
FT0, 1

3
(SUMG, b) ≥ log n + 1.

The next corollary extends the previous corollary to FTε, 1
3

for ε ≥ 1
N .

COROLLARY 8.7. Consider any b ≥ 1, any integer N ≥ 15, and any ε ∈ [ 1
N , 1

15 ]. Let n
be the largest integer that is a power of 2 and satisfies (n+1)(n+2)

2 + n(3n − 1) ≤ 1
3ε

. There
exists a connected topology G with N nodes, such that:

FTε, 1
3
(SUMG, b) ≥ log n + 1.

PROOF. Let N1 = 1
3ε

and we first construct a connected topology G1 with N1 nodes
such that FT0, 1

3
(SUM, G1, b1) ≥ log n + 1 for any b1. Corollary 8.6 ensures that such G1

exists. Next, we attach N2 = N − N1 nodes to the root of G1, and let the resulting
topology be G. Those N2 nodes will always have a value of 0 and will never fail. Note
that the final sum on G can never be above 1

3ε
. If we have at most ε relative error on the

final sum on G, then the absolute error is at most 1
3ε

· ε = 1
3 . Since the exact sum must

be an integer, to generate a result with ε relative error in G, the protocol intuitively
needs to produce a zero-error result. Putting it another way, if the output is not an
integer, we can always output the closest integer instead. Doing so will never cause
an output that was previously within ε-error bound to exceed the ε-error bound after
the conversion. This observation enables a trivial reduction from FT0, 1

3
(SUM, G1, b1) to

FTε, 1
3
(SUM, G, b), which gives

FTε, 1
3
(SUMG, b) ≥ FT0, 1

3
(SUMG1 , b1) ≥ log n + 1.

Combining Corollary 8.6 and Corollary 8.7 enables us to easily prove Theorem 8.1.

PROOF FOR THEOREM 8.1. We first prove the lower bound on FT0(SUMN, b). For any
N ≥ 5, consider the N-node connected topology G as constructed by Corollary 8.6.
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Together with Lemma A.1, we trivially have

FT0(SUMN, b) ≥ 1
3

FT0, 1
3
(SUMN, b) ≥ 1

3
FT0, 1

3
(SUMG, b) ≥ 1

3
(log n + 1).

By Corollary 8.6, here n is the largest integer that is a power of 2 and satisfies (n+1)(n+2)
2 +

n(3n − 1) ≤ N. Thus, we have n = �(
√

N), which implies FT0(SUMN, b) = �(log N).
We next prove the lower bound on FTε, 1

3
(SUMN, b) for ε ≥ 1

N . For any N ≥ 15, consider
the N-node connected topology G as constructed by Corollary 8.7. We trivially have

FTε, 1
3
(SUMN, b) ≥ FTε, 1

3
(SUMG, b) ≥ log n + 1.

By Corollary 8.7, here n is the largest integer that is a power of 2 and satisfies (n+1)(n+2)
2 +

n(3n − 1) ≤ 1
3ε

. Thus, we have n = �( 1√
ε
), which implies FTε, 1

3
(SUMN, b) = �(log 1

ε
).

Finally, for ε = �( 1
N ) but ε < 1

N (in which case ε is necessarily �( 1
N )), we have

FTε, 1
3
(SUMN, b) ≥ FT 1

N , 1
3
(SUMN, b) = �(log N) = �

(
log

1
ε

)
.

9. DISCUSSIONS AND EXTENSIONS

Putting together the NFT upper bounds (Theorem 4.1) and FT lower bounds
(Theorem 5.1, 6.1, and 8.1) will directly give us the exponential gaps, as summarized in
Figure 1 from Section 1. Specifically, one only needs to apply Theorem 5.1 for
1 ≤ b ≤ 2 − c, Theorem 6.1 for 2 − c < b ≤ N0.25−c or 2 − c < b ≤ 1

ε0.5−c , and Theo-
rem 8.1 for b > N0.25−c or b > 1

ε0.5−c , with c being any positive constant below 0.25. It is
worth noting that such exponential gap results apply as well to the following extensions
of the model defined in Section 3.

Total Number of Failures. Section 3 allowed the total number of failures to be up to
N − 1. In all the executions (of the SUM protocol) considered in our FT lower bound
proofs, the failure adversary actually injects only o(N) failures in G. Thus, our lower
bounds apply, without any modification, as long as the total number of failures is
allowed to be up to any constant fraction of N.

Our proofs carry over to even smaller number of failures, without disrupting the
exponential gap, if we lower the degree of our polynomial lower bounds. As a concrete
example, Theorem 5.1 proved that FT0(SUMN, b) = �( N

log2 N
). In the theorem’s proof, we

injected total f = n = �( N
log N ) failures. When f is smaller than �( N

log N ), it is trivial to

generalize the proof and show that FT0(SUMN, b) = �( f
log N ). To do so, one only needs to

set n = f in the original proof, and then add enough dummy nodes to the topology so
that the total number of nodes in the topology reaches N.

Private-Coin and Deterministic Protocols. Section 3 only considered public-coin pro-
tocols. Private-coin protocols and deterministic protocols are also fully but implicitly
covered by all our theorems. This is simply because the NFT upper bound protocol with
zero-error in Theorem 4.1 is actually deterministic, while the one with (ε, δ)-error uses
only private coins.

Allowing Integer Values for Each Node. In practice, each node in the network may
have some integer value instead of a binary value. Our FT lower bounds obviously
carry over to integer values. Our NFT upper bounds continue to apply as long as the
integer value has a domain no larger than some polynomial of N.
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Other Network Models. Because of the paramount practical importance of commu-
nication complexity in wireless networks, Section 3 chose to define a system model
capturing wireless networks. All our theorems continue to apply regardless of whether
collision is considered (i.e., whether a node can receive messages simultaneously from
multiple neighbors in a round) and regardless of whether the communication is point-
to-point or (local) broadcast. Note that in settings without collisions, �(G) is simply the
eccentricity of the root in G.

Letting All Nodes Know the Result. We required only the root to learn the final result.
To let all nodes know the result, the root in our upper bound protocol in Theorem 4.1
can simply broadcast the result to all nodes along some spanning tree.

Unknown Topology. Assuming a known topology, as in Section 3, strengthens our
FT lower bounds. For the upper bounds obtained via tree-aggregation, with unknown
topologies, it suffices to simply add a distributed preprocessing phase for building a
spanning tree.

10. CONCLUSIONS AND FUTURE WORK

Tolerating failures has been a key focus of distributed computing research from the
very beginning. Adding this fault tolerance requirement to multi-party communication
complexity leads to the following natural question: “If we want to compute a function
in a fault-tolerant way, what will the communication complexity be?” For this question,
this paper focuses specifically on (i) tolerating node crash failures, and (ii) computing
the function over general topologies. Within such a context, we reveal that the impact
of failures on communication complexity can be large, at least for the SUM aggregation
function in networks with general topologies. Specifically, we show that there exists (at
least) an exponential gap between the NFT and FT communication complexity of SUM.

This result attests that FT communication complexity needs to be studied separately
from the simpler NFT communication complexity, instead of being considered as an
“amended” version of NFT communication complexity. There are many interesting
follow-up open questions on the subject.

—Our lower bound (i.e., worst-case) topologies for SUM are carefully constructed. We
are currently investigating to what extent our lower bounds can generalize to other
topologies.

—We have mainly focused on the exponential gap for SUM, and have been less concerned
about specific degrees of the polynomials in the FT lower bounds. Can we further
strengthen these lower bounds? Note that even our lower bound on the communi-
cation complexity of UNIONSIZECP is not tight (i.e., roughly 1

q factor from the upper
bound), and thus improvement might be possible even there.

—Our lower bounds show that the bottleneck node in G will incur a large communi-
cation complexity. How many nodes in G will incur asymptotically similar commu-
nication complexity as that node? Putting it another way, how many hot spots are
there?

—We have defined the FT communication complexity of SUM across all protocols that
can tolerate a certain number of failures. Similar to the idea of early stopping
distributed consensus protocols, among this class of protocols, it would be inter-
esting to investigate to what extent a protocol can incur a smaller communication
complexity when the number of failures that actually happen (denoted as f ′) is
small. Repeatedly invoking tree-aggregation incurs a communication complexity of
O( f ′ log N)—can we do better? We are currently investigating both upper bounds
and lower bounds on this.
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—Our results extend to some other functions such as SELECTION, via trivial reductions
to and from SUM. But clearly there are also many interesting functions whose FT
communication complexity is still unknown. In particular, can we characterize the
set of functions having exponential gaps?

For answering these questions, we believe that some of the insights developed in this
article (e.g., on the role of failures in the reduction and on the cycle promise) can be
valuable.

APPENDIXES

A. SOME USEFUL KNOWN/TRIVIAL RESULTS

This section describes some known results that this article uses. These results and
their proofs are not our contribution. We include the details and sometime the proofs
here only for completeness, because some of them were folklore results, or were not
formally stated, or were not stated to cover FT communication complexity, or were
proved under slightly different models in a restricted form. In the next, the notations
NFT0,δ, and FT0,δ simply mean NFTε,δ, and FTε,δ with ε = 0, respectively.

The Impact of Failures on the Communication Complexity of MAX is Small. Consider
the same setting as for the SUM function, except that now each node has an integer
value whose domain is no larger than some polynomial of N, with N being the total
number of nodes in the network. The MAX functions asks for the maximum of all
these values. For simplicity, we will ignore collision in our discussion on MAX and only
consider protocols generating zero-error results. Let the time complexity constraint
be �(log N) aggregation rounds. We will show that the gap between the NFT and FT
communication complexity of MAX is no larger than the gap between �(log N/ log log N)
and O(log N).

We first obtain a lower bound on the NFT communication complexity of MAX. Consider
a star topology where the root is directly connected to N − 1 nodes. An aggregation
round in this topology has only one round. Pick an arbitrary node out of those N − 1
nodes and let it be node τ . All nodes except τ have a value of 0. So computing MAX

would be the same as sending the value at τ to the root. It is trivial to show that doing
so within �(log N) rounds requires at least �(log N/ log log N) bits of communication.

Next, we sketch a simple folklore fault-tolerant MAX protocol, whose communication
complexity is O(log N). This fault-tolerant MAX protocol is a simplified version of some
more complex protocols in the literature (e.g., the protocol from Yu [2011] which toler-
ates byzantine failures). The protocol does a simple binary search on the entire value
domain. At each step of the binary search, the protocol conceptually asks whether any
node in the system has a value that is no smaller than some specific value. Clearly, we
only need to ask O(log N) such questions to determine MAX. For each such question,
a node floods a single bit of “1” (without including its id) as the reply if its value is
no smaller than the specified value. Other nodes in the system will relay/forward only
the very first reply they see for that question. One can easily show that this process is
fault-tolerant, and each question only requires each node to send O(1) bits. Further-
more, at the end of the flooding, each node in the system will know the answer to this
question, and thus can infer what the next question will be. Thus, posing the questions
does not incur any extra communication. The total number of bits each node needs to
send in this fault-tolerant protocol for MAX is O(log N).

Known Relation Between NFT0, FT0 and NFT0,δ, FT0,δ. Note that we do not necessar-
ily have NFT0 ≥ NFT0,δ, since NFT0 is the average-case (over random coin flips in the
protocol) communication complexity, while NFT0,δ is the worst-case (over random-coin
flips in the protocol) communication complexity. Nevertheless, the following relation in
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Lemma A.1 is well known [Kushilevitz and Nisan 1996]. This relation trivially applies
to fault-tolerant communication complexity as well.

LEMMA A.1 (ADAPTED FROM KUSHILEVITZ AND NISAN [1996]). For any communication
complexity problem � and δ > 0, NFT0(�) ≥ δNFT0,δ(�). Similarly, for any b ≥ 1
and δ > 0, FT0(SUMN, b) ≥ δFT0,δ(SUMN, b).

PROOF. Consider the optimal zero-error randomized protocol for �, which generates
a zero-error result while incurring an expected (over the random coin flips in the proto-
col) communication complexity of NFT0(�) bits. By Markov’s inequality, the protocol’s
communication complexity exceeds NFT0(�)/δ bits with probability at most δ. We can
thus construct a new protocol which behaves the same as the original one except that
a node stops once it has sent NFT0(�)/δ bits. Obviously, this protocol outputs correct
results with probability at least 1 − δ, and incurs a worst-case communication com-
plexity of NFT0(�)/δ bits, implying NFT0,δ(�) ≤ NFT0(�)/δ. A similar proof can show
FT0,δ(SUMN, b) ≤ FT0(SUMN, b)/δ.

Known Relation Between NFT0(�), NFTε,δ(�) and NFT0(�, t), NFTε,δ(�, t). The
following lemma is a slightly extended version of the corresponding theorem from
Impagliazzo and Williams [2010], which draws a connection between NFT commu-
nication complexity with synchronized rounds and NFT communication complexity
without synchronized rounds. Since our synchronous round model is slightly different
from Impagliazzo and Williams [2010], we provide a proof sketch below for the sake of
completeness.

LEMMA A.2 (ADAPTED FROM IMPAGLIAZZO AND WILLIAMS [2010]). For any two-party
communication complexity problem � and any t ≥ 2, we have NFT0(�) = NFT0(�, t) ·
O(log t) and NFTε,δ(�) = NFTε,δ(�, t) · O(log t).

PROOF. Consider any given protocol P (with PA being Alice’s part of the protocol and
PB being Bob’s part), that can solve � under the synchronous round setting with a
bits (either on expectation or worst-case) of communication, while always terminat-
ing within t synchronous rounds. We construct a protocol Q (with QA and QB simi-
larly defined) that can solve the problem with O(a log t) bits (either on expectation or
worst-case, respectively) of communication complexity in the classic setting without
synchronous rounds.

InQ, Alice and Bob each maintains a local counter initialized to 1. These two counters
correspond to the round number needed by P. Let the current counter value on Alice be
rA. In QA, Alice first tries executing PA for rounds rA, rA + 1, rA + 2, . . . , while assuming
that PB does not send any message in any of those rounds. Alice then determines r′

A
(r′

A ≥ rA), the first round during which PA sends a message in this trial execution.
Similarly, Bob determines r′

B. Alice and Bob then exchange r′
A and r′

B, taking 2 log t bits.
Let r′ = min(r′

A, r′
B). Alice next executes PA (for real) for rounds rA, rA + 1, . . . , r′, and

then sends a message to Bob if r′
A = r′. Similarly in QB, Bob executes PB for rounds rB,

rB + 1, . . . , r′, and then sends a message to Alice if r′
B = r′. Note that for round r′, P

must incur at least one bit of communication. Thus, for each bit P incurs, Q incurs at
most 2 log t + 1 = O(log t) bits. After the message exchange for round r′, Alice and Bob
set rA = r′ + 1 and rB = r′ + 1, and repeat this process until P terminates.

Known Results on UNIONSIZE’s Communication Complexity. Trivially combining sev-
eral recent results [Chakrabarti and Regev 2011; Impagliazzo and Williams 2010;
Woodruff 2004] leads to the following known results.

THEOREM A.3 (ADAPTED FROM CHAKRABARTI AND REGEV [2011]). NFT0(UNIONSIZEn) =
�(n) and NFTε, 1

3
(UNIONSIZEn) = �( 1

ε2 ) for ε = �( 1√
n).

Journal of the ACM, Vol. 61, No. 3, Article 19, Publication date: May 2014.



Cost of Fault Tolerance in Multi-Party Communication Complexity 19:45

PROOF. We first prove the theorem for ε ≥ 1√
n. This proof for NFTε, 1

3
(UNIONSIZEn) =

�( 1
ε2 ) trivially plugs in a recent strong result [Chakrabarti and Regev 2011] on the

GHD (Gap-Hamming-Distance) problem into an existing reduction [Woodruff 2004]
from GHD to UNIONSIZE. Consider any given ε > 0. In GHD 2

5ε2
, Alice and Bob have

binary strings X and Y as inputs, respectively, where each string has 2
5ε2 bits. Let

�(X, Y ) denote the hamming distance between X and Y . Alice and Bob are further
given the promise that either �(X, Y ) > 1

5ε2 + 1
ε

or �(X, Y ) ≤ 1
5ε2 − 1

ε
. They should

output 1 iff �(X, Y ) satisfies the first inequality. It is proved recently by Chakrabarti
and Regev [2011] that NFT0, 1

3
(GHD 2

5ε2
) = �( 1

ε2 ).
To reduce GHD to UNIONSIZE, given input string X for GHD 2

5ε2
, Alice locally generates

an input X ′ for UNIONSIZEn by appending 0 to the length- 2
5ε2 binary string X until the

length reaches n. Bob similarly generates Y ′. Let |X ′| and |Y ′| denote the hamming
weight of X ′ and Y ′, respectively. Thus, we have UNIONSIZE(X ′, Y ′) = (|X ′| + |Y ′| +
�(X ′, Y ′))/2 = (|X|+ |Y |+�(X, Y ))/2. Leveraging the promise on X and Y , we have the
following.

—If �(X, Y ) > 1
5ε2 + 1

ε
, then UNIONSIZE(X ′, Y ′) > (|X| + |Y | + 1

5ε2 + 1
ε
)/2.

—If �(X, Y ) ≤ 1
5ε2 − 1

ε
, then UNIONSIZE(X ′, Y ′) ≤ (|X| + |Y | + 1

5ε2 − 1
ε
)/2.

One can easily verify that for all ε, we have (1 + ε)(|X| + |Y | + 1
5ε2 − 1

ε
)/2 < (1 −

ε)(|X| + |Y | + 1
5ε2 + 1

ε
)/2. Next Bob tells Alice the size of Y , using log |Y | = O(log 1

ε
)

bits. Alice can now pick any value between these two values as the threshold. Alice
outputs 1 iff the UNIONSIZE(X ′, Y ′) execution returns a value above the threshold.
Finally, Alice informs Bob of the result, using a single bit. (This is needed since GHD
requires both Alice and Bob to know the result.) Since NFT0, 1

3
(GHD 2

5ε2
) = �( 1

ε2 ), we

have NFTε, 1
3
(UNIONSIZEn) = �( 1

ε2 − log 1
ε

− 1) = �( 1
ε2 ). Now, by Lemma A.1, we have

NFT0(UNIONSIZEn) ≥ 1
3

NFT0, 1
3
(UNIONSIZEn) ≥ 1

3
NFT 1√

n , 1
3
(UNIONSIZEn) = �(n).

Finally, we still need to cover the case for ε = �( 1√
n) but ε < 1√

n. For such ε (which is

necessarily �( 1√
n)), we have

NFTε, 1
3
(UNIONSIZEn) ≥ NFT 1√

n , 1
3
(UNIONSIZEn) = �(n) = �

(
1
ε2

)
.

Combining Theorem A.3 and Lemma A.2 gives the following.

COROLLARY A.4. Let poly(n) be any polynomial of n with constant degree, we have
NFT0(UNIONSIZEn, O(poly(n))) = �( n

log n) and NFTε, 1
3
(UNIONSIZEn, O(poly(n))) = �( 1

ε2 log n)

for ε = �( 1√
n).

B. TREE-AGGREGATION PROTOCOL WITH O(log 1
ε

+ log log N) AGGREGATION
MESSAGE SIZE

This section provides the details of the tree-aggregation protocol with only O(log 1
ε

+
log log N) aggregation message size, as mentioned in Section 4.

Protocol Intuition. First, we should note that directly encoding each partial sum with
O(log 1

ε
+ log log N) bits using a floating-point-style representation will not actually
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work, due to underflow issues when sequentially adding many small numbers to a
large number. Thus, instead, we will apply a similar trick as AMS synopsis [Alon
et al. 1996]. Intuitively in this protocol, each “1” value in the system is flagged with
a certain probability. The system then uses the simple tree-aggregation protocol from
Section 4 to determine the exact total number (sum) of such flagged “1” values. By
properly adjusting the flagging probability, we can always ensure that this sum is no
larger than 120/ε2, and thus the size of the aggregation message will be no larger than
log(120/ε2). Furthermore, it is possible to dynamically adjust such flagging probability
in one pass of the aggregation protocol, without any global coordination. Finally, the
root estimates the final result for SUM based on the sum of flagged “1” values and the
associated flagging probability.

ALGORITHM 1: promote(msg)
1: msg.level + +;
2: Initialize tmp to 0;
3: for j = 1 to msg.sum do
4: Increase tmp by 1 with probability 1/2;
5: end for
6: msg.sum = tmp;

ALGORITHM 2: merge(msg1, msg2) // assuming msg1.level ≤ msg2.level
1: while msg1.level < msg2.level do
2: promote(msg1);
3: end while
4: msg3.level = msg2.level;
5: msg3.sum = msg1.sum+ msg2.sum;
6: while msg3.sum > 120/ε2 do
7: promote(msg3);
8: end while
9: return msg3;

Protocol Description and Pseudocode. Specifically in this protocol, each aggregation
message contains an integer sum ∈ [0, 120/ε2] and an integer level ∈ [0, log N]. Intu-
itively, these two integers mean that if each “1” value in the subtree is flagged with
probability 2−level, then the partial sum of the flagged values is sum. A node with a
value of 1 generates an aggregation message with sum = 1 and level = 0, for its own
value. Intermediate tree nodes will need to combine multiple aggregation messages
into one. Without loss of generality, we only need to explain how to combine two ag-
gregation messages msg1 and msg2 into one, where msg1.level ≤ msg2.level. We promote
(Algorithm 1) an aggregation message msg1, by (i) increasing msg1.level by one, and
(ii) tossing msg1.sum fair coins and then updating msg1.sum to be the total number of
heads we observe. To merge msg1 and msg2 into msg3 (Algorithm 2), we first repeatedly
promote msg1, until msg1.level = msg2.level. We then set msg3.level = msg2.level, and
msg3.sum = msg1.sum+ msg2.sum. If msg3.sum > 120/ε2, we will again repeatedly pro-
mote msg3 until the first time that msg3.sum ≤ 120/ε2. Finally, imagine that the root
has a virtual parent and let msg be the aggregation message sent by the root to its
virtual parent. The root will estimate the final sum to be msg.sum× 2msg.level.

Formal Properties. It is obvious that the number of bits sent by each node in this
protocol is O(log 1

ε
+ log log N). We next prove that the protocol does give us an (ε, 1/3)-

approximate result.
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THEOREM B.1. Consider any graph G with N nodes and any constant ε ∈ (0, 1]. Let s
denote the exact sum of the values of all the N nodes and ŝ denote output of this protocol.
We have

Pr[(1 − ε)s ≤ ŝ ≤ (1 + ε)s] ≥ 2
3

.

PROOF. Consider the sequence of random variables S0, S1, . . . , where S0 = s and
Si+1 (for i ≥ 0) is the number of heads observed when flipping a fair coin exactly Si
times. Furthermore, for generating Si+1, the random process uses the same coin flip
results as the protocol uses in promoting all messages with level = i (i.e., at Line 4 of
Algorithm 1). Let random variable L be the smallest integer such that SL ≤ z where
z = 120

ε2 . Let msg be the aggregation message sent by the root to its virtual parent. We
claim that msg.level = L and msg.sum = SL. First, it is impossible for msg.level < L,
since otherwise msg.sum will be above z and thus the msg will be promoted by the
root. Next if msg.level > L, it means that some node must have observed a message
msg′ whose level is L, and has further promoted msg′. But this is impossible since
if msg′.level = L, then msg′.sum ≤ SL ≤ z by our definition of L. Now given that
msg.level = L, we have msg.sum = SL.

Let l = 	log2
3s
4z
, and we have 2l ∈ [ 3s

8z ,
3s
4z ] and 2l+2 ∈ [ 3s

2z ,
3s
z ]. Since for all i ≥ 0, Si is

a binomial random variable with parameter (s, 2−i), we have

E[Sl] = 2−ls ≥ 4
3

z and VAR[Sl] ≤ 8
3

z

E[Sl+2] = 2−l−2s ≤ 2
3

z and VAR[Sl+2] ≤ 2
3

z.

We claim that with probability at most 1
4 , L /∈ [l + 1, l + 2], since by Chebyshev’s

inequality:

Pr[L ≤ l] = Pr[Sl ≤ z] ≤ 24
z

≤ 1
5

Pr[L > l + 2] = Pr[Sl+2 > z] ≤ 6
z

≤ 1
20

.

Denote Ei as the event 2i Si /∈ [(1 − ε)s, (1 + ε)s], and we claim that for any i ≤ l + 2,
Pr[Ei] ≤ 1

40 . Since Si is a binomial random variable with parameter (s, 2−i), We have
E[2i Si] = s and VAR[2i Si] ≤ 22i2−is = 2is. By Chebyshev’s inequality, we have Pr[Ei] =
1 − Pr[2i Si ∈ [(1 − ε)s, (1 + ε)s]] ≤ 2i

ε2s ≤ 3
zε2 = 1

40 . Next, denote E as the event that
ŝ /∈ [(1 − ε)s, (1 + ε)s], or equivalently 2LSL /∈ [(1 − ε)s, (1 + ε)s]. We have

Pr[E] =
∑

i

Pr[L = i] Pr[E |L = i]

=
∑

i∈[l+1,l+2]

Pr[L = i] Pr[E |L = i] +
∑

i /∈[l+1,l+2]

Pr[L = i] Pr[E |L = i]

≤ Pr[L = l + 1] Pr[El+1|L = l + 1] + Pr[L = l + 2] Pr[El+2|L = l + 2]

+
∑

i /∈[l+1,l+2]

Pr[L = i]

≤ Pr[El+1 and L = l + 1] + Pr[El+2 and L = l + 2] + 1
4

≤ Pr[El+1] + Pr[El+2] + 1
4

≤ 1
20

+ 1
4

<
1
3

.
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C. PROOF FOR THEOREM 6.2 FROM SECTION 6.3

Throughout this section, we use the alternative form of the cycle promise as defined in
Section 6.3 and as illustrated in Figure 10.

C.1. A Simple Reduction from DISJOINTNESSCP to UNIONSIZECP

To lower bound the communication complexity of UNIONSIZECP and prove Theorem 6.2,
we will reduce from a new DISJOINTNESSCP problem, which is the natural extension
of the standard DISJOINTNESS problem on binary strings [Kushilevitz and Nisan 1996].
In DISJOINTNESSCPn,q (q ≥ 2), again Alice and Bob each have a length-n string X and
Y as input, where the characters in the strings are integers in [0, q − 1]. X and Y
here satisfy the alternative form of the cycle promise as in UNIONSIZECP. Alice and
Bob aim to determine whether there exists any i where Xi = 0 and Yi = 0, and they
output 0 iff there exists such i. For convenience later, different from UNIONSIZECP, for
DISJOINTNESSCP we require both Alice and Bob to know the final result. Recall from
Appendix A that the notation NFT0,δ simply means NFTε,δ with ε = 0. The next section
will prove the following theorem on the communication complexity of DISJOINTNESSCP,
via an information theoretic approach [Bar-Yossef et al. 2004].

THEOREM C.1.

NFT0(DISJOINTNESSCPn,q) = �

(
n
q2

)
− O(log n) and

NFT0, 1
5
(DISJOINTNESSCPn,q) = �

(
n
q2

)
− O(log n).

Using this theorem, one can obtain a lower bound on the communication complexity
of UNIONSIZECP, under the setting without synchronized rounds, via a direct reduction.

THEOREM C.2.

NFT0(UNIONSIZECPn,q) = �

(
n
q2

)
− O(log n) and

NFTε, 1
5
(UNIONSIZECPn,q) = �

(
1

εq2

)
− O

(
log

1
ε

)
f or ε = �

(
1√
n

)
.

PROOF. We first prove the theorem for ε ≥ 1√
2n

. NFT0(UNIONSIZECPn,q) = �( n
q2 ) −

O(log n) follows from a reduction from DISJOINTNESSCPn,q. Consider any given protocol
for UNIONSIZECPn,q. Given inputs X and Y to DISJOINTNESSCPn,q, Alice and Bob directly
invoke the protocol for UNIONSIZECPn,q, with X and Y being the inputs. Alice outputs 1
iff UNIONSIZECPn,q returns n. Alice further sends Bob a single bit to inform Bob of this
result. We have

NFT0(UNIONSIZECPn,q) ≥ NFT0(DISJOINTNESSCPn,q) − 1 = �

(
n
q2

)
− O(log n).

NFTε, 1
5
(UNIONSIZECPn,q) = �( 1

εq2 ) − O(log 1
ε
) follows from a reduction from

DISJOINTNESSCP 1
2ε

,q. Consider any given protocol for UNIONSIZECPn,q. Given a length- 1
2ε

input X for DISJOINTNESSCP 1
2ε

,q, Alice locally generates a length-n input X ′ by first repli-

cating each character in X for 1
ε

times, and then appending 0 until the length of X ′

reaches n. This is always possible since 1
2ε2 ≤ n. Bob generates Y ′ in a similar way. We

now have the following.

—If DISJOINTNESSCP 1
2ε

,q(X, Y ) = 1, then UNIONSIZECPn,q(X ′, Y ′) = 1
2ε2 .

—If DISJOINTNESSCP 1
2ε

,q(X, Y ) = 0, then UNIONSIZECPn,q(X ′, Y ′) ≤ 1
2ε2 − 1

ε
.
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One can easily verify that for all ε > 0, we have (1 + ε)( 1
2ε2 − 1

ε
) < (1 − ε) 1

2ε2 . Alice can
now pick any value between (1+ε)( 1

2ε2 − 1
ε
) and (1−ε) 1

2ε2 as the threshold. Alice outputs
1 for DISJOINTNESSCP 1

2ε
,q(X, Y ) iff UNIONSIZECPn,q(X ′, Y ′) returns a value above that

threshold. Finally, Alice sends Bob a single bit to inform Bob of the result. We thus have

NFTε, 1
5
(UNIONSIZECPn,q) ≥ NFT0, 1

5
(DISJOINTNESSCP 1

2ε
,q) − 1 = �

(
1

εq2

)
− O

(
log

1
ε

)
.

We still need to cover the case for ε = �( 1√
n) but ε < 1√

2n
. For such ε (which is

necessarily �( 1√
n)), we have

NFTε, 1
5
(UNIONSIZECPn,q) ≥ NFT 1√

2n
, 1

5
(UNIONSIZECPn,q)

= �

(√
n

q2

)
− O(log n)

= �

(
1

εq2

)
− O

(
log

1
ε

)
.

Theorem 6.2 then directly follows from Theorem C.2 and Lemma A.2.

C.2. Proving Theorem C.1 via Information Cost

This section proves Theorem C.1 for the DISJOINTNESSCP problem. For convenience in
the proofs later, we define DISJOINTNESSCP more formally as follows.

Definition C.3 (DISJOINTNESSCP). In the DISJOINTNESSCPn,q problem, Alice and Bob
hold X and Y , respectively, which are two strings of length n satisfying (X, Y ) ∈ Ln

q,
where

Ln
q = {(X, Y ) | X ∈ Z

n
q and Y ∈ Z

n
q and (Y − X) ∈ {0, 1}n}.

The goal is to compute the function DISJOINTNESSCPn,q : Ln
q → {0, 1} defined as

DISJOINTNESSCPn,q(X, Y ) =
{

0 ∃i ∈ {1, 2, . . . , n} such that Xi = Yi = 0
1 otherwise.

Our proof for Theorem C.1 will be almost entirely based on the information theoretic
approach from Bar-Yossef et al. [2004]. In this approach, the information complexity of
a function is used to lower bound the communication complexity of that function. Under
certain conditions, it is further shown that the conditional information complexity of a
function is a lower bound on the function’s information complexity. Next, under certain
conditions, the approach establishes a direct-sum result between the conditional
information complexity of a function (e.g., DISJOINTNESSCPn,q) and the conditional
information complexity of its constituent primitive function (e.g., DISJOINTNESSCP1,q).
Finally, the approach also provides some tools for reasoning about the conditional in-
formation complexity of such constituent primitive functions. The final lower bound on
communication complexity obtained via this approach is for private-coin randomized
protocols only. Since we will need a lower bound for public-coin protocols, at the end
of this section, we will apply the well-known result from Newman [1991] to convert
this lower bound to a public-coin setting. Recall from Appendix A that the notation
NFT0,δ simply means NFTε,δ with ε = 0. We define NFTpri

0,δ
(DISJOINTNESSCPn,q) to be the

same as NFT0,δ(DISJOINTNESSCPn,q), except that NFTpri
0,δ

is for private-coin protocols.
In the next, we first summarize the definitions and lemmas that we will use in this

information theoretic approach. All these definitions (Definition C.4 to C.8) and lemmas
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(Lemma C.9 to C.12) are directly adapted from Bar-Yossef et al. [2004], and are not our
contribution. See Bar-Yossef et al. [2004] for a more detailed discussion.

Definition C.4 (Decomposable Functions). (Adapted from Bar-Yossef et al. [2004]).
If there are functions h : L1

q → {0, 1} and g : {0, 1}n → {0, 1} such that
DISJOINTNESSCPn,q(X, Y ) = g(h(X1, Y1), h(X2, Y2), . . . , h(Xn, Yn)), then we say that
DISJOINTNESSCPn,q is g-decomposable with primitive h. When the context is clear, we
simply say that DISJOINTNESSCPn,q is decomposable with primitive h.

We construct g as g(x1, x2, . . . , xn) = �n
i=1xi. Then, according to this definition,

DISJOINTNESSCPn,q is a decomposable function with primitive h = DISJOINTNESSCP1,q. For
convenience, from now on in this section, h stands for the function DISJOINTNESSCP1,q.
Namely h(x, y) = 0 if x = y = 0, otherwise, h(x, y) = 1.

Definition C.5 (Mixture of Product Distributions). (Adapted from Bar-Yossef et al.
[2004]). For random variables Xi, Yi, and Ti (1 ≤ i ≤ n), their joint distribution
(Xi, Yi, Ti) is called a mixture of product distribution if conditioned on Ti, Xi and
Yi are independent.

Let T = {0, 1} × {1, 2, . . . , q − 1}, and let Ti (1 ≤ i ≤ n) be a random variable drawn
uniformly randomly from T . Let Xi and Yi (1 ≤ i ≤ n) be two random variables
depending on Ti where:

—if Ti = (0, j), then Xi = j and Yi is drawn uniformly randomly from { j, j + 1};
—if Ti = (1, j), then Yi = j and Xi is drawn uniformly randomly from { j, j − 1}.

Here all additions and subtractions are on Zq. Note that under this construction, it
is impossible for Xi = Yi = 0, which is intentional. Define ζ as the joint distribution
of (Xi, Yi, Ti). Clearly, conditioned on Ti, Xi, and Yi are independent. Hence, ζ is a
mixture of product distribution for all i’s (1 ≤ i ≤ n).

Definition C.6 (Collapsing Distribution). (Adapted from Bar-Yossef et al. [2004]). A
distribution on Ln

q is called a collapsing distribution for DISJOINTNESSCPn,q with respect
to h, if DISJOINTNESSCPn,q is g-decomposable with primitive h, and if for all (X, Y )’s in the
support of that distribution, all j’s where 1 ≤ j ≤ n, and all (x, y) ∈ L1

q, the following
holds:

g(h(X1, Y1), . . . , h(Xj−1, Yj−1), h(x, y), h(Xj+1, Yj+1), . . . , h(Xn, Yn)) = h(x, y).

Define η = ζ n, and let (X, Y, T ) ∼ η. Consider the marginal distribution ηXY of (X, Y ) in
η. Since (Xi, Yi, Ti) ∼ ζ , Xi and Yi cannot simultaneously be 0, which means h(Xi, Yi) =
1. Hence, for all (X, Y )’s in the support of ηXY , we have h(Xi, Yi) = 1 for all i’s. This
implies that g(. . . , h(x, y), . . .) = h(x, y), and thus ηXY is a collapsing distribution for
DISJOINTNESSCPn,q.

Definition C.7 (Conditional Information Cost). (Adapted from Bar-Yossef et al.
[2004]). Let P be any two-party private-coin randomized protocol for DISJOINTNESSCP1,q.
Let (Xi, Yi, Ti) ∼ ζ , which is a mixture of product distributions on L1

q × T . Given Xi

and Yi as the input to P, the transmitted messages in P can be viewed as a random
variable P(Xi, Yi). The conditional information cost of P with respect to ζ (denoted as
CICζ (P)) is the mutual information between (Xi, Yi) and P(Xi, Yi) conditioned on Ti.
Or formally:

CICζ (P) =
∑
t∈T

I({(Xi, Yi);P(Xi, Yi)}|Ti = t) Pr[Ti = t].
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Here I stands for the standard notion of conditional mutual information [Bar-Yossef
et al. 2004].

Definition C.8 (Conditional Information Complexity). (Adapted from Bar-Yossef
et al. [2004]). Let P be any two-party private-coin randomized protocol for
DISJOINTNESSCP1,q, such that for any input (x, y), P can generate the correct result
with probability at least 1 − δ. The δ-error conditional information complexity of
DISJOINTNESSCP1,q with respect to ζ , denoted as CICζ,δ(DISJOINTNESSCP1,q), is defined
as the minimum conditional information cost across all possible P ’s satisfying the
earlier property.

LEMMA C.9 (ADAPTED FROM BAR-YOSSEF ET AL. [2004]). Consider DISJOINTNESSCPn,q,
and the distribution ζ , η, and ηXY as defined earlier. We already know DISJOINTNESSCPn,q
is a decomposable function with primitive DISJOINTNESSCP1,q, ζ is a mixture of product
distribution on L1

q × T , and ηXY is a collapsing distribution for DISJOINTNESSCPn,q with
respect to DISJOINTNESSCP1,q. We must have:

NFTpri
0,δ

(DISJOINTNESSCPn,q) ≥ n × CICζ,δ(DISJOINTNESSCP1,q).

LEMMA C.10 (ADAPTED FROM BAR-YOSSEF ET AL. [2004]). Let Z be a random variable
uniformly randomly distributed on {z1, z2}, and let �(z1) and �(z2) be two additional
random variables. If �(z1) and �(z2) are both independent of Z, then we have

I(Z; �(Z)) ≥ H2(�z1 ,�z2 ).

Here �zi is the distribution of �(zi), and H is the Hellinger distance [Bar-Yossef et al.
2004] between two distributions.

LEMMA C.11 (ADAPTED FROM BAR-YOSSEF ET AL. [2004]). For any two-party private-
coin randomized protocol P, let random variable P(x, y) denote the transmitted message
in P under input x and y. Let Px,y denote the distribution of P(x, y). For all x, x′, y, and
y′, we have

2H2(Px,y,Px′,y′ ) ≥ H2(Px,y,Px′,y) + H2(Px,y′ ,Px′,y′ ).

LEMMA C.12 (ADAPTED FROM BAR-YOSSEF ET AL. [2004]). Let P be any private-coin ran-
domized protocol for DISJOINTNESSCP1,q, such that for any input (x, y), P can generate
the correct result with probability at least 1 − δ. For any two input pairs (x, y) ∈ L1

q and
(x′, y′) ∈ L1

q where DISJOINTNESSCP1,q(x, y) �= DISJOINTNESSCP1,q(x′, y′), we have

H2(Px,y,Px′,y′ ) ≥ 1 − 2
√

δ.

Having introduced the definitions and lemmas needed for the information theo-
retic arguments, we are now ready to prove Theorem C.1. We start with the following
theorem on the communication complexity of DISJOINTNESSCP for private coin protocols.

THEOREM C.13. NFTpri
0,δ

(DISJOINTNESSCPn,q) = �( n
q2 ) for any positive constant δ ≤

0.22.

PROOF. Let P denote the optimal protocol with the minimum conditional infor-
mation cost, across all possible two-party private-coin randomized protocols for
DISJOINTNESSCP1,q where for any input (x, y), the protocol can always generate the
correct result with probability at least 1 − δ.
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By Lemma C.9 and Definition C.7 and C.8, we have

NFTpri
0,δ

(DISJOINTNESSCPn,q)

≥ n × CICζ,δ(DISJOINTNESSCP1,q)
= n × CICζ (P)

= n
2(q − 1)

∑
t∈T

I({X1, Y1;P(X1, Y1)} | T1 = t)

= n
2(q − 1)

q−1∑
j=1

(I({X1, Y1;P(X1, Y1)} | T1 = (0, j)) + I({X1, Y1;P(X1, Y1)} | T1 = (1, j))).

Conditioned on T1 = (0, j), (X1, Y1) is uniformly distributed on {( j, j), ( j, j + 1)}. Let
z1 = ( j, j), z2 = ( j, j + 1), and Z = (X1, Y1). Lemma C.10 tells us:

I({X1, Y1;P(X1, Y1)} | T1 = (0, j)) ≥ H2(P j, j,P j, j+1).

Similarly, we have

I({X1, Y1;P(X1, Y1)} | T1 = (1, j)) ≥ H2(P j, j,P j−1, j).

Apply Cauchy inequality and triangle inequality, and we have

NFTpri
0,δ

(DISJOINTNESSCPn,q)

≥ n
2(q − 1)

q−1∑
j=1

(
H2(P j, j,P j, j+1) + H2(P j, j,P j−1, j)

)

≥ n
4(q − 1)2

⎛
⎝q−1∑

j=1

(H(P j, j,P j, j+1) + H(P j, j,P j−1, j))

⎞
⎠

2

≥ n
4(q − 1)2

⎛
⎝q−1∑

j=1

H(P j, j+1,P j−1, j)

⎞
⎠

2

= n
4(q − 1)2 (H(P1,2,P0,1) + H(P2,3,P1,2) + · · · + H(Pq−1,0,Pq−2,q−1))2

≥ n
4(q − 1)2 H2(Pq−1,0,P0,1).

Next, apply Lemma C.11, and we have

NFTpri
0,δ

(DISJOINTNESSCPn,q) ≥ n
8(q − 1)2 H2(Pq−1,0,P0,0) + n

8(q − 1)2 H2(Pq−1,1,P0,1)

≥ n
8(q − 1)2 H2(Pq−1,0,P0,0).

Finally, apply Lemma C.12, and we have

NFTpri
0,δ

(DISJOINTNESSCPn,q) ≥ n
8(q − 1)2 (1 − 2

√
δ) = �

(
n
q2

)
.

We can now prove Theorem C.1.
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PROOF FOR THEOREM C.1. According to Newman [1991],14 we have

NFTpri
0,0.22(DISJOINTNESSCPn,q) ≤ NFT0,0.2(DISJOINTNESSCPn,q) + O(log n + log log q).

Apply Theorem C.13 and we have

NFT0,0.2(DISJOINTNESSCPn,q) = �

(
n
q2

)
− O (log n + log log q) .

This lower bound is only nontrivial when q <
√

n
log n. Thus, we can discard the log log q

term for clarity:

NFT0,0.2(DISJOINTNESSCPn,q) = �

(
n
q2

)
− O (log n) .

Finally, apply Lemma A.1 and we have NFT0(DISJOINTNESSCPn,q) = �( n
q2 ) − O(log n) as

well.

D. PROOF FOR LEMMA 7.4 FROM SECTION 7

This appendix will prove Lemma 7.4. The proof is elementary but involved, and we need
much preparation work in Sections D.1 and D.2 before actually proving the lemma in
Section D.3. Recall from Section 7 the concepts of oblivious reduction, reference setting,
reference execution, assignment graph, the definitions of b′, X (i), Y(i), and �(X, Y ), the
concept of a node being disconnected from the root in a given execution, and also the
problematic input set I as constructed in the proof of Lemma 7.3.

D.1. Node α and β Must Remain Unspoiled

This section proves that node α (β) must remain unspoiled for Alice (Bob) in an oblivious
reduction. To do so, we inherit the formal framework developed in Section 5.3. Since for
each input pair (X, Y ) ∈ L, there is a corresponding reference setting in the oblivious
reduction, the notions of values and failure time of nodes in Section 5.3 are still well
defined here. Namely, all we need to do is to replace the notion of “simulated execution
under (X, Y )” in Section 5.3 by the notion of “reference setting for (X, Y )”.15 All concepts
defined in Section 5.3 (e.g., spoiled nodes) now carry over directly without modification.
For example, a node v is a value epicenter for Alice’s input X if its value in the reference
setting is not uniquely determined by X.

Lemma 5.2 in Section 5.3 proved that Alice can simulate all unspoiled nodes. In this
appendix, we intend to prove the reverse for oblivious reductions—if a node is spoiled
for Alice in a round r, then in an oblivious reduction, Alice can never invoke the oracle
protocol on that node for round r. Since in an oblivious reduction Alice (Bob) is required
to invoke the oracle on node α (β) throughout the execution, this in turn implies that
α (β) must remain unspoiled for Alice (Bob). Our proof will hinge upon the property
of oblivious reductions, which requires Alice (Bob) to decide, beforehand, exactly up to
which rounds she (he) will invoke the oracle on each node.

LEMMA D.1. Consider any oblivious reduction from � to SUM. If a node v in G is
spoiled for Alice’s input X (Bob’s input Y ) in round r′ ≥ 0, then when Alice (Bob) has
the input X (Y ), Alice (Bob) will not invoke the oracle on v for round r′.

14Newman’s original result was only stated for functions, while here we are dealing with the partial functions
of DISJOINTNESSCP. Nevertheless, Newman’s original proof actually holds without modification to partial
functions.
15These two notions are actually exactly the same. In Section 5.3, there was no need to introduce the more
formal notion of reference settings, so there we used the notion of simulated execution.
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PROOF. We only need to prove the part for Alice. Let r ∈ [1, r′] be the very first round
during which v is spoiled. It suffices to prove that Alice will not invoke the oracle on v
for round r—since the oracle protocol carries internal state from round to round, Alice
can never invoke the oracle for round r′ without invoking the oracle for earlier rounds.

If round r is the first round during which v is spoiled, there must exist some epicenter
u0 with an occurrence time of r0 (r0 ≤ r) such that there exists a spoil path from u0 to v
with exactly l = r −r0 hops. To show that Alice will not invoke the oracle on v for round
r, we use an induction on l.

If l = 0, v itself must be an epicenter occurring at round r. We consider two cases. If
v is a value epicenter, then the occurrence time is round 1 and r = 1. In an oblivious
reduction, Alice needs to decide purely based on X, the input value of each node for
which she will invoke the oracle for at least one round. This means that Alice must
never invoke the oracle on v—otherwise, she risks deviating from the corresponding
execution under the reference setting. Next if v is a failure epicenter, then round r (i.e.,
the occurrence time of the epicenter) must be the earliest possible failure time. This
means that there exists Bob’s inputs Y and Y ′, such that v’s failure time is exactly
round r in the reference setting for (X, Y ) and is after round r in the reference setting
for (X, Y ′). If Alice decides that she will invoke the oracle on v for round r, then again
she risks deviating from the execution under the reference setting since the reference
setting could be (X, Y ).

For the inductive step, assume that the lemma holds for all values up to l and we
consider l + 1. Again, there exists some epicenter u0 with an occurrence time of r0
(r0 ≤ r) such that there exists a spoil path from u0 to v with exactly l +1 hops. Consider
the node u immediately before v in this spoil path. Then, the length of the spoil path
from u0 to u is exactly l hops, and u is spoiled in round r − 1, where r − 1 ≥ 1. By the
inductive hypothesis, Alice (with an input X) does not invoke the oracle on u for round
r − 1. Next, we prove via a contradiction and assume that Alice still invokes the oracle
on v for round r. Note that in an oblivious reduction, the only way for Alice to obtain
the potential message sent in round r − 1 by the oracle protocol on u (u �= β) is for Alice
to invoke the oracle on u for round r −1 herself. Thus, for Alice to still invoke the oracle
on v for round r, u must have failed in round r −1 or earlier in all the reference settings
for all possible input pairs (X, Y ) given the current X. We claim that it is impossible
for u to fail exactly in round r − 1 in all these reference settings, since otherwise this
failure is a stable failure for X, and there would be no spoil path from u0 to v via u.
Thus, there must exist some Y such that u fails before round r −1. This in turn, means
that the occurrence time of the epicenter u is round r − 2 or earlier. Thus, v is spoiled
by u in round r − 1 or earlier, which contradicts with the fact that r is the first round
that v becomes spoiled.

COROLLARY D.2. Consider any oblivious reduction from � to SUM. For any input pair
(X, Y ) ∈ L, α (β) must remain unspoiled for Alice’s input X (Bob’s input Y ) throughout
the execution of �(X, Y ).

PROOF. Trivially follows from Lemma D.1 and the fact that in an oblivious reduction,
Alice (Bob) is required to invoke the oracle on α (β) throughout the entire execution.

D.2. Reasoning about Paths – Some Technical Lemmas

This section proves a series of technical lemmas, which we will later use to prove
Lemma 7.4. We start with some useful concepts and definitions, as summarized in
Table II.

Some Useful Concepts and Definitions. Throughout this appendix, we use I to denote
the problematic input set as constructed in the proof of Lemma 7.3.
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Table II. Notations and Definitions used in Sections D.2 and D.3

I the problematic input set as constructed in the proof of Lemma 7.3
�(X, Y ) the execution of the SUM oracle protocol under the reference setting for (X, Y )

and under the given public coin outcomes chosen by Alice and Bob
λ(X, Y ) number of rounds in each aggregation round in the execution �(X, Y )
FA(X, v) v’s failure time in the simulation, if v has a stable failure with respect to

Alice’s input X
FB(Y, v) v’s failure time in the simulation, if v has a stable failure with respect to

Bob’s input Y
p a simple path in the topology G
|p| length of the path p
α-path path from τ to α without passing β

β-path path from τ to β without passing α

dummy path a path that will be cut by the end of the execution of �(X, Y ) for all (X, Y ) ∈ I.
pA(X, t) or p(X, t) ∃v ∈ p such that FA(X, v) ≤ t|p|
pB(Y, t) or p(Y, t) ∃v ∈ p such that FB(Y, v) ≤ t|p|
P

α the finite set of all non-dummy α-paths
P

β the finite set of all non-dummy β-paths
P

α
<p the set of all paths in P

α whose lengths are smaller than the length of p
P

β
<p the set of all paths in P

β whose lengths are smaller than the length of p
P

α(X, t) either P
α = ∅ or p′(X, t) holds for all p′ ∈ P

α

P
α(Y, t) either P

α = ∅ or p′(Y, t) holds for all p′ ∈ P
α

P
β (X, t) either P

β = ∅ or p′(X, t) holds for all p′ ∈ P
β

P
β (Y, t) either P

β = ∅ or p′(Y, t) holds for all p′ ∈ P
β

P
α
<p(X, t) either P

α
<p = ∅ or p′(X, t) holds for all p′ ∈ P

α
<p

P
α
<p(Y, t) either P

α
<p = ∅ or p′(Y, t) holds for all p′ ∈ P

α
<p

P
β
<p(X, t) either P

β
<p = ∅ or p′(X, t) holds for all p′ ∈ P

β
<p

P
β
<p(Y, t) either P

β
<p = ∅ or p′(Y, t) holds for all p′ ∈ P

β
<p

A path p in the topology G is a sequence of nodes (v1, v2, . . . , vk) such that k ≥ 2
and for all i ∈ [1, k − 1], vi+1 is a neighbor of vi in G. For any node v, v ∈ p simply
means that v appears in p. A path p is a simple path if no node appears more than
once in the path. All paths we discuss will be simple paths. The length of a path p,
denoted as |p|, is defined as the number of nodes in p minus 1. Consider any node τ in
G, where τ �= α and τ �= β. With respect to τ , an α-path is a path from τ to α without
passing β. Formally, it is a path (v1, v2, . . . , vk) satisfying v1 = τ , vk = α, and vi �= β
for all i ∈ [2, k − 1]. We similarly define β-paths with respect to τ , as paths from τ to
β without passing α. We will only discuss α-paths and β-paths with respect to τ , and
thus we will drop the phrase “with respect to τ ”. As we will easily prove later, since α
is itself the root, any path p from τ to the root must contain an α-path or a β-path as a
part.

For any α-path or β-path p, we say that p is cut in a certain round if some node
(potentially τ ) in p fails in or before that round. Given the problematic input set I, we
say that an α-path or β-path p is dummy if for all (X, Y ) ∈ I, p is cut by the end of
the execution �(X, Y ). Otherwise, p is non-dummy. A non-dummy path p may still be
cut in the execution of �(X, Y ) for some (X, Y ) ∈ I. Intuitively, a dummy path p can
be easily dismissed in our proofs later since we will be focusing on the input pairs in
I and a dummy path is always cut in the corresponding executions. So usually we will
only need to focus on non-dummy paths. We use P

α (Pβ) to denote the finite set of all
non-dummy α-paths (β-paths). Note that the paths in P

α and P
β are not necessarily

edge-disjoint or vertex-disjoint. For any given non-dummy α-path or β-path p, we use
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P
α
<p to denote the set of all paths in P

α whose lengths are smaller than the length of p.
Similarly define P

β
<p.

For any input X of Alice’s, if node v has a stable failure in the simulation, we use the
function FA(X, v) to denote v’s failure time. Otherwise, FA(X, v) is undefined. Similarly
define the function FB(Y, v). For any path p and integer t, we use pA(X, t) to denote
the existence of some node v ∈ p satisfying FA(X, v) ≤ t|p|. Intuitively, this means that
the path p will be cut in round t|p| or earlier if Alice’s input is X and if the execution
continues up to round t|p|. We similarly define pB(Y, t). We will often drop the subscripts
in pA(X, t) and pB(Y, t) since they are usually obvious. We say that P

α
<p(X, t) holds if

either P
α
<p is empty or if p′(X, t) holds for all p′ ∈ P

α
<p. Similarly define P

α
<p(Y, t),

P
β
<p(X, t), and P

β
<p(Y, t). Also similarly define P

α(X, t), P
α(Y, t), P

β(X, t), and P
β(Y, t). For

any given input pair (X, Y ) ∈ I, we say that a non-dummy α-path or β-path p is a focal
path iff both of the following two properties hold:

—P
α
<p(X, b), or P

α
<p(Y, b), or both hold;

—P
β
<p(X, b), or P

β
<p(Y, b), or both hold.

Recall that b is the time complexity of the SUM protocol, in terms of aggregation rounds.
As we will prove later, a focal path p has the nice property that all α-paths and β-paths
shorter than p will by cut by the end of the execution �(X, Y ). This is often a necessary
precondition for us to reason about various properties on p.

Finally, recall the definition of an aggregation round from Section 3. We define λ(X, Y )
to be the number of rounds in an aggregation round in the execution of �(X, Y ). In other
words, λ(X, Y ) = maxG′∈G �(G′) where G is the set of topologies that have ever appeared
in the execution of �(X, Y ). Since an oblivious reduction needs to work for any arbitrary
and black-box SUM oracle protocol whose time complexity is up to b aggregation rounds
for some given b, the oblivious reduction needs to work even under the worst-case
scenario where the execution of �(X, Y ) takes as long as bλ(X, Y ) rounds.

Key Challenge in the Proof. Recall that Lemma 7.4 intends to claim that τ will be
disconnected from the root in the execution of �(X, Y ) for any (X, Y ) ∈ I. To prove that
τ will be disconnected from the root, we need to show that there does not exist any
path in G (which can be arbitrary) for τ to reach the root when the execution ends.
The key challenge here is that a failure in the reference setting for (X, Y ) may or may
not actually occur in the execution of �(X, Y )—if the execution terminates before the
failure time of a node v, then node v does not actually fail in �(X, Y ). This is further
complicated by the fact that the total number of rounds in �(X, Y ) (i.e., bλ(X, Y ))
depends on the value of λ(X, Y ), which is itself affected by failures.

This challenge implies that conceptually in our proof, we will need to start with an
initial pessimistic guess (i.e., a loose lower bound) on λ(X, Y ) and on the total number
of rounds in �(X, Y ). Based on this pessimistic guess, we can show that certain failures
must occur by the end of �(X, Y ). Those failures in turn allow us to obtain a better guess
on λ(X, Y ) (i.e., raising our lower bound on λ(X, Y )). This better guess then enables us
to prove that some more failures will occur. Repeating this process, implicitly via an
induction, will address the above challenge.

Some Technical Lemmas. In this section, we will prove a series of technical lemmas
(Lemmas D.3 through D.9), which will be needed for the proof of Lemma 7.4 later.

LEMMA D.3. Any path p from τ (τ �= α and τ �= β) to the root must contain an α-path
or a β-path as a part.
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PROOF. Trivially follows from the fact that α is the root. In fact, it is possible to prove
the following stronger claim: p must either be an α-path itself or contains a β-path as
a part. We chose to still state the lemma in its current form since we want the lemma
to be symmetric for α and β.

The following lemma says that if a path p is a focal path for an input pair (X, Y ) ∈ I,
then λ(X, Y ) will be no smaller than the length of p. Intuitively, this holds because
λ(X, Y ) is no smaller than the length of the shortest path from τ to α at the end of the
execution �(X, Y ). This shortest path must contain an α-path or a β-path as a part.
But since p is a focal path, we will show that all α-paths and β-paths that are shorter
than p must have been cut by the end of the execution. Hence, this shortest path is no
shorter than p.

LEMMA D.4. Consider any focal path p for any input pair (X, Y ) ∈ I. We have
|p| ≤ λ(X, Y ).

PROOF. By the construction of I, we know that for any input pair (X, Y ) ∈ I, τ has a
value of 1 in the execution of �(X, Y ). Lemma 7.2 tells us that τ will not be disconnected
from the root in �(X, Y ). Let p1 denote the shortest path from τ to the root at the end
of the execution �(X, Y ). By definition of an aggregation round, we know that the
number of round in an aggregation round is no smaller than the root’s eccentricity
in the graph, and thus we have |p1| ≤ λ(X, Y ). Next, consider the set of all α-paths
and β-paths. We claim that any α-path or β-path that is shorter than p will no longer
exist (i.e., been cut) by the end of the execution �(X, Y ). If this claim does hold, then
notice that, by Lemma D.3, p1 must contain an α-path or a β-path. This means that
|p| ≤ |p1| ≤ λ(X, Y ).

We prove the earlier claim via a contradiction, and assume that there exist some
α-paths and/or β-paths that are shorter than p and they still exist at the end of the
execution �(X, Y ). Let p2 be the shortest one of those paths (if there are multiple such
p2’s, simply pick an arbitrary one). Note that p2 must be a non-dummy path. Again,
since Lemma D.3 tells us that p1 must contain an α-path or a β-path, we must have
|p2| ≤ |p1| ≤ λ(X, Y ). If p2 ∈ P

α, then p2 ∈ P
α
<p since |p2| < |p|. Since p is a focal path,

we know that either P
α
<p(X, b) or P

α
<p(Y, b) hold, implying that either p2(X, b) or p2(Y, b)

hold. Since b|p2| ≤ bλ(X, Y ), there will be a failure on p2 by the end of the execution of
�(X, Y ). Contradiction. The case for p2 ∈ P

β is similar.

The following lemma says that, for any input pair (X, Y ) ∈ I, P
α(X, b) and P

β(Y, b)
cannot both hold. Intuitively, this is because if they both held, then τ would be discon-
nected from the root (i.e., α) by the end of the execution �(X, Y ).

LEMMA D.5. For any input pair (X, Y ) ∈ I, it is impossible for P
α(X, b) and P

β(Y, b)
to both hold.

PROOF. By Lemma 7.2, we know that τ will not be disconnected from the root in the
execution of �(X, Y ). This means there exists some path p1 from τ to the root at the end
of the execution. Lemma D.3 tells us that p1 must contain an α-path or a β-path. This
means that at the end of the execution, there is at least one α-path or β-path that has
not been cut. Let p be the shortest α-path or β-path that has not been cut at the end of
the execution (if there are multiple such p’s, simply pick an arbitrary one). Clearly, p
must be a non-dummy path.

First consider the case where p is a non-dummy α-path. By how we pick p, we know
that p is a focal path for (X, Y ). Lemma D.4 tells us that |p| ≤ λ(X, Y ). Now since p has
not been cut at the end of the execution in round bλ(X, Y ), we know that p(X, b) must
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not hold. This means that P
α(X, b) does not hold.16 If p is a non-dummy β-path, then

one can similarly show that P
β(Y, b) does not hold.

The next lemma considers any given focal path p with respect to an input pair
(X, Y ) ∈ I. The lemma intuitively says that if some node in p is already spoiled for
Alice’s input X in a certain round, then this spoiled node will cause all other nodes in
p to become spoiled within the next |p| rounds, unless a stable failure is simulated on
the path to “block” such spreading of spoiled nodes.

LEMMA D.6. Consider any focal path p for any input pair (X, Y ) ∈ I. In the execution
of �(X, Y ), for all t ≤ b − 1:

—If some node in p is spoiled for Alice’s input X in round t|p| and if p(X, t + 1) does not
hold, then all nodes in p are spoiled for Alice’s input X in round (t + 1)|p|.

—If some node in p is spoiled for Bob’s input Y in round t|p| and if p(Y, t + 1) does not
hold, then all nodes in p are spoiled for Bob’s input Y in round (t + 1)|p|.
PROOF. First, Lemma D.4 tells us that |p| ≤ λ(X, Y ), and thus (t+1)|p| ≤ bλ(X, Y ). The

remainder of the proof follows directly from the definition of spoil paths. In particular,
by definition of spoil paths, only stable failures can block spoil paths.

The next lemma still considers any given focal path p with respect to an input pair
(X, Y ) ∈ I. The lemma intuitively says that if some node on p has a stable failure with
respect to Y and is not simultaneously a stable failure with respect to X, then that
node becomes an epicenter for Alice. Unless we simulate a stable failure (with respect
to X) on p to “block” the spreading of spoiled nodes caused by this epicenter, all nodes
on p will be spoiled for Alice’s input X within the next |p| rounds.

LEMMA D.7. Consider any focal path p for any input pair (X, Y ) ∈ I. In the execution
of �(X, Y ), for all t ≤ b − 1:

—If p(Y, t) holds and if p(X, t + 1) does not hold, then all nodes in p are spoiled for
Alice’s input X in round (t + 1)|p|.

—If p(X, t) holds and if p(Y, t+1) does not hold, then all nodes in p are spoiled for Bob’s
input Y in round (t + 1)|p|.
PROOF. First, Lemma D.4 tells us that |p| ≤ λ(X, Y ), and thus (t + 1)|p| ≤ bλ(X, Y ).

Without loss of generality, we only prove the first part of the lemma. By definition
of p(Y, t), we know that there exists some node v ∈ p such that FB(Y, v) ≤ t|p| <
(t + 1)|p| ≤ bλ(X, Y ). Since p(X, t + 1) does not hold, the failure of v in round FB(Y, v)
must not be a stable failure for Alice’s input X. But since v does fail in the reference
setting for (X, Y ) in round FB(Y, v), it means that v is an epicenter for Alice’s input X.
(Note that v may still be either a value epicenter or a failure epicenter.) The occurrence
time of this epicenter is round FB(Y, v) or earlier. This means that v must be spoiled in
round FB(Y, v) ≤ t|p|. Applying Lemma D.6 then finishes the proof.

The next lemma still considers any given focal path p with respect to an input pair
(X, Y ) ∈ I. The lemma intuitively says that, if τ is spoiled for Alice’s input X, in order
to prevent α from being spoiled within th next |p| rounds, we must simulate a stable
failure with respect to X somewhere on p.

LEMMA D.8. Consider any focal path p for any input pair (X, Y ) ∈ I. For all t ≤ b−1:

—If p ∈ P
α and if τ is spoiled for Alice’s input X in round t|p|, then p(X, t+1) must hold.

—If p ∈ P
β and if τ is spoiled for Bob’s input Y in round t|p|, then p(Y, t +1) must hold.

16One can also simultaneously show that P
α(Y, b) does not hold, though we do not need that claim.

Journal of the ACM, Vol. 61, No. 3, Article 19, Publication date: May 2014.



Cost of Fault Tolerance in Multi-Party Communication Complexity 19:59

PROOF. First, Lemma D.4 tells us that |p| ≤ λ(X, Y ), and thus (t + 1)|p| ≤ bλ(X, Y ).
Without loss of generality, we only prove the first part, via a contradiction. By
Lemma D.6, if p(X, t + 1) does not hold, then in the execution of �(X, Y ), all nodes
in p are spoiled for Alice’s input X in round (t + 1)|p|. Since (t + 1)|p| ≤ bλ(X, Y ), this
means that α (which is in p) is spoiled by the end of the execution, which contradicts
with Corollary D.2.

The following will use these lemmas to prove the final technical lemma in this
appendix. Even though the proof only uses elementary induction, it is rather complex
because while we are doing an induction on the input pairs in the problematic input
set I, we need to simultaneously reason about the multiple paths in G and these two
issues are entangled together. Later, we will only need to use the second claim in the
following lemma—the first claim in the lemma is proved so that we can carry both
claims in the induction, which is critical for the proof to work.

LEMMA D.9. Suppose b ≥ 27. Let X(0), Y (1), X(1), Y (2), . . . , X(k), Y (k+1) (where k + 1 ≤
	√b/3
) be those inputs in the proof of Lemma 7.3 that correspond to the problematic
input set I. For any path p ∈ P

α, any integer i ∈ [1, k + 1], and any integer ti ∈
[0, b − 2i2 − 2i], we have the following.

—If P
α
<p(X(i−1), ti + 4i) and P

β
<p(Y (i), ti) holds, then p(X(i−1), ti + 4i) holds.

—In particular, if P
α
<p = P

β
<p = ∅, then p(X(i−1), ti + 4i) holds.

PROOF. First, note that i ≤ k + 1 ≤ 	√b/3
 and b ≥ 27 imply b − 2i2 − 2i ≥ 0. This
means that the range for ti is never empty. We only prove the first part of the lemma,
since the second part is the special case of the first part. We prove the first part via an
induction on i. For i = 1, since t1 < t1 +4 ≤ b, we have P

α
<p(X(0), b) and P

β
<p(Y (1), b). This

means that p is a focal path for the input pair (X(0), Y (1)). In the execution of �(X(0), Y (1)),
τ has a value of 1 and is spoiled for Alice’s input X(0) in round 1 ≤ |p|. Apply Lemma D.8
and we have p(X(0), 2), which implies p(X(0), t1 + 4) for all t1 ∈ [0, b − 4].

Now consider any i ≥ 2, while assuming that the lemma holds for i −1. We are given
the condition P

α
<p(X(i−1), ti + 4i) and P

β
<p(Y (i), ti). We will prove p(X(i−1), ti + 4i) via a

contradiction and assume that it does not hold. The final contradiction will be obtained
by sequentially proving the following claims.

—CLAIM 1. P
β
<p(X(i−1), ti+1) holds, which will be proved via the execution of �(X(i−1), Y (i)).

—CLAIM 2. P
β
<p(Y (i−1), ti + 2) holds, which will be proved via the execution of

�(X(i−1), Y (i−1)).
—CLAIM 3. P

α
<p(X(i−2), ti +4i −2) holds, which will be proved via the inductive hypothesis

and implicitly via the execution of �(X(i−2), Y (i−1)).
—CLAIM 4. p(X(i−2), ti + 4i − 2) holds, which will be proved via the inductive hypothesis

and implicitly via the execution of �(X(i−2), Y (i−1)).
—CLAIM 5. p(Y (i−1), ti + 4i − 1) holds, which will be proved via the execution

�(X(i−2), Y (i−1)).
—CLAIM 6. p(X(i−1), ti + 4i) holds, which will be proved via the execution of

�(X(i−1), Y (i−1)).

Figure 13 illustrates these six claims in an example topology.

PROVING CLAIM 1. We prove P
β
<p(X(i−1), ti +1) via a contradiction and let p1 be any path

in P
β
<p where p1(X(i−1), ti + 1) does not hold. We first show that p and p1 are both focal
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Fig. 13. Illustration of the six claims proved in Lemma D.9 in an example topology. For the given τ , this
example topology has four α-paths and three β-paths. Nodes other than α, β, and τ are not shown in the
figure. The α-path marked by p is the path p in the lemma. For clarity, we omit the labels for α, β, and τ

when illustrating the claims. For each of the claims, the figure indicates on the left the input (e.g., X(i−1)) to
Alice, and on the right the input to Bob. Solid arrows indicate those (stable) failures that we already know,
given the corresponding input to Alice or Bob. Dashed arrows indicate those (stable) failures whose existence
is proved in the corresponding claim.

paths for the input pair (X(i−1), Y (i)). For p, we have P
α
<p(X(i−1), ti + 4i) and P

β
<p(Y (i), ti).

Since ti < ti + 4i < b, we know that p is a focal path for (X(i−1), Y (i)). For p1, since
P

α
<p1

⊂ P
α
<p and P

β
<p1 ⊂ P

β
<p, by similar argument, we know that p1 is a focal path for

(X(i−1), Y (i)) as well.
Next, by the original condition, we have p1(Y (i), ti). Invoke Lemma D.7 for p1 and we

know that all nodes on p1 (including τ ) are spoiled for Alice’s input X(i−1) in the execution
of �(X(i−1), Y (i)) in round (ti + 1)|p1| < (ti + 1)|p|. We next invoke Lemma D.8 for p and
we know that p(X(i−1), ti + 2) must hold, which implies p(X(i−1), ti + 4i). Contradiction.

PROVING CLAIM 2. Consider any path p1 ∈ P
β
<p. We first show that p1 is a focal path for

the input pair (X(i−1), Y (i−1)). From the original condition of P
α
<p(X(i−1), ti +4i) and since

P
α
<p1

⊂ P
α
<p, we have P

α
<p1

(X(i−1), ti +4i) which implies P
α
<p1

(X(i−1), b). Next, Claim 1 tells
us that P

β
<p(X(i−1), ti + 1). By a similar argument, we have P

β
<p1 (X(i−1), b). Thus, p1 is a

focal path for (X(i−1), Y (i−1)).
From Claim 1, we also have p1(X(i−1), ti + 1). Now, invoke Lemma D.7 for p1. We will

then have p1(Y (i−1), ti + 2), since otherwise all nodes in p1 (including β) are spoiled for
Bob’s input Y (i−1) in the execution of �(X(i−1), Y (i−1)) in round (ti + 2)|p1|.
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PROVING CLAIM 3. Prove by contradiction and assume that P
α
<p(X(i−2), (ti +2)+4(i −1))

does not hold. Let p1 be the shortest path (if there are multiple such p1’s, simply pick
an arbitrary one) in P

α
<p such that the p1(X(i−2), (ti + 2) + 4(i − 1)) does not hold. We

next want to invoke the inductive hypothesis for i −1 on p1 ∈ P
α with ti−1 = ti +2. Such

invocation is possible since:

—ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1);
—By definition of p1, we have that P

α
<p1

(X(i−2), (ti + 2) + 4(i − 1)) holds;
—We know from Claim 2 that P

β
<p(Y (i−1), ti + 2) holds, implying that P

β
<p1 (Y (i−1), ti + 2)

holds.

This invocation tells us that p1(X(i−2), (ti+2)+4(i−1)) holds, leading to a contradiction.

PROVING CLAIM 4. We want to invoke the inductive hypothesis for i − 1 on p with
ti−1 = ti + 2. Such invocation is possible since:

—ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1);
—Claim 3 gives us P

α
<p(X(i−2), (ti + 2) + 4(i − 1));

—Claim 2 gives us P
β
<p(Y (i−1), ti + 2).

This invocation tells us that p(X(i−2), (ti + 2) + 4(i − 1)) holds.

PROVING CLAIM 5. We first show that p is a focal path for (X(i−2), Y (i−1)). We already
have P

α
<p(X(i−2), ti + 4i − 2) from Claim 3 and P

β
<p(Y (i−1), ti + 2) from Claim 2. Since

ti + 2 ≤ ti + 4i − 2 ≤ b − 2i2 − 2i + 4i − 2 < b, we now know that p is a focal path for
(X(i−2), Y (i−1)). We next prove p(Y (i−1), ti + 4i − 1) via a contradiction.

We already have p(X(i−2), ti + 4i − 2) from Claim 4. Since p(Y (i−1), ti + 4i − 1) does
not hold, we can invoke Lemma D.7 for p. That lemma tells us that in the execution
of �(X(i−2), Y (i−1)), all nodes in p (including τ ) become spoiled for Bob’s input Y (i−1) in
round (ti + 4i − 1)|p|. This is a critical property which we will use later.

Next, consider the two properties P
α(X(i−2), ti + 8i − 4) and P

β(Y (i−1), ti + 4i). By
Lemma D.5, it is impossible for both of them to hold, since otherwise they would imply
that both P

α(X(i−2), b) and P
β (Y (i−1), b) hold. Let p1 be the shortest path (if there are

multiple such p1’s, simply pick an arbitrary one) in P
α ∪ P

β where p1(X(i−2), ti + 8i − 4)
(if p1 ∈ P

α) or p1(Y (i−1), ti + 4i) (if p1 ∈ P
β) does not hold.

We consider two cases. If p1 ∈ P
β , we will first show that p1 is a focal path. By

definition of p1, we have P
α
<p1

(X(i−2), ti + 8i − 4) and P
β
<p1 (Y (i−1), ti + 4i) holds. Since

ti + 4i ≤ b − 2i2 − 2i + 4i < b, P
α
<p1

(X(i−2), b) and P
β
<p1 (Y (i−1), b) holds. This means that

p1 is a focal path for the input pair (X(i−2), Y (i−1)). We next want to show that |p| ≤ |p1|.
By how we chose p1, we know that p1(Y (i−1), ti + 4i) does not hold. On the other hand,
Claim 2 tells us that P

β
<p(Y (i−1), ti + 2) holds, implying that P

β
<p(Y (i−1), ti + 4i) holds

(since i ≥ 2). Thus, we must have p1 /∈ P
β
<p and |p1| ≥ |p|. Finally, as shown earlier,

in the execution of �(X(i−2), Y (i−1)), the node τ must be spoiled for Bob’s input Y (i−1) in
round (ti + 4i − 1)|p| ≤ (ti + 4i − 1)|p1|. Now, we can invoke Lemma D.8, which shows
that p1(Y (i−1), ti + 4i) holds and thus leads to a contradiction.

For the second case where p1 ∈ P
α, we want to invoke the inductive hypothesis for

i − 1 on p1 with ti−1 = ti + 4i. Such invocation is possible since

—ti−1 = ti + 4i ≤ b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1);
—by definition of p1, we have that P

α
<p1

(X(i−2), (ti + 4i) + 4(i − 1)) and P
β
<p1 (Y (i−1), ti + 4i)

holds.
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The invocation gives us p1(X(i−2), (ti + 4i) + 4(i − 1)), leading to a contradiction.

PROVING CLAIM 6. We first show that p is a focal path for (X(i−1), Y (i−1)). From the
original condition, we have P

α
<p(X(i−1), ti + 4i), which implies P

α
<p(X(i−1), b). By Claim 2,

we have P
β
<p(Y (i−1), ti + 2), which implies P

β
<p(Y (i−1), b). Thus p is a focal path for

(X(i−1), Y (i−1)).
Claim 5 gives us p(Y (i−1), ti +4i −1). Now, invoke Lemma D.7 for p. That lemma tells

us that p(X(i−1), ti + 4i) must hold, since otherwise all nodes in p (including α) will be
spoiled for Alice’s input X(i−1) in round (ti + 4i)|p|.

D.3. Proof of Lemma 7.4

Using the technical lemmas proved in the previous two appendices, we can now finally
prove Lemma 7.4:

PROOF OF LEMMA 7.4. By Lemma D.3, a path from τ to the root must contain either
an α-path or a β-path. Thus to prove the lemma, it suffices to prove that all α-paths
and β-paths are dummy. Prove by contradiction and assume that some α-paths and/or
β-paths are non-dummy. Let p be the shortest path among all such paths (if there are
multiple such p’s, simply pick an arbitrary one). This means that there exists some
(X, Y ) ∈ I such that p is not cut by the end of the execution �(X, Y ). Also by how we
chose p, we trivially have P

α
<p = P

β
<p = ∅.

Next first consider the case where p is a non-dummy α-path. For all i where 1 ≤
i ≤ k + 1 ≤ 	√b/3
, invoke the second claim in Lemma D.9 with ti = 0 and we have
p(X(i−1), 4i). Since 4i ≤ 4	√b/3
 < b when b ≥ 27, this in turn implies p(X(i−1), b) for
1 ≤ i ≤ k + 1. Next since P

α
<p = P

β
<p = ∅, we trivially know that p is a focal path for

(X, Y ). Invoke Lemma D.4 and we have |p| ≤ λ(X, Y ). Together with p(X, b), we know
that p will be cut by the end of the execution of �(X, Y ). Contradiction.

For the second case where p is a β-path, the proof is entirely symmetric. In particular,
the only difference between α and β is that α is the root while β is not. However, we
only used the fact that α is the root in the proof of Lemma D.3. Lemma D.3 itself is
already symmetric for α and β. In other words, if we view the proof for Lemma D.3 as
a black-box, then α and β are entirely symmetric throughout Sections D.1 and D.2.
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