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We study the set disjointness problem in the most powerful model of bounded-error communication, the k-
party randomized number-on-the-forehead model. We show that set disjointness requires �(

√
n/2kk) bits of

communication, where n is the size of the universe. Our lower bound generalizes to quantum communication,
where it is essentially optimal. Proving this bound was a longstanding open problem even in restricted
settings, such as one-way classical protocols with k = 4 parties [Wigderson 1997]. The proof contributes a
novel technique for lower bounds on multiparty communication, based on directional derivatives of protocols
over the reals.
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1. INTRODUCTION

Set disjointness is the most studied problem in communication complexity theory. The
simplest version of the problem features two parties, Alice and Bob. Alice receives as
input a subset S ⊆ {1, 2, . . . , n}, Bob receives a subset T ⊆ {1, 2, . . . , n}, and their goal
is to determine with minimal communication whether the subsets are disjoint. One
also studies a promise version of this problem called unique set disjointness, in which
the intersection S∩T is either empty or contains a single element. The communication
complexity of two-party set disjointness is thoroughly understood. One of the earliest
results in the area is a tight lower bound of n + 1 bits for deterministic protocols
solving set disjointness. For randomized protocols, a lower bound of �(

√
n) was

obtained by Babai et al. [1986] and strengthened to a tight �(n) by Kalyanasundaram
and Schnitger [1992]. Simpler proofs of the linear lower bound were discovered by
Razborov [1992] and Bar-Yossef et al. [2004]. All three proofs [Kalyanasundaram and
Schnitger; Razborov; Bar-Yossef et al.] of the linear lower bound apply to unique set
disjointness as well. Finally, Razborov [2002] obtained a tight lower bound of �(

√
n)

on the bounded-error quantum communication complexity of set disjointness and
unique set disjointness, with a simpler proof discovered several years later [Sherstov
2011]. Already in the two-party setting, the study of set disjointness has contributed
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34:2 A. A. Sherstov

to communication complexity theory a variety of techniques, including ideas from com-
binatorics, Kolmogorov complexity, information theory, matrix analysis, and Fourier
analysis.

We study the complexity of set disjointness in the model with three or more par-
ties. We use the number-on-the-forehead model of multiparty communication, due to
Chandra et al. [1983]. This model features k parties and a function f (x1, x2, . . . , xk)
with k arguments. Communication occurs in broadcast, a bit sent by any given party
instantly reaching everyone else. The input (x1, x2, . . . , xk) is distributed among the
parties by giving the ith party the arguments x1, . . . , xi−1, xi+1, . . . , xk but not xi. One
can think of xi as written on the ith party’s forehead, hence the terminology. The
number-on-the-forehead model is the main model in the area because any other way
of assigning arguments to parties results in a less powerful model (provided of course
that one does not assign all the arguments to a single party, in which case there is
never a need to communicate).

In the k-party version of set disjointness, the inputs are S1, S2, . . . , Sk ⊆ {1, 2, . . . , n},
and the ith party knows all the inputs except for Si. The goal is to determine whether
the sets have empty intersection: S1 ∩ S2 ∩ · · · ∩ Sk = ∅. For unique set disjointness,
the parties additionally know that the intersection S1 ∩ S2 ∩ · · · ∩ Sk is either empty
or contains a unique element. It is common to represent the input to set disjointness
by a k × n Boolean matrix X = [xij], whose rows correspond to the characteristic
vectors of the input sets. In this notation, set disjointness is given by the simple
formula

DISJk,n(X) =
n∧

j=1

k∨
i=1

xij . (1)

Unique set disjointness UDISJk,n is given by the same formula, with the understanding
that the input matrix X contains at most one column consisting entirely of ones.

Progress on the communication complexity of set disjointness for k � 3 parties is
summarized in Table I. In a surprising result, Grolmusz [1994] proved an upper bound
of O(log2 n + k2n/2k) on the deterministic communication complexity of this problem.
Proving a strong lower bound, even for k = 3, turned out to be difficult. Tesson [2003]
and Beame et al. [2006] obtained a lower bound of �( 1

k log n) for randomized protocols.
Four years later, Lee and Shraibman [2009] and Chattopadhyay and Ada [2008] gave an
improved result. These authors generalized the two-party method of Sherstov [2009,
2011] to k � 3 parties and thereby obtained a lower bound of �(n/22kk)1/(k+1) on the
randomized communication complexity of set disjointness. Their lower bound was
strengthened by Beame and Huynh-Ngoc [2009] to (n�(

√
k/ log n)/2k2

)1/(k+1), which is an
improvement for k large enough. All lower bounds listed up to this point are weaker
than �(n/2k3

)1/(k+1), which means that they become subpolynomial as soon as the num-
ber of parties k starts to grow. Three years later, a lower bound of �(n/4k)1/4 was
obtained by the author [Sherstov 2012a] on the randomized communication complex-
ity of set disjointness, which remains polynomial for up to k ≈ 1

2 log n and comes close
to matching Grolmusz’s upper bound.

The �(n/4k)1/4 lower bound is not accidental. It represents what we call the triangle
inequality barrier in multiparty communication complexity, described in detail at the
end of the Introduction. We are able to break this barrier and obtain a quadratically
stronger lower bound. In the theorem that follows, Rε denotes ε-error randomized
communication complexity.
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Table I. Communication Complexity of k-Party Set Disjointness

Bound Reference

O

(
log2 n + k2n

2k

)
Grolmusz [1994]

�

(
log n

k

)
Tesson [2003]
Beame et al. [2006]

�

(
n

22kk

) 1
k+1

Lee and Shraibman [2009]
Chattopadhyay and Ada [2008]

(
n�(

√
k/ log n)

2k2

) 1
k+1

Beame and Huynh-Ngoc [2009]

�
( n

4k

)1/4
Sherstov [2012a]

�

(√
n

2kk

)
This article

THEOREM 1.1 (MAIN RESULT). Set disjointness and unique set disjointness have ran-
domized communication complexity

R1/3(DISJk,n) � R1/3(UDISJk,n) = �

(√
n

2kk

)
.

Two remarks are in order. Over the years, the lack of progress on set disjointness
prompted researchers to consider restricted multiparty protocols, such as one-way pro-
tocols where the parties 1, 2, . . . , k speak in that order and the last party announces
the answer. An even more restricted form of communication is a simultaneous protocol,
in which the parties simultaneously and independently send a message to a referee
who then announces the answer. In 1997, Wigderson proved a lower bound of �(

√
n) for

solving set disjointness by a simultaneous protocol with k = 3 parties (unpublished by
Wigderson, the proof appeared in Babai et al. [2001]). Since then, several papers have
examined the multiparty complexity of set disjointness for simultaneous, one-way, and
other restricted kinds of protocols [Babai et al. 2001; Tesson 2003; Beame et al. 2006;
Viola and Wigderson 2009; Ben-Aroya et al. 2008; Klauck 2010]. The strongest commu-
nication lower bound [Tesson 2003; Beame et al. 2006] obtained in that line of research
was �(n/kk)1/(k−1). To summarize, prior to our work it was an open problem to gener-
alize Wigderson’s 1997 lower bound even to k = 4 parties, communicating one-way or
simultaneously.

Second, by the results of Lee et al. [2009] and Briet et al. [2009], all communi-
cation lower bounds in this article generalize to quantum protocols. In particular,
Theorem 1.1 implies a lower bound of

√
n/2k+o(k) on the bounded-error quantum com-

munication complexity of set disjointness. This lower bound essentially matches the
well-known quantum protocol for set disjointness due to Buhrman et al. [1998], with
cost �

√
n/2k� logO(1) n. For the reader’s convenience, we provide a sketch of the pro-

tocol in Remark 5.4. Thus, our results essentially settle the bounded-error quantum
communication complexity of set disjointness.

Our technique allows us to obtain several additional results, discussed next.
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XOR Lemmas and Direct Product Theorems. In a seminal paper, Yao [1982] asked
whether computation admits economies of scale. More concretely, suppose that solving
a single instance of a given decision problem with probability of correctness 2/3 requires
R units of a computational resource (such as time, memory, communication, or queries).
Common sense suggests that solving � independent instances of the problem requires
�(�R) units of the resource. Indeed, having less than ε�R units in total, for a small
constant ε > 0, leaves less than εR units per instance, intuitively forcing the algorithm
to guess random answers for many of the instances and resulting in overall correctness
probability 2−�(�). Such a statement is called a strong direct product theorem. A related
notion is an XOR lemma, which asserts that computing the XOR of the answers to the
� problem instances requires �(�R) resources, even to achieve correctness probability
1
2 + 2−�(�). XOR lemmas and direct product theorems are motivated by basic intellectual
curiosity as well as a number of applications, including separations of circuit classes,
improvement of soundness in proof systems, inapproximability results for optimization
problems, and time-space tradeoffs.

In communication complexity, the direct product question has been studied for over
twenty years. We refer the reader to the papers by Klauck [2010] and Sherstov [2012b]
for an up-to-date overview of the literature, focusing here exclusively on set disjoint-
ness. The direct product question for two-party set disjointness has been definitively
resolved, including classical one-way protocols [Jain et al. 2008], classical two-way pro-
tocols [Beame et al. 2006; Klauck 2010], quantum one-way protocols [Ben-Aroya et al.
2008], and quantum two-way protocols [Klauck et al. 2007; Sherstov 2012b]. Proving
any kind of direct product result for three or more parties remained an open problem
until the author’s recent paper [Sherstov 2012a], which gives a communication lower
bound of � · �(n/4k)1/4 for the following tasks: (i) computing the XOR of � instances of
set disjointness with probability of correctness 1

2 + 2−�(�); (ii) solving � instances of set
disjointness simultaneously with probability of correctness at least 2−�(�). We obtain
an improved result.

THEOREM 1.2. Let ε > 0 be a sufficiently small absolute constant. The following tasks
require � · �(

√
n/2kk) bits of communication each:

(i) computing the XOR of � instances of UDISJk,n with probability at least 1
2 + 2−�−1;

(ii) solving with probability 2−ε� at least (1 − ε)� among � instances of UDISJk,n.

Theorem 1.2 generalizes Theorem 1.1, showing that �(
√

n/2kk) is in fact a lower
bound on the per-instance cost of set disjointness. The communication lower bound in
Theorem 1.2 is quadratically stronger than in previous work [Sherstov 2012a]. Clearly,
Theorem 1.2 also holds for set disjointness, a problem harder than UDISJk,n. Finally,
this theorem generalizes to quantum protocols, where it is essentially tight.

Nondeterministic and Merlin-Arthur Communication. Nondeterministic communi-
cation is defined in complete analogy with computational complexity. A nondetermin-
istic protocol starts with a guess string, whose length counts toward the protocol’s
communication cost, and proceeds deterministically thenceforth. A nondeterministic
protocol for a given communication problem F is required to output the correct answer
for all guess strings when presented with a negative instance of F, and for some guess
string when presented with a positive instance. We further consider Merlin-Arthur
protocols [Babai 1985; Babai and Moran 1988], a communication model that combines
the power of randomization and nondeterminism. As before, a Merlin-Arthur protocol
for a given problem F starts with a guess string, whose length counts toward the com-
munication cost. From then on, the parties run an ordinary randomized protocol. The
randomized phase in a Merlin-Arthur protocol must produce the correct answer with
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probability at least 2/3 for all guess strings when presented with a negative instance
of F, and for some guess string when presented with a positive instance.

Nondeterministic and Merlin-Arthur protocols have been extensively studied for
k = 2 parties but are much less understood for k � 3. It was only five years ago that the
first nontrivial lower bound, n�(1/k)/22k

, was obtained by Gavinsky and Sherstov [2010]
on the multiparty communication complexity of set disjointness in these models. That
lower bound was improved by the author [Sherstov 2012a] to �(n/4k)1/4 for nondeter-
ministic protocols and �(n/4k)1/8 for Merlin-Arthur protocols, both of which are tight
up to a polynomial. In this article, we obtain quadratically stronger lower bounds in
both models.

THEOREM 1.3. Set disjointness has nondeterministic and Merlin-Arthur complexity

N(DISJk,n) = �

(√
n

2kk

)
,

MA(DISJk,n) = �

(√
n

2kk

)1/2

.

Set disjointness should be contrasted in this regard with its complement ¬DISJk,n,
called set intersection, whose nondeterministic complexity is at most log n + O(1). In-
deed, it suffices to guess an element i ∈ {1, 2, . . . , n} and verify with two bits of commu-
nication that i ∈ S1 ∩ S2 ∩ · · · ∩ Sk.

Small-Bias Communication and Discrepancy. Much of the work in communication
complexity revolves around the notion of discrepancy. Informally, the discrepancy of
a function F is the maximum correlation of F with a constant-cost communication
protocol. One of the many uses of discrepancy is proving lower bounds for small-bias
protocols, which are randomized protocols with probability of correctness vanishingly
close to the trivial value 1/2. Quantitatively speaking, any function with discrepancy γ

requires log 1√
γ

bits of communication to achieve correctness probability 1
2 + 1

2
√

γ . The
converse also holds, up to minor numerical adjustments. In other words, the study of
discrepancy is essentially the study of small-bias communication.

In a famous result, Babai et al. [1992] proved that the generalized inner product
function

⊕n
j=1
∧k

i=1 xij has exponentially small discrepancy, exp(−�(n/4k)). The proof
of Babai et al. [1992] crucially exploits the XOR function, and until several years ago,
it was unknown whether any constant-depth {∧,∨,¬}-circuit of polynomial size has
small discrepancy. The most natural candidate, set disjointness, is of no use here:
while its bounded-error communication complexity is high, its discrepancy turns out
to be �(1/n). The question was finally resolved for k = 2 parties by Buhrman et al.
[2007] and Sherstov [2009, 2011], with a bound of exp(−�(n1/3)) on the discrepancy
of an {∧,∨}-formula of depth 3 and size n. Since then, a series of papers have studied
the question for k � 3 parties. Table II gives a quantitative summary of this line of
research. The best multiparty bound prior to this article was exp(−�(n/4k)1/7), obtained
by the author [Sherstov 2012a] for an {∧,∨}-formula of depth 3 and size nk. We prove
the following stronger result.

THEOREM 1.4. There is an explicit k-party communication problem Hk,n, given by an
{∧,∨}-formula of depth 3 and size nk, with discrepancy

disc(Hk,n) = exp
{
−�

( n
4kk2

)1/3
}

.
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Table II. Multiparty Discrepancy of Constant-Depth {∧,∨}-Circuits of Size nk

Depth Discrepancy Reference

3 exp{−�(n1/3)}, k = 2 Buhrman et al. [2007]
Sherstov [2009, 2011]

3 exp
{
−�

( n
4k

)1/(6k2k)
}

Chattopadhyay [2007]

6 exp
{
−�

( n
231k

)1/29
}

Beame and Huynh-Ngoc [2009]

3 exp
{
−�

( n
4k

)1/7
}

Sherstov [2012a]

3 exp

{
−�

(
n

4kk2

)1/3
}

This article

In particular,

R1
2 −exp

{
−�( n

4kk2 )1/3
}(Hk,n) = �

( n
4kk2

)1/3
.

Theorem 1.4 is satisfying in that it matches the state of the art for two-party
communication, that is, even in the setting of two parties no bound is known better
than the multiparty bound of Theorem 1.4. This theorem is qualitatively optimal with
respect to the number of parties k: by the results of Allender [1989] and Håstad and
Goldmann [1991], every polynomial-size {∧,∨,¬}-circuit of constant depth has dis-
crepancy at least 2− logc n for k � logc n parties, where c > 1 is a constant. Theorem 1.4
is also optimal with respect to circuit depth because polynomial-size DNF and CNF
formulas have discrepancy at least 1/nO(1), regardless of the number of parties k. In
Section 6.4, we give applications of Theorem 1.4 to circuit complexity.

The Triangle Inequality Barrier. Our proof is best described by abstracting away from
the set disjointness problem and considering arbitrary composed functions. Specifically,
let G be a k-party communication problem, with domain X = X1 × X2 × · · · × Xk. In
what follows, we refer to G as a gadget. We study the communication complexity of
functions of the form F = f (G, G, . . . , G), where f : {0, 1}n → {0, 1}. Thus, F is a k-party
communication problem with domain X n = X n

1 × X n
2 × · · · × X n

k . Our motivation for
studying such compositions is clear from the defining equation (1) for set disjointness,
which shows that DISJk,nm = ANDn(DISJk,m, . . . , DISJk,m).

Compositions of the form f (G, G, . . . , G) have been the focus of much recent work
in the area [Sherstov 2011; Shi and Zhu 2009; Lee and Shraibman 2009; Chattopad-
hyay and Ada 2008; Beame and Huynh-Ngoc 2009; Chattopadhyay 2008; Sherstov
2012a]. These recent papers differ in what gadgets G they allow, but they all leave
f unrestricted and give communication lower bounds for f (G, G, . . . , G) in terms of
the approximate degree of f, defined as the least degree of a real polynomial that
approximates f pointwise within 1/3. Such communication lower bounds are strong
and broadly applicable because the approximate degree is high for virtually every
Boolean function, including f = ANDn. The first communication lower bounds for
f (G, G, . . . , G) for general f were obtained by the author [Sherstov 2011] and inde-
pendently by Shi and Zhu [2009], in the setting of two-party communication. Both of
these works have been generalized to the multiparty setting, for example, by Lee and
Shraibman [2009], Chattopadhyay and Ada [2008], Beame and Huynh-Ngoc [2009],
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Chattopadhyay [2008], and Sherstov [2012a]. The main goal in this line of research
is to keep the gadget G small while guaranteeing that the communication complexity
of f (G, G, . . . , G) is bounded from below by the approximate degree of f. For the spe-
cific purpose of proving communication lower bounds for set disjointness, the gadget G
needs to be representable as G = DISJk,m with m = m(n, k) as small as possible. Gadget
constructions have become increasingly efficient over the past few years, with the best
previous result [Sherstov 2012a] achieving m(n, k) = �(4kn). Unfortunately, the growth
of the gadget size with n is inherent in all previous work. We refer to this obstacle
as the triangle inequality barrier, for reasons that will shortly be explained. Proving
a tight lower bound for set disjointness requires breaking this barrier and making do
with a gadget of fixed size.

We now take a closer look at the triangle inequality barrier by sketching the proof
of the best previous lower bound for set disjointness [Sherstov 2012a]. Let F =
f (G, G, . . . , G) be a composed communication problem of interest, where G : X → {0, 1}
is a k-party communication problem and f : {0, 1}n → {0, 1} is an arbitrary function
with high approximate degree. Consider a linear operator L that maps real func-
tions � : X n → R to real functions L� : {0, 1}n → R in the following natural way:
the value (L�)(x1, x2, . . . , xn) is obtained by averaging � one way or another on the
set G−1(x1) × G−1(x2) × · · · × G−1(xn). The definition of L ensures that f = LF. The
proof strategy is to show that if � : X n → [0, 1] is the acceptance probability of any
low-cost randomized protocol, then L� can be approximated in the infinity norm by a
low-degree real polynomial f̃ . This immediately rules out an efficient protocol for F,
since its existence would force

| f − f̃ | = |LF − f̃ | ≈ |LF − L�| = |L(F − �︸ ︷︷ ︸
≈0

)| ≈ 0,

in contradiction to the inapproximability of f by low-degree polynomials.
The difficult part of this program is proving that L� can be approximated by a

low-degree polynomial. The author’s paper [Sherstov 2012a] does so constructively,
by showing that the Fourier spectrum of L� resides almost entirely on low-order
characters:

|L̂�(S)| < 2r · 2−|S|
(

n
|S|
)−1

, S ⊆ {1, 2, . . . , n}, (2)

where r is the cost of the communication protocol. In particular, an approximating poly-
nomial for L� can be obtained by truncating the Fourier spectrum at degree r + O(1).
The technical centerpiece of Sherstov [2012a] is a proof that the Fourier concentra-
tion (2) can be achieved by using the gadget G = DISJk,�(4kn).

In the proof just sketched, the gadget size needs to grow with n for the obvious reason
that the number of Fourier coefficients of L� grows with n and we apply the triangle
inequality to them. This triangle inequality barrier is inherent not only in Sherstov
[2012a] but in previous multiparty analyses as well. All these papers use the triangle
inequality to control the error term, either explicitly by bounding the discarded Fourier
mass as shown above [Shi and Zhu 2009; Chattopadhyay 2008; Sherstov 2012a], or
implicitly by bounding the Fourier mass of certain pairwise products [Sherstov 2009;
Lee and Shraibman 2009; Chattopadhyay and Ada 2008; Beame and Huynh-Ngoc
2009]. As explained below, we are able to avoid this term-by-term summing of Fourier
coefficients by focusing on the global, approximation-theoretic structure of the function
rather than its spectrum.

Our Proof. To obtain our main result, we are restricted to use gadgets G whose size
is independent of n. This requires finding a way to approximate protocols by low-degree
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polynomials without summing Fourier coefficients term by term. In the setting of k = 2
parties, the triangle inequality barrier was successfully overcome in 2007 using matrix
analysis [Sherstov 2011]. For multiparty communication, the problem remained wide
open prior to this article because matrix-analytic tools do not apply to k � 3.

Our solution involves two steps. First, we derive a criterion for the approximability
of any given function φ : {0, 1}n → R by low-degree polynomials. Specifically, recall that
the directional derivative of φ in the direction S ⊆ {1, 2, . . . , n} at the point x ∈ {0, 1}n

is given by (∂φ/∂S)(x) = 1
2φ(x) − 1

2φ(x ⊕ 1S), where 1S denotes the characteristic vector
of S. Directional derivatives of higher order are obtained by differentiating repeatedly.
We prove the following.

THEOREM 1.5. Every φ : {0, 1}n → R can be approximated pointwise by a polynomial
of degree d to within

Kd+1
(φ, d + 1) + Kd+2
(φ, d + 2) + Kd+3
(φ, d + 3) + · · · , (3)

where K > 2 is an absolute constant and 
(φ, i) is the maximum magnitude of an
order-i directional derivative of φ with respect to pairwise disjoint sets S1, S2, . . . , Si.

The crucial point is that the dimension n of the ambient hypercube never figures
in the error bound (3). This allows us to break the triangle inequality barrier and
approximate a large class of functions φ that were off limits to previous techniques,
including communication protocols. The author finds Theorem 1.5 to be of general
interest in Boolean function analysis, independent of its use in this article to prove
communication lower bounds.

To apply this criterion to multiparty communication, we must bound the directional
derivatives of L� for every � derived from a low-cost communication protocol. This
is equivalent to bounding the repeated discrepancy of the gadget G, a new quantity
that we introduce. The standard notion of discrepancy, reviewed above, involves fix-
ing a probability distribution μ on the domain of G and challenging a constant-cost
communication protocol to solve an instance X of G chosen at random according to μ.
In computing the repeated discrepancy of G, one presents the communication protocol
with infinitely many instances X1, X2, X3, . . . of the given communication problem G,
each chosen independently from μ conditioned on G(X1) = G(X2) = G(X3) = · · · . Thus,
the instances are either all positive or all negative, and the protocol’s challenge is to tell
which is the case. It is considerably harder to bound the repeated discrepancy than the
usual discrepancy because each of the additional instances X2, X3, . . . generally reveals
new information about the truth status of X1. In fact, it is not clear a priori whether
there is any distribution μ under which set disjointness has repeated discrepancy less
than the maximum possible value 1, let alone o(1) as our application requires. By a
detailed probabilistic analysis, we are able to prove the desired o(1) bound for a suitable
distribution μ.

With these new results in hand, we obtain an efficient way to transform commu-
nication protocols into approximating polynomials. This transformation allows us to
expeditiously prove Theorems 1.1–1.4.

Organization. The remainder of this article is organized as follows. Section 2 opens
with a review of technical preliminaries. Sections 3 and 4 are devoted to the two
main components of our proof, approximation via directional derivatives and repeated
discrepancy. Section 5 establishes our main results on randomized communication, in-
cluding Theorems 1.1 and 1.4. Section 6 concludes with several additional applications,
among other things settling Theorems 1.2 and 1.3.
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2. PRELIMINARIES

There are two common ways to encode the Boolean values “true” and “false,” the clas-
sic encoding 1, 0 and the more recent one −1,+1. The former is more convenient in
combinatorial applications, whereas the latter is more economical when working with
analytic tools such as the Fourier transform. In this article, we will use both encodings
depending on context. To exclude any possibility of confusion, we reserve the term
Boolean predicate in the remainder of the article for mappings of the form X → {0, 1},
and the term Boolean function for mappings X → {−1,+1}. As a notational aid to
distinguish predicates from functions, we always typeset the former with an asterisk,
as in PARITY∗ and AND∗

, reserving unstarred symbols such as PARITY and AND for
the corresponding Boolean functions. More generally, to every Boolean function f we
associate the corresponding Boolean predicate f ∗ = (1 − f )/2. A partial function f on
X is a function whose domain of definition, denoted dom f, is a nonempty proper sub-
set of X . For emphasis, we will sometimes refer to functions with dom f = X as total.
For (possibly partial) Boolean functions f and g on {0, 1}n and X , respectively, we let
f ◦ g denote the componentwise composition of f with g, that is, the (possibly partial)
Boolean function on X n given by ( f ◦ g)(x1, x2, . . . , xn) = f (g∗(x1), g∗(x2), . . . , g∗(xn)).
Clearly, the domain of f ◦ g is the set of all (x1, x2, . . . , xn) ∈ (dom g)n for which
(g∗(x1), g∗(x2), . . . , g∗(xn)) ∈ dom f.

We let ε denote the empty string, which is the only element of the zero-dimensional
hypercube {0, 1}0. For a bit string x ∈ {0, 1}n, we let |x| = x1 + x2 + · · · + xn denote
the Hamming weight of x. The kth level of the Boolean hypercube {0, 1}n is the subset
{x ∈ {0, 1}n : |x| = k}. The componentwise conjunction and componentwise XOR of
x, y ∈ {0, 1}n are denoted x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and x ⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn).
In particular, |x ∧ y| refers to the number of components in which x and y both have
a 1. The bitwise negation of a string x ∈ {0, 1}n is denoted x = (x1 ⊕ 1, . . . , xn ⊕ 1). The
notation log x refers to the logarithm of x to base 2. For a subset S ⊆ {1, 2, . . . , n}, its
characteristic vector 1S is given by

(1S)i =
{

1 if i ∈ S,

0 otherwise.

For i = 1, 2, . . . , n, we define ei = 1{i}. In other words, ei is the vector with 1 in the
ith component and zeroes everywhere else. We identify {0, 1}n with the n-dimensional
vector space GF(2)n, with addition corresponding to componentwise XOR. This makes
available standard vector space notation, for example, ax ⊕ by = (. . . , (aixi) ⊕ (bi yi), . . .)
for a, b ∈ {0, 1} and strings x, y ∈ {0, 1}n. A more complicated instance of this notation
that we will use many times is w ⊕ z11S1 ⊕ z21S2 ⊕ · · · ⊕ zd1Sd, where z1, z2, . . . , zd ∈
{0, 1}, w ∈ {0, 1}n, and S1, S2, . . . , Sd ⊆ {1, 2, . . . , n}.

The parity of a Boolean string x ∈ {0, 1}n, denoted PARITY∗(x) ∈ {0, 1}, is defined as
usual by PARITY∗(x) = ⊕n

i=1 xi. We adopt the convention that(
n

−1

)
=
(

n
−2

)
=
(

n
−3

)
= · · · = 0

for every positive integer n. For positive integers n, m, k, one has

k∑
i=0

(
n
i

)(
m

k − i

)
=
(

n + m
k

)
, (4)
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34:10 A. A. Sherstov

a combinatorial identity known as Vandermonde’s convolution. The total degree of a
multivariate real polynomial p is denoted deg p. The Kronecker delta is given by

δx,y =
{

1 if x = y,

0 otherwise,

where x, y are elements of some set. We let Z+ = {1, 2, 3, . . . , } and N = {0, 1, 2, 3, . . .}
denote positive integers and natural numbers, respectively. We adopt the convention
that the linear span of the empty set is the zero vector: span∅ = {0}. The symmetric
group of order n is denoted Sn. For a string x ∈ {0, 1}n and a permutation σ ∈ Sn,
we define σ x = (xσ (1), xσ (2), . . . , xσ (n)). A function f : {0, 1}n → R is called symmetric if
f (x) = f (σ x) for all x and all σ ∈ Sn. Equivalently, f is symmetric if and only if it is
determined uniquely by the Hamming weight |x| of the input.

The familiar functions ANDn, ORn : {0, 1}n → {−1,+1} are given by ANDn(x) =∧n
i=1 xi and ORn(x) = ∨n

i=1 xi. We also define a partial Boolean function ÃNDn on
{0, 1}n as the restriction of ANDn to the set {x : |x| � n − 1}. In other words,

ÃNDn(x) =
{

ANDn(x) if |x| � n − 1,

undefined otherwise.

Analogously, we define a partial Boolean function ÕRn on {0, 1}n as the restriction of
ORn to the set {x : |x| � 1}.
2.1. Norms and Products

For a finite set X , the linear space of real functions on X is denoted RX . This space
is equipped with the usual norms and inner product:

‖ f ‖∞ = max
x∈X

| f (x)| ( f ∈ RX ), (5)

‖ f ‖1 =
∑
x∈X

| f (x)| ( f ∈ RX ), (6)

〈 f, g〉 =
∑
x∈X

f (x)g(x) ( f, g ∈ RX ). (7)

The tensor product of f ∈ RX and g ∈ RY is the function f ⊗ g ∈ RX × Y given by
( f ⊗ g)(x, y) = f (x)g(y). The tensor product f ⊗ f ⊗ · · · ⊗ f (n times) is abbreviated
f ⊗n. When specialized to real matrices, tensor product is the usual Kronecker product.
The pointwise (Hadamard) product of f, g ∈ RX is denoted f · g ∈ RX and given by
( f · g)(x) = f (x)g(x). Note that as functions, f · g is a restriction of f ⊗ g. Tensor
product notation generalizes to partial functions in the natural way: if f and g are
partial real functions on X and Y , respectively, then f ⊗ g is a partial function on
X × Y with domain dom f × dom g and is given by ( f ⊗ g)(x, y) = f (x)g(y) on that
domain. Similarly, f ⊗n = f ⊗ f ⊗ · · · ⊗ f (n times) is a partial function on X n with
domain (dom f )n.

The support of a function f : X → R is defined as the set supp f = {x ∈ X : f (x) �= 0}.
For a real number λ and subsets F, G ⊆ RX , we use the standard notation λF = {λ f :
f ∈ F} and F +G = { f + g : f ∈ F, g ∈ G}. Clearly, λF and F +G are convex whenever
F and G are convex. More generally, we adopt the shorthand λ1 F1 +λ2 F2 +· · ·+λkFk =
{λ1 f1 + λ2 f2 + · · · + λk fk : f1 ∈ F1, f2 ∈ F2, . . . , fk ∈ Fk}, where λ1, λ2, . . . , λk are reals
and F1, F2, . . . , Fk ⊆ RX . A conical combination of f1, f2, . . . , fk ∈ RX is any function
of the form λ1 f1 + λ2 f2 + · · · + λk fk, where λ1, λ2, . . . , λk are nonnegative. A convex com-
bination of f1, f2, . . . , fk ∈ RX is any function of the form λ1 f1 +λ2 f2 +· · ·+λk fk, where
λ1, λ2, . . . , λk are nonnegative and additionally sum to 1. The convex hull of F ⊆ RX ,
denoted conv F, is the set of all convex combinations of functions in F.
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2.2. Matrices

For a set X such as X = {0, 1} or X = R, the symbol X n×m denotes the family of n×m
matrices with entries in X . The symbol X n×∗ denotes the family of matrices that have
n rows and entries in X , and analogously X ∗×m denotes matrices with m columns
and entries in X . The notation (5)–(7) applies to any real matrices: ‖A‖∞ = max |Ai, j |,
‖A‖1 = ∑

i, j |Ai, j |, and 〈A, B〉 = ∑
i, j Ai, j Bi, j . For a matrix A = [Ai, j] of size n × m and a

permutation σ ∈ Sm, we let σ A = [Ai,σ ( j)]i, j denote the result of permuting the columns
of Aaccording to σ . The notation A =� B means that the matrices A, B are the same up
to a permutation of columns, that is, A = σ B for some permutation σ. A submatrix of A
is a matrix obtained from A by discarding zero or more rows and zero or more columns,
keeping unchanged the relative ordering of the remaining rows and columns. For a
Boolean matrix A ∈ {0, 1}n×m and a string x ∈ {0, 1}m, we let A|x denote the submatrix
of A obtained by removing those columns i for which xi = 0:

A|x =

⎡⎢⎢⎢⎣
A1,i1 A1,i2 · · · A1,i|x|
A2,i1 A2,i2 · · · A2,i|x|

...
...

. . .
...

An,i1 An,i2 · · · An,i|x|

⎤⎥⎥⎥⎦ ,

where i1 < i2 < · · · < i|x| are the distinct indices such that xi1 = xi2 = · · · = xi|x| = 1. By
convention, A|0m = ε. The notation A � B means that

A =

⎡⎢⎢⎢⎣
Bi1, j1 Bi1, j2 · · · Bi1, jm

Bi2, j1 Bi2, j2 · · · Bi2, jm
...

...
. . .

...
Bin, j1 Bin, j2 · · · Bin, jm

⎤⎥⎥⎥⎦
for some row indices i1 < i2 < · · · < in and some distinct column indices j1, j2, . . . , jm,
where n×mare the dimensions of A. In other words, A � Bmeans that A is a submatrix
of B, up to a permutation of columns.

We use lowercase letters (a, b, u, v, w, x, y, z) for row vectors and Boolean strings,
and uppercase letters (A, B, M, X, Y ) for real and Boolean matrices. The convention of
using lowercase letters for row vectors is somewhat unusual, and for that reason we
emphasize it. We identify Boolean strings with corresponding row vectors, for example,
the string 00111 is used interchangeably with the row vector [0 0 1 1 1]. Similarly,
111 . . . 1 refers to an all-ones row, and 0m1m refers to the row vector whose 2m compo-
nents are m zeroes followed by m ones. On occasion, we will use bracket notation to
emphasize that the string should be interpreted as a row vector, for example, [0m1m].
We use standard matrix-theoretic notation to typeset block matrices, for example,

[
A00 A01 A10 A11

]
,

[
A

111 . . . 1

]
,

⎡⎣B
b
b′

⎤⎦ .

Here the first matrix is composed of four blocks, the second matrix is obtained by
appending an all-ones row to A, and the third matrix is obtained by appending the
row vectors b and b′ to B. When warranted, we will use vertical and horizontal lines as
in (51) to emphasize block structure.

The set disjointness function (DISJ) on Boolean matrices X is defined by

DISJ(X) =
{+1 if X contains an all-ones column,
−1 otherwise.
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In particular, DISJ−1(+1) is the family of all Boolean matrices with an all-ones column.
By convention, DISJ(ε) = −1. Note that

DISJ
[

X
x

]
= DISJ(X|x)

for any matrix X ∈ {0, 1}n×m and any row vector x ∈ {0, 1}m. We let DISJk,n : {0, 1}k×n →
{−1,+1} be the restriction of DISJ to matrices of size k × n. In Boolean notation,

DISJk,n(X) =
n∧

j=1

k∨
i=1

Xi, j . (8)

The partial function UDISJk,n on {0, 1}k×n, called unique set disjointness, is defined as
the restriction of DISJk,n to k× n Boolean matrices with at most one column consisting
entirely of ones. In other words,

UDISJk,n(X) =
{

DISJk,n(X) if |x1 ∧ x2 ∧ · · · ∧ xk| � 1,

undefined otherwise,
(9)

where x1, x2, . . . , xk are the rows of X. As usual, DISJ∗
k,n and UDISJ∗

k,n denote the cor-
responding Boolean predicates, given by DISJ∗

k,n = (1 − DISJk,n)/2 and UDISJ∗
k,n =

(1 − UDISJk,n)/2.

2.3. Probability

We view probability distributions first and foremost as real functions. This makes
available various notational devices introduced previously. In particular, for probability
distributions μ and λ, the symbol supp μ denotes the support of μ, and μ ⊗ λ denotes
the probability distribution given by (μ ⊗ λ)(x, y) = μ(x)λ(y). We define μ × λ = μ ⊗ λ,
the former notation being more standard for probability distributions. The Hellinger
distance between probability distributions μ and λ on a finite set X is given by

H(μ, λ) =
(

1
2

∑
x∈X

(
√

μ(x) −
√

λ(x))2

)1/2

=
(

1 −
∑
x∈X

√
μ(x)λ(x)

)1/2

. (10)

The statistical distance between μ and λ is defined to be 1
2‖μ − λ‖1. The Hellinger

distance between two random variables taking values in the same finite set X is
defined to be the Hellinger distance between their respective probability distributions.
Analogously, one defines the statistical distance between two random variables. The
following classical fact [Le Cam and Yang 2000; Pollard 2001] gives basic properties of
Hellinger distance and relates it to statistical distance.

FACT 2.1. For any probability distributions μ,μ1, μ2, . . . , μn and λ, λ1, λ2, . . . , λn,

(i) 0 � H(μ, λ) � 1,

(ii) 2H(μ, λ)2 � ‖μ − λ‖1 � 2
√

2H(μ, λ),
(iii) H(μ1 ⊗ · · · ⊗ μn, λ1 ⊗ · · · ⊗ λn) �

√
H(μ1, λ1)2 + · · · + H(μn, λn)2.

The multiplicative form of Hellinger distance in (10) makes it particularly useful. For
example, the paper of Bar-Yossef et al. [2004] on two-party set disjointness exploits the
multiplicative property when analyzing probability distributions on tree leaves. The
role of Hellinger distance in our work is quite different: following Raz [2011] and Barak
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et al. [2008], we use it to bound the statistical distance between product distributions
via (ii) and (iii) of Fact 2.1. For the reader’s convenience, we include a proof of Fact 2.1.

PROOF. Part (i) is immediate from the defining equations for Hellinger distance. For
(ii), we have

2H(μ, λ)2 =
∑
x∈X

(√
μ(x) −

√
λ(x)

)2
�
∑
x∈X

|
√

μ(x) −
√

λ(x)|(√μ(x) +
√

λ(x)
)

= ‖μ − λ‖1,

and in the reverse direction

‖μ − λ‖1 =
∑
x∈X

|
√

μ(x) −
√

λ(x)|(√μ(x) +
√

λ(x)
)

�
(∑

x∈X

(√
μ(x) −

√
λ(x)

)2)1/2 (∑
x∈X

(√
μ(x) +

√
λ(x)

)2)1/2

=
√

2H(μ, λ)

(∑
x∈X

(√
μ(x) +

√
λ(x)

)2)1/2

= 2H(μ, λ)

(
1 +

∑
x∈X

√
μ(x)λ(x)

)1/2

= 2H(μ, λ)
√

2 − H(μ, λ)2

� 2
√

2H(μ, λ).

For (iii), let Xi denote the domain of μi and λi. Then

H(μ1 ⊗ · · · ⊗ μn, λ1 ⊗ · · · ⊗ λn)2

= 1 −
∑

x1∈X1

· · ·
∑

xn∈Xn

√
μ1(x1) · · · μn(xn)λ1(x1) · · · λn(xn)

= 1 −
n∏

i=1

⎛⎝∑
xi∈Xi

√
μi(xi)λi(xi)

⎞⎠
= 1 −

n∏
i=1

(1 − H(μi, λi)2)

�
n∑

i=1

H(μi, λi)2,

where the final step uses (i).

The set membership symbol ∈, when used in the subscript of an expectation operator,
means that the expectation is taken over a uniformly random element of the indicated
set.
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2.4. Fourier Transform

Consider the real vector space of functions {0, 1}n → R. For S ⊆ {1, 2, . . . , n}, define
χS : {0, 1}n → {−1,+1} by χS(x) = (−1)

∑
i∈S xi . Then every function f : {0, 1}n → R has a

unique representation of the form

f =
∑

S⊆{1,2,...,n}
f̂ (S) χS,

where f̂ (S) = 2−n∑
x∈{0,1}n f (x)χS(x). The reals f̂ (S) are called the Fourier coefficients

of f. Formally, the Fourier transform is the linear transformation f �→ f̂ , where f̂
is viewed as a function on the power set of {1, 2, . . . , n}. This makes available the
shorthands

‖ f̂ ‖1 =
∑

S⊆{1,2,...,n}
| f̂ (S)|, ‖ f̂ ‖∞ = max

S⊆{1,2,...,n}
| f̂ (S)|.

PROPOSITION 2.2. For all functions f, g : {0, 1}n → R,

(i) ‖ f̂ ‖∞ � 2−n‖ f ‖1,
(ii) ‖ f̂ ‖1 � ‖ f ‖1,

(iii) ‖ f̂ + g‖1 � ‖ f̂ ‖1 + ‖ĝ‖1,
(iv) ‖ f̂ · g‖1 � ‖ f̂ ‖1‖ĝ‖1.

PROOF. Item (i) is immediate by definition, and (ii) follows directly from (i). Item (iii)
is trivial. The submultiplicativity (iv) can be verified as follows:

‖ f̂ · g‖1 =
∑

S⊆{1,2,...,n}
| f̂ · g(S)|

=
∑

S⊆{1,2,...,n}

∣∣∣∣∣∣
∑

T ⊆{1,2,...,n}
f̂ (T )ĝ(S ⊕ T )

∣∣∣∣∣∣
�

∑
S⊆{1,2,...,n}

∑
T ⊆{1,2,...,n}

| f̂ (T )| |ĝ(S ⊕ T )|

= ‖ f̂ ‖1‖ĝ‖1,

where S ⊕ T = (S ∩ T ) ∪ (S ∩ T ) denotes the symmetric difference of S and T .

The convolution of f, g : {0, 1}n → R is the function f ∗ g : {0, 1}n → R given by

( f ∗ g)(x) =
∑

y∈{0,1}n

f (y)g(x ⊕ y).

Some authors define convolution using an additional normalizing factor of 2−n, but this
definition is more classical and better serves our needs. The Fourier spectrum of the
convolution is given by

f̂ ∗ g(S) = 2n f̂ (S)ĝ(S), S ⊆ {1, 2, . . . , n}.
In particular, convolution is a symmetric operation: f ∗ g = g ∗ f. It also follows that
convolving f with the function 2−n∑

|S|�d χS is tantamount to discarding the Fourier
coefficients of f of order less than d:⎛⎝2−n

∑
|S|�d

χS

⎞⎠ ∗ f =
∑

|S|�d

f̂ (S)χS. (11)
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For any given f : {0, 1}n → R, it is straightforward to verify the existence and unique-
ness of a multilinear polynomial f̃ : Rn → R such that f ≡ f̃ on {0, 1}n. Following stan-
dard practice, we will identify f with its multilinear extension f̃ to Rn. In particular,
we define deg f = deg f̃ . The polynomial f̃ can be read off from the Fourier expansion
of f, with the useful consequence that deg f = max{|S| : f̂ (S) �= 0}.
2.5. Approximation by Polynomials

Let f : X → R be given, for a finite subset X ⊂ Rn. The ε-approximate degree of f,
denoted degε( f ), is the least degree of a real polynomial p such that ‖ f − p‖∞ � ε. We
generalize this definition to partial functions f on X by letting degε( f ) be the least
degree of a real polynomial p with

| f (x) − p(x)| � ε, x ∈ dom f,
|p(x)| � 1 + ε, x ∈ X \ dom f.

}
(12)

For a (possibly partial) real function f on a finite subset X ⊂ Rn, we define E( f, d)
to be the least ε such that (12) holds for some polynomial p of degree at most d. In
this notation, degε( f ) = min{d : E( f, d) � ε}. When f is a total function, E( f, d) is
simply the least error to which f can be approximated by a real polynomial of degree
no greater than d. We will need the following dual characterization of approximate
degree.

FACT 2.3. Let f be a (possibly partial) real function on {0, 1}n. Then, degε( f ) > d if
and only if there exists ψ : {0, 1}n → R such that∑

x∈dom f

f (x)ψ(x) −
∑

x/∈dom f

|ψ(x)| − ε‖ψ‖1 > 0,

and ψ̂(S) = 0 for |S| � d.

Fact 2.3 follows from linear programming duality; see Sherstov [2011, 2012b] for
details. A related notion is that of threshold degree deg±( f ), defined for a (possibly
partial) Boolean function f as the limit

deg±( f ) = lim
ε↘0

deg1−ε( f ).

Equivalently, deg±( f ) is the least degree of a real polynomial p with f (x) = sgn p(x)
for x ∈ dom f. We recall two well-known results on the polynomial approximation of
Boolean functions, the first due to Minsky and Papert [1969] and the second due to
Nisan and Szegedy [1994].

THEOREM 2.4 (MINSKY AND PAPERT). The function MPn(x) = ∨n
i=1
∧4n2

j=1 xij obeys

deg±(MPn) = n.

THEOREM 2.5 (NISAN AND SZEGEDY). The functions ANDn and ÃNDn obey

deg1/3(ANDn) � deg1/3(ÃNDn) = �(
√

n).

2.6. Multiparty Communication

An excellent reference on communication complexity is the monograph by Kushilevitz
and Nisan [1997]. In this overview, we will limit ourselves to key definitions and
notation. The main model of communication of interest to us is the randomized multi-
party number-on-the-forehead model, due to Chandra et al. [1983]. Here one considers
a (possibly partial) Boolean function F on X1 × X2 × · · · × Xk, for some finite sets
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X1,X2, . . . ,Xk. There are k parties. A given input (x1, x2, . . . , xk) ∈ X1 × X2 × · · · × Xk
is distributed among the parties by placing xi on the “forehead” of party i (for
i = 1, 2, . . . , k). That is to say, party i knows x1, . . . , xi−1, xi+1, . . . , xk but not xi. The
parties communicate by writing bits on a shared blackboard, visible to all. They also
have access to a shared source of random bits. Their goal is to devise a communication
protocol that will allow them to accurately predict the value of F everywhere on the do-
main of F. An ε-error protocol for F is one which, on every input (x1, x2, . . . , xk) ∈ dom F,
produces the correct answer F(x1, x2, . . . , xk) with probability at least 1 − ε. The cost
of a communication protocol is the total number of bits written to the blackboard
in the worst case. The ε-error randomized communication complexity of F, denoted
Rε(F), is the least cost of an ε-error communication protocol for F in this model. The
canonical quantity to study is R1/3(F), where the choice of 1/3 is largely arbitrary
since the error probability of a protocol can be decreased from 1/3 to any other
positive constant at the expense of increasing the communication cost by a constant
factor.

The nondeterministic model is similar in some ways and different in others from
the randomized model. As in the randomized model, one considers a (possibly partial)
Boolean function F on X1 ×X2 ×· · ·×Xk, for some finite sets X1,X2, . . . ,Xk. An input
(x1, x2, . . . , xk) ∈ X1×X2×· · ·×Xk is distributed among the kparties as before, giving the
ith party all the arguments except xi. Beyond this setup, nondeterministic computation
proceeds as follows. At the start of the protocol, c1 bits appear on the shared blackboard.
Given the values of those bits, the parties execute an agreed-upon deterministic protocol
with communication cost at most c2. A nondeterministic protocol for F is required to
output the correct answer for at least one nondeterministic choice of the c1 bits when
F(x1, x2, . . . , xk) = −1 and for all possible choices when F(x1, x2, . . . , xk) = +1. As usual,
the protocol is allowed to behave arbitrarily on inputs outside the domain of F. The cost
of a nondeterministic protocol is defined as c1+c2. The nondeterministic communication
complexity of F, denoted N(F), is the least cost of a nondeterministic protocol for F.

The Merlin-Arthur model [Babai 1985; Babai and Moran 1988] combines the power
of randomization and nondeterminism. Similar to the nondeterministic model, the
protocol starts with a nondeterministic guess of c1 bits, followed by c2 bits of com-
munication. However, the communication can now be randomized, and the require-
ment is that the error probability be at most ε for at least one nondeterministic
guess when F(x1, x2, . . . , xk) = −1 and for all possible nondeterministic guesses when
F(x1, x2, . . . , xk) = +1. The cost of a Merlin-Arthur protocol is defined as c1 + c2. The
ε-error Merlin-Arthur communication complexity of F, denoted MAε(F), is the least
cost of an ε-error Merlin-Arthur protocol for F. Clearly, MAε(F) � min{N(F), Rε(F)}
for every F.

In much of this article, the input to a k-party communication problem will be an
ordered sequence of matrices X1, X2, . . . , Xn ∈ {0, 1}k,∗, with the understanding that the
ith party sees rows 1, . . . , i − 1, i + 1, . . . , k of every matrix. The main communication
problem of interest to us is the k-party set disjointness problem DISJk,n, defined in (8).
In words, the goal in the set disjointness problem is to determine whether a given
k × n Boolean matrix contains an all-ones column, where the ith party sees the entire
matrix except for the ith row. We will also consider the k-party communication problem
UDISJk,n called unique set disjointness, given by (9). Observe that UDISJk,n is a promise
version of set disjointness, the promise being that the input matrix has at most one
column consisting entirely of ones.

A common operation in this article is that of composing functions to obtain com-
munication problems. Specifically, let G be a (possibly partial) Boolean function on
X1 ×X2 ×· · ·×Xk, representing a k-party communication problem, and let f be a (pos-
sibly partial) Boolean function on {0, 1}n. We view the composition f ◦ G as a k-party
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communication problem on X n
1 × X n

2 × · · · × X n
k . With these conventions, one has

DISJk,rs = ANDr ◦ DISJk,s,

UDISJk,rs = ÃNDr ◦ UDISJk,s

for all positive integers r, s.

2.7. Discrepancy and Generalized Discrepancy

A k-dimensional cylinder intersection is a function χ : X1 × X2 × · · · × Xk → {0, 1} of
the form

χ (x1, . . . , xk) =
k∏

i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1 × · · · × Xi−1 × Xi+1 × · · · × Xk → {0, 1}. In other words, a k-dimensional
cylinder intersection is the product of k functions with range {0, 1}, where the ith
function does not depend on the ith coordinate but may depend arbitrarily on the other
k−1 coordinates. In particular, a one-dimensional cylinder intersection is one of the two
constant functions 0, 1. Cylinder intersections were introduced by Babai et al. [1992]
and play a fundamental role in the theory due to the following fact.

FACT 2.6. Let � : X1 × X2 × · · · × Xk → {−1,+1} be a deterministic k-party commu-
nication protocol with cost r. Then

� =
2r∑

i=1

aiχi

for some cylinder intersections χ1, . . . , χ2r with pairwise disjoint support and some coef-
ficients a1, . . . , a2r ∈ {−1,+1}.

Since a randomized protocol with cost r is a probability distribution on deterministic
protocols of cost r, Fact 2.6 implies the following two results on randomized communi-
cation complexity.

COROLLARY 2.7. Let F be a (possibly partial) Boolean function on X1 ×X2 ×· · ·×Xk.
If Rε(F) = r, then

|F(X) − �(X)| � ε

1 − ε
, X ∈ dom F,

|�(X)| � 1
1 − ε

, X ∈ X1 × · · · × Xk,

where � = ∑
χ aχχ is a linear combination of cylinder intersections with

∑
χ |aχ | �

2r/(1 − ε).

COROLLARY 2.8. Let � be a randomized k-party protocol with domain X1 ×X2 ×· · ·×
Xk. If � has communication cost r bits, then

P[�(X) = −1] ≡
∑
χ

aχχ (X), X ∈ X1 × X2 × · · · × Xk,

where the sum is over cylinder intersections and
∑

χ |aχ | � 2r.
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For a (possibly partial) Boolean function F on X1 × X2 × · · · × Xk and a probability
distribution P on X1 ×X2 ×· · ·×Xk, the discrepancy of F with respect to P is given by

discP(F) =
∑

X/∈dom F

P(X) + max
χ

∣∣∣∣∣ ∑
X∈dom F

F(X)P(X)χ (X)

∣∣∣∣∣ ,
where the maximum is over cylinder intersections. The least discrepancy over all
distributions is denoted disc(F) = minP discP(F). As Fact 2.6 suggests, upper bounds
on the discrepancy give lower bounds on communication complexity. This technique
is known as the discrepancy method [Chor and Goldreich 1988; Babai et al. 1992;
Kushilevitz and Nisan 1997].

THEOREM 2.9 (DISCREPANCY METHOD). Let F be a (possibly partial) Boolean function
on X1 × X2 × · · · × Xk. Then

2Rε (F) � 1 − 2ε

disc(F)
.

A more general technique, originally applied by Klauck [2001] in the two-party
quantum model and subsequently adapted to many other settings [Razborov 2002;
Linial and Shraibman 2009; Sherstov 2011; Lee and Shraibman 2009; Chattopadhyay
and Ada 2008], is the generalized discrepancy method.

THEOREM 2.10 (GENERALIZED DISCREPANCY METHOD). Let F be a (possibly partial)
Boolean function on X1 ×X2 ×· · ·×Xk. Then, for every nonzero � : X1 ×X2 ×· · ·×Xk →
R,

2Rε (F) � 1 − ε

maxχ |〈χ,�〉|

( ∑
X∈dom F

F(X)�(X) −
∑

X/∈dom F

|�(X)| − ε

1 − ε
‖�‖1

)
,

where the maximum is over cylinder intersections χ.

For complete proofs of Theorems 2.9 and 2.10, see Sherstov [2012a, Theorems 2.9,
2.10]. The generalized discrepancy method has been adapted to nondeterministic and
Merlin-Arthur communication. The following result [Gavinsky and Sherstov 2010, The-
orem 4.1] gives a criterion for high communication complexity in these models.

THEOREM 2.11 (GAVINSKY AND SHERSTOV). Let F be a (possibly partial) k-party com-
munication problem on X = X1 ×X2 ×· · ·×Xk. Fix a function H : X → {−1,+1} and
a probability distribution P on dom F. Put

α = P(F−1(−1) ∩ H−1(−1)),

β = P(F−1(−1) ∩ H−1(+1)),

Q = log
α

β + discP(H)
.

Then

N(F) � Q,

MA1/3(F) � min
{
�(
√

Q), �

(
Q

log(2/α)

)}
.

Theorem 2.11 was stated by Gavinsky and Sherstov [2010] for total functions F, but
the proof in that article applies to partial functions as well.
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3. DIRECTIONAL DERIVATIVES AND APPROXIMATION

Directional derivatives are meaningful for any function on the Boolean hypercube
with values in a ring R. The directional derivative of f : {0, 1}n → R in the direction
S ⊆ {1, 2, . . . , n} is usually defined as the function (∂ f/∂S)(x) = f (x) − f (x ⊕ 1S). Direc-
tional derivatives of higher order are obtained by differentiating more than once. As a
special case, partial derivatives are given by (∂ f/∂{i})(x) = f (x) − f (x ⊕ ei). Directional
derivatives have been studied mostly for the field R = F2, motivated by applications
to circuit complexity and cryptography [Vichniac 1990; Alekseichuk 2001; Green 2005;
Green and Tao 2008; Cusick and Stănică 2009; del Rey et al. 2012]. In particular, the
uniformity norm U d of Gowers [Green 2005; Green and Tao 2008] is defined in terms
of a randomly chosen order-d directional derivative for R = F2. To a lesser extent,
directional derivatives have been studied for R a finite field [Gopalan et al. 2010] and
the field of reals [Boros and Hammer 2002]. In this work, derivatives serve the purpose
of determining how well a given function f : {0, 1}n → R can be approximated by a
polynomial p ∈ R[x1, x2, . . . , xn] of given degree d. Consequently, we work with the field
R = R.

3.1. Definition and Basic Properties

Let d be a positive integer. For a given function f : {0, 1}n → R and sets S1, S2, . . . , Sd ⊆
{1, 2, . . . , n}, we define the directional derivative of f with respect to S1, S2, . . . , Sd to be
the function ∂d f/∂S1 ∂S2 · · · ∂Sd : {0, 1}n → R given by

∂d f
∂S1 ∂S2 · · · ∂Sd

(x) = E
z∈{0,1}d

[
(−1)|z| f

(
x ⊕

d⊕
i=1

zi1Si

)]
. (13)

The order of the directional derivative is the number of sets involved. Thus, (13) is a
directional derivative of order d. We collect basic properties of directional derivatives
in the following proposition.

PROPOSITION 3.1 (FOLKLORE). Let f : {0, 1}n → R be a given function, S1, S2, . . . , Sd ⊆
{1, 2, . . . , n} given sets, and σ : {1, 2, . . . , d} → {1, 2, . . . , d} a permutation. Then

(i) ∂d/∂S1∂S2 · · · ∂Sd is a linear transformation of R{0,1}n
into itself ;

(ii) ∂d f/∂S1∂S2 · · · ∂Sd ≡ ∂(∂d−1 f/∂S1∂S2 · · · ∂Sd−1)/∂Sd;
(iii) ∂d f/∂S1∂S2 · · · ∂Sd ≡ ∂d f/∂Sσ (1)∂Sσ (2) · · · ∂Sσ (d);
(iv) ‖∂d f/∂S1∂S2 · · · ∂Sd‖∞ � ‖ f ‖∞;
(v) ∂d f/∂S1∂S2 · · · ∂Sd ≡ 0 whenever Si = ∅ for some i;

(vi) ∂d f/∂S1∂S2 · · · ∂Sd ≡ 0 whenever S1, S2, . . . , Sd are pairwise disjoint and deg f �
d − 1.

PROOF. Items (i)–(iv) follow immediately from the definition. Since ∂ f/∂∅ ≡ 0 for any
function f, item (v) follows directly from (ii) and (iii). To prove (vi), we may assume by (i)
that f = χT with |T | � d−1. For such f, observe that ∂ f/∂Si ≡ 0 whenever T ∩ Si = ∅.
Since |T | � d−1 and S1, S2, . . . , Sd are pairwise disjoint, we have T ∩Si = ∅ for some i,
thus forcing ∂ f/∂Si ≡ 0. That ∂d f/∂S1 ∂S2 · · · ∂Sd ≡ 0 now follows from (ii) and (iii).

Item (vi) in Proposition 3.1 provides intuition for why directional derivatives might be
relevant in characterizing the least error in an approximation of f by a real polynomial
of given degree. This intuition will be borne out at the end of Section 3. The disjointness
assumption in Proposition 3.1(vi) cannot be removed, even when 1S1 , 1S2 , . . . , 1Sd are
linearly independent as vectors in Fn

2. For example, ∂2x1/∂{1, 2} ∂{1, 3} = x1 − 1
2 �≡ 0.

We now define the key complexity measure in our study.
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Definition 3.2. Let f : {0, 1}n → R be a given function. For d = 1, 2, . . . , n, define


( f, d) = max
S1,...,Sd

∥∥∥∥ ∂d f
∂S1 ∂S2 · · · ∂Sd

∥∥∥∥
∞

,

where the maximum is over nonempty pairwise disjoint sets S1, S2, . . . , Sd ⊆
{1, 2, . . . , n}. Define 
( f, n + 1) = 
( f, n + 2) = · · · = 0.

It is helpful to think of 
( f, d) as a measure of smoothness. Our ultimate goal is to
understand how this complexity measure relates to the approximation of f by polyno-
mials. As a first step in that direction, we have the following.

THEOREM 3.3. For all functions f : {0, 1}n → R and all d = 1, 2, . . . , n,

E( f, d − 1) � 
( f, d).

Furthermore,

E(AND∗
n, d − 1) � 2d(1−O( d

n))−1
(AND∗
n, d).

PROOF. Write f = p + ξ, where p is a polynomial of degree at most d − 1 and
‖ξ‖∞ � E( f, d − 1). Then


( f, d) � 
(p, d) + 
(ξ, d)
= 
(ξ, d) by Proposition 3.1(vi)
� E( f, d − 1) by Proposition 3.1(iv).

To prove the second part, note that 
(AND∗
n, d) = 2−d since AND∗

n is supported on
exactly one point and takes on 1 at that point. At the same time, Buhrman et al. [1999]
show that E(AND∗

n, d − 1) � 2−1−�(d2/n).

Thus, 
( f, d) is always a lower bound on the least error in an approximation of f
by a polynomial of degree less than d, and the gap between the two quantities can be
considerable. Our challenge is to prove a partial converse to this result. Specifically, we
will be able to show that

E( f, d − 1) � K d
( f, d) + K d+1
( f, d + 1) + · · · + K d+i
( f, d + i) + · · · , (14)

where K > 2 is an absolute constant.

3.2. Elementary Dual Functions

The proof of (14) requires considerable preparatory work. Basic building blocks in it
are the linear functionals to which partial derivatives correspond. We start with their
formal definition.

Definition 3.4 (Elementary Dual Function). For a string w ∈ {0, 1}n and nonempty
pairwise disjoint subsets S1, . . . , Sd ⊆ {1, 2, . . . , n}, let ψw,S1,...,Sd : {0, 1}n → R be the
function that has support

supp ψw,S1,...,Sd =
{

w ⊕
d⊕

i=1

zi1Si : z ∈ {0, 1}d

}
and is defined on that support by

ψw,S1,...,Sd

(
w ⊕

d⊕
i=1

zi1Si

)
= (−1)|z|

2d , z ∈ {0, 1}d.

An elementary dual function of order d is any of the functions ψw,S1,...,Sd, where w ∈
{0, 1}n and S1, . . . , Sd ⊆ {1, 2, . . . , n} are nonempty pairwise disjoint sets.
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An elementary dual function can be written in several ways using this notation. For
example, ψw,S1,...,Sd ≡ ψw,Sσ (1),...,Sσ (d) for any permutation σ on {1, 2, . . . , d}. One also has
ψw,S,T ≡ ψw⊕1S⊕1T ,S,T and more generally ψw⊕z11S1 ⊕···⊕zd1Sd ,S1,...,Sd = (−1)|z|ψw,S1,...,Sd. We
now establish key properties of elementary dual functions, motivating the term itself
and relating it to directional derivatives.

THEOREM 3.5 (ON ELEMENTARY DUAL FUNCTIONS).

(i) For every f : {0, 1}n → R, one has 〈 f, ψw,S1,...,Sd〉 = (∂d f/∂S1∂S2 · · · ∂Sd)(w).
(ii) The negation of an order-d elementary dual function is an order-d elementary dual

function.
(iii) If p is a polynomial of degree less than d, then 〈ψw,S1,...,Sd, p〉 = 0. Equivalently,

ψw,S1,...,Sd ∈ span{χS : |S| � d}.
(iv) Every χS with |S| � d is the sum of 2n elementary dual functions of order d. In

particular, every function in span{χS : |S| � d} is a linear combination of order-d
elementary dual functions.

(v) For every function f : {0, 1}n → R and d = 1, 2, . . . , n, one has 
( f, d) =
max〈 f, ψw,S1,...,Sd〉 = max |〈 f, ψw,S1,...,Sd〉|, where the maximum is taken over order-d
elementary dual functions ψw,S1,...,Sd.

PROOF. Item (i) is immediate from the definitions, and (ii) follows from −ψw,S1,...,Sd =
ψw⊕1S1 ,S1,...,Sd. Item (iii) follows from (i) and Proposition 3.1(vi).

For (iv), it suffices by symmetry to consider χ{1,2,...,D} for D = d, d+1, . . . , n. For every
u ∈ {0, 1}n−d,

ψ0du,{1},...,{d}(x) =
{

2−dχ{1,...,d}(x) if (xd+1, . . . , xn) = u,

0 otherwise.

Therefore,

χ{1,...,D}(x) = 2d
∑

u∈{0,1}n−d

(−1)u1+···+uD−dψ0du,{1},...,{d}(x).

By (ii), each of the functions in the final summation is an order-d elementary dual
function, so that χ{1,...,D} is indeed the sum of 2n elementary dual functions of order d.

Finally, (v) is immediate from (i) and (ii).

Definition 3.6. For d = 1, . . . , n, define �n,d ⊆ R{0,1}n
to be the convex hull of order-d

elementary dual functions, �n,d = conv{χw,S1,...,Sd}. Define �n,n+1, �n,n+2, . . . ⊆ R{0,1}n
by

�n,n+1 = �n,n+2 = · · · = {0}.
By Theorem 3.5(ii), the convex sets �n,1, �n,2, . . . , �n,n are all closed under negation

and hence contain 0. As a result, we have c�n,d ⊆ C�n,d for all C � c � 0. We will use
this fact without mention throughout this section, including Lemmas 3.7, 3.11, and 3.12
and Theorems 3.8 and 3.13. The next lemma establishes useful analytic properties of
�n,d.

LEMMA 3.7. Let d ∈ {1, 2, . . . , n} and f, ψ : {0, 1}n → R be given. Then

(i) ψ ∈ 2n‖ψ̂‖1�n,d ⊆ 2n‖ψ‖1�n,d whenever ψ ∈ span{χS : |S| � d};
(ii) ( f ∗ ψw,S1,...,Sd)(x) = (∂d f/∂S1∂S2 · · · ∂Sd)(x ⊕ w);

(iii) ‖ f ∗ ψ‖∞ � 
( f, d) whenever ψ ∈ �n,d.
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PROOF.

(i) Recall from Theorem 3.5(iv) that χS ∈ 2n�n,d for every subset S ⊆ {1, 2, . . . , n} with
|S| � d. Therefore, ψ ∈ 2n‖ψ̂‖1�n,d by convexity. The containment 2n‖ψ̂‖1�n,d ⊆
2n‖ψ‖1�n,d is immediate from Proposition 2.2(ii).

(ii) Writing out the convolution explicitly,

( f ∗ ψw,S1,...,Sd)(x) =
∑

y∈{0,1}n

f (y)ψw,S1,...,Sd(x ⊕ y)

= 〈 f, ψx⊕w,S1,...,Sd〉

=
(

∂d f
∂S1∂S2 · · · ∂Sd

)
(x ⊕ w),

where the final step uses Theorem 3.5(i).
(iii) It is a direct consequence of (ii) that ‖ f ∗ψw,S1,...,Sd‖∞ � 
( f, d) for every elementary

dual function ψw,S1,...,Sd. By convexity, (iii) follows.

Recall that our goal is to establish a partial converse to Theorem 3.3, that is, prove
that functions with small derivatives can be approximated well by low-degree poly-
nomials. To help the reader build some intuition for the proof, we illustrate our
technique in a particularly simple setting. Specifically, we give a short proof that
E( f, d − 1) � 2n
( f, d). We actually prove something stronger, namely, that every
f can be approximated pointwise within 2n
( f, d) by its truncated Fourier polynomial∑

|S|�d−1 f̂ (S)χS. We do so by expressing the discarded part of the Fourier spectrum,∑
|S|�d

f̂ (S)χS(x), (15)

as a linear combination of order-d directional derivatives of f at appropriate points,
where the absolute values of the coefficients in the linear combination sum to at most
2n. Since the magnitude of an order-d derivative of f cannot exceed 
( f, d), we arrive
at the desired upper bound on the approximation error.

THEOREM 3.8. For all functions f : {0, 1}n → R and all d = 1, 2, . . . , n,

E( f, d − 1) �

∥∥∥∥∥∥
∑

|S|�d

f̂ (S)χS

∥∥∥∥∥∥
∞

� 2n
( f, d).

PROOF. Define ψ : {0, 1}n → R by ψ(x) = 2−n∑
|S|�d χS. Then by Lemma 3.7(i),

ψ ∈ 2n�n,d. (16)

As a result,∥∥∥∥∥∥
∑

|S|�d

f̂ (S)χS

∥∥∥∥∥∥
∞

= ‖ f ∗ ψ‖∞ by (11)

� 2n max
ψ ′∈�n,d

‖ f ∗ ψ ′‖∞ by (16)

� 2n
( f, d) by Lemma 3.7(iii).

Theorem 3.8 serves an illustrative purpose and is of little interest by itself. To obtain
the actual result that we want, (14), we will need to consider directional derivatives of
all orders starting at d. Specifically, we will express the discarded portion of the Fourier
spectrum, (15), as a linear combination of directional derivatives of f of orders d,
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Fig. 1. Extending a symmetric function from {0, 1}m to {0, 1}n.

d+1, . . . , n, where each derivative is with respect to pairwise disjoint sets S1, S2, S3, . . .
and the sum of the absolute values of the coefficients of the order-i derivatives is Ki for
some absolute constant K > 2.

To find the kind of linear combination described in the previous paragraph, we will
express the function ψ = 2−n∑

|S|�d χS as a linear combination of elementary dual
functions of orders d, d + 1, . . . , n with small coefficients. This project will take up the
next few pages. Once we have obtained the needed representation for ψ, we will be
able to complete the proof using a convolution argument, cf. Theorem 3.8.

3.3. Symmetric Extensions

Consider the operation of extending a symmetric function g : {0, 1}m → R to a larger
domain {0, 1}n, illustrated schematically in Figure 1. The extended function G is again
symmetric, supported on m+1 equispaced levels of the hypercube, and normalized such
that the sum of G on each of these levels is the same as for g. Here, we relate the metric
and Fourier-theoretic properties of the original function to those of its extension.

LEMMA 3.9. Let n, m,
 be positive integers, m
 � n. Let g : {0, 1}m → R be a given
symmetric function. Consider the symmetric function G : {0, 1}n → R given by

G(x) =
{( n

|x|
)−1( m

|x|/

)
g(1|x|/
00 . . . 0) if |x| = 0,
, 2
, . . . , m
,

0 otherwise.
(17)

Then:

(i) the Fourier coefficients of G are given by

Ĝ(S) = 2−n
m∑

i=0

(
m
i

)
g(1i0m−i) E

x∈{0,1}n, |x|=i

[χS(x)];

(ii) G ∈ span{χS : |S| � d} if and only if g ∈ span{χS : |S| � d};
(iii) G ∈ �n,d whenever g ∈ �m,d.

PROOF.

(i) By the symmetry of g and G,

Ĝ(S) = 2−n
n∑

i=0

(
n
i

)
G(1i0n−i) E

|x|=i
[χS(x)]

= 2−n
m∑

i=0

(
m
i

)
g(1i0m−i) E

|x|=i

[χS(x)].
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(ii) Since g is symmetric, g /∈ span{χS : |S| � d} if and only if∑
x∈{0,1}m

g(x)p(x1 + · · · + xm) �= 0

for some univariate polynomial p of degree less than d. Analogously, G /∈ span{χS :
|S| � d} if and only if ∑

x∈{0,1}n

G(x)q(x1 + · · · + xn) �= 0

for some univariate polynomial q of degree less than d. Finally, the definition of G
ensures that ∑

x∈{0,1}m

g(x)p(x1 + · · · + xm) =
∑

x∈{0,1}n

G(x)p
(

x1 + · · · + xn




)

for every polynomial p, regardless of degree.
(iii) For nonempty pairwise disjoint subsets T1, T2, . . . , Tm ⊆ {1, 2, . . . , n}, define

LT1,...,Tm to be the linear transformation that sends a function φ : {0, 1}m → R into
the function LT1,...,Tmφ : {0, 1}n → R such that

(LT1,...,Tmφ)(u11T1 ⊕ · · · ⊕ um1Tm) = φ(u), u ∈ {0, 1}m,

and (LT1,...,Tmφ)(x) = 0 whenever x �= u11T1 ⊕ · · · ⊕ um1Tm for any u. We claim that

G = E
T1,...,Tm

[LT1,...,Tmg], (18)

where the expectation is over pairwise disjoint subsets T1, T2, . . . , Tm ⊆ {1, 2, . . . , n} of
cardinality 
 each. Indeed, the right-hand side of (18) is a function {0, 1}n → R that is
symmetric, sums to ( m

i )g(1i0m−i) on inputs of Hamming weight i
 (i = 0, 1, 2, . . . , m),
and vanishes on all other inputs. There is only one function that has these three
properties, namely, the function G in the statement of the lemma.

In view of (18), it suffices to show that under LT1,...,Tm, the image of an elementary
dual function {0, 1}m → R is an elementary dual function {0, 1}n → R of the same order.
By definition, the elementary dual function ψw,S1,...,Sd : {0, 1}m → R satisfies

ψw,S1,...,Sd(w ⊕ z11S1 ⊕ · · · ⊕ zd1Sd) = (−1)|z|

2d , z ∈ {0, 1}d,

and vanishes on the remaining 2m − 2d points of {0, 1}m. Thus, LT1,...,Tmψw,S1,...,Sd obeys

(LT1,...,Tmψw,S1,...,Sd)

(
m⊕

i=1

wi1Ti ⊕
d⊕

i=1

zi1Ri

)
= (−1)|z|

2d , z ∈ {0, 1}d,

and vanishes on the remaining 2n −2d points of {0, 1}n, where R1, . . . , Rd ⊆ {1, 2, . . . , n}
are the nonempty pairwise disjoint sets Ri = ⋃

j∈Si
Tj . Therefore, LT1,...,Tmψw,S1,...,Sd is

an order-d elementary dual function.

The next lemma takes as given the Fourier coefficients of the extended symmetric
function and solves for the values of the original symmetric function.
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LEMMA 3.10. Let F : {0, 1}n → R be a symmetric function and m ∈ {1, 2, . . . , n}. Then,
there exist reals g0, g1, . . . , gm such that

m∑
i=0

gi E
x∈{0,1}n

|x|=i�n/m�
[χS(x)] = F̂(S) (|S| � m), (19)

m∑
i=0

|gi| � (8m − 1)‖F̂‖∞. (20)

PROOF. Abbreviate 
 = �n/m�, so that m
 � n � 2m
. The expectation in (19)
depends only on the cardinality of S. As a result, it suffices to prove the lemma for
S = ∅, {1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , m}. To that end, consider the matrix

A =
[

E
|x|=i


[χ{1,2,..., j}(x)]
]

j,i
,

where i, j = 0, 1, 2, . . . , m. Then, the sought reals g0, g1, . . . , gm are given by⎡⎢⎢⎢⎢⎢⎢⎣
g0

g1

g2
...

gm

⎤⎥⎥⎥⎥⎥⎥⎦ = A−1

⎡⎢⎢⎢⎢⎢⎢⎣
F̂(∅)
F̂({1})

F̂({1, 2})
...

F̂({1, 2, . . . , m})

⎤⎥⎥⎥⎥⎥⎥⎦
whenever A is nonsingular. Consequently, the proof will be complete once we show that
the inverse of A exists and obeys

‖A−1‖1 � 8m − 1. (21)

We will calculate A−1 explicitly. Consider polynomials p0, p1, . . . , pm : {0, 1}n → R, each
of degree m, given by

pj(x) = (−1)m− j

m!
m

(
m
j

) m∏
i=0
i �= j

(|x| − i
), j = 0, 1, . . . , m.

Then

pj(x) =
{

1 if |x| = j
,

0 if |x| ∈ {0,
, 2
, . . . , m
} \ { j
}.
It follows that

δi, j = E
|x|=i


[pj(x)]

=
m∑

k=0

p̂j({1, 2, . . . , k}) E
|x|=i


⎡⎢⎢⎣ ∑
S⊆{1,2,...,n}

|S|=k

χS(x)

⎤⎥⎥⎦
=

m∑
k=0

p̂j({1, 2, . . . , k})
(

n
k

)
E

|x|=i

[χ{1,...,k}(x)]

=
m∑

k=0

p̂j({1, 2, . . . , k})
(

n
k

)
Ak,i (i, j = 0, 1, . . . , m),
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where the second and third steps use the symmetry of pj and the symmetry of the
expectation operator, respectively. This gives the explicit form

A−1 =
[(

n
k

)
p̂j({1, 2, . . . , k})

]
j,k

,

showing in particular that A is nonsingular. It remains to prove (21). Applying (iii) and
(iv) of Proposition 2.2,

‖ p̂j‖1 � 1
m!
m

(
m
j

) m∏
i=0
i �= j

‖ ̂|x| − i
‖1

= 1
m!
m

(
m
j

) m∏
i=0
i �= j

(n
2

+
∣∣∣n
2

− i

∣∣∣)

� 1
m!
m

(
m
j

) m∏
i=0
i �= j

(
2m


2
+
∣∣∣∣2m


2
− i


∣∣∣∣) since n � 2m


= m
2m− j

(
2m
m

)(
m
j

)
.

Hence,

‖A−1‖1 =
m∑

j=0

‖ p̂j‖1 �
(

2m
m

) m∑
j=0

(
m
j

)
= 2m

(
2m
m

)
� 8m − 1.

3.4. Bounding the Global Error

At this point, we have all the tools at our disposal to express ψ = 2−n∑
|S|�d χS as a

linear combination of elementary dual functions of orders d, d+1, . . . , n with small coef-
ficients. We do so by means of an iterative process that can be visualized as “chasing the
bulge,” to borrow the metaphor from linear algebra. Originally, the Fourier spectrum
of ψ is supported on characters of degree d or higher. In the ith iteration, the smallest
degree of a nonzero Fourier coefficient grows by a factor of c, and the magnitude of the
nonzero Fourier coefficients grows by a factor of at most 8cid. In this way, each iteration
pushes the Fourier spectrum further back at the expense of a controlled increase in the
magnitude of the remaining coefficients, which results in a growing “bulge” of Fourier
mass on characters of high degree. This process is shown schematically in Figure 2.
The next lemma corresponds to a single iteration.

LEMMA 3.11. Let D be a given integer, 1 � D � n. Let F : {0, 1}n → R be a symmetric
function with F ∈ span{χS : |S| � D}. Then, for every integer m� D, there is a symmetric
function G : {0, 1}n → R such that

G ∈ 2n 16m‖F̂‖∞�n,D, (22)
F − G ∈ span{χS : |S| � m+ 1}, (23)

‖F̂ − G‖∞ � 8m‖F̂‖∞. (24)

PROOF. When m > n, Lemma 3.7(i) shows that F ∈ 2n‖F̂‖1�n,D ⊆ 2n 2n‖F̂‖∞�n,D ⊆
2n 16m‖F̂‖∞�n,D. As a result, the lemma holds in that case with G = F.

In the remainder of the proof, we treat the complementary case m � n. Define

 = �n/m� � 1. By Lemma 3.10, there exist reals g0, g1, . . . , gm that obey (19) and (20).
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Fig. 2. Chasing the bulge.

Let g : {0, 1}m → R be the symmetric function given by g(x) = 2n
(m
|x|
)−1g|x|. Then (19)

and (20) can be restated as

F̂(S) = 2−n
m∑

i=0

(
m
i

)
g(1i0m−i) E

x∈{0,1}n

|x|=i


[χS(x)] (|S| � m), (25)

‖g‖1 � 2n(8m − 1)‖F̂‖∞. (26)

Now define G : {0, 1}n → R by (17). Then Lemma 3.9(i) gives

F̂(S) = Ĝ(S), |S| � m. (27)

Since the Fourier spectrum of F is supported on characters of order D or higher (where
D � m), we conclude that G ∈ span{χS : |S| � D}. This results in the following chain of
implications:

G ∈ span{χS : |S| � D},
g ∈ span{χS : |S| � D} by Lemma 3.9(ii),
g ∈ 2m‖g‖1�m,D by Lemma 3.7(i),

g ∈ 2n 16m‖F̂‖∞�m,D by (26),

G ∈ 2n 16m‖F̂‖∞�n,D by Lemma 3.9(iii). (28)

Finally,

‖F̂ − G‖∞ � ‖F̂‖∞ + ‖Ĝ‖∞
� ‖F̂‖∞ + 2−n‖g‖1 by Lemma 3.9(i)

� 8m‖F̂‖∞ by (26). (29)

Now (22)–(24) follow from (28), (27), and (29), respectively.

By iteratively applying the previous lemma, we obtain the desired representation
for 2−n∑

|S|�d χS.

LEMMA 3.12. Let F : {0, 1}n → R be a symmetric function with F ∈ span{χS : |S| � d},
where d is an integer with 1 � d � n. Then, for every real c > 1,

F ∈ 2n‖F̂‖∞
∞∑

i=0

(
2

4c2−c
c−1
)cid

�n,�cid�. (30)
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PROOF. We will construct symmetric functions F1, F2, . . . , Fi, . . . : {0, 1}n → R, where

Fi ∈ 2n‖F̂‖∞
(
2

4c2−c
c−1

)ci−1d
�n,�ci−1d�, (31)

F − F1 − F2 − · · · − Fi ∈ span{χS : |S| � �cid�}, (32)

‖
∧

F − F1 − F2 − · · · − Fi ‖∞ � 8
ci+1d−cd

c−1 ‖F̂‖∞. (33)

Before carrying out the construction, let us finish the proof assuming the existence of
such a sequence. Since cid > n for all i sufficiently large, (31) implies that only finitely
many functions in the sequence {Fi}∞i=1 are nonzero. The series

∑∞
i=1 Fi is therefore well

defined, and (32) gives F = ∑∞
i=1 Fi. Property (31) now settles (30).

We will construct F1, F2, . . . , Fi, . . . by induction. The base case i = 0 is immediate
from the assumed membership F ∈ span{χS : |S| � d}. For the inductive step, fix i � 1
and assume that the symmetric functions F1, F2, . . . , Fi−1 have been constructed. Then,
by the inductive hypothesis,

F − F1 − · · · − Fi−1 ∈ span{χS : |S| � �ci−1d�},

‖
∧

F − F1 − · · · − Fi−1 ‖∞ � 8
ci d−cd

c−1 ‖F̂‖∞. (34)

There are two cases to consider. In the degenerate case when �ci−1d� = �cid�, one
obtains (31)–(33) trivially by letting Fi = 0. In the complementary case when �ci−1d� <
�cid�, we have �ci−1d� � �cid�. As a result, Lemma 3.11 is applicable with parameters
D = �ci−1d� and m = �cid� to the symmetric function F − F1 − F2 −· · ·− Fi−1 and yields
a symmetric function Fi such that

Fi ∈ 2n 16�cid�‖
∧

F − F1 − · · · − Fi−1 ‖∞�n,�ci−1d�,

(F − F1 − · · · − Fi−1) − Fi ∈ span{χS : |S| � �cid� + 1},

‖
∧

(F − F1 − · · · − Fi−1) − Fi ‖∞ � 8�cid�‖
∧

F − F1 − · · · − Fi−1 ‖∞.

These three properties establish (31)–(33) in view of (34).

We have reached the main result of Section 3, stated earlier as (14).

THEOREM 3.13. Let c > 1 be a given real number. Then, for every d = 1, 2, . . . , n and
every function f : {0, 1}n → R,

E( f, d − 1) �

∥∥∥∥∥∥
∑

|S|�d

f̂ (S)χS

∥∥∥∥∥∥
∞

�
∞∑

i=0

(
2

4c2−c
c−1
)cid


( f, �cid�). (35)

Journal of the ACM, Vol. 61, No. 6, Article 34, Publication date: November 2014.



Communication Lower Bounds Using Directional Derivatives 34:29

In particular,

E( f, d − 1) �
n∑

i=d

56i
( f, i), (36)

E( f, d − 1) �
�log n

d�∑
i=0

(214)2id
( f, 2id). (37)

PROOF. The function c �→ 2(4c2−c)/(c−1) attains its minimum on (1,∞) at the point c =
1 +√3/4 = 1.8660 . . . . Substituting this value in (35) and noting that �(1 +√3/4)id� <

�(1 +√
3/4)i+1d� gives (36). For the alternate bound (37), let c = 2 in (35).

It remains to prove (35). Abbreviate K = 2(4c2−c)/(c−1) and define ψ : {0, 1}n → R by
ψ(x) = 2−n∑

|S|�d χS. Then by Lemma 3.12,

ψ ∈
∞∑

i=0

Kcid�n,�cid�. (38)

As a result,∥∥∥∥∥∥
∑

|S|�d

f̂ (S)χS

∥∥∥∥∥∥
∞

= ‖ f ∗ ψ‖∞ by (11)

�
∞∑

i=0

Kcid max
ψ ′∈�n,�ci d�

‖ f ∗ ψ ′‖∞ by (38)

�
∞∑

i=0

Kcid
( f, �cid�). by Lemma 3.7(iii).

4. REPEATED DISCREPANCY OF SET DISJOINTNESS

Let G be a multiparty communication problem, such as set disjointness. The classic
notion of discrepancy, reviewed in Section 2, involves fixing a probability distribution
π on the domain of G and challenging a communication protocol to solve an instance
X of G chosen at random according to π. If some low-cost protocol solves this task with
nonnegligible accuracy, one says that G has high discrepancy with respect to π . In this
article, we introduce a rather different notion which we call repeated discrepancy. Here,
one presents the communication protocol with arbitrarily many instances X1, X2, X3, . . .
of the given communication problem G, each chosen independently from π conditioned
on G(X1) = G(X2) = G(X3) = · · · . Thus, the instances are either all positive or all
negative, and the protocol’s challenge is to tell which is the case. The formal definition
given next is somewhat more subtle, but the intuition is exactly the same.

Definition 4.1. Let G be a (possibly partial) k-party communication problem on X =
X1 × X2 × · · · × Xk and π a probability distribution on the domain of G. The repeated
discrepancy of G with respect to π is

rdiscπ (G) = sup
d,r∈Z+

max
χ

∣∣∣∣∣ E
...,Xi, j ,...

[
χ (. . . , Xi, j, . . .)

d∏
i=1

G(Xi,1)

]∣∣∣∣∣
1/d

,
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where the maximum is over k-dimensional cylinder intersections χ on X dr = X dr
1 ×

X dr
2 × · · · × X dr

k , and the arguments Xi, j (i = 1, 2, . . . , d, j = 1, 2, . . . , r) are chosen
independently according to π conditioned on G(Xi,1) = G(Xi,2) = · · · = G(Xi,r) for each i.

We focus on probability distributions π that are balanced on the domain of G, mean-
ing that negative and positive instances carry equal weight: π (G−1(−1)) = π (G−1(+1)).
We define

rdisc(G) = inf
π

rdiscπ (G),

where the infimum is over all probability distributions on the domain of G that are
balanced. Our motivation for studying repeated discrepancy comes from the approxi-
mation theoretic contribution of this article, Theorem 3.13. Using it, we will now prove
that repeated discrepancy gives a highly efficient way to approximate multiparty pro-
tocols by polynomials.

THEOREM 4.2. Let G be a (possibly partial) k-party communication problem on X =
X1 × X2 × · · · × Xk. For an integer n � 1 and a balanced probability distribution π on
dom G, consider the linear operator Lπ,n : RX n → R{0,1}n

given by

(Lπ,nχ )(x) = E
X1∼πx1

· · · E
Xn∼πxn

χ (X1, . . . , Xn), x ∈ {0, 1}n,

where π0 and π1 are the probability distributions induced by π on G−1(+1) and G−1(−1),
respectively. Then, for some absolute constant c > 0 and every k-dimensional cylinder
intersection χ on X n = X n

1 × X n
2 × · · · × X n

k ,

E(Lπ,nχ, d − 1) � (c rdiscπ (G))d, d = 1, 2, . . . , n.

PROOF. Put 
d = maxχ 
(Lπ,nχ, d), where the maximum is over k-dimensional cylin-
der intersections. In light of (36), it suffices to prove that


d � (2 rdiscπ (G))d, d = 1, 2, . . . , n. (39)

Fix w ∈ {0, 1}n and pairwise disjoint sets S1, S2, . . . , Sd ⊆ {1, 2, . . . , n} such that


d = max
χ

∣∣∣∣ ∂d (Lπ,nχ )
∂S1 ∂S2 · · · ∂Sd

(w)
∣∣∣∣ , (40)

where the maximum is over k-dimensional cylinder intersections. Then by the definition
of directional derivative,


d = max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,X2,...,Xn

χ (X1, X2, . . . , Xn) (−1)|z|
∣∣∣∣ , (41)

where

Xi ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

πwi⊕z1 if i ∈ S1,

πwi⊕z2 if i ∈ S2,
...

...
πwi⊕zd if i ∈ Sd,

πwi otherwise.

In other words, the cylinder intersection χ receives zero or more arguments distributed
independently according to πz1 , zero or more arguments distributed independently
according to πz1 , zero or more arguments distributed independently according to πz2 ,
and so on, for a total of n arguments. To simplify the remainder of the proof, we will
manipulate the input to χ as follows.
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(i) We will discard any arguments Xi whose probability distribution does not depend
on z, simply by fixing them so as to maximize the expectation in (41) with respect
to the remaining arguments. This simplification is legal because after one or more
arguments Xi are fixed, χ continues to be a cylinder intersection with respect to
the remaining arguments.

(ii) We will provide the cylinder intersection with additional arguments drawn inde-
pendently from each of the probability distributions πz1 , πz1 , . . . , πzd, πzd, so that
there are exactly n arguments per distribution. This simplification is legal because
the cylinder intersection can always choose to ignore the newly provided arguments.

Applying these two simplifications, we arrive at


d � max
χ

∣∣∣∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1
Y1,1,...,Y1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd
Yd,1,...,Yd,n∼πzd

χ (. . . , Xi,1, . . . , Xi,n, Yi,1, . . . , Yi,n, . . .) (−1)|z|

∣∣∣∣∣∣∣ . (42)

It remains to eliminate πz1 , . . . , πzd . Rewriting (42) in tensor notation,


d � 2−d max
χ

∣∣∣∣∣∣
∑

z∈{0,1}d

(−1)|z|
〈
χ,

d⊗
i=1

(π⊗n
zi

⊗ π⊗n
zi

)

〉∣∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣
〈
χ,

d⊗
i=1

(π⊗n
0 ⊗ π⊗n

1 − π⊗n
1 ⊗ π⊗n

0 )

〉∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣
〈
χ,

d⊗
i=1

(π⊗n
0 ⊗ π⊗n

0 − π⊗n
1 ⊗ π⊗n

0

− π⊗n
0 ⊗ π⊗n

0 + π⊗n
0 ⊗ π⊗n

1 )

〉∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣∣
∑

y∈{0,1}d

(−1)|y| ∑
z∈{0,1}d

(−1)|z|
〈
χ,

d⊗
i=1

(π⊗n
zi∧yi

⊗ π⊗n
zi∧yi

)

〉∣∣∣∣∣∣
� max

y∈{0,1}d
max

χ

∣∣∣∣∣∣
∑

z∈{0,1}d

(−1)|z|
〈
χ,

d⊗
i=1

(π⊗n
zi∧yi

⊗ π⊗n
zi∧yi

)

〉∣∣∣∣∣∣ . (43)

For every y ∈ {0, 1}d, the probability distribution
⊗d

i=1(π⊗n
zi∧yi

⊗ π⊗n
zi∧yi

) is the same as
(π⊗n

z1
⊗ · · · ⊗ π⊗n

zd
) ⊗ (π⊗n

0 ⊗ · · · ⊗ π⊗n
0 ), up to a permutation of the coordinates. The inner

maximum in (43) is therefore the same for all y, namely,

2d max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd

E
Y1,1,...,Yd,n∼π0

χ (. . . , Xi, j, Yi, j, . . .) (−1)|z|
∣∣∣∣ .
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The variables Yi, j can be discarded, as argued in (i) at the beginning of this proof. This
leaves us with


d � 2d max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd

χ (. . . , Xi, j, . . .)
d∏

i=1

G(Xi,1)

∣∣∣∣∣ .
Since π is balanced, (39) follows immediately.

Theorem 1.1 gives a highly efficient way to transform communication protocols
for composed problems f ◦ G into approximating polynomials for f, as long as the
base communication problem G has repeated discrepancy smaller than a certain abso-
lute constant. This result is centrally relevant to the set disjointness problem in light of
its composed structure: DISJk,rs = ANDr ◦DISJk,s for any integers r, s. In the remainder
of this section, we will establish a near-tight upper bound on the repeated discrepancy
of set disjointness (Theorem 4.27), which will allow us to prove the main result of this
article.

4.1. Key Distributions and Definitions

Let Fk be the k× 2k−1 matrix whose columns are the 2k−1 distinct columns of the same
parity as the all-ones vector 1k. Let Tk be the k × 2k−1 matrix whose columns are the
2k−1 distinct columns of the same parity as the vector 01k−1. Thus, the columns of Tk
and Fk form a partition of {0, 1}k. We use Tk and Fk to encode true and false instances of
set disjointness, respectively, hence the choice of notation. Let Hk be the k × 2k matrix
whose columns are the 2k distinct vectors in {0, 1}k, and let H′

k be the k× (2k −1) matrix
whose columns are the 2k − 1 distinct vectors in {0, 1}k \ {1k}. The choice of letter for Hk
and H′

k is a reference to the hypercube. For definitiveness, one may assume that the
columns of Tk, Fk, Hk, H′

k are ordered lexicographically, although the choice of ordering
is immaterial for our purposes. For an integer m� 1, we define shorthands

Hk,m = [
Hk Hk . . . Hk︸ ︷︷ ︸

m

]
, H′

k,m = [
H′

k H′
k . . . H′

k︸ ︷︷ ︸
m

]
.

For a Boolean matrix A, we define

A = A⊕

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

When A is a Boolean matrix of dimension 1 × 1, this notation is consistent with our
earlier shorthand a = a⊕1 for a ∈ {0, 1}. Observe that for any matrices A, A1, A2, . . . , An,

A = A, (44)[
A1 A2 · · · An

] = [A1 A2 · · · An]. (45)

Moreover,

Hk,m =� Hk,m, (46)

Tk =� Fk, (47)

Fk =� Tk. (48)
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In this section, we will encounter a variety of probability distributions on matrix
sequences. Describing them formulaically, using probability mass functions, is both
tedious and unenlightening. Instead, we will define each probability distribution algo-
rithmically, by giving a procedure for generating a random element. We refer to such a
specification as an algorithmic description. We will often use the following shorthand:
for fixed matrices A1, A2, . . . , At, the notation

(A�
1 , A�

2 , . . . , A�
t ) (49)

stands for a random tuple of matrices obtained from (A1, A2, . . . , At) by permuting the
columns in each of the t matrices independently and uniformly at random. In other
words, (49) refers to a random tuple (σ1 A1, σ2 A2, . . . , σ t At), where σ1, σ2, . . . , σ t are
column permutations chosen independently and uniformly at random. We will also
use (49) to refer to the resulting probability distribution on matrix tuples, which will
enable us to use shorthands like B ∼ A� and (B1, B2, . . . , Bt) ∼ (A�

1 , A�
2 , . . . , A�

t ). As an
important special case, the � notation applies to row vectors, which are matrices with
a single row. On occasion, it will be necessary to apply the � notation to a submatrix
rather than the entire matrix. For example, [ [0m1m]� 0 0 1] refers to a random
row vector whose last three components are 0, 0, 1 and the first 2m components are a
uniformly random permutation of the row vector 0m1m.

We say that a probability distribution μ on matrix sequences (A1, A2, . . . , At) is in-
variant under column permutations if μ(A1, A2, . . . , At) = μ(σ1 A1, σ2 A2, . . . , σ t At) for
every choice of column permutations σ1, σ2, . . . , σ t. Most of the randomized proce-
dures in this section involve choosing (A1, A2, . . . , At) by some process and outputting
(A�

1 , A�
2 , . . . , A�

t ), so that the resulting probability distribution on matrix sequences is
invariant under column permutations.

We now define the main probability distribution of interest to us, which we call
μk,m. Nearly all of the work in this section is devoted to understanding various metric
properties of μk,m and of probability distributions derived from it.

Definition 4.3. For positive integers k, m, let μk,m be the probability distribution
whose algorithmic description is as follows: choose M ∈ {Tk, Fk} uniformly at random
and output ([M H′

k,2m]�, [M Hk,m]�).

We will need to establish an alternate procedure for sampling from μk,m, whereby one
first chooses rows 1, 2, . . . , k−1 and then the remaining row according to the conditional
probability distribution. Such a procedure is given by Algorithm 1.

PROPOSITION 4.4. Algorithm 1 is a valid algorithmic description of μk,m for k � 2.

PROOF. By inspection, the output distribution of Algorithm 1 has the following prop-
erties: (i) it is invariant under column permutations; (ii) with probability 1/2, the output
is a matrix pair (A, B) with A =� [Tk H′

k,2m] and B =� [Tk Hk,m]; (iii) with probability
1/2, the output is a matrix pair (A, B) with A =� [Fk H′

k,2m] and B =� [Fk Hk,m].
There is only one probability distribution with these three properties, namely, μk,m.

We now define a key probability distribution λk,m derived from μk,m.

Definition 4.5. For integers k � 2 and m � 1, define λk,m to be the probability
distribution with the following algorithmic description:

(i) pick a matrix pair (A, B) ∈ {0, 1}k−1,∗ × {0, 1}k−1,∗ according to the marginal
distribution of μk,m on the first k − 1 rows;
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ALGORITHM 1: Alternate algorithmic description of μk,m for k � 2

(i) Choose f ∈ {0, 1} uniformly at random.
(ii) Choose 2k row vectors a0k−1 , b0k−1 , . . . , a1k−1 , b1k−1 independently according to

a1k−1 ∼ [02m f ]�,

az ∼ [02m12m f ⊕z1⊕· · ·⊕zk−1]�, z �= 1k−1,

bz ∼ [0m1m f ⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by

Az =

⎡⎢⎢⎢⎢⎢⎢⎣
z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

az

⎤⎥⎥⎥⎥⎥⎥⎦ , Bz =

⎡⎢⎢⎢⎢⎢⎢⎣
z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

bz

⎤⎥⎥⎥⎥⎥⎥⎦ .

(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

(ii) consider the probability distribution induced by μk,m on matrix pairs of the
form

([
A
∗

]
,
[

B
∗

])
, and choose

([
A
a

]
,
[

B
b

])
,
([

A
a′

]
,
[

B
b′

])
independently according to that

distribution;

(iii) output
([

A
a
a′

]
,

[
B
b
b′

])
.

By symmetry of the columns, λk,m is invariant under column permutations. To reason
effectively about λk,m, we need a more explicit algorithmic description.

PROPOSITION 4.6. Algorithm 2 is a valid algorithmic description of λk,m.

PROOF. Immediate from the description of μk,m given by Algorithm 1.

In analyzing the repeated discrepancy of set disjointness, we will need to argue that
the last two rows of a matrix pair drawn according to λk,m do not reveal too much
information about the remaining rows. We will do so by showing that λk,m is close in
statistical distance to certain probability distributions ν0

k,m, ν1
k,m in which no information

is revealed.

Definition 4.7. For integers k � 2 and m� 1, define ν0
k,m and ν1

k,m to be the probability
distributions whose algorithmic descriptions are given by Algorithm 3.

Comparing Algorithms 2 and 3, we see that the new distributions ν0
k,m and ν1

k,m differ
from λk,m exclusively in step (ii) of the algorithmic description. An alternate, global
view of ν0

k,m and ν1
k,m is given by the following proposition.

PROPOSITION 4.8. Algorithm 4 is a valid algorithmic description of ν0
k,m and ν1

k,m.

PROOF. Algorithm 4 is obtained from Algorithm 3 by reordering the columns prior to
the application of the � operator. Specifically, in the notation of Algorithm 3, the last
two columns of A1k−1 and the last three columns of each Az (z �= 1k−1) are moved up
front and listed before any of the remaining columns; likewise, the last three columns
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ALGORITHM 2: Alternate algorithmic description of λk,m

(i) Choose f, f ′ ∈ {0, 1} uniformly at random.
(ii) Choose 2k+1 row vectors az, a′

z, bz, b′
z, for z ∈ {0, 1}k−1, independently according to

a1k−1 ∼ [02m f ]�,

a′
1k−1 ∼ [02m f ′]�,

az ∼ [02m12m f ⊕z1⊕· · ·⊕zk−1]�, z �= 1k−1,

a′
z ∼ [02m12m f ′⊕z1⊕· · ·⊕zk−1]�, z �= 1k−1,

bz ∼ [0m1m f ⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1,

b′
z ∼ [0m1m f ′⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by

Az =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

az

a′
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

bz

b′
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

ALGORITHM 3: Definition of νi
k,m (i = 0, 1)

(i) Choose f, f ′ ∈ {0, 1} uniformly at random.
(ii) Choose 2k+1 row vectors az, a′

z, bz, b′
z, for z ∈ {0, 1}k−1, independently according to

a1k−1 = [02m−1 f 0],

a′
1k−1 = [02m−1 0 f ′],

az ∼ [ [02m−112m−1]� 1 f ⊕z1⊕· · ·⊕zk−1 0], z �= 1k−1,

a′
z ∼ [ [02m−112m−1]� 1 0 f ′⊕z1⊕· · ·⊕zk−1], z �= 1k−1,

bz ∼ [ [0m−11m−1]� i f ⊕z1⊕· · ·⊕zk−1 i], z ∈ {0, 1}k−1,

b′
z ∼ [ [0m−11m−1]� i i f ′⊕z1⊕· · ·⊕zk−1], z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by (50).
(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

of each Bz (z ∈ {0, 1}k−1) are moved up front and listed before any of the remaining
columns. The subsequent application of the � operator in both algorithms ensures that
the output distributions are the same.

Closely related to ν0
k,m and ν1

k,m are the distributions ν0
k,P1,...,P8

and ν1
k,P1,...,P8

, defined
next.

Definition 4.9. Let P1, . . . , P8 ∈ {0, 1}k−1,∗. The probability distribution ν0
k,P1,...,P8

on
matrix pairs is given by choosing M1, M2 ∈ {Tk−1, Fk−1} uniformly at random and
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ALGORITHM 4: Alternate algorithmic description of νi
k,m (i = 0, 1)

(i) Choose 2k+1 row vectors az, a′
z, bz, b′

z, for z ∈ {0, 1}k−1, independently according to

a1k−1 = a′
1k−1 = 02m−1,

az, a′
z ∼ [02m−112m−1]�, z �= 1k−1,

bz, b′
z ∼ [0m−11m−1]�, z ∈ {0, 1}k−1.

(ii) Define Az, Bz for z ∈ {0, 1}k−1 by (50).
(iii) Choose M1, M2 ∈ {Tk−1, Fk−1} uniformly at random and output the matrix pair⎡⎢⎣ H ′

k−1 M1 M1 M2 M2

11 . . . 1 11 . . . 1 00 . . . 0 00 . . . 0 00 . . . 0
11 . . . 1 00 . . . 0 00 . . . 0 11 . . . 1 00 . . . 0

A0k−1 · · · A1k−1

⎤⎥⎦
�

,

⎡⎢⎣ Hk−1 M1 M1 M2 M2

i i . . . i 11 . . . 1 00 . . . 0 ii . . . i ii . . . i
i i . . . i ii . . . i ii . . . i 11 . . . 1 00 . . . 0

B0k−1 · · · B1k−1

⎤⎥⎦
�

.

outputting the pair⎡⎢⎣ M1 P1 M2 P2 M1 M2 P3 P4

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

⎤⎥⎦
�

,

⎡⎢⎣ M1 P5 M2 P6 M1 M2 P7 P8

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

⎤⎥⎦
�

. (51)

The probability distribution ν1
k,P1,...,P8

on matrix pairs is given by choosing M1, M2 ∈
{Tk−1, Fk−1} uniformly at random and outputting the pair⎡⎢⎣ M1 P1 M2 P2 M1 M2 P3 P4

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

⎤⎥⎦
�

,

⎡⎢⎣ M2 P5 M1 P6 P7 M1 M2 P8

111 . . . 1 000 . . . 0 00 . . . 0 11111111 . . . 1
000 . . . 0 111 . . . 1 00 . . . 0 11111111 . . . 1

⎤⎥⎦
�

.

It is not hard to see, as we will soon, that ν0
k,m is a convex combination of probability

distributions ν0
k,P1,...,P8

, and analogously for ν1
k,m. This will enable us to replace ν0

k,m and
ν1

k,m in our arguments by particularly simple and highly structured distributions.

Definition 4.10. A matrix pair (A, B) is (k, m, α)-good if⎡⎢⎣ H′
k−1,2m′ H′

k−1,2m′ Hk−1,2m′

11 . . . 1 00 . . . 0 00 . . . 0
00 . . . 0 11 . . . 1 00 . . . 0

⎤⎥⎦ � A
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and Hk+1,m′ � B, where m′ = � 1−α
2 · m�. A matrix pair (A, B) is (k, m, α)-bad if it is not

(k, m, α)-good.

It will be necessary to control the quantitative contribution of bad matrix pairs in
the analysis of set disjointness. In the definition that follows, we give a special name
to probability distributions νi

k,P1,...,P8
supported on good matrix pairs.

Definition 4.11. Let G 0
k,m,α denote the set of all probability distributions ν0

k,P1,...,P8
that

are supported on (k, m, α)-good matrix pairs. Analogously, let G 1
k,m,α denote the set of all

probability distributions ν1
k,P1,...,P8

that are supported on (k, m, α)-good matrix pairs.

The following proposition gives a convenient characterization of probability distri-
butions in G 0

k,m,α and G 1
k,m,α.

PROPOSITION 4.12. Let k � 2 and m � 1 be integers, m′ = � 1−α
2 · m�. Fix matrices

P1, . . . , P8 ∈ {0, 1}k−1,∗ and i ∈ {0, 1}. Then, νi
k,P1,...,P8

∈ G i
k,m,α if and only if the following

three conditions hold:

(i) H′
k−1,2m′ � P1, P2,

(ii) Hk−1,2m′ � P3,
(iii) Hk−1,m′ � P5, P6, P7, P8.

PROOF. Immediate from the definitions of νi
k,P1,...,P8

and (k, m, α)-good matrix pairs.

4.2. Technical Lemmas

We now establish key properties of the probability distributions introduced so far. Our
main result here, Theorem 4.17, will be an approximate representation of λk,m out of
the convex hulls of G 0

k,m,α and G 1
k,m,α, with careful control of the error term. We start

with an auxiliary lemma which we will use to show the proximity of λk,m, ν0
k,m, and ν1

k,m
in statistical distance.

LEMMA 4.13. For an integer m � 1, consider the probability distributions
αm,1, αm,2, βm on {1, 2, . . . , m+ 2} given by

αm, j(i) =
(

m
i − j

)2(2m
m

)−1

, j = 1, 2,

βm(i) =
(

m+ 2
i

)(
m+ 1
i − 1

)(
2m+ 3
m+ 1

)−1

.

Then there is an absolute constant c > 0 such that

H(αm, j, βm) � c√
m

, j = 1, 2.

That the functions αm,1, αm,2, βm are probability distributions follows from Vander-
monde’s convolution, (4).

PROOF OF LEMMA 4.13. For j = 1, 2, elementary arithmetic gives

1 − c
m

− c|i − m
2 |

m
� αm, j(i)

βm(i)
� 1 + c

m
+ c|i − m

2 |
m

(i = 1, 2, . . . , m+ 2)
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for some absolute constant c > 0, so that |1 − √
αm, j(i)/βm(i)| � c

m(1 + |i − m
2 |). As a

result,

2H(αm, j, βm)2 = E
i∼βm

⎡⎢⎣
⎛⎝1 −

√
αm, j(i)
βm(i)

⎞⎠2
⎤⎥⎦

� c2

m2

{
1 + 2 E

βm

∣∣∣i − m
2

∣∣∣+ E
βm

[(
i − m

2

)2
]}

� c2

m2

{
1 + 2

√
E
βm

[(
i − m

2

)2
]

+ E
βm

[(
i − m

2

)2
]}

, (52)

where we used the fact that E X �
√

E[X2] for a real random variable X. Furthermore,

E
βm

[i] =
(

2m+ 3
m+ 1

)−1 m+2∑
i=1

i
(

m+ 2
i

)(
m+ 1
i − 1

)

=
(

2m+ 3
m+ 1

)−1

(m+ 2)
m+2∑
i=1

(
m+ 1
i − 1

)2

=
(

2m+ 3
m+ 1

)−1

(m+ 2)
(

2m+ 2
m+ 1

)
= (m+ 2)2

2m+ 3

and

E
βm

[i(i − 1)] =
(

2m+ 3
m+ 1

)−1 m+2∑
i=1

i(i − 1)
(

m+ 2
i

)(
m+ 1
i − 1

)

=
(

2m+ 3
m+ 1

)−1

(m+ 1)(m+ 2)
m+2∑
i=2

(
m

i − 2

)(
m+ 1
i − 1

)

=
(

2m+ 3
m+ 1

)−1

(m+ 1)(m+ 2)
m∑

i=0

(
m
i

)(
m+ 1
m− i

)

=
(

2m+ 3
m+ 1

)−1

(m+ 1)(m+ 2)
(

2m+ 1
m

)
= (m+ 1)(m+ 2)2

2(2m+ 3)
,

whence

E
βm

[(
i − m

2

)2
]

= m2

4
− (m− 1) E

βm
[i] + E

βm
[i(i − 1)] = O(m).

In view of (52), the proof is complete.

A fairly direct consequence of the previous lemma is that the probability distributions
λk,m, ν0

k,m, and ν1
k,m are within O(2k/

√
m) of each other in statistical distance. In what
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follows, we prove the better bound O(
√

2k/m), which is tight. The analysis exploits the
multiplicative property of Hellinger distance.

LEMMA 4.14. There is a constant c > 0 such that for all integers k � 2 and m� 1,

‖λk,m − νi
k,m‖1 �

√
c2k

m
, i = 0, 1.

PROOF. Throughout the proof, the term “algorithmic description” will refer to Algo-
rithm 2 in the case of λk,m and Algorithm 3 in the case of ν0

k,m and ν1
k,m. As we have noted

earlier, the algorithmic descriptions of these three distributions are identical except for
step (ii). In particular, observe that

λk,m = 1
4

∑
f, f ′∈{0,1}

λ
f, f ′
k,m ,

νi
k,m = 1

4

∑
f, f ′∈{0,1}

ν
i, f, f ′
k,m , i = 0, 1,

where λ
f, f ′
k,m , ν

0, f, f ′
k,m , ν

1, f, f ′
k,m are the distributions that result from λk,m, ν0

k,m, ν1
k,m, respec-

tively, when one conditions on the choice of f, f ′ in step (i) of the algorithmic description.
Therefore,

‖λk,m − νi
k,m‖1 � max

f, f ′

∥∥∥λ f, f ′
k,m − ν

i, f, f ′
k,m

∥∥∥
1

� 2
√

2 max
f, f ′

H
(
λ

f, f ′
k,m , ν

i, f, f ′
k,m

)
, i = 0, 1, (53)

where the second step uses Fact 2.1.
In the remainder of the proof, we consider f, f ′ fixed. Define the column histogram

of a matrix X ∈ {0, 1}k+1,∗ to be the vector of 2k+1 natural numbers indicating how
many times each string in {0, 1}k+1 occurs as a column of X. If D1 and D2 are two
probability distributions on {0, 1}k+1,∗ that are invariant under column permutations,
then the Hellinger distance between D1 and D2 is obviously the same as the Hellinger
distance between the column histograms of matrices drawn from D1 versus D2. An
analogous statement holds for probability distributions D1, D2 on matrix pairs. As
a result, we need only consider the column histograms of matrix pairs drawn from
λ

f, f ′
k,m , ν

0, f, f ′
k,m , ν

1, f, f ′
k,m . Furthermore, for every matrix pair

(A, B) ∈ supp λ
f, f ′
k,m ∪ supp ν

0, f, f ′
k,m ∪ supp ν

1, f, f ′
k,m ,

the column histograms of A and B are uniquely determined by the number of occur-
rences of ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk−1

f ⊕ z1 ⊕ z2 ⊕ · · · ⊕ zk−1

f ′ ⊕ z1 ⊕ z2 ⊕ · · · ⊕ zk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(54)

as a column of A and B, respectively, for each z ∈ {0, 1}k−1. Thus, we need 2k−1 numbers
per matrix, rather than 2k+1, to describe the column histograms of A and B.
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With this in mind, for (A, B) ∼ λ
f, f ′
k,m , define aλ,z and bλ,z (where z ∈ {0, 1}k−1) to be the

number of occurrences of (54) as a column in A and B, respectively. Analogously, for
(A, B) ∼ ν

i, f, f ′
k,m , define aνi ,z and bνi ,z (z ∈ {0, 1}k−1) to be the number of occurrences of (54)

as a column in Aand B, respectively. By the preceding discussion, the Hellinger distance
between λ

f, f ′
k,m and ν

i, f, f ′
k,m is the same as the Hellinger distance between (. . . , aλ,z, bλ,z, . . .)

and (. . . , aνi ,z, bνi ,z, . . .), viewed as random variables in N2k
. By step (ii) of the algorithmic

description, the random variables

aλ,0k−1 , bλ,0k−1 , . . . , aλ,1k−1 , bλ,1k−1

are independent. Similarly, for each i = 0, 1, the random variables

aνi ,0k−1 , bνi ,0k−1 , . . . , aνi ,1k−1 , bνi ,1k−1

are independent. Therefore,

H
(
λ

f, f ′
k,m , ν

i, f, f ′
k,m

) = H((. . . , aλ,z, bλ,z, . . .), (. . . , aνi ,z, bνi ,z, . . .))

�

√√√√ ∑
z∈{0,1}k−1

H(aλ,z, aνi ,z)2 +
∑

z∈{0,1}k−1

H(bλ,z, bνi ,z)2, (55)

where the second step uses Fact 2.1. The probability distributions of these random
variables are easily calculated from step (ii) of the algorithmic description. From first
principles,

H(aλ,1k−1 , aνi ,1k−1 ) �

√√√√√1
2

⎛⎝1 −
√

1 − 1
2m+ 1

⎞⎠2

+ 1
2

⎛⎝0 −
√

1
2m+ 1

⎞⎠2

= O
(

1√
m

)
. (56)

In the notation of Lemma 4.13, the remaining variables are governed by

aλ,z ∼ β2m−1,

aνi ,z ∼ α2m−1,1 or aνi ,z ∼ α2m−1,2

}
z �= 1k−1,

bλ,z ∼ βm−1,

bνi ,z ∼ αm−1,1 or bνi ,z ∼ αm−1,2

}
z ∈ {0, 1}k−1,

where the precise distribution of aνi ,z and bνi ,z depends on f, f ′. By Lemma 4.13,

H(aλ,z, aνi ,z) �
c′

√
m

, z �= 1k−1, (57)

H(bλ,z, bνi ,z) �
c′

√
m

, z ∈ {0, 1}k−1, (58)

for an absolute constant c′ > 0. By (53) and (55)–(58), the proof is complete.

Our next result shows that λk,m is supported almost entirely on good matrix pairs.

LEMMA 4.15. For 0 < α < 1, the probability distribution λk,m places at most 2−cα2m+k

probability mass on (k, m, α)-bad matrix pairs, where c > 0 is an absolute constant.
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PROOF. Define m′ = �(1 − α)m/2�. Throughout the proof, we will refer to the de-
scription of λk,m given by Algorithm 2. We may assume that m � 2, in which case
2m − 1 � 2m′ and the matrix A1k−1 in the algorithm is guaranteed to have at least 2m′
occurrences of the column ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (59)

As a result, the output of the algorithm is (k, m, α)-good provided that the four vectors⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk−1

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk−1

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk−1

1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk−1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(60)

each occur at least 2m′ times as a column of Az (for z ∈ {0, 1}k−1, z �= 1k−1) and at least
m′ times as a column of Bz (for z ∈ {0, 1}k−1). Let EAz and EBz be the events that Az and
Bz, respectively, enjoy this property. Then

P[¬EAz] �
(

4m+ 1
2m

)−1
{

2m′−1∑
i=0

(
2m
i

)(
2m+ 1
i + 1

)

+
2m∑

i=2m−2m′+1

(
2m
i

)(
2m+ 1
i + 1

)}

�
(

4m+ 1
2m

)−1(2m+ 1
m

){2m′−1∑
i=0

(
2m
i

)
+

2m∑
i=2m−2m′+1

(
2m
i

) }
� 2−�(α2m),

where the final step uses Stirling’s approximation and the Chernoff bound. Similarly,

P[¬EBz] =
(

2m+ 1
m

)−1
{

m′−1∑
i=0

(
m
i

)(
m+ 1
i + 1

)
+

m∑
i=m−m′+1

(
m
i

)(
m+ 1
i + 1

) }
� 2−�(α2m).

Applying a union bound over all z, we find that a (k, m, α)-bad matrix pair is generated
with probability no greater than 2−cα2m+k for some constant c > 0.

We now prove an analogous result for the probability distributions ν0
k,m and ν1

k,m,
showing along the way that νi

k,m can be accurately approximated by a convex combina-
tion of probability distributions in G i

k,m,α.
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LEMMA 4.16. For 0 < α < 1 and any integers k � 2 and m� 1, one has

νi
k,m = ν

i,good
k,m + ν

i,bad
k,m (i = 0, 1), (61)

where:

(i) ν
i,good
k,m is a conical combination of probability distributions νi

k,P1,...,P8
∈ G i

k,m,α such
that P1, P2, P4 do not contain an all-ones column,

(ii) ‖νi,good
k,m ‖1 � 1,

(iii) ‖νi,bad
k,m ‖1 � 2−cα2m+k for an absolute constant c > 0.

PROOF. Fix i ∈ {0, 1} for the remainder of the proof and consider the description of
νi

k,m given by Algorithm 4. Conditioned on the choice of matrices Az, Bz in steps (i)–(ii) of
the algorithm, the output is distributed according to νi

k,P1,...,P8
for some P1, . . . , P8 such

that P1, P2, P4 do not contain an all-ones column. This gives the representation (61),
where ν

i,good
k,m and ν

i,bad
k,m are conical combinations of probability distributions νi

k,P1,...,P8
∈

G i
k,m,α and νi

k,P1,...,P8
/∈ G i

k,m,α, respectively, for which P1, P2, P4 do not contain an all-ones
column.

It remains to prove (iii). Define m′ = �(1 − α)m/2�. We may assume that m � 2, in
which case 2m− 1 � 2m′ and the vector (59) is guaranteed to occur at least 2m′ times
as a column of A1k−1 in Algorithm 4. We infer that, conditioned on steps (i)–(ii) of the
algorithm, the output is (k, m, α)-good whenever the four vectors (60) each occur at least
2m′ times as a column of Az (for z ∈ {0, 1}k−1, z �= 1k−1) and at least m′ times as a column
of Bz (for z ∈ {0, 1}k−1). The 2k − 1 matrices Az, Bz simultaneously enjoy this property
with probability at least 1 − 2−cα2m+k for an absolute constant c > 0, by a calculation
analogous to that in Lemma 4.15. It follows that

‖νi,bad
k,m ‖1 = 1 − ‖νi,good

k,m ‖1 � 2−cα2m+k.

We have reached the main result of this section, which states that λk,m can be accu-
rately approximated by a convex combination of probability distributions in G 0

k,m,α or
G 1

k,m,α, with the statistical distance supported almost entirely on good matrix pairs.

THEOREM 4.17. Let c > 0 be a sufficiently small absolute constant. Then, for every
α ∈ (0, 1), the probability distribution λk,m can be expressed as

λk,m = λi
1 + λi

2 + λi
3 (i = 0, 1), (62)

where:

(i) λi
1 is a conical combination of probability distributions νi

k,P1,...,P8
∈ G i

k,m,α such that
P1, P2, P4 do not contain an all-ones column, and moreover ‖λi

1‖1 � 1;
(ii) λi

2 is a real function such that ‖λi
2‖1 �

√
2k/(cm)+2−cα2m+k, with support on (k, m, α)-

good matrix pairs;
(iii) λi

3 is a real function with ‖λi
3‖1 � 2−cα2m+k.

PROOF. Decompose

νi
k,m = ν

i,good
k,m + ν

i,bad
k,m

as in Lemma 4.16, so that

‖νi,bad
k,m ‖1 � 2−c′α2m+k (63)
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for some absolute constant c′ > 0. Analogously, write

λk,m = λ
good
k,m + λbad

k,m,

where λ
good
k,m and λbad

k,m are nonnegative functions supported on (k, m, α)-good and (k, m, α)-
bad matrix pairs, respectively. Then

‖λbad
k,m‖1 � 2−c′α2m+k (64)

by Lemma 4.15. Letting

λi
1 = ν

i,good
k,m ,

λi
2 = λ

good
k,m − ν

i,good
k,m ,

λi
3 = λbad

k,m,

we immediately have (62). Furthermore,

‖λi
2‖1 = ‖(λk,m − λbad

k,m) − (νi
k,m − ν

i,bad
k,m )‖1

� ‖λk,m − νi
k,m‖1 + ‖λbad

k,m‖1 + ‖νi,bad
k,m ‖1

�
√

2k

c′′m
+ 2 · 2−c′α2m+k (65)

for an absolute constant c′′ > 0, where the final step uses (63), (64), and Lemma 4.14.
Now items (i)–(iii) follow from Lemma 4.16(i)–(ii), (65), and (64), respectively, by taking
c = c(c′, c′′) > 0 small enough.

We close this section with a few basic observations regarding k-party protocols. On
several occasions in this manuscript, we will need to argue that a communication
problem does not become easier from the standpoint of communication complexity if we
manipulate the protocol’s input in a particular way. The input will always come in the
form of a matrix sequence (X1, X2, . . . , Xn), and manipulations that we will encounter
include discarding one or more of the arguments, reordering the arguments, applying a
uniformly random column permutation to one of the arguments, adding a fixed matrix
to one of the arguments, and so on. Rather than treat these instances individually as
they arise, we find it more economical to address them all at once.

Definition 4.18. Let (X1, X2, . . . , Xn) be a random variable with range {0, 1}k×m1 ×
{0, 1}k×m2 × · · · × {0, 1}k×mn. The following random variables are said to be derivable
from (X1, X2, . . . , Xn) in one step without communication:

(i) (X2, . . . , Xn);
(ii) (X1, . . . , Xn, X1);

(iii) (Xσ (1), . . . , Xσ (n)), where σ ∈ Sn is a fixed permutation;
(iv) (σ1 X1, . . . , σnXn), where σ1, . . . , σn are fixed column permutations;
(v) (X1, . . . , Xn, σ X1), where σ is a uniformly random column permutation, indepen-

dent of any other variables;
(vi) (X1, . . . , Xn, A), where A is a fixed Boolean matrix;

(vii) ([X1 A1], . . . , [Xn An]), where A1, . . . , An are fixed Boolean matrices;
(viii) (X1 ⊕ A1, . . . , Xn ⊕ An), where A1, . . . , An are fixed Boolean matrices;

(ix) (X1, . . . , Xn, σ [X1 A]), where A is a fixed Boolean matrix and σ is a uniformly
random column permutation, independent of any other variables.

A random variable (Y1, . . . , Yr) is said to be derivable from (X1, . . . , Xn) with no com-
munication, denoted (X1, . . . , Xn) � (Y1, . . . , Yr), if there exists a finite sequence of
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random variables starting with (X1, . . . , Xn) and ending with (Y1, . . . , Yr), where every
random variable in the sequence is derivable in one step with no communication from
the one immediately preceding it.

If (Y1, . . . , Yr) is a random variable derivable from (X1, . . . , Xn) with no communica-
tion, then the former is the result of deterministic or randomized processing of the
latter. The following proposition shows that there is no advantage to providing a com-
munication protocol with (Y1, . . . , Yr) instead of (X1, . . . , Xn).

PROPOSITION 4.19. Consider random variables

X = (X1, . . . , Xn) ∈ {0, 1}k×m1 × · · · × {0, 1}k×mn,

X′ = (X′
1, . . . , X′

n′ ) ∈ {0, 1}k×m′
1 × · · · × {0, 1}k×m′

n′ ,

X′′ = (X′′
1, . . . , X′′

n′′ ) ∈ {0, 1}k×m′′
1 × · · · × {0, 1}k×m′′

n′′ ,

where X � X′ � X′′. Then for every real function f,

max
χ

∣∣E χ (X′′) f (X)
∣∣ � max

χ

∣∣E χ (X′) f (X)
∣∣ , (66)

where the maximum is over k-dimensional cylinder intersections χ.

PROOF. By induction, we may assume that X′′ is derivable from X′ in one step with no
communication. In other words, it suffices to consider cases (i)–(ix) in Definition 4.18.
In what follows, we let γ denote the right-hand side of (66).

Cases (i)–(iv) are trivial because as a function family, cylinder intersections are
closed under the operations of removing, duplicating, and reordering columns of the
input matrix. For (v), we have

max
χ

∣∣∣∣Eσ E
X,X′

χ (X′
1, . . . , X′

n′ , σ X′
1) f (X)

∣∣∣∣ � E
σ

max
χ

∣∣∣∣ E
X,X′

χ (X′
1, . . . , X′

n′ , σ X′
1) f (X)

∣∣∣∣ .
The final expression is at most γ , by a combination of (ii) followed by (iv). For (vi),

max
χ

∣∣∣∣ E
X,X′

χ (X′
1, . . . , X′

n′ , A) f (X)
∣∣∣∣ � max

χ

∣∣∣∣ E
X,X′

χ (X′
1, . . . , X′

n′ ) f (X)
∣∣∣∣

because with A fixed, χ is a cylinder intersection with respect to the remaining argu-
ments X′

1, . . . , X′
n′ . The proof for (vii) is analogous. Case (viii) is immediate because as a

function family, cylinder intersections are closed under the operation of adding a fixed
matrix to the input matrix. Finally, (ix) is a combination of (ii), (vii), and (v), in that
order.

4.3. Discrepancy Analysis

Building on the work in the previous two sections, we will now prove the desired
upper bound on the repeated discrepancy of set disjointness. We start by defining the
probability distribution that we will work with.

Definition 4.20. For positive integers k, m, let πk,m be the probability distribution
whose algorithmic description is as follows: choose M ∈ {Tk, Fk} uniformly at random
and output [M H′

k,m]�.

In words, we are interested in the probability distribution whereby true and false
instances of set disjointness are generated by randomly permuting the columns of
[Tk H′

k,m] and [Fk H′
k,m], respectively. For our purposes, a vital property of πk,m is the

equivalence of the following tasks from the standpoint of communication complexity:
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(i) for X drawn according to πk,m, determine DISJ(X);
(ii) for X1, X2, . . . , Xi, . . . drawn independently according to πk,m conditioned on

DISJ(X1) = DISJ(X2) = · · · = DISJ(Xi) = · · · , determine DISJ(X1).

Thus, it does not help to have access to additional instances of set disjointness with
the same truth status as the given instance. This is a very unusual property for a
probability distribution to have, and in particular the probability distribution used in
the previous best lower bound for set disjointness [Sherstov 2012a] fails badly in this
regard.

This property of πk,m comes at a cost: the columns of X ∼ πk,m are highly interde-
pendent, and the inductive analysis of the discrepancy is considerably more involved
than in Sherstov [2012a]. As a matter of fact, πk,m is not directly usable in an inductive
argument because it does not lead to a decomposition into subproblems with like dis-
tributions. (To be more precise, forcing an inductive argument with πk,m would result
in a much weaker bound on the repeated discrepancy of set disjointness than what
we prove.) Instead, we will need to analyze the discrepancy of set disjointness under
a distribution more exotic than πk,m, which provides the communication protocol with
additional information.

A description of this exotic distribution is as follows. We will analyze the XOR of sev-
eral independent instances of set disjointness, rather than a single instance. Fix a non-
negative integer d and subsets Z1, Z2, . . . , Zn ⊆ {0, 1}d. Given matrix pairs (At,z, Bt,z),
where t = 1, 2, . . . , n and z ∈ Zt, the symbol

enc(. . . , At,z, Bt,z, . . .)

shall denote the following ordered list of matrices:

(i) the matrices At,z, listed in lexicographic order by (t, z);
(ii) followed by the matrices [Bt,z Bt,z′ ] for all t and all z, z′ ∈ Zt such that |z⊕ z′| = 1,

listed in lexicographic order by (t, z, z′);
(iii) followed by the matrices [Bt,z Bt,z′ ] for all t and all z, z′ ∈ Zt such that |z⊕ z′| = 1,

listed in lexicographic order by (t, z, z′).

The abbreviation enc stands for “encoding” and highlights the fact that the communi-
cation protocol does not have direct access to the matrix pairs At,z, Bt,z. In particular,
for d = 0 the matrices Bt,z do not appear on the list enc(. . . , At,z, Bt,z, . . .) at all. The
symbol

σ enc(. . . , At,z, Bt,z, . . .) (67)

shall refer to the result of permuting the columns for each of the matrices in the ordered
list enc(. . . , At,z, Bt,z, . . .) according to σ, where σ = (. . . , σt,z, . . . , σt,z,z′ , . . . , σ ′

t,z,z′ , . . .) is
an ordered list of column permutations, one for each of the matrices on the list. In
our analysis, σ will always be chosen uniformly at random, so that (67) is simply the
result of permuting the columns for each of the matrices on the list independently and
uniformly at random. With these notations in place, we define

�(k, m, d, Z1, . . . , Zn)

= max
χ

∣∣∣∣∣∣ E
...,(At,z,Bt,z),...

E
σ

χ (σ enc(. . . , At,z, Bt,z, . . .))
n∏

t=1

∏
z∈Zt

DISJ(At,z)

∣∣∣∣∣∣ ,
where the maximum is over k-dimensional cylinder intersections χ ; the first expectation
is over the matrix pairs (At,z, Bt,z) distributed independently according to μk,m; and the
second expectation is over column permutations chosen independently and uniformly at
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random for each matrix on the list enc(. . . , At,z, Bt,z, . . .). This completes the description
of the “exotic” distribution that governs the input to χ.

For nonnegative integers �1, �2, . . . , �n, we let

�(k, m, d, �1, . . . , �n) = max
|Z1|=�1

· · · max
|Zn|=�n

�(k, m, d, Z1, . . . , Zn),

where the maximum is over all possible subsets Z1, Z2, . . . , Zn ⊆ {0, 1}d of cardi-
nalities �1, �2, . . . , �n, respectively. Observe that �(k, m, d, �1, . . . , �n) is only defined
for �1, . . . , �n ∈ {0, 1, 2, 3, . . . , 2d}. The only setting of interest to us is d = 0 and
�1 = �2 = · · · = �n = 1, in which case enc(. . . , At,z, Bt,z, . . .) = (. . . , At,z, . . .) and

�(k, m, 0, 1, . . . , 1︸ ︷︷ ︸
n

) = max
χ

∣∣∣∣∣ E
X1,...,Xn∼πk,2m

χ (X1, . . . , Xn)
n∏

i=1

DISJ(Xi)

∣∣∣∣∣ . (68)

However, the inductive analysis below requires consideration of �(k, m, d, �1, . . . , �n) for
all possible parameters. We start by deriving a recurrence relation for �.

LEMMA 4.21. Let c > 0 be the absolute constant from Theorem 4.17. Then, for k � 2
and 0 < α < 1, and the quantity �(k, m, d, �1, . . . , �n)2 does not exceed

�1∑
i1, j1=0

· · ·
�n∑

in, jn=0

⎧⎨⎩
n∏

t=1

(
�t

it

)(
�t − it

jt

)(√
2k

cm
+ 2k

2cα2m

)it (
2k

2cα2m

) jt
⎫⎬⎭

× max
�′

1�2 max{0,�1−i1−(d+1) j1}
...

�′
n�2 max{0,�n−in−(d+1) jn}

�

(
k − 1,

⌈
(1 − α)m

2

⌉
, d + 1, �′

1, . . . , �
′
n

)
.

Moreover,

�(1, m, d, �1, . . . , �n) =
{

0 if �1 + · · · + �n > 0,

1 otherwise.

PROOF. The claim regarding �(1, m, d, �1, . . . , �n) is obvious because the probability
distribution μk,m places equal weight on the positive and negative instances of set
disjointness. In what follows, we prove the recurrence relation.

Abbreviate � = �(k, m, d, �1, . . . , �n). Let Z1, . . . , Zn ⊆ {0, 1}d be subsets of cardinali-
ties �1, . . . , �n, respectively, such that �(k, m, d, Z1, . . . , Zn) = �. Let χ be a k-dimensional
cylinder intersection for which

� =

∣∣∣∣∣∣∣ E
...,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
,...

E
σ

χ

(
σ enc

(
. . . ,

[
At,z

at,z

]
,

[
Bt,z

bt,z

]
, . . .

)) n∏
t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]∣∣∣∣∣∣ ,
where the inner expectation is over the independent permutation of the columns for
each of the matrices on the encoded list, and the outer expectation is over matrix pairs([

At,z

at,z

]
,

[
Bt,z

bt,z

])
, t = 1, 2, . . . , n, z ∈ Zt,

each drawn independently according to μk,m (as usual, at,z and bt,z denote row vectors).
The starting point in the proof is a reduction to (k − 1)-dimensional cylinder inter-
sections using the Cauchy-Schwarz inequality, a technique due to Babai et al. [1992].
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Rearranging,

� � E
σ

E
...,At,z,Bt,z,...

∣∣∣∣∣∣ E
...,at,z,bt,z,...

χ

(
σ enc

(
. . . ,

[
At,z

at,z

]
,

[
Bt,z

bt,z

]
, . . .

))

×
n∏

t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]∣∣∣∣∣∣ , (69)

where the second expectation is over the marginal probability distribution on the pairs
(At,z, Bt,z), and the third expectation is over the conditional probability distribution on
the pairs (at,z, bt,z) for fixed (At,z, Bt,z). Recall that χ is the pointwise product of two
functions χ = φ · χ ′, where φ depends only on the first k − 1 rows and has range {0, 1},
and χ ′ is a (k − 1)-dimensional cylinder intersection with respect to the first k − 1
rows for any fixed value of the kth row. Since the innermost expectation in (69) is over
(. . . , at,z, bt,z, . . .) for fixed (. . . , At,z, Bt,z, . . .), the function φ can be taken outside the
innermost expectation and absorbed into the absolute value operator:

� � E
σ

E
...,At,z,Bt,z,...

∣∣∣∣∣∣ E
...,at,z,bt,z,...

χ ′
(

σ enc
(

. . . ,

[
At,z

at,z

]
,

[
Bt,z

bt,z

]
, . . .

))

×
n∏

t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]∣∣∣∣∣∣ .
Squaring both sides and applying the Cauchy-Schwarz inequality,

�2 � E
σ

E
...,At,z,Bt,z,...

⎡⎣⎧⎨⎩ E
...,at,z,bt,z,...

χ ′
(

σ enc
(

. . . ,

[
At,z

at,z

]
,

[
Bt,z

bt,z

]
, . . .

))

×
n∏

t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]⎫⎬⎭
2 ]

= E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
σ

χ ′
(

σ enc
(

. . . ,

[
At,z

at,z

]
,

[
Bt,z

bt,z

]
, . . .

))

× χ ′
(

σ enc
(

. . . ,

[
At,z

a′
t,z

]
,

[
Bt,z

b′
t,z

]
, . . .

)) n∏
t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
,

where the outer expectation is over matrix pairs drawn according to λk,m. Since the
product of two cylinder intersections is a cylinder intersection, we arrive at

�2 � E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
σ

χ ′′

⎛⎝σ enc

⎛⎝. . . ,

⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , . . .

⎞⎠⎞⎠

×
n∏

t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
, (70)
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where χ ′′ is a (k − 1)-dimensional cylinder intersection with respect to the first k − 1
rows for any fixed values of the kth and (k + 1)st rows. This completes the promised
reduction to the (k − 1)-dimensional case.

Theorem 4.17 states that

λk,m = λi
1 + λi

2 + λi
3 (i = 0, 1), (71)

where: λi
1 is a conical combination of probability distributions νi

k,P1,...,P8
∈ G i

k,m,α for
which P1, P2, P4 do not contain an all-ones column; λi

2 is a real function supported on
(k, m, α)-good matrix pairs; and furthermore

‖λi
1‖1 � 1 (i = 0, 1), (72)

‖λi
2‖1 �

√
2k

cm
+ 2k

2cα2m
(i = 0, 1), (73)

‖λi
3‖1 � 2k

2cα2m
(i = 0, 1). (74)

Define

�

⎛⎝. . . ,

⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , . . .

⎞⎠ = E
σ

χ ′′

⎛⎝σ enc

⎛⎝. . . ,

⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , . . .

⎞⎠⎞⎠
×

n∏
t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
.

CLAIM 4.22. Fix functions ιt : Zt → {1, 2, 3} (t = 1, 2, . . . , n). Define it = |ι−1
t (2)| and

jt = |ι−1
t (3)|. Then〈

�,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
�

⎧⎨⎩
n∏

t=1

(√
2k

cm
+ 2k

2cα2m

)it (
2k

2cα2m

) jt
⎫⎬⎭

× max
�′

1�2 max{0,�1−i1−(d+1) j1}
...

�′
n�2 max{0,�n−in−(d+1) jn}

�

(
k − 1,

⌈
(1 − α)m

2

⌉
, d + 1, �′

1, . . . , �
′
n

)
.

Before settling the claim, we will finish the proof of the lemma:

�2 �
〈
�,

n⊗
t=1

⊗
z∈Zt

λk,m

〉
by (70)

=
〈
�,

n⊗
t=1

⊗
z∈Zt

(
λ

PARITY∗(z)
1 + λ

PARITY∗(z)
2 + λ

PARITY∗(z)
3

)〉
by (71)

=
∑

ι1,ι2,...,ιn

〈
�,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
,

where the sum is over all possible functions ι1, ι2, . . . , ιn with domains Z1, Z2, . . . , Zn,
respectively, and range {1, 2, 3}. Using the bound of Claim 4.22 for the inner products
in the final expression, one immediately arrives at the recurrence in the statement of
the lemma.
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PROOF OF CLAIM 4.22. For t = 1, 2, . . . , n, define Yt to be the collection of all z ∈ ι−1
t (1)

for which {z′ ∈ Zt : |z ⊕ z′| = 1} ∩ ι−1
t (3) = ∅. This set Yt ⊆ Zt has the following intuitive

interpretation. View Zt as an undirected graph in which two vertices z, z′ ∈ Zt are
connected by an edge if and only if they are neighbors in the ambient hypercube, that
is, |z ⊕ z′| = 1. We will refer to the vertices in ι−1

t (1), ι−1
t (2), and ι−1

t (3) as good, neutral,
and bad, respectively. In this terminology, Yt is simply the set of all good vertices that
do not have a bad neighbor. Since the degree of every vertex in the graph is at most d,
we obtain

|Yt| � |ι−1
t (1)| − d|ι−1

t (3)|
= (|Zt| − |ι−1

t (2)| − |ι−1
t (3)|) − d|ι−1

t (3)|
= �t − it − (d + 1) jt, t = 1, 2, . . . , n. (75)

Now, consider the quantity

γ = max

∣∣∣∣∣∣∣∣∣ E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
σ

χ ′′

⎛⎝σ enc

⎛⎝. . . ,

⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , . . .

⎞⎠⎞⎠

×
n∏

t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]∣∣∣∣∣∣∣∣∣ , (76)

where the maximum is over all matrix pairs⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , t = 1, 2, . . . , n, z ∈ (ι−1
t (1) \ Yt) ∪ ι−1

t (2) (77)

that are (k, m, α)-good and over all possible matrix pairs⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , t = 1, 2, . . . , n, z ∈ ι−1
t (3), (78)

and the outer expectation is over the remaining matrix pairs⎡⎣At,z

at,z

a′
t,z

⎤⎦ ,

⎡⎣Bt,z

bt,z

b′
t,z

⎤⎦ , t = 1, 2, . . . , n, z ∈ Yt, (79)

which are distributed independently, each according to some distribution ν
PARITY∗(z)
k,P1,...,P8

∈
G PARITY∗(z)

k,m,α such that P1, P2, P4 do not contain an all-ones column. Since λ
PARITY∗(z)
2 is

supported on (k, m, α)-good matrix pairs and since λ
PARITY∗(z)
1 is a conical combination of

probability distributions ν
PARITY∗(z)
k,P1,...,P8

∈ G PARITY∗(z)
k,m,α such that P1, P2, P4 do not contain an
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all-ones column, it follows by convexity that〈
�,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
� γ

n∏
t=1

∏
z∈Zt

∥∥∥λPARITY∗(z)
ιt(z)

∥∥∥
1

� γ

n∏
t=1

(√
2k

cm
+ 2k

2cα2m

)it (
2k

2cα2m

) jt

,

where the second step uses the estimates (72)–(74). As a result, the proof will be
complete once we show that

γ � max
�′

1�2 max{0,�1−i1−(d+1) j1}
...

�′
n�2 max{0,�n−in−(d+1) jn}

�(k − 1, m′, d + 1, �′
1, . . . , �

′
n), (80)

where m′ = �(1 − α)m/2�. In the remainder of the proof, we will fix an assignment
to the matrix pairs (77) and (78) for which the maximum is achieved in (76). The
argument involves three steps: splitting the input to χ ′′ into tuples of smaller matrices,
determining the individual probability distribution of each tuple, and recombining the
results to characterize the joint probability distribution of the input to χ ′′.

Step I. Partitioning into Submatrices. Think of every matrix M on the encoded matrix
list in (76) as partitioned into four submatrices M00, M01, M10, M11 ∈ {0, 1}k+1,∗ of the
form ⎡⎢⎢⎢⎢⎢⎢⎣

*
0 0 · · · 0
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
*

0 0 · · · 0
1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
*

1 1 · · · 1
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
*

1 1 · · · 1
1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

respectively, with the relative ordering of columns in each submatrix inherited from
the original matrix M. A uniformly random column permutation of M can be realized
as

υ
[
σ 00M00 σ 01M01 σ 10M10 σ 11M11

]
,

where σ 00, . . . , σ 11 are uniformly random column permutations of the four submatrices
and υ is a uniformly random column permutation of the entire matrix. We will reveal
υ completely to the cylinder intersection (this corresponds to allowing the cylinder
intersection to depend on υ) but keep σ 00, . . . , σ 11 secret.

In more detail, define

A00
t,z = At,z|at,z∧a′

t,z
, B00

t,z = Bt,z|bt,z∧b′
t,z

,

A01
t,z = At,z|at,z∧a′

t,z
, B01

t,z = Bt,z|bt,z∧b′
t,z

,

A10
t,z = At,z|at,z∧a′

t,z
, B10

t,z = Bt,z|bt,z∧b′
t,z

,

A11
t,z = At,z|at,z∧a′

t,z
, B11

t,z = Bt,z|bt,z∧b′
t,z

,
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where t = 1, 2, . . . , n and z ∈ Zt. Then, by the argument of the previous paragraph,

γ �

∣∣∣∣∣∣∣∣∣ E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
υ

E
σ 00,...,σ 11

n∏
t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
×

×χ ′′
υ (σ 00 enc(. . . , A00

t,z, B00
t,z, . . .),

σ 01 enc(. . . , A01
t,z, B01

t,z, . . .),

σ 10 enc(. . . , A10
t,z, B10

t,z, . . .),

σ 11 enc(. . . , A11
t,z, B11

t,z, . . .))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where σ 00, σ 01, σ 10, σ 11 are permutation lists chosen independently and uniformly at
random, υ is a joint column permutation from an appropriate probability distribution,
and each χ ′′

υ is a (k− 1)-dimensional cylinder intersection. Note that the final property
crucially uses the fact that χ ′′ is a (k − 1)-dimensional cylinder intersection for any
fixed value of the bottom two rows. Taking the expectation with respect to υ outside
the absolute value operator, we conclude that there is some (k−1)-dimensional cylinder
intersection χ ′′′ such that

γ �

∣∣∣∣∣∣∣∣∣ E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
σ 00,σ 01,σ 10,σ 11

n∏
t=1

∏
z∈Zt

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
×

×χ ′′′(σ 00 enc(. . . , A00
t,z, B00

t,z, . . .),

σ 01 enc(. . . , A01
t,z, B01

t,z, . . .),

σ 10 enc(. . . , A10
t,z, B10

t,z, . . .),

σ 11 enc(. . . , A11
t,z, B11

t,z, . . .))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (81)

Step II. Distribution of the Induced Matrix Sequences. We will now take a closer
look at the matrix sequence (A00

t,z, A01
t,z, A10

t,z, A11
t,z, B00

t,z, B01
t,z, B10

t,z, B11
t,z) and characterize its

distribution depending on t, z. In what follows, the symbol ∗ denotes a fixed Boolean
matrix, and the symbol � denotes a fixed Boolean matrix without an all-ones column.
We will use ∗ and � to designate matrices whose entries are immaterial to the proof. It
is important to remember that ∗ and � are semantic shorthands rather than variables,
that is, every occurrence of ∗ and � may refer to a different matrix.

(a) Sequences with t = 1, 2, . . . , n, z ∈ (ι−1
t (1) \ Yt) ∪ ι−1

t (2). For such t, z, the matrices
(At,z, Bt,z) are fixed to some (k, m, α)-good matrix pairs, which by definition forces

A00
t,z =�

[∗ Hk−1,2m′
]
, B00

t,z =�
[∗ Hk−1,m′

]
,

A01
t,z =�

[∗ H′
k−1,2m′

]
, B01

t,z =�
[∗ Hk−1,m′

]
,
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A10
t,z =�

[∗ H′
k−1,2m′

]
, B10

t,z =�
[∗ Hk−1,m′

]
,

A11
t,z =�

[∗] , B11
t,z =�

[∗ Hk−1,m′
]
.

(b) Sequences with t = 1, 2, . . . , n, z ∈ ι−1(3). Each such sequence is fixed to some
unknown tuple of matrices over which we have no control:

A00
t,z = [∗] , B00

t,z = [∗] ,
A01

t,z = [∗] , B01
t,z = [∗] ,

A10
t,z = [∗] , B10

t,z = [∗] ,
A11

t,z = [∗] , B11
t,z = [∗] .

(c) Sequences with t = 1, 2, . . . , n, z ∈ Yt. Each such sequence is distributed inde-
pendently of the others. The exact distribution of a given sequence depends on the
parity of z and is given by the following table, where Mt,z0, Mt,z1 refer to independent
random variables distributed uniformly in {Tk−1, Fk−1}.

Distribution for |z| even Distribution for |z| odd
A00

t,z

[∗ Hk−1,2m′ Mt,z0 Mt,z1
]� [∗ Hk−1,2m′ Mt,z0 Mt,z1

]�
A01

t,z

[
� H′

k−1,2m′ Mt,z0
]� [

� H′
k−1,2m′ Mt,z1

]�
A10

t,z

[
� H′

k−1,2m′ Mt,z1
]� [

� H′
k−1,2m′ Mt,z0

]�
A11

t,z

[
�
]� [

�
]�

B00
t,z

[∗ Hk−1,m′ Mt,z0 Mt,z1
]� [∗ Hk−1,m′

]�
B01

t,z

[∗ Hk−1,m′ Mt,z0
]� [∗ Hk−1,m′ Mt,z0

]�
B10

t,z

[∗ Hk−1,m′ Mt,z1
]� [∗ Hk−1,m′ Mt,z1

]�
B11

t,z

[∗ Hk−1,m′
]� [∗ Hk−1,m′ Mt,z0 Mt,z1

]�
To verify, recall that each matrix pair in (79) is distributed independently according to
ν

PARITY∗(z)
k,P1,...,P8

∈ G PARITY∗(z)
k,m,α for some P1, . . . , P8, where P1, P2, P4 do not contain an all-ones

column. The stated description is now immediate by letting

(M1, M2) =
{

(Mt,z1, Mt,z0) if |z| is even,
(Mt,z0, Mt,z1) if |z| is odd

in Definition 4.9 and recalling that P1, . . . , P8 have submatrix structure given by Propo-
sition 4.12.

An important consequence of the newly obtained characterization is that

DISJ
[

At,z

at,z

]
DISJ

[
At,z

a′
t,z

]
= DISJ

[
A10

t,z A11
t,z

]
DISJ

[
A01

t,z A11
t,z

]
= DISJ(Mt,z0) DISJ(Mt,z1)
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for all z ∈ Yt. Since for z /∈ Yt the values At,z, at,z, a′
t,z are fixed, (81) simplifies to

γ �

∣∣∣∣∣∣∣∣∣ E
...,

[
At,z
at,z
a′
t,z

]
,

[
Bt,z
bt,z
b′
t,z

]
,...

E
σ 00,σ 01,σ 10,σ 11

n∏
t=1

∏
z∈Yt

DISJ(Mt,z0)DISJ(Mt,z1)×

×χ ′′′(σ 00 enc(. . . , A00
t,z, B00

t,z, . . .),

σ 01 enc(. . . , A01
t,z, B01

t,z, . . .),

σ 10 enc(. . . , A10
t,z, B10

t,z, . . .),

σ 11 enc(. . . , A11
t,z, B11

t,z, . . .))

∣∣∣∣∣∣∣∣∣∣∣∣
. (82)

Step III. Recombining. Having examined the new submatrices, we are now in a
position to fully characterize the probability distribution of the input to χ ′′′ in (82). To
start with, χ ′′′ receives as input the matrices A00�

t,z , A01�
t,z , A10�

t,z , A11�
t,z . If z ∈ Yt, then by

Step II (c) each of them is distributed according to one of the distributions[∗ Hk−1,2m′ Mt,z0 Mt,z1
]�, (83)[∗ H′

k−1,2m′ Mt,z0
]�, (84)[∗ H′

k−1,2m′ Mt,z1
]�

, (85)[∗]�. (86)

If z /∈ Yt, then each of the matrices in question is distributed according to (86). The
only other input to χ ′′′ is

[Bε1ε2
t,z Bε1ε2

t,z′ ]�, [Bε1ε2
t,z Bε1ε2

t,z′ ]�, (87)

where ε1, ε2 ∈ {0, 1} and the strings z, z′ ∈ Zt satisfy |z ⊕ z′| = 1. If z, z′ ∈ Yt, then
Step II (c) reveals that each of the matrices in (87) is distributed according to one of the
probability distributions [∗ Hk−1,2m′ Mt,w Mt,w′

]�, (88)[∗ Hk−1,2m′ Mt,w Mt,w′
]�, (89)[∗ Hk−1,2m′ Mt,w Mt,w′
]�, (90)

where w,w′ ∈ Yt ×{0, 1} are some Boolean strings with |w⊕w′| = 1. If z /∈ Yt and z′ /∈ Yt,
then each of the matrices in (87) is distributed according to (86). In the remaining case
when z ∈ Yt and z′ /∈ Yt, we have by definition of Yt that z′ ∈ (ι−1

t (1) \ Yt) ∪ ι−1
t (2), and

therefore, by Steps II(a) and II(c), each of the matrices in (87) is distributed according
to one of the probability distributions[∗]� , (91)[∗ Hk−1,2m′ Mt,z0 Mt,z1

]�
, (92)[∗ Hk−1,2m′ Mt,z0 Mt,z1

]�
, (93)
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[∗ Hk−1,2m′ Mt,z0
]�

, (94)[∗ Hk−1,2m′ Mt,z0
]�

, (95)[∗ Hk−1,2m′ Mt,z1
]�

, (96)[∗ Hk−1,2m′ Mt,z1
]�

. (97)

In the terminology of Definition 4.18, each of the random variables (83)–(86), (88)–
(97) is derivable with no communication from[

Mt,w H′
k−1,2m′

]�
,[

Mt,w Hk−1,m′ Mt,w′ Hk−1,m′
]�

,[
Mt,w Hk−1,m′ Mt,w′ Hk−1,m′

]�
,

where t = 1, 2, . . . , n and w,w′ range over all strings in Yt × {0, 1} at Hamming dis-
tance 1. This follows easily from (44)–(48). As a result, the input to χ ′′′ in (82) is
derivable with no communication from σ enc(. . . , [Mt,w H′

k−1,2m′], [Mt,w Hk−1,m′ ], . . .),
where t = 1, 2, . . . , n, w ∈ Yt × {0, 1}, and σ is chosen uniformly at random. Then by
Proposition 4.19,

γ � max
χ

∣∣∣∣∣∣ E
...,Mt,w,...

E
σ

n∏
t=1

∏
w∈Yt×{0,1}

DISJ(Mt,w)

× χ (σ enc(. . . , [Mt,w H′
k−1,2m′ ], [Mt,w Hk−1,m′], . . .))

∣∣∣∣∣∣ ,
where the maximum is over (k − 1)-dimensional cylinder intersections χ . The right-
hand side is by definition �(k − 1, m′, d + 1, Y1 × {0, 1}, . . . , Yn × {0, 1}). Recalling the
lower bound (75) on the size of Y1, . . . , Yn, we arrive at the desired inequality (80).

This completes the proof of Lemma 4.21. To solve the newly obtained recurrence for
�, we prove a technical result.

LEMMA 4.23. Fix reals p1, p2, . . . > 0 and q1, q2, . . . > 0. Let A: Z+ × Nn+1 → [0, 1] be
any function that satisfies

A(1, d, �1, �2, . . . , �n) =
{

0 if �1 + �2 + · · · + �n > 0,

1 otherwise,

and for k � 2,

A(k, d, �1, �2, . . . , �n)2 �
�1∑

i1, j1=0

· · ·
�n∑

in, jn=0

{
n∏

t=1

(
�t

it

)(
�t − it

jt

)
pit

k q jt
k

}
× sup

�′
1�2 max{0,�1−i1−(d+1) j1}

...
�′

n�2 max{0,�n−in−(d+1) jn}

A(k − 1, d + 1, �′
1, . . . , �

′
n).
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Then

A(k, d, �1, �2, . . . , �n) �
(

k∑
i=1

pi + 8
k∑

i=1

q1/(d+k−i+1)
i

) �1+�2+···+�n
2

. (98)

PROOF. The proof is by induction on k. In the base case k = 1, the bound (98) follows
immediately from the definition of A(1, d, �1, �2, . . . , �n). For the inductive step, fix k � 2
and define

a =
k−1∑
i=1

pi + 8
k−1∑
i=1

q1/(d+k−i+1)
i .

We may assume that a � 1 since (98) is trivial otherwise. Then from the inductive
hypothesis,

A(k, d, �1, �2, . . . , �n)2

�
�1∑

i1, j1=0

· · ·
�n∑

in, jn=0

{
n∏

t=1

(
�t

it

)(
�t − it

jt

)
pit

k q jt
k

}
a
∑n

t=1 max{0,�t−it−(d+1) jt}

=
n∏

t=1

⎧⎨⎩
�t∑

i, j=0

(
�t

i

)(
�t − i

j

)
pi

kq j
kamax{0,�t−i−(d+1) j}

⎫⎬⎭ . (99)

CLAIM 4.24. For any integers � � 0 and D � 1 and a real number 0 < q � 1,

�∑
j=0

(
�

j

)
q jamax{0,�−Dj} � (a + 8q1/D)�.

PROOF.
�∑

j=0

(
�

j

)
q jamax{0,�−Dj} =

∑
j���/D�+1

(
�

j

)
q j + a�−D��/D�

��/D�∑
j=0

(
�

j

)
q j(aD)��/D�− j

� 2�q�/D + a�−D��/D�
��/D�∑
j=0

(��/D�
j

)
(2eDq) j(aD)��/D�− j

= 2�q�/D + a�−D��/D�(aD + 2eDq)��/D�

� 2�q�/D + a�−D��/D�(a + (2eDq)1/D)D��/D�

� 2�q�/D + (a + (2eDq)1/D)�

� (2q1/D + a + (2eDq)1/D)�

� (a + 8q1/D)�.

We may assume that qk � 1 since (98) is trivial otherwise. Invoking Claim 4.24 with
� = �t − i, q = qk, D = d + 1, we have from (99) that

A(k, d, �1, �2, . . . , �n)2 �
n∏

t=1

{
�t∑

i=0

(
�t

i

)
pi

k

(
a + 8q1/(d+1)

k

)�t−i
}

=
n∏

t=1

(
a + pk + 8q1/(d+1)

k

)�t

,

completing the inductive step.
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Using the previous two lemmas, we will now obtain a closed-form upper bound on �.

THEOREM 4.25. There exists an absolute constant C > 1 such that

�(k, m, d, �1, . . . , �n) �

⎛⎝C

√
k22k

m
+ C exp

{
− m

C2k(d + k)

}⎞⎠(�1+···+�n)/2

.

PROOF. It follows from Proposition 4.19 that � is monotonically decreasing in the
second argument, a fact that we will use several times without further mention. Let m
be an arbitrary positive integer. Set ε = 3/4 and define

mk =
⌈

2km
(1 − ε)(1 − ε2) · · · (1 − εk)

⌉
, k = 1, 2, 3, . . . ,

pk =
√

2k

cmk
+ 2k

2cε2kmk
, k = 1, 2, 3, . . . ,

qk = 2k

2cε2kmk
, k = 1, 2, 3, . . . ,

where c > 0 is the absolute constant from Theorem 4.17. Consider the real function
A: Z+ × Nn+1 → [0, 1] given by

A(k, d, �1, . . . , �n) =
{
�(k, mk, d, �1, . . . , �n) if �1, . . . , �n ∈ {0, 1, . . . , 2d},
0 otherwise.

Taking α = εk in Lemma 4.21 shows that A(k, d, �1, . . . , �n) obeys the recurrence in
Lemma 4.23. In particular, on the domain of � one has

�(k, mk, d, �1, . . . , �n) = A(k, d, �1, . . . , �n)

�
(

k∑
i=1

pi + 8
k∑

i=1

q1/(d+k−i+1)
i

)(�1+···+�n)/2

(100)

by Lemma 4.23.
One easily verifies that pi � (cm)−1/2 + 2−cm(9/8)i+i and qi � 2−cm(9/8)i+i. Substituting

these estimates in (100) gives

�(k, mk, d, �1, . . . , �n) �
(

k√
cm

+ c′ exp
{
− c′′m

d + k

})(�1+···+�n)/2

for some absolute constants c′, c′′ > 0. Since mk = �(2km), the proof is complete.

COROLLARY 4.26. For every n and every k-dimensional cylinder intersection χ,∣∣∣∣∣ E
X1,...,Xn∼πk,m

[
χ (X1, . . . , Xn)

n∏
i=1

DISJ(Xi)

]∣∣∣∣∣ �
(

ck22k

m

)n/4

, (101)

where c > 0 is an absolute constant.

PROOF. By Proposition 4.19, the left-hand side of (101) cannot decrease if we replace
πk,m with πk,m−1. As a result, we may assume that m is even (if not, replace πk,m with
πk,m−1 in what follows). As we have already pointed out in (68), in this case, the left-hand
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side of (101) does not exceed

�

(
k,

m
2

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n

)
.

The claimed bound is now immediate from Theorem 4.25.

We have reached the main result of this section, an upper bound on the repeated
discrepancy of set disjointness.

THEOREM 4.27. For some absolute constant c > 0 and all positive integers k, m,

rdisc(UDISJk,m) �
(

ck2k

√
m

)1/2

.

PROOF. We will prove the equivalent bound

rdisc(UDISJk,M) �
(

ck22k

m

)1/4

, (102)

where c > 0 is an absolute constant and M = m(2k − 1) + 2k−1. We will work with
the probability distribution πk,m, which is balanced on the domain of UDISJk,M. By the
definition of repeated discrepancy,

rdiscπk,m(UDISJk,M) = sup
n,r∈Z+

max
χ

∣∣∣∣∣ E
...,Xi, j ,...

χ (. . . , Xi, j, . . .)
n∏

i=1

DISJ(Xi,1)

∣∣∣∣∣
1/n

, (103)

where Xi, j (i = 1, 2, . . . , n, j = 1, 2, . . . , r) are chosen independently according to πk,m
conditioned on DISJ(Xi,1) = DISJ(Xi,2) = · · · = DISJ(Xi,r) for all i. Recall that πk,m is a
convex combination of [Tk H′

k,m]� and [Fk H′
k,m]�. In particular,

Xi,2, Xi,3, . . . , Xi,r ∼ X�
i,1

for each i. This means that the input to χ in (103) is derivable with no communication
from (X1,1, X2,1, . . . , Xn,1). As a result, Proposition 4.19 implies that

rdiscπk,m(UDISJk,M) � sup
n∈Z+

max
χ

∣∣∣∣∣ E
X1,1,X2,1,...,Xn,1∼πk,m

χ (X1,1, X2,1, . . . , Xn,1)
n∏

i=1

DISJ(Xi,1)

∣∣∣∣∣
1/n

.

The claimed upper bound (102) is now immediate by Corollary 4.26.

5. RANDOMIZED COMMUNICATION

In the remainder of the article, we will derive lower bounds for multiparty communica-
tion using the reduction to polynomials given by Theorems 4.2 and 4.27. The proofs of
these applications are similar to those in Sherstov [2012a], the main difference being
the use of the newly obtained passage from protocols to polynomials in place of the
less efficient reduction in Sherstov [2012a]. We start with randomized communica-
tion, which covers protocols with small constant error as well as those with vanishing
advantage over random guessing.
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5.1. A Master Theorem

We will derive most of our results on randomized communication from a single “master”
theorem, which we are about to prove. Following Sherstov [2012a], we present two
proofs for it, one based on the primal view of the problem and the other, on the dual view.
The idea of the primal proof is to convert a communication protocol for f ◦ UDISJk,m
into a low-degree polynomial approximating f in the infinity norm. The dual proof
proceeds in the opposite direction and manipulates explicit witness objects, in the sense
of Fact 2.3 and Theorem 2.10. The primal proof is probably more intuitive, whereas the
dual proof is more versatile. Each of the proofs will be used in later sections to obtain
additional results.

THEOREM 5.1. Let f be a (possibly partial) Boolean function on {0, 1}n. For every
(possibly partial) k-party communication problem G and all ε, δ � 0,

Rε( f ◦ G) � degδ( f ) log
(

1
c rdisc(G)

)
− log

1
δ − 2ε

, (104)

where c > 0 is an absolute constant. In particular,

Rε( f ◦ UDISJk,m) � degδ( f )
2

log
( √

m
c2kk

)
− log

1
δ − 2ε

(105)

for some absolute constant c > 0.

PROOF OF THEOREM 5.1 (PRIMAL VERSION). Abbreviate F = f ◦G. Let π be any balanced
probability distribution on the domain of G and define the linear operator Lπ,n as in
Theorem 4.2, so that Lπ,nF = f on the domain of f. Corollary 2.7 gives an approximation
to F by a linear combination of cylinder intersections � = ∑

χ aχχ with
∑

χ |aχ | �
2Rε (F)/(1 − ε), in the sense that ‖�‖∞ � 1/(1 − ε) and |F − �| � ε/(1 − ε) on the domain
of F. It follows that ‖Lπ,n�‖∞ � 1/(1 − ε) and | f − Lπ,n�| = |Lπ,n(F − �)| � ε/(1 − ε) on
the domain of f, whence

E( f, d − 1) � ε

1 − ε
+ E(Lπ,n�, d − 1)

for any positive integer d. By Theorem 4.2,

E(Lπ,n�, d − 1) �
∑

χ

|aχ |E(Lπ,nχ, d − 1) � 2Rε (F)

1 − ε
(c rdiscπ (G))d

for some absolute constant c > 0, whence

E( f, d − 1) � ε

1 − ε
+ 2Rε (F)

1 − ε
(c rdiscπ (G))d.

For d = degδ( f ), the left-hand side of this inequality must exceed δ, forcing (104). The
other lower bound (105) now follows immediately by Theorem 4.27.

We now present an alternate proof, which is based directly on the generalized dis-
crepancy method.

PROOF OF THEOREM 5.1 (DUAL VERSION). Again, it suffices to prove (104). We closely
follow the proof in Sherstov [2012a] except at the end. Let X = X1 × X2 × · · · × Xk
be the input space of G. Let π be an arbitrary balanced probability distribution on the
domain of G, and define d = degδ( f ). By Fact 2.3, there exists a function ψ : {0, 1}n → R
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with ∑
x∈dom f

f (x)ψ(x) −
∑

x/∈dom f

|ψ(x)| > δ, (106)

‖ψ‖1 = 1, (107)

ψ̂(S) = 0, |S| < d. (108)

Define � : X n → R by

�(X1, . . . , Xn) = 2nψ(G∗(X1), . . . , G∗(Xn))
n∏

i=1

π (Xi)

and let F = f ◦ G. Since π is balanced on the domain of G,

‖�‖1 = 2n E
x∈{0,1}n

[|ψ(x)|] = 1 (109)

and analogously∑
dom F

F(X1, . . . , Xn)�(X1, . . . , Xn) −
∑

dom F

|�(X1, . . . , Xn)|

=
∑

x∈dom f

f (x)ψ(x) −
∑

x/∈dom f

|ψ(x)|

> δ, (110)

where the final step in the two derivations uses (106) and (107). It remains to bound
the inner product of � with a k-dimensional cylinder intersection χ. We have

〈�,χ〉 = 2n E
X1,...,Xn∼π

[
ψ(G∗(X1), . . . , G∗(Xn))χ (X1, . . . , Xn)

]
=

∑
x∈{0,1}n

ψ(x) E
X1∼πx1

· · · E
Xn∼πxn

χ (X1, . . . , Xn)

= 〈ψ, Lπ,nχ〉,
where π0 and π1 are the probability distributions induced by π on G−1(+1) and G−1(−1),
respectively, and Lπ,n is as defined in Theorem 4.2. Continuing,

|〈�,χ〉| � ‖ψ‖1 E(Lπ,nχ, d − 1) by (108)

� (c rdiscπ (G))d by (107) and Theorem 4.2, (111)

where c > 0 is an absolute constant. Now (104) is immediate by (109)–(111) and the
generalized discrepancy method (Theorem 2.10).

5.2. Bounded-Error Communication

Specializing the master theorem to bounded-error communication gives the follow-
ing lower bound for composed communication problems in terms of 1/3-approximate
degree.

THEOREM 5.2. There exists an absolute constant c > 0 such that for every (possibly
partial) Boolean function f on {0, 1}n,

R1/3( f ◦ UDISJk,c4kk2 ) � deg1/3( f ).

PROOF. Take ε = 1/7, δ = 1/3, and m = c′4kk2 in the lower bound (105) of Theo-
rem 5.1, where c′ > 0 is a sufficiently large integer constant.
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As a consequence, we obtain the main result of this article, stated in the Introduction
as Theorem 1.1.

COROLLARY 5.3.

R1/3(DISJk,n) � R1/3(UDISJk,n) = �

(√
n

2kk

)
.

PROOF. Recall that UDISJk,nm = ÃNDn ◦ UDISJk,m for all integers n, m. Theorem 2.5
shows that deg1/3(ÃNDn) = �(

√
n). Thus, taking f = ÃNDn in Theorem 5.2 gives

R1/3(UDISJk,c4kk2n) = �(
√

n) for some absolute constant c > 0, which is equivalent to
the claimed bound.

Remark 5.4. As shown by the dual proof of Theorem 5.1, we obtain the �(
√

n/2kk)
lower bound for set disjointness using the generalized discrepancy method. By the re-
sults of Lee et al. [2009] and Briet et al. [2009], the generalized discrepancy method
applies to quantum multiparty protocols as well. In particular, Corollary 5.3 in this
paper gives a lower bound of �(

√
n/2kk) − O(k4) on the bounded-error k-party quan-

tum communication complexity of set disjointness. This lower bound nearly matches
the well-known upper bound of �

√
n/2k� logO(1) n due to Buhrman et al. [1998]. For

the reader’s convenience, we include a sketch of the protocol. Let G be any k-party
communication problem and f : {0, 1}n → {−1,+1} a given function. An elegant sim-
ulation due to Buhrman et al. [1998] shows that f ◦ G has bounded-error quantum
communication complexity O(Q1/3( f )D(G)k2 log n), where Q1/3( f ) and D(G) are the
bounded-error quantum query complexity of f and the deterministic classical commu-
nication complexity of G, respectively. Letting DISJk,n = ANDn/2k ◦ DISJk,2k, we have
Q1/3(ANDn/2k) = O(

√
n/2k) by Grover’s search algorithm [1996] and D(DISJk,2k) = O(k2)

by Grolmusz’s result [1994]. Therefore, set disjointness has bounded-error quantum
communication complexity at most �

√
n/2k� logO(1) n.

Theorem 5.2 gives a lower bound on bounded-error communication complexity for
compositions f ◦G, where G is a gadget whose size grows exponentially with the number
of parties. Following Sherstov [2012a], we will derive an alternate lower bound, in which
the gadget G is essentially as simple as possible and in particular depends on only 2k
variables. The resulting lower bound will be in terms of approximate degree as well as
two combinatorial complexity measures, defined next. The block sensitivity of a Boolean
function f : {0, 1}n → {−1,+1}, denoted bs( f ), is the maximum number of nonempty
pairwise disjoint subsets S1, S2, S3, . . . ⊆ {1, 2, . . . , n} such that f (x) �= f (x ⊕ 1S1 ) =
f (x ⊕ 1S2 ) = f (x ⊕ 1S3 ) = · · · for some string x ∈ {0, 1}n. The decision tree complexity of
f, denoted dt( f ), is the minimum depth of a decision tree for f. We have the following
theorem.

THEOREM 5.5. For every f : {0, 1}n → {−1,+1},

R1/3( f ◦ (ORk ∨ ANDk)) � �

(√
bs( f )
2kk

)
� �

(
dt( f )1/6

2kk

)
� �

(
deg1/3( f )1/6

2kk

)
and

max{R1/3( f ◦ ORk), R1/3( f ◦ ANDk)}

� �

(
bs( f )1/4

2kk

)
� �

(
dt( f )1/12

2kk

)
� �

(
deg1/3( f )1/12

2kk

)
.
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Here ORk and ANDk refer to the k-party communication problems x �→ ∨k
i=1 xi and

x �→ ∧k
i=1 xi, where the ith party sees all the bits except for xi. Analogously, ORk∨ANDk

refers to the k-party communication problem x �→ x1 ∨· · ·∨xk∨ (xk+1 ∧· · ·∧x2k) in which
the ith party sees all the bits except for xi and xk+i. It is clear that the composed
communication problems f ◦ ORk, f ◦ ANDk, and f ◦ (ORk ∨ ANDk) each have a
deterministic k-party communication protocol with cost 3 dt( f ). Theorem 5.5 shows
that this upper bound is reasonably close to tight, even for randomized protocols. Note
that it is impossible to go beyond Theorem 5.5 and bound R1/3( f ◦ANDk) from below in
terms of the approximate degree of f : taking f = ANDn shows that the gap between
R1/3( f ◦ ANDk) and deg1/3( f ) can be as large as �(1) versus �(

√
n). Theorem 5.5 is a

quadratic improvement on the lower bounds in Sherstov [2012a].

PROOF OF THEOREM 5.5. Identical to the proofs of Theorems 5.3 and 5.4 in Sherstov
[2012a], with Corollary 5.3 used instead of the earlier lower bound for set disjointness
in Sherstov [2012a].

5.3. Small-Bias Communication and Discrepancy

We now specialize Theorem 5.1 to the setting of small-bias communication, where the
protocol is only required to produce the correct output with probability vanishingly
close to 1/2.

THEOREM 5.6. Let f be a (possibly partial) Boolean function on {0, 1}n. For every
(possibly partial) k-party communication problem G and all ε, γ � 0,

R1
2 − ε

2
( f ◦ G) � deg1−γ ( f ) log

(
1

c rdisc(G)

)
− log

1
ε − γ

, (112)

R1
2 − ε

2
( f ◦ G) � deg±( f ) log

(
1

c rdisc(G)

)
− log

1
ε
, (113)

where c > 0 is an absolute constant. In particular,

R1
2 − ε

2
( f ◦ UDISJk,c4kk2 ) � deg1−γ ( f ) − log

1
ε − γ

, (114)

R1
2 − ε

2
( f ◦ UDISJk,c4kk2 ) � deg±( f ) − log

1
ε

(115)

for an absolute constant c > 0.

PROOF. One obtains (112) by taking δ = 1 − γ in (104). Letting γ ↘ 0 in (112)
gives (113). The remaining two lower bounds are now immediate in view of Theo-
rem 4.27.

The method of Theorem 5.1 allows one to directly prove upper bounds on discrepancy,
a complexity measure of interest in its own right.

THEOREM 5.7. For every (possibly partial) Boolean function f on {0, 1}n, every (pos-
sibly partial) k-party communication problem G, and every γ > 0, one has

disc( f ◦ G) � (c rdisc(G))deg1−γ ( f ) + γ, (116)

disc( f ◦ G) � (c rdisc(G))deg±( f ), (117)
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where c > 0 is an absolute constant. In particular,

disc( f ◦ UDISJk,m) �
(

c2kk√
m

)deg1−γ ( f )/2

+ γ, (118)

disc( f ◦ UDISJk,m) �
(

c2kk√
m

)deg±( f )/2

(119)

for an absolute constant c > 0.

PROOF. The proof is virtually identical to that in Sherstov [2012a], with the difference
that we use Theorems 4.2 and 4.27 in place of the earlier passage from protocols to
polynomials. For the reader’s convenience, we include a complete proof.

Let X = X1 × X2 × · · · × Xk be the input space of G, and let π be an arbitrary
balanced probability distribution on the domain of G. Take δ = 1 − γ, d = degδ( f ),
and define � : X n → R as in the dual proof of Theorem 5.1. Then, (109) shows that
� is the pointwise product � = H · P, where H is a sign tensor and P a probability
distribution. Abbreviating F = f ◦ G, we can restate (110) and (111) as∑

dom F

F(X)H(X)P(X) − P(dom F) > 1 − γ, (120)

discP(H) � (c rdiscπ (G))d, (121)

respectively, where c > 0 is an absolute constant. For every cylinder intersection χ,∣∣∣∣∣ ∑
dom F

F(X)P(X)χ (X)

∣∣∣∣∣
=
∣∣∣∣∣∣〈H · P, χ〉 +

∑
dom F

(F(X) − H(X))P(X)χ (X) −
∑

dom F

H(X)P(X)χ (X)

∣∣∣∣∣∣
� discP(H) +

∑
dom F

|F(X) − H(X)|P(X) + P(dom F)

= discP(H) + P(dom F) −
∑

dom F

F(X)H(X)P(X) + P(dom F)

< discP(H) + P(dom F) − 1 + γ, (122)

where the last step uses (120). Therefore,

discP( f ◦ G) = max
χ

∣∣∣∣∣ ∑
dom F

F(X)P(X)χ (X)

∣∣∣∣∣+ P(dom F)

< discP(H) + γ

� (c rdiscπ (G))d + γ,

where the second step uses (122) and the third uses (121). This completes the proof
of (116). Letting γ ↘ 0, one arrives at (117). The remaining two lower bounds (118)
and (119) are now immediate by Theorem 4.27.
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COROLLARY 5.8. Consider the Boolean function

Fk,n(x) =
n∨

i=1

4kk2n2∧
j=1

(xi, j,1 ∨ xi, j,2 ∨ · · · ∨ xi, j,k),

viewed as a k-party communication problem in which the rth party (r = 1, 2, . . . , k) is
missing the bits xi, j,r for all i, j. Then

disc(Fk,n) � 2−�(n),

R1
2 − γ

2
(Fk,n) � �(n) − log

1
γ

(γ > 0).

PROOF. Let MPn be given by Theorem 2.4, so that deg±(MPn) = n. Let c > 0 be
the constant from (119). Since MPn ◦ DISJk,c24k+1k2 is a subfunction of Fk,�4c�n(x), The-
orem 5.7 yields the discrepancy bound. The communication lower bound follows by
Theorem 2.9.

Corollary 5.8 gives a hard k-party communication problem computable by an AC0

circuit family of depth 3. This depth is optimal because AC0 circuits of smaller depth
have multiparty discrepancy 1/nO(1), regardless of how the bits are assigned to the
parties. Quantitatively, the corollary gives an upper bound of exp(−�(n/4kk2)1/3) on
the discrepancy of a size-nk circuit family in AC0

, considerably improving on the
previous best bound of exp(−�(n/4k)1/7) due to Sherstov [2012a], itself preceded by
exp(−�(n/231k)1/29) due to Beame and Huynh-Ngoc [2009]. Corollary 5.8 settles Theo-
rem 1.4 from the Introduction.

6. ADDITIONAL APPLICATIONS

We conclude this article with several additional results on communication complexity.
In what follows, we give improved XOR lemmas and direct product theorems for com-
posed communication problems, as well as a quadratically stronger lower bound on
the nondeterministic and Merlin-Arthur complexity of set disjointness. Lastly, we give
applications of our work to circuit complexity.

6.1. XOR Lemmas

In Section 5, we proved an �(
√

n/2kk) communication lower bound for solving the set
disjointness problem DISJk,n with probability of correctness 2/3. Here, we consider the
communication problem DISJk,n

⊗�. As one would expect, we show that its randomized
communication complexity is � ·�(

√
n/2kk). More interestingly, we show that this lower

bound holds even for probability of correctness 1
2 +2−�(�). We prove an analogous result

for the unique set disjointness problem and more generally for composed problems
f ◦ G, where G has small repeated discrepancy. Our proofs are nearly identical to those
in Sherstov [2012a], the main difference being the use of Theorems 4.2 and 4.27 in
place of the earlier and less efficient passage from protocols to polynomials.

We first recall an XOR lemma for polynomial approximation, proved by Sherstov
[2012b, Corollary 5.2].

THEOREM 6.1 (SHERSTOV). Let f be a (possibly partial) Boolean function on {0, 1}n.
Then, for some absolute constant c > 0 and every �,

deg1−2−�−1 ( f ⊗�) � c� deg1/3( f ).

Using the small-bias version of the master theorem (Theorem 5.6), we are able to
immediately translate this result to communication.
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THEOREM 6.2. For every (possibly partial) Boolean function f on {0, 1}n and every
(possibly partial) k-party communication problem G,

R1
2 −( 1

2 )�+1 (( f ◦ G)⊗�) � c� deg1/3( f ) · log
c

rdisc(G)
, (123)

where c > 0 is an absolute constant. In particular,

R1
2 −( 1

2 )�+1 (( f ◦ UDISJk,c4kk2 )⊗�) � � deg1/3( f ) (124)

for an absolute constant c > 0.

PROOF. Theorem 6.1 provides an absolute constant c1 > 0 such that deg1−2−�−1 ( f ⊗�) �
c1� deg1/3( f ). Applying Theorem 5.6 to f ⊗� ◦ G = ( f ◦ G)⊗� with parameters ε = 2−� and
γ = 2−�−1, one arrives at

R1
2 −( 1

2 )�+1 (( f ◦ G)⊗�) � c1� deg1/3( f ) · log
(

1
c2 rdisc(G)

)
− � − 1

for some absolute constant c2 > 0. This conclusion is logically equivalent to (123). In
view of Theorem 4.27, the other lower bound (124) is immediate from (123).

COROLLARY 6.3.

R1
2 −( 1

2 )�+1 (UDISJk,n
⊗�) � � · �

(√
n

2kk

)
.

PROOF. Theorem 2.5 shows that deg1/3(ÃNDn) � �(
√

n). Thus, letting f = ÃNDn in
(124) gives

R1
2 −( 1

2 )�+1 (UDISJk,c4kk2n
⊗�) � � · �(

√
n)

for a constant c > 0, which is equivalent to the claimed bound.

This corollary settles Theorem 1.2(i) from the Introduction. It is a quadratic im-
provement on the previous best XOR lemma for multiparty set disjointness [Sherstov
2012a]. As a consequence, we obtain stronger XOR lemmas for arbitrary compositions
of the form f ◦ (ORk∨ANDk), improving quadratically on the work by Sherstov [2012a].

THEOREM 6.4. Let f : {0, 1}n → {−1,+1} be given. Then, the k-party communication
problem F = f ◦ (ORk ∨ ANDk) obeys

R1
2 −( 1

2 )�+1 (F⊗�) � � · �

(√
bs( f )
2kk

)
� � · �

(
dt( f )1/6

2kk

)
� � · �

(
deg1/3( f )1/6

2kk

)
.

PROOF. The argument is identical to that in Sherstov [2012a, Theorem 5.3]. As ar-
gued there, any communication protocol for f ◦(ORk∨ANDk) also solves UDISJk,bs( f ), so
that the first inequality is immediate from the newly obtained XOR lemma for unique
set disjointness. The other two inequalities follow from general relationships among
bs( f ), dt( f ), and deg1/3( f ); see Sherstov [2012a, Theorem 5.3].

6.2. Direct Product Theorems

Given a (possibly partial) k-party communication problem F on X = X1 × X2 × · · · ×
Xk, consider the task of simultaneously solving � instances of F. More formally, the
communication protocol now receives � inputs X1, . . . , X� ∈ X and outputs a string
{−1,+1}�, representing a guess at (F(X1), . . . , F(X�)). An ε-error protocol is one whose
output differs from the correct answer with probability no greater than ε on any given
input X1, . . . , X� ∈ dom F. We let Rε(F, F, . . . , F) denote the least cost of such a protocol
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for solving � instances of F, where the number of instances will always be specified
with an underbrace.

It is also meaningful to consider communication protocols that solve almost all �
instances. In other words, the protocol receives instances X1, . . . , X� and is required to
output, with probability at least 1 − ε, a vector z ∈ {−1,+1}� such that zi = F(Xi) for at
least � − m indices i. We let

Rε,m(F, F, . . . , F︸ ︷︷ ︸
�

)

stand for the least cost of such a protocol. When referring to this formalism, we will
write that a protocol “solves with probability 1 − ε at least � − m of the � instances.”
The parameter m, for “mistake,” should be thought of as a small constant fraction of �.
This regime corresponds to threshold direct product theorems, as opposed to the more
restricted notion of strong direct product theorems for which m = 0. All of our results
belong to the former category. The following definition by Sherstov [2012b] analytically
formalizes the simultaneous solution of � instances.

Definition 6.5 (Sherstov). Let f be a (possibly partial) Boolean function on a finite
set X . A (σ, m, �)-approximant for f is any system {φz} of functions φz : X � → R,
z ∈ {−1,+1}�, such that∑

z∈{−1,+1}�
|φz(x1, . . . , x�)| � 1, x1, . . . , x� ∈ X ,

∑
z∈{−1,+1}�

|{i:zi=−1}|�m

φ(z1 f (x1),...,z� f (x�))(x1, . . . , x�) � σ, x1, . . . , x� ∈ dom f.

The following result [Sherstov 2012b, Corollary 5.7] on polynomial approximation can
be thought of as a threshold direct product theorem in that model of computation.

THEOREM 6.6 (SHERSTOV). There exists an absolute constant α > 0 such that for every
(possibly partial) Boolean function f on {0, 1}n and every (2−α�, α�, �)-approximant {φz}
for f,

max
z∈{−1,+1}�

{deg φz} � α� deg1/3( f ).

We will now translate this result to multiparty communication complexity. Our proof
is closely analogous to that of Sherstov [2012a, Theorem 6.7], the main difference being
our use of Theorems 4.2 and 4.27 in place of the earlier and less efficient passage from
protocols to polynomials.

THEOREM 6.7. There is an absolute constant 0 < c < 1 such that for every (possibly
partial) Boolean function f on {0, 1}n and every (possibly partial) k-party communication
problem G,

R1−2−c�,c� ( f ◦ G, . . . , f ◦ G︸ ︷︷ ︸
�

) � c� deg1/3( f ) · log
c

rdisc(G)
. (125)

In particular,

R1−2−c�,c�

(
f ◦ UDISJ

k,
⌈

4kk2
c

⌉ . . . , f ◦ UDISJ
k,
⌈

4kk2
c

⌉︸ ︷︷ ︸
�

)
� � deg1/3( f )

for some absolute constant 0 < c < 1.
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PROOF. Let X = X1 ×X2 ×· · ·×Xk be the input space of G. Let α > 0 be the absolute
constant from Theorem 6.6, and let c ∈ (0, α) be a sufficiently small absolute constant to
be named later. Consider any randomized protocol � which solves with probability 2−c�

at least (1−c)� from among � instances of f ◦G, and let r denote the cost of this protocol.
For z ∈ {−1,+1}�, let �z denote the protocol with Boolean output which on input from
(X n)� runs � and outputs −1 if and only if � outputs z. Let φz : (X n)� → [0, 1] be the
acceptance probability function for �z. Then, φz = ∑

aχχ by Corollary 2.8, where the
sum is over k-dimensional cylinder intersections and

∑ |aχ | � 2r.
Now let π be any balanced probability distribution on the domain of G and define

the linear operator Lπ,�n : R(X n)� → R({0,1}n)� as in Theorem 4.2. By Theorem 4.2 and
linearity,

E(Lπ,�n φz, D − 1) � 2r
(

rdiscπ (G)
c′

)D

for every z and every positive integer D, where c′ > 0 is an absolute constant. Abbre-
viate d = deg1/3( f ) in what follows. Letting D = �α�d�, we arrive at

E(Lπ,�n φz, �α�d� − 1) � 2r
(

rdiscπ (G)
c′

)�α�d�
(126)

for every z. On the other hand, we claim that

E(Lπ,�n φz, �α�d� − 1) � 2−c� − 2−α�

2�(1 + 2−α�)
(127)

for at least one value of z. To see this, observe that {φz} is a (2−c�, α�, �)-approximant for
f ◦G, and analogously {Lπ,�n φz} is a (2−c�, α�, �)-approximant for f. As a result, if every
function Lπ,�n φz can be approximated within ε by a polynomial of degree less than α�d,
one obtains a ((2−c� −2�ε)/(1+2�ε), α�, �)-approximant for f with degree less than α�d.
The inequality (127) now follows from Theorem 6.6, which states that f does not admit
a (2−α�, α�, �)-approximant of degree less than α�d.

Comparing (126) and (127) yields the claimed lower bound (125) on r, provided that
c = c(c′, α) > 0 is small enough. The other lower bound in the theorem statement
follows from (125) by Theorem 4.27.

Theorem 6.7 readily generalizes to compositions of the form f ◦ (ORk ∨ ANDk), as
illustrated previously for XOR lemmas.

COROLLARY 6.8. For some absolute constant 0 < c < 1 and every �,

R1−2−c�,c�(UDISJk,n, . . . , UDISJk,n︸ ︷︷ ︸
�

) � � · �

(√
n

2kk

)
.

PROOF. Theorem 2.5 shows that deg1/3(ÃNDn) � �(
√

n). As a result, Theorem 6.7 for

f = ÃNDn gives

R1−2−c�,c�

(
UDISJ

k,n
⌈

4kk2
c

⌉, . . . , UDISJ
k,n
⌈

4kk2
c

⌉︸ ︷︷ ︸
�

)
= � · �(

√
n),

which is equivalent to the claimed bound.

This settles Theorem 1.2(ii) from the Introduction.
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6.3. Nondeterministic and Merlin-Arthur Communication

We now turn to the nondeterministic and Merlin-Arthur communication complexity
of set disjointness. The best lower bounds [Sherstov 2012a] prior to this article were
�(n/4k)1/4 for nondeterministic protocols and �(n/4k)1/8 for Merlin-Arthur protocols,
both of which are tight up to a polynomial. In what follows, we prove quadratically
stronger lower bounds in both models. The proof in this article is nearly identical
to those in Gavinsky and Sherstov [2010] and Sherstov [2012a], the only difference
being the passage from communication protocols to polynomials. We use Theorems 4.2
and 4.27 for this purpose, in place of the less-efficient passage in previous works.

THEOREM 6.9. There exists an absolute constant c > 0 such that for every (possibly
partial) k-party communication problem G,

N(ANDn ◦ G) � �

(√
n log

1
c rdisc(G)

)
, (128)

MA1/3(ANDn ◦ G) � �

(√
n log

1
c rdisc(G)

)1/2

. (129)

In particular,

N(DISJk,n) � �

(√
n

2kk

)
,

MA1/3(DISJk,n) � �

(√
n

2kk

)1/2

.

PROOF. Define f = ANDn, F = f ◦ G, and d = deg1/3(ANDn). As shown by
Gavinsky and Sherstov [2010] and Sherstov [2012a, Theorem 7.2], there exists a func-
tion ψ : {0, 1}n → R that obeys (107), (108), and

ψ(1, 1, . . . , 1) < −1
6

. (130)

Now fix an arbitrary balanced probability distribution π on the domain of G and define

�(X1, . . . , Xn) = 2nψ(G∗(X1), . . . , G∗(Xn))
n∏

i=1

π (Xi),

as in the dual proof of Theorem 5.1. Then, (109) shows that � is the pointwise product
� = H · P for some sign tensor H and probability distribution P. In particular, (111)
asserts that

discP(H) � (c rdiscπ (G))d (131)

for an absolute constant c > 0. By (130), we have ψ(x) < 0 whenever f (x) = −1, so that

P(F−1(−1) ∩ H−1(+1)) = 0. (132)

Also,

P(F−1(−1) ∩ H−1(−1)) = P(F−1(−1)) = |ψ(1, 1, . . . , 1)| >
1
6

, (133)

where the first step uses (132), the second step uses the fact that π is balanced on the
domain of G, and the final inequality uses (130). By Theorem 2.5,

d = �(
√

n). (134)

Now (128) and (129) are immediate from (131)–(134) and Theorem 2.11.

Journal of the ACM, Vol. 61, No. 6, Article 34, Publication date: November 2014.



34:68 A. A. Sherstov

Taking G = DISJk,c′4kk2 in (128) for a sufficiently large integer constant c′ � 1 gives

N(DISJk,c′4kk2n) � �

(√
n log

1
c rdisc(DISJk,c′4kk2 )

)
� �(

√
n),

where the second inequality uses Theorem 4.27. Analogously MA1/3(DISJk,c′4kk2n) �
�(n1/4). These lower bounds on the nondeterministic and Merlin-Arthur complexity of
set disjointness are equivalent to those in the theorem statement.

This settles Theorem 1.3 from the Introduction.

6.4. Circuit Complexity

Circuits of majority gates are a biologically inspired computational model whose study
spans several decades and several disciplines. Research has shown that majority cir-
cuits of depth 3 already are surprisingly powerful. In particular, Allender [1989] proved
that depth-3 majority circuits of quasipolynomial size can simulate all of AC0

, the class
of {∧,∨,¬}-circuits of constant depth and polynomial size. Allender’s result prompted a
study of the computational limitations of depth-2 majority circuits and more generally
of depth-3 majority circuits with restricted bottom fan-in. Most of the results in this
line of work exploit the following reduction to multiparty communication complexity,
where the shorthand MAJ◦SYMM◦ANY refers to the family of circuits with a majority
gate at the top, arbitrary symmetric gates at the middle level, and arbitrary gates at
the bottom.

PROPOSITION 6.10 (HÅSTAD AND GOLDMANN). Let f be a Boolean function computable
by a MAJ ◦ SYMM ◦ ANY circuit, where the top gate has fan-in m, the middle gates
have fan-in at most s, and the bottom gates have fan-in at most k− 1. Then, the k-party
number-on-the-forehead communication complexity of f obeys

R1
2 − 1

2(m+1)
( f ) � k�log(s + 1)�,

regardless of how the bits are assigned to the parties.

Using Håstad and Goldmann’s observation, a series of papers [Buhrman et al.
2007; Sherstov 2009, 2011; Chattopadhyay 2007; Beame and Huynh-Ngoc 2009;
Sherstov 2012a] have studied the circuit complexity of AC0 functions, culminating in a
proof [Sherstov 2012a] that MAJ◦SYMM◦ANY circuits with bottom fan-in ( 1

2 −ε) log n
require exponential size to simulate AC0 functions, for any ε > 0. This circuit lower
bound comes close to matching Allender’s simulation of AC0 by quasipolynomial-size
depth-3 majority circuits, where the bottom fan-in is logO(1) n. Table III gives a quanti-
tative summary of this line of research. We are able to contribute the following sharper
lower bound.

THEOREM 6.11. There is an (explicitly given) read-once {∧,∨}-formula
Hk,n : {0, 1}nk → {−1,+1} of depth 3 such that any circuit of type MAJ ◦ SYMM ◦ ANY
with bottom fan-in at most k − 1 computing Hk,n has size

exp
{

1
k

· �
( n

4kk2

)1/3
}
.
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Table III. Lower Bounds for Computing Functions in AC0 by Circuits of Type
MAJ ◦ SYMM ◦ ANY with Bottom Fan-in k − 1. All functions are on nk bits.

Depth Circuit lower bound Reference

3 exp{�(n1/3)}, k = 2 Buhrman et al. [2007]
Sherstov [2009, 2011]

3 exp
{
�
( n

4k

)1/(6k2k)
}

Chattopadhyay [2007]

6 exp
{

1
k

· �
( n

231k

)1/29
}

Beame and Huynh-Ngoc [2009]

3 exp
{

1
k

· �
( n

4k

)1/7
}

Sherstov [2012a]

3 exp

{
1
k

· �

(
n

4kk2

)1/3
}

This article

PROOF. Define

Fk,n(x) =
n∨

i=1

4kk2n2∧
j=1

(xi, j,1 ∨ xi, j,2 ∨ · · · ∨ xi, j,k).

We interpret Fk,n as the k-party communication problem in Corollary 5.8. Let C be a
circuit of type MAJ ◦ SYMM ◦ ANY that computes Fk,n, where the bottom fan-in of C is
at most k − 1. Let s denote the size of C. The proof will be complete once we show that
s � 2�(n/k).

Since C has size s, the fan-in of the gates at the top and middle levels is bounded by
s, which in view of Proposition 6.10 gives

R1
2 − 1

2(s+1)
(Fk,n) � k�log(s + 1)�.

By Corollary 5.8, this leads to the desired lower bound: s � 2�(n/k).
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Thomas W. Cusick and Pantelimon Stănică. 2009. Cryptographic Boolean Functions and Applications.
Academic Press.

Ángel Martı́n del Rey, Gerardo Rodrı́guez Sánchez, and A. de la Villa Cuenca. 2012. On the Boolean partial
derivatives and their composition. Appl. Math. Lett. 25, 4, 739–744.

Dmitry Gavinsky and Alexander A. Sherstov. 2010. A separation of NP and coNP in multiparty communica-
tion complexity. Theory Comput. 6, 10, 227–245.

Parikshit Gopalan, Amir Shpilka, and Shachar Lovett. 2010. The complexity of Boolean functions in different
characteristics. Computat. Complex. 19, 2, 235–263.

Ben Green. 2005. Finite field models in additive combinatorics. Surveys in Combinatorics, London Math.
Soc. Lecture Notes 327, 1–27.

Ben Green and Terence Tao. 2008. An inverse theorem for the Gowers U 3-norm, with applications. Proc.
Edinburgh Math. Soc. 51, 1, 73–153.

Vince Grolmusz. 1994. The BNS lower bound for multi-party protocols in nearly optimal. Inf. Comput. 112,
1, 51–54.

Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing (STOC). 212–219.
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