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We prove that any total boolean function of rank r can be computed by a deterministic communication
protocol of complexity O(

√
r · log(r)). Equivalently, any graph whose adjacency matrix has rank r has

chromatic number at most 2O(
√

r·log(r)). This gives a nearly quadratic improvement in the dependence on the
rank over previous results.
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1. INTRODUCTION

The log-rank conjecture proposed by Lovász and Saks [1988] suggests that, for any
Boolean function f : X × Y → {−1, 1}, its deterministic communication complexity
CCdet( f ) is polynomially related to the logarithm of the rank of the associated matrix,
in which the rank is computed over the reals. Validity of this conjecture is one of the
fundamental open problems in communication complexity. Very little progress has been
made toward resolving it. The best upper bound, until recently, was

CCdet( f ) ≤ log(4/3) · rank( f ),

due to Kotlov [1997] (in fact, it only applies to a special case, corresponding to
the chromatic number of graphs). In terms of lower bounds, Kushilevitz (unpub-
lished; see Nisan and Wigderson [1994]) gave an example of a family of functions
with CCdet( f ) ≥ (log rank( f ))

log3 6
. Recently, a conditional improvement was made by

Ben-Sasson et al. [2012], who showed that assuming a number-theoretic conjecture
(the polynomial Freiman-Ruzsa conjecture), CCdet( f ) ≤ O(rank( f )/ log rank( f )). In
this article, we establish the following (unconditional) improved upper bound on the
deterministic communication complexity.

THEOREM 1.1. Let f : X × Y → {−1, 1} be a Boolean function with rank r. Then there
exists a deterministic protocol computing f that uses O(

√
r · log r) bits of communication.
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1:2 S. Lovett

The log-rank conjecture can be equivalently formulated as the relation between the
rank of the adjacency matrix of a graph and its chromatic number [Lovász and Saks
1988]. With this formulation, we derive a new bound on the chromatic number of a
graph given its rank.

COROLLARY 1.2. Let G be a graph whose adjacency matrix has rank r. Then, the
chromatic number of G is at most 2O(

√
r log r).

PROOF. Let G = (V, E). Define a function f : V × V → {0, 1} as f (u, v) = 1(u,v)∈E. In
particular, f (v, v) = 0 for all v ∈ V . Applying Theorem 1.1 (formally, to the function
(−1) f , which has a rank at most r + 1), there is a deterministic protocol computing
f that uses C = O(

√
r log r) bits. For any v ∈ V , let π (v) ∈ {0, 1}C be the transcript

of the protocol applied to inputs (v, v). Observe that, if π (u) = π (v), then we must
have (u, v) /∈ E, as the protocol does not distinguish the inputs (u, v) from (v, v) and, in
particular, f (u, v) = f (v, v) = 0. Hence, π defines a coloring of G with 2C colors.

1.1. Proof Overview

The proof is based on analyzing the discrepancy of Boolean functions. The discrepancy
of a Boolean function f is given by

disc( f ) = min
μ

max
R

∣∣∣∣∣∣
∑

(x,y)∈R

f (x, y)μ(x, y)

∣∣∣∣∣∣ ,

where μ ranges over all distributions over X × Y and R ranges over all rectangles,
R = A× B for A ⊂ X, B ⊂ Y . Discrepancy is a well-studied property in the context of
communication complexity lower bounds; see, for example, Lokam [2009] for an excel-
lent survey. It is known that low-rank matrices have a noticeable discrepancy [Linial
et al. 2007; Linial and Shraibman 2009]: if f has rank r then

disc( f ) ≥ 1
8
√

r
.

Discrepancy can be used to prove upper bounds as well. Linial et al. [2007] showed
that functions of discrepancy δ have randomized (or quantum) protocols of complexity
O(1/δ2). Unfortunately, this does not give any improved bounds, in general, as there is
always a trivial protocol using r bits. We show that the combination of high discrepancy
and low rank implies an improved bound. The following lemma shows that, if f is a
Boolean function with discrepancy δ, then there exists a large rectangle on which f is
nearly monochromatic. In the following, we denote by E[ f |R] the average value of f on
a rectangle R.

LEMMA 1.3. Let f : X× Y → {−1, 1} be a function with disc( f ) = δ. Then, there exists
a rectangle R of size

|R| ≥ 2−O(δ−1·log(1/ε))|X × Y |
such that |E[ f |R]| ≥ 1 − ε.

In fact, we prove a more general lemma (Lemma 3.1), which holds under general
distributions. Now, if f has a low rank, we apply Lemma 1.3 with ε = 1/2r to deduce
the existence of a large rectangle R with |E[ f |R]| ≥ 1 − 1/2r. Next, we apply the
following claim from Gavinsky and Lovett [2013], which shows that low-rank matrices
that are nearly monochromatic contain large monochromatic rectangles.
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CLAIM 1.4 ([GAVINSKY AND LOVETT 2013]). Let f : X × Y → {−1, 1} be a function with
rank( f ) = r and E[ f |R] ≥ 1 − 1/2r. Then, there exists a subrectangle R′ ⊂ R of size
|R′| ≥ |R|/4 such that f is monochromatic on R′.

Finally, we apply a theorem of Nisan and Wigderson [1994], who showed that,
in order to establish that low-rank matrices have efficient deterministic protocols, it
suffices to show that they have large monochromatic rectangles (which is what we just
showed).

THEOREM 1.5 ([NISAN AND WIGDERSON 1994]). Assume that, for any function f : X× Y →
{−1, 1} of rank( f ) = r, there exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X×Y |.
Then, any Boolean function of rank r is computable by a deterministic protocol of
complexity O(log2 r + ∑log r

i=0 c(r/2i)).

As the proof in Nisan and Wigderson [1994] is shown only for the special case related
to the log-rank conjecture, we include a proof sketch of Theorem 1.5 for general function
c(r) in Section 4.1. Theorem 1.1 now follows by setting c(r) = O(

√
r · log(r)).

1.2. Related Works

Lemma 3.1, which allows amplification of discrepancy bounds to obtain near-
monochromatic rectangles, can also be derived from the rectangle bound, defined by
Klauck [2003] and Jain and Klauck [2010]. Specifically, one first relates the discrep-
ancy bound to a rectangle bound for error close to 1/2, then applies error reduction for
the rectangle bound [Klauck 2003]. The proofs are very similar; we refer the interested
reader to the original papers for details.

There are two recent works that also made progress on the log-rank conjecture.
Tsang et al. [2013] studied the special case of XOR functions, which are functions of the
form f (x, y) = F(x ⊕ y). For this case, they established results similar to Theorem 1.1.
Although the results are similar, the techniques seem to be different. In particular, the
main tool used in Tsang et al. [2013] is Fourier analysis, while our results are based
on discrepancy. It would be interesting to understand if there are deeper connections
between these techniques. In another recent work, Gavinsky and Lovett [2013], we
show that in order to prove the log-rank conjecture, it suffices to show that any low-
rank matrix has an efficient randomized protocol, a low information-cost protocol, or
an efficient zero-communication protocol.

Article Organization. We give preliminary definitions in Section 2. We prove
Lemma 1.3 in Section 3. We prove Theorem 1.1 in Section 4. We give a proof sketch
of Theorem 1.5 in Section 4.1. We discuss a conjecture related to matrix rigidity in
Section 5, and further open problems in Section 6.

2. PRELIMINARIES

For standard definitions in communication complexity, we refer the reader to
Kushilevitz and Nisan [1997]. We give here only the basic definitions that we would
require.

Let f : X × Y → {−1, 1} be a total Boolean function, where X and Y are finite sets.
If μ is a distribution over X × Y , then we denote by Eμ[ f ] = ∑

x,y μ(x, y) f (x, y) the
average of f under μ. A rectangle is a set R = A× B for A ⊂ X, B ⊂ Y . We denote by
E[ f |R] the average of f under the uniform distribution over R, and more generally by
Eμ[ f |R] the average of f under the conditional distribution of μ conditioned to be in
R. A rectangle is monochromatic if f (x, y) = 1 for all x, y ∈ R or f (x, y) = −1 for all
x, y ∈ R.
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1:4 S. Lovett

The rank of f is the rank (over the reals) of its associated X× Y matrix. The discrep-
ancy of f with respect to a distribution μ on X × Y is the maximal bias achieved by a
rectangle,

discμ( f ) def= max
rectangle R

∣∣∣∣∣∣
∑

(x,y)∈R

μ(x, y) f (x, y)

∣∣∣∣∣∣ .
The discrepancy of f is the minimal discrepancy possible over all possible distributions
μ,

disc( f ) def= min
μ

discμ( f ).

Note that discrepancy is a hereditary property. That is, if R is a rectangle, then the
discrepancy of f restricted to R is at least the original discrepancy of f . Similarly, low
rank is a hereditary property, as ranks of submatrices cannot exceed the rank of the
original matrix. We will rely on the following theorem, which lower bounds the dis-
crepancy of functions with low rank. The following theorem follows from Corollary 3.1
and Lemma 4.2 in Linial et al. [2007]; see also Theorem 3.1 in Linial and Shraibman
[2009].

THEOREM 2.1. Let f : X × Y → {−1, 1} be a function with rank r. Then, disc( f ) ≥
1/8

√
r.

For completeness, we sketch the proof of Theorem 2.1; the reader is referred to the
original papers for the details. Let A be the X × Y Boolean matrix associated with f ,
with Ax,y = f (x, y). First, one shows the assumption that rank(A) = r implies that
the γ2 norm of A is O(

√
r). That is, there exists a factorization of A as Ax,y = 〈ux, vy〉,

where ux, vy are vectors in Euclidean space that satisfy 1 ≤ ‖ux‖2‖vy‖2 ≤ O(
√

r) for all
x ∈ X, y ∈ Y (see Lemma 4.2 in Linial et al. [2007]). Then, the Grothendick inequality
implies that the discrepancy of f is at least �(1/

√
r) (see Theorem 3.1 in Linial and

Shraibman [2009]).

3. AN AMPLIFICATION LEMMA

Our main technical lemma is the following lemma, which shows that any Boolean
function with high discrepancy contains a large rectangle that is nearly monochromatic.

LEMMA 3.1. Let f : X × Y → {−1, 1} be a function with disc( f ) = δ. Then, for any
ε > 0 and any distribution μ over X × Y , there exists a rectangle R with

μ(R) ≥ 2−O(δ−1·log(1/ε))

such that |Eμ[ f |R]| ≥ 1 − ε.

We note that Lemma 1.3 from the introduction is a special case of Lemma 3.1, for
which μ is chosen to be the uniform distribution. Our original proof of Lemma 3.1 used
an iterative amplification step. After giving a talk on this result in the Banff complexity
workshop, Salil Vadhan suggested to us a simplified proof, which avoids the iterative
step by applying Yao’s mini-max principle. We present his proof below.

PROOF. Let us assume without loss of generality that Eμ[ f ] ≥ 0; otherwise, apply the
lemma to − f . Let σ be any distribution over X × Y such that Eσ [ f ] = 0. By assumption,
there exists a rectangle R1 such that∣∣∣∣∣∣

∑
(x,y)∈R1

σ (x, y) f (x, y)

∣∣∣∣∣∣ ≥ δ.
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Let R1 = A× B and define A′ = X \ A, B′ = Y \ B. Consider the four rectangles

R1 = A× B, R2 = A′ × B, R3 = A× B′, R4 = A′ × B′.

As
∑

(x,y)∈X×Y σ (x, y) f (x, y) = Eσ [ f ] = 0, there must exist a rectangle R ∈ {R1, R2,

R3, R4} such that ∑
(x,y)∈R

σ (x, y) f (x, y) ≥ δ/3.

As this holds for any distribution σ for which Eσ [ f ] = 0, we can apply Yao’s mini-max
principle and deduce the following. There exists a distribution ρ over rectangles, such
that, for any distribution σ over X × Y for which Eσ [ f ] = 0, we have that

ER∼ρ

⎡
⎣ ∑

(x,y)∈R

σ (x, y) f (x, y)

⎤
⎦ ≥ δ/3.

Equivalently, ∑
x∈X,y∈Y

Pr
R∼ρ

[(x, y) ∈ R] · σ (x, y) f (x, y) ≥ δ/3.

Fix (x1, y1) ∈ f −1(1) and (x2, y2) ∈ f −1(−1). Let σ be the distribution given by
σ (x1, y1) = σ (x2, y2) = 1/2. As Eσ [ f ] = 0, we have that

Pr
R∼ρ

[(x1, y1) ∈ R] − Pr
R∼ρ

[(x2, y2) ∈ R] ≥ (2/3)δ.

Let p be the minimal probability that (x1, y1) ∈ R over all (x1, y1) ∈ f −1(1), where R is
sampled according to ρ; and let q be the maximal probability that (x2, y2) ∈ R over all
(x2, y2) ∈ f −1(−1). We established that

p − q ≥ (2/3)δ.

Fix t ≥ 1 and let R1, . . . , Rt ∼ ρ be chosen independently, and let R∗ = R1 ∩ . . . ∩ Rt
be their intersection. We will show that, for an appropriate choice of t, the rectangle
R∗ satisfies the requirements of the lemma with positive probability (and hence such
a rectangle exists). We will use the fact that, for any x ∈ X, y ∈ Y ,

Pr[(x, y) ∈ R∗] = Pr
R∼ρ

[(x, y) ∈ R]t.

Consider the random variable

T = μ(R∗) − (2/ε) · μ(R∗ ∩ f −1(−1)).

By linearity of expectation, we have that

E[T ] =
∑

(x,y)∈ f −1(1)

μ(x, y) Pr[(x, y) ∈ R∗] −
∑

(x,y)∈ f −1(−1)

μ(x, y)((2/ε) − 1) Pr[(x, y) ∈ R∗]

≥ μ( f −1(1)) · pt − μ( f −1(−1)) · qt · (2/ε)

≥ 1/2 · (pt − qt(2/ε)),

where we used our initial assumption that Eμ[ f ] = μ( f −1(1)) − μ( f −1(−1)) ≥ 0. We
choose t = O(p/δ · log(1/ε)) so that

qt/pt ≤ (1 − (2/3)δ/p)t ≤ ε/4.
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1:6 S. Lovett

For this choice of t, we have that

E[T ] ≥ pt/4 = 2−O(δ−1·log(1/ε)),

where we used the inequality pp ≥ 1/2, which holds for all 0 < p ≤ 1. Let R∗ be a
rectangle that achieves this average, that is,

μ(R∗) − (2/ε) · μ(R∗ ∩ f −1(−1)) ≥ 2−O(δ−1·log(1/ε)).

In particular, we learn that both μ(R∗) ≥ 2−O(δ−1·log(1/ε)) (which satisfies the first require-
ment) and that μ(R∗ ∩ f −1(−1)) ≤ (ε/2) · μ(R∗), which implies that Eμ[ f |R∗] ≥ 1 − ε
(which satisfies the second requirement).

4. DETERMINISTIC PROTOCOLS FOR LOW-RANK FUNCTIONS

We recall Theorem 1.1 for the convenience of the reader.

Theorem 1.1 (restated). Let f : X × Y → {−1, 1} be a Boolean function with rank
r. Then, there exists a deterministic protocol computing f that uses O(

√
r · log r) bits of

communication.
We prove Theorem 1.1 in the remainder of this section. Let f : X × Y → {−1, 1} be a

function of rank r. By Theorem 2.1, we have that disc( f ) ≥ 1/8
√

r. We apply Lemma 3.1
with μ the uniform distribution and ε = 1/2r to derive the existence of a rectangle R
such that

|R| ≥ 2−O(
√

r·log(r)) · |X × Y |, E[ f |R] ≥ 1 − 1/2r.

Next, we apply a claim from Gavinsky and Lovett [2013] that shows that nearly
monochromatic rectangles in low-rank matrices contain large monochromatic matrices.

CLAIM 4.1 ([GAVINSKY AND LOVETT 2013]). Let f : X × Y → {−1, 1} be a function
with rank( f ) = r and E[ f |R] ≥ 1 − 1/2r. Then, there exists a rectangle R′ ⊂ R of size
|R′| ≥ |R|/4 such that f is monochromatic on R′.

For completeness, we include the proof.

PROOF. Let R = A × B. Since f is a sign matrix, the condition E[ f |R] ≥ 1 − 1/2r
implies that f (x, y) = −1 for at most 1/4r fraction of the inputs in R. Let A′ ⊂ A be the
set of rows for which at most 1/2r fraction of the elements are −1,

A′ = {x ∈ A :
∣∣{y ∈ B : f (x, y) = −1}∣∣ ≤ |B|/2r}.

By Markov inequality, |A′| ≥ |A|/2. Let x1, . . . , xr ∈ A′ be indices so that their rows span
A′ × B. Let

B′ = {y ∈ B : f (x1, y) = · · · = f (xr, y) = 1}.
Since each of the rows x1, . . . , xr contain at most 1/2r fraction of elements that are −1,
we have that |B′| ≥ |B|/2. Consider the restriction of the matrix to R′ = A′ × B′. It has
rank one; as it is spanned by r rows, each of them is all one. Hence, all of its rows are all
one, or all minus one. However, by the construction of A′, the rows must be all one.

Hence, we showed that any function f : X × Y → {−1, 1} of rank r contains a
monochromatic rectangle of size 2−O(

√
r·log(r)) · |X×Y |. Applying Theorem 1.5 with c(r) =

O(
√

r · log(r)), we conclude that any such function can be computed by a deterministic
protocol that used O(

√
r · log(r)) bits of communication.

4.1. Proof Sketch of the Nisan-Wigderson Theorem

We recall Theorem 1.5 of Nisan and Wigderson [1994] for the convenience of the reader.
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Theorem 1.5 (restated). Assume that, for any function f : X × Y → {−1, 1} of
rank( f ) = r, there exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X × Y |. Then,
any Boolean function of rank r is computable by a deterministic protocol of complexity
O(log2 r + ∑log r

i=0 c(r/2i)).

PROOF. Let f be a function of rank r, and consider the partition of its corresponding
matrix as (

R S
P Q

)
.

As R is monochromatic, rank(R) = 1. Hence, rank(S) + rank(P) ≤ r + 1. (To see this,
let A be the matrix formed by replacing R with the all-zeros matrix. Then, rank(S) +
rank(P) ≤ rank(A) ≤ r + 1). Assume without loss of generality that rank(S) ≤ r/2 + 1
(otherwise, exchange the role of the rows and columns player). The row player sends
one bit, indicating whether its input x is in the top or bottom half of the matrix. If it is
in the top half, the rank decreases to ≤ r/2 + 1. If it is in the bottom half, the size of the
matrix reduces to at most (1 − 2−c(r))|X × Y |. Iterating this process defines a protocol
tree. We next bound the number of leaves of the protocol. By standard techniques, any
protocol tree can be balanced so that the communication complexity is logarithmic in
the number of leaves see Kushilevitz and Nisan [1997, Chapter 2, Lemma 2.8].

Consider the protocol that stops once the rank drops to r/2. Let m = |X × Y |. The
protocol tree, in this case, has at most O(2c(r) · log(m)) leaves, hence can be simulated
by a protocol sending only O(c(r) + log log(m)) bits. Note that, since we can assume
that f has no repeated rows or columns, m ≤ 22r, hence log log(m) ≤ log(r) + 1. Next,
consider the phase in which the protocol continues until the rank drops to r/4. Again,
this protocol can be simulated by O(c(r/2) + log(r)) bits of communication. Summing
over r/2i for i = 0, . . . , log(r) gives the bound.

5. A CONJECTURE RELATED TO MATRIX RIGIDITY

The proof of Theorem 1.1 relies on the matrix f being Boolean. However, we conjecture
that it can be generalized to show that any low-rank sparse matrix contains a large
zero rectangle.

CONJECTURE 5.1. Let M be an n × n real matrix with rank(M) = r and such that
Mi, j �= 0 for at most εn2 entries, where ε ≤ 1/2. Then, there exists A, B ⊂ [n] such that

Ma,b = 0 ∀a ∈ A, b ∈ B

such that |A|, |B| ≥ n · 2−c
√

εr, for some absolute constant c > 0.

A related conjecture over F
n
2, called the approximate duality conjecture, was studied

in Ben-Sasson and Zewi [2011] and Ben-Sasson et al. [2012], with relations to two-
source extractors and the log-rank conjecture. Here, we show that Conjecture 5.1, if
true, would imply stronger bounds for matrix rigidity than currently known.

The bound in Conjecture 5.1, if true, is the best possible, as the following example
shows. Let M = NNt, where N is an n × r matrix whose rows are all the {0, 1}r

vectors of hamming weight
√

r/10 and n = ( r√
r/10 ) = r�(

√
r). The matrix M is ε = 1/100

sparse, as the probability that two uniformly chosen vectors intersect is at most 1/100.
However, one can verify that the largest subsets A, B ⊂ [n] such that Ma,b = 0 for all
a ∈ A, b ∈ B correspond to choosing A to be all vectors whose support lies in the first
half of the coordinates, and B to be all vectors whose support lies in the last half of
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1:8 S. Lovett

the coordinate. Furthermore, |A|, |B| ≤ n · 2−�(
√

r). The bound for general ε > 0 can be
similarly obtained by considering all vectors in {0, 1}r of hamming weight

√
εr.

Matrix Rigidity. A matrix M is called (r, s)-rigid if its rank cannot be made smaller
than r by changing at most s entries in M. The problem of explicitly constructing rigid
matrices was introduced by Valiant [1977] in the context of arithmetic circuits lower
bounds, and was also studied by Razborov [1989] in the context of separation of the
analogs of PH and PSPACE in communication complexity. Despite much research, the
best results to date are achieved by the so-called “untouched minor” argument, which
gives explicit matrices that are (r, s)-rigid with s = �( n2

r log(n
r )). See, for example, the

excellent survey of Lokam [2009] for details. We will prove the following corollary of
Conjecture 5.1, which improves previous bounds by a logarithmic factor.

COROLLARY 5.2. Assuming Conjecture 5.1, for any r ≥ 1 and r ≤ n ≤ r · 2c
√

r, there
exists an explicit n × n real matrix that is (r, s)-rigid for s = n2

2c2r log2 (n
r

)
.

PROOF. Let M be an n × n matrix of rank r, such that all r × r minors of M have
full rank. For example, such a matrix may be constructed as M = NNt, where N is an
n× r matrix such that any r rows of N are linearly independent. Assume that M is not
(r, s)-rigid. Then, we can decompose

M = L + S, rank(L) < r, S is s-sparse.

Let ε = log2(n/r)
2c2r so that the matrix S is s = εn2 sparse. Moreover, S is low rank, as

rank(S) ≤ rank(M) + rank(L) < 2r. Hence, by Conjecture 5.1, there exist A, B ⊂ [n] of
size |A|, |B| ≥ n · 2−c

√
2εr = r such that Sa,b = 0 for all a ∈ A, b ∈ B. Hence, Ma,b = La,b.

However, as by construction the rank of M on the minor A× B is at least r, the same
holds for L. Hence, rank(L) ≥ r, and we have reached a contradiction. To conclude, note
that the upper bound on n follows from requiring that ε ≤ 1/2.

6. FURTHER RESEARCH

We proved a bound on the communication complexity that is near linear in the discrep-
ancy. This seem to be tight for our proof technique. The dependence of the discrepancy
on the rank, disc( f ) ≥ �(1/

√
rank( f )), is tight, in general, as can be seen, for example,

by taking f to be the inner product function. However, it may be that further assuming
that the rank of f is much smaller than its size might allow the proof of better bounds.
Another interesting direction is to combine our current approach with the additive com-
binatorics approach of Ben-Sasson et al. [2012]. Finally, we note that it may be possible
to generalize the techniques developed here in order to relate the approximate rank of
a function and its randomized or quantum communication complexity. However, there
seem to be some technical challenges in implementing this.
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