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This article studies the topological properties of wireless communication maps and their usability in algo-
rithmic design. We consider the SINR model, which compares the received power of a signal at a receiver
against the sum of strengths of other interfering signals plus background noise. To describe the behavior of
a multistation network, we use the convenient representation of a reception map, which partitions the plane
into reception zones, one per station, and the complementary region of the plane where no station can be
heard. SINR diagrams have been studied in Avin et al. [2009] for the specific case where all stations use the
same power. It was shown that the reception zones are convex (hence connected) and fat, and this was used
to devise an efficient algorithm for the fundamental problem of point location. Here we consider the more
general (and common) case where transmission energies are arbitrary (or nonuniform). Under that setting,
the reception zones are not necessarily convex or even connected. This poses the algorithmic challenge of
designing efficient point location techniques for the nonuniform setting, as well as the theoretical challenge
of understanding the geometry of SINR diagrams (e.g., the maximal number of connected components they
might have). Our key result exhibits a striking contrast between d- and (d + 1)-dimensional maps for a net-
work embedded in d-dimensional space. Specifically, it is shown that whereas the d-dimensional map might
be highly fractured, drawing the map in one dimension higher “heals” the zones, which become connected
(in fact, hyperbolically connected). We also provide bounds for the fatness of reception zones. Subsequently,
we consider algorithmic applications and propose a new variant of approximate point location.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design—Wireless communication

General Terms: Theory

Additional Key Words and Phrases: SINR, point-location, convexity, weighted voronoi diagram, networks

ACM Reference Format:
Erez Kantor, Zvi Lotker, Merav Parter, and David Peleg. 2015. The toplogy of wireless communication. J.
ACM 62, 5, Article 37 (October 2015), 32 pages.
DOI: http://dx.doi.org/10.1145/2807693

1. INTRODUCTION

1.1. Background and Motivation

The use of wireless technology in communication networks is rapidly growing. This
trend imposes increasingly heavy loads on the resources required by wireless networks.

This work has been supported by the Israel Science Foundation (grant 894/09), the United States-Israel Bi-
national Science Foundation (grant 2008348), the Israel Ministry of Science and Technology (infrastructures
grant), the Citi Foundation, and the I-CORE program of the Israel PBC and ISF (grant 4/11). Erez Kantor
is supported in part by AFOSR contract numbers FA9550-13-1-0042 and FA9550-14-1-0403, and by NSF
awards 0939370-CCF, CCF-1217506 and CCF-AF-0937274.
Authors’ addresses: E. Kantor, Computer Science and Artificial Intelligence Laboratory (CSAIL), 32 Vas-
sar Street, Cambridge, MA 02139; Z. Lotker, Ben Gurion University, Beer-Sheva 84105, Israel; M. Parter
(corresponding author) and D. Peleg, Faculty of Mathematics and Computer Science, Weizmann Institute of
Science, Rehovot 76100, Israel; corresponding author’s email: merav.parter@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 0004-5411/2015/10-ART37 $15.00

DOI: http://dx.doi.org/10.1145/2807693

Journal of the ACM, Vol. 62, No. 5, Article 37, Publication date: October 2015.



37:2 E. Kantor et al.

One of the main resources required for such communication is radio spectrum, which is
limited by nature. Hence careful design of all aspects of the network is crucial to efficient
utilization of its resources. Good planning of radio communication networks must take
advantage of all its features, including both physical properties of the channels and
structural properties of the entire network. While the physical properties of channels
have been thoroughly studied, [Goldsmith 2005; Tse and Viswanath 2005], relatively
little is known about the topology and geometry of the wireless network structure and
their influence on performance issues.

There is a wide range of challenges in wireless communication for which better orga-
nization of the communication network may become useful. Specifically, understanding
the topology of the underlying communication network may lead to more sophisticated
algorithms for problems such as scheduling, topology control, and connectivity. We
study wireless communication in free space; this is simpler than the irregular environ-
ment of radio channels in a general setting, which involves reflection and shadowing.
We use the signal to interference-plus-noise ratio (SINR) model which is widely used by
the electrical engineering community and is recently, explored by computer scientists
as well. Let,

SINR(si, p) = ψi · dist−α(si, p)∑
j �=i ψ j · dist−α(s j, p) + N

.

In this model, a receiver at point p ∈ Rd successfully receives a message from the sender
si if and only if SINR(si, p) ≥ β, where N is the environmental noise, the constant β ≥ 1
denotes the minimum SINR required for a message to be successfully received, α is
the path-loss parameter, and S = {s1, . . . , sn} is the set of concurrently transmitting
stations using power assignment ψ . Note that although β < 1 is also of practical
interest, following Avin et al. [2012], we restrict attention to β > 1, which guarantees
that the reception regions of different stations have no overlap and are hence easier to
study from the topological point of view.

Within this context, we focus on one specific algorithmic challenge, namely, the point
location problem, defined as follows. Given a query point p, it is required to identify
which of the n transmitting stations is heard at p, if any, under interference from all
other n− 1 transmitting stations and background noise N . Obviously, one can directly
compute SINR(si, p) for every i ∈ {1, . . . , n} in time �(n) and answer the preceding
question accordingly. Yet, this computation may be too expensive (in time) if the query
is asked for many different points p. Avin et al. [2009] initiate the study of the topology
and geometry of wireless communication in the SINR model, and its application to
the point location problem, in the relatively simple setting of uniform powers, namely,
under the assumption that all stations transmit with the same power level. They show
that in this setting, the SINR diagram assumes a particularly convenient form: the
reception zones of all senders are convex and “fat.” They later exploit these properties
to devise an efficient data structure for point location queries, resulting in a logarithmic
query-time complexity.

In actual wireless communication systems, however, many wireless communication
devices can modify their transmission power [Chiang et al. 2008]. Moreover, it has
been demonstrated convincingly that allowing transmitters to use different power lev-
els increases the efficiency of various communication patterns in terms of resource
utilization (particularly, energy consumption and communication time). Hence, it is
important to develop both a deep understanding of the underlying structural proper-
ties and suitable algorithmic techniques for handling various communication-related
problems in nonuniform wireless networks as well. In particular, it may be useful
to develop algorithms for solving the problem of point location in such networks.
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Unfortunately, it turns out that once we turn to the more general case of nonuniform
wireless networks, the picture becomes more involved, and the topological features of
the SINR diagram are more complicated than in the uniform case. In particular, simple
examples (with as few as five stations, as illustrated later on) show that the reception
zone of a station is not necessarily connected, and therefore is not convex. Other “nice”
features of the problem in the uniform setting, such as fatness, are no longer satisfied
as well. Subsequently, algorithmic design problems become more difficult. In particu-
lar, the point location problem becomes harder and cannot be solved directly via the
techniques developed in Avin et al. [2009] for the uniform case.

In this article, we aim to improve our understanding of the topological and geometric
structure of the reception zones of SINR diagrams in the general (nonuniform) case.
The difficulty in point location with variable power follows from several independent
sources. First, one must overcome the fact that the number of connected cells is not
always known (and there are generally several connected cells). A second problem is
that the shape of each connected cell is no longer as simple as in the uniform case.
Yet another problem is the possibility of singularity points on the boundaries of the
reception zones. (Typically, those problems become harder in higher dimensions, but
as seen later, this is not always the case for wireless networks.)

Nevertheless, we manage to establish several properties of SINR diagrams in nonuni-
form networks that are slightly weaker than convexity but are still useful for tackling
our algorithmic problems, such as enjoying hyperbolic convexity. To illustrate these
properties, let us take a look at the simplest example where a problem already occurs.
When we look at two stations in one dimension, the reception zones might not be con-
nected. Surprisingly, when we look at the same example in two dimensions (instead of
one), the reception zones of both stations become connected. As shown later on, this
is no coincidence. Moreover, when we examine closely the two-dimensional case, we
see that the reception zones are no longer convex but actually hyperbolic convex (as
opposed to non convex in the one dimensional case). We use this strategy of adding a
dimension to the original problem and moving from Euclidean geometry to hyperbolic
geometry to solve the point location problem.

1.2. Contributions

In this article, we aim toward gaining better understanding of SINR diagrams with
nonuniform power. Better characterization of reception maps has a theoretical as well
as practical motivation. The starting point of our work is the following observation: in
a nonuniform setting, reception zones are neither convex nor fat. In addition, they are
not connected. The loss of these “niceness” properties, previously established for the
uniform power setting [Avin et al. 2009], appears even for the presumably simple case,
where all stations are aligned on a line.

This raises several immediate questions. The first is a simple “counting” question
that has strong implications on our algorithmic question: What is the maximal num-
ber of reception cells that may occur in an SINR diagram of a wireless network on
n transmitters. The second question has a broader scope: Are there any “niceness"
properties that can be established in a nonuniform setting. Specifically, we aim toward
finding other (weaker but still useful) forms of convexity that are satisfied by cells in
nonuniform reception maps. Apart from their theoretical interest, these questions are
also of considerable practical significance, as obviously, having reception zones with
some form of convexity might ease the development of protocols for various design
and communication tasks. For the general setting where stations are embedded in Rd,
the problem of bounding the number of maximal connected components seems to be
harder, even for d = 2. We are able to show that the number of reception cells is no
more than O(nd+1) and provide examples with �(n) reception cells for a single station.
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Do d-dimensional zones enjoy some form of weaker convexity? Although this remains
an open question, we make a major advance in this context.

We consider the (d+ 1)-dimensional SINR diagram of a wireless network whose sta-
tions are embedded in d-dimensional space, and establish a much stronger property. It
turns out, that while in the d-dimensional space, the network’s SINR diagram might be
highly fractured, going one dimension higher miraculously “heals” the reception zones,
which become connected (in fact, hyperbolically connected or hyperbolically convex).
This may have practical ramifications. For instance, considering stations located in the
two-dimensional plane, one realizes that their reception zones in three-dimensional
space are connected, which aids in answering point location queries in this realistic
setting.

Finally, we consider the point location task, defined as follows. Given a set of broad-
casting stations S and a point p, we are interested in knowing whether the trans-
mission of station s is correctly received at p. We present a construction scheme of a
data structure (per station) that maintains a partition of the plane into three zones: a
zone of all points that correctly receive the transmissions of s, that is, points p with
SINR(s, p) ≥ β; a zone where the transmission of s cannot be correctly received, that
is, points p with SINR(s, p) < β; and a zone of uncertainty corresponding to points
that might receive the transmission in a somewhat lower quality, that is, points p with
SINR(s, p) ≥ (1−ε)2α ·β, where ε is predefined performance parameter. Using this data
structure, a point location query can be answered in logarithmic time.

1.3. Related Work

In the engineering community, the physical interference (SINR) model has been scru-
tinized for almost four decades. Focusing on topological, geometric, and algorithmic
aspects, our starting point is the work of Avin et al. [2009], where it is proven that
in the uniform case, namely, when all transmitters use the same power, the recep-
tion zones are convex and fat. Several papers consider the nonuniform case and have
shown that the capacity of wireless networks increases when transmitters can adapt
their transmission power. In their seminal paper, Agarwal and Erickson [1999], ana-
lyze the capacity of wireless networks in the physical and protocol models. Moscibroda
[2007] analyze the worst-case capacity of wireless networks, without any assumption
on the deployment of nodes in the plane, as opposed to almost all previous works on
this problem. Nonuniform power assignments can clearly outperform a uniform as-
signment [Moscibroda et al. 2006; Moscibroda and Wattenhofer 2006] and increase the
capacity of a network. Therefore, the majority of the recent literature on capacity and
scheduling addresses nonuniform power.

Since in the uniform setting, the reception zones are convex and fat [Avin et al. 2009],
the singularity points of a zone can be easily handled. When transmission power is
nonuniform, handling the singularity points becomes a major challenge. We remark
that recently, Gabrielov et al. have shown that the number of singular points of func-
tions similar to the interference function is finite [2007]. Maxwell conjectures that the
number of singularity points in the interference function is bound by (n− 1)2, where n
is the number of transmitters; [Maxwell 1954]. For illustration, see Figure 1(a).

Another challenge that one has to deal with in nonuniform networks is the possible
existence of regions with a very small gradient in the SINR function, as exemplified
in Figure 1(b), which reflects the fact that the area containing all points p such that
SINR(si, p) ∈ [β, β + ε] cannot be bounded even for small ε > 0.

It is hoped that a better understanding of the topology of the SINR diagram will
improve our understanding of the joint problem of scheduling and power control. The
complexity of this problem in the physical model, taking into account the geometry
of the problem, is unknown. Nevertheless, many algorithms and heuristics have been
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Fig. 1. Topographic view of a reception region (with no noise). Heights indicate SINR thresholds. (a) SINR
diagram of 4-station nonuniform power network: singular points (p1 and p2) and contour lines of SINR(s1, (x, y)).
(b) Low gradient regions in SINR diagram in 2-station uniform power network. H1 is unbounded when β ≤ 1 but
finite for β > 1, illustrating the impossibility of getting uniformly bounds of the area between two SINR curves
corresponding to two different threshold levels.

suggested (e.g., [Borbash and Ephremides 2006; Cruz and Santhanam 2003; Lee
et al. 1995; Moscibroda and Wattenhofer 2006; Wang et al. 2005; Zander 1992]. See
Moscibroda et al. [2007] and Goussevskaia et al. [2010] for a more detailed discussion
of these approaches. Recently, Kesselheim [2011] has shown how to achieve a constant
approximation for the capacity problem with power control, for doubling metric
spaces. His algorithm yields O(log n) approximation for general metrics. Halldorsson
and Mitra [2011] show tight characterizations of capacity maximization under power
control, using oblivious power assignments in general metrics.

Finally, turning to the stochastic setting, the relation between stochastic SINR dia-
gram (formed by modeling the SINR as a marked point process) and classical stochastic
geometry models such as Poisson-Voronoi tessellations, has been studied extensively.
See Baccelli and Blaszczyszyn [2009] for a detailed analysis, results, and applications
of this approach.

2. PRELIMINARIES

2.1. Geometric Notions

Throughout, we consider the d-dimensional Euclidean space Rd (for d ∈ Z≥1). The
distance between points p and point q is denoted by dist(p, q) = ‖q − p‖. A ball of
radius r centered at point p ∈ Rd is the set of all points at distance at most r from p,
denoted by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}. Unless stated otherwise, we assume
the two-dimensional Euclidean plane and omit d. The basic notions of open, closed,
bounded, compact, and connected sets of points are defined in the standard manner. A
point set P is said to be open if all points p ∈ P are internal points, and closed if its
complement P̄ is open. If there exists some real r such that dist(p, q) ≤ r for every two
points p, q ∈ P, then P is said to be bounded. A compact set is a set that is both closed
and bounded. The closure of P, denoted cl(P), is the smallest closed set containing P.
The boundary of a point set P, denoted by �(P), is the intersection of the closure of
P and the closure of its complement, that is, �(P) = cl(P) ∩ cl(P̄). Let L(�(P)) denote
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the length of �(P). A connected set is a point set P that cannot be partitioned to two
nonempty subsets P1, P2 such that each of the subsets has no point in common with
the closure of the other (i.e., P is connected if for every P1, P2 �= ∅ such that P1 ∩ P2 = ∅
and P1 ∪ P2 = P, either P1 ∩ cl(P2) �= ∅ or P2 ∩ cl(P1) �= ∅.). A maximal connected subset
P1 ⊆ P is a connected point set such that P1 ∪ {p} is no longer connected for every
p ∈ P \ P1.

Unless stated otherwise, a zone refers to the union of an open connected set and
some subset of its boundary. It may also refer to a single point or to the finite union of
zones.

Let F : Rd → Rd and let p ∈ Rd. Then F is the characteristic polynomial of a zone Z
if p ∈ Z ⇔ F(p) ≤ 0.

Denote the area of a bounded zone Z (assuming that it is well-defined) by area(Z).
For a nonempty bounded zone Z �= ∅ and an internal p ∈ Z, denote the maximal and
minimal radii of Z with respect to p by

δ(p, Z) = sup{r > 0 | Z ⊇ B (p, r)}, 
(p, Z) = inf{r > 0 | Z ⊆ B (p, r)},
and define the fatness parameter of Z with respect to p to be ϕ(p, Z) = 
(p, Z)/δ(p, Z).
The zone Z is said to be fat with respect to p if ϕ(p, Z) is bounded by some constant.

2.2. Wireless Networks

We consider a wireless network A = 〈d, S, ψ,N , β, α〉, where d ∈ Z≥1 is the dimension,
S = {s1, s2, . . . , sn} is a set of transmitting radio stations embedded in the d-dimensional
space, ψ is an assignment of a positive real transmitting power ψi to each station si,
N ≥ 0 is the background noise, β ≥ 1 is a constant that serves as the reception threshold
(to be explained soon), and α > 0 is the path-loss parameter. We sometimes wish to
consider a network obtained from A by modifying one of the parameters while keeping
all other parameters unchanged. To this end, we employ the following notation. Let
Ad′ be a network identical to A except its dimension is d′ �= d. Aβ ′ and Aα′ are defined
in the same manner. For notational simplicity, si also refers to the point (xi

1, . . . , xi
d) in

the d-dimensional space Rd where the station si resides, and moreover, when d = 2, the
point si in the Euclidean plane is denoted (xi, yi). The network is assumed to contain
at least two stations, that is, n ≥ 2. The signal energy of station si at point p �= si is
defined to be EA(si, p) = ψi · dist−α(si, p). The signal energy of a set of stations T ⊆ S
at a point p �∈ T is defined to be EA(T , p) = ∑

si∈T EA(si, p). Consider some point p /∈ S
and a target station si that should be received at p. We define the interference of s j to
be the signal energy of s j at p, j �= i denoted IA(s j, p) = EA(s j, p). The interference of
a set of stations T ⊆ S \ {si} at a point p �∈ S is defined to be IA(T , p) = EA(T , p). The
signal to interference and noise ratio (SINR) of si at point p is defined as

SINRA(si, p) = EA(si, p)
IA(S − {si}, p) + N

= ψi · dist−α(si, p)∑
j �=i ψ j · dist−α(s j, p) + N

. (1)

Observe that SINRA(si, p) is always positive, since the transmitting powers and the
distances of the stations from p are always positive and the background noise is
nonnegative.

In certain contexts, it is convenient to consider the reciprocal of the SINR function,
namely, SINR−1 defined as

SINR−1
A (si, p) = IA(S − {si}, p) + N

EA(si, p)
. (2)

When the network A is clear from the context, we may omit it and write simply
E(si, p), I(s j, p), SINR(si, p), and SINR−1(si, p).
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Fig. 2. Schematic representation of reception map. A map consists of reception zones: Each zone is composed
of connected component(s), denoted by cell(s).

The fundamental rule of the SINR model is that the transmission of station si is
received correctly at point p /∈ S if and only if its SINR at p is not smaller than the
reception threshold of the network, that is, SINR(si, p) ≥ β. If this is the case, then
we say that si is heard at p. We refer to the set of points that hear station si as the
reception zone of si, defined as

Hi(A) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si}.
This definition is necessary, since SINR(si, p) is undefined at points p in S and in
particular at p = si itself. In the same manner, we refer to the set of points where no
station si ∈ S can be heard (due to the background noise and interference) by

H∅(A) = {p ∈ Rd − S | SINR(si, p) < β, ∀si ∈ S}.
An SINR diagram H(A) = {Hi(A), 1 ≤ i ≤ n} ∪ {H∅(A)} is a “reception map” charac-
terizing the reception zones of the stations. This map partitions the plane into n + 1
zones: a zone for each station Hi(A), 1 ≤ i ≤ n, and a zone H∅(A) where no successful
reception exists to any of the stations.

It is important to note that a reception zone, Hi(A), is not necessarily connected.
Hereafter, the set of points where the transmissions of a given station are successfully

received is referred to as its reception zone, and a cell is a maximal connected set or
component in a given reception zone. Hence the reception zone is a set of cells, given by
Hi(A) = {Hi,1(A), . . .Hi,τi (A)(A)}, where τi(A) is the number of cells inHi(A). Analogously,
H∅(A) is composed of τ∅(A) connected cells, H∅, j(A). Overall, the topology of a wireless
network A is arranged in three levels: the reception map is at the top of the hierarchy. It
is composed of n+1 reception zones, Hi(A), i ∈ {1, . . . n,∅}. Each zone Hi(A) is composed
of τi(A) reception cells.1 For a pictorial description, see Figure 2.

The following definition is useful in our later arguments. Let Fi
A(p), p ∈ Rd be the

characteristic polynomial of Hi(A) given by

Fi
A(p) = β

⎛⎝∑
k�=i

ψk

∏
l �=k

distα(sl, p) + N ·
∏

k

distα(sk, p)

⎞⎠ − ψi

∏
k�=i

distα(sk, p). (3)

Then p ∈ Hi(A), if and only if Fi
A(p) ≤ 0.

1When A is clear from context, we may omit it and simply write Hi, τi , and Fi(p). When refering to reception
zones Hi(Ad′ ) or Hi(Aβ ′ ), we may omit A and simply write Hi(d′) and Hi(β).
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Avin et al. [2009] discuss the relationships between an SINR diagram on a set of sta-
tions S with uniform powers and the corresponding Voronoi diagram on S. Specifically,
it is shown that the n reception zones Hi(A) are strictly contained in the corresponding
Voronoi cells VORi. SINR diagrams with nonuniform powers are related to the weighted
Voronoi diagram of the stations instead of to the Voronoi diagram.

In the weighted version of the Voronoi diagram [Aurenhammer and Edelsbrunner
1984], we consider a weighted system V = 〈S, w〉, where S = {s1, . . . , sn} represents a
set of n points in d-dimensional Euclidean space and w = {w1, . . . , wn} is an assignment
of weights wi ∈ R>0 to each point si ∈ S. The weighted Voronoi diagram of V = 〈S, w〉
partitions the planes into n zones, where

WVORi(V ) =
{

p ∈ Rd
∣∣∣∣ wi

dist(si, p)
>

w j

dist(s j, p)
, for any j �= i

}
,

denotes the zones (of influence) of a point si in S, for every i ∈ {1, . . . , n}. The weighted
Voronoi map denoted by WVOR(V ) is composed of cells, edges, and vertices. A cell cor-
responds to a maximal connected component in WVORi(V ), i ∈ {1, . . . , n}. An edge is
the relative interior of the intersection of two closed cells. Finally, a vertex is an end-
point of an edge. In the unweighted Voronoi diagram, each zone WVORi(V ) corresponds
to one connected cell. On the contrary, a weighted Voronoi map is composed of O(n2)
cells, as was shown by Aurenhammer and Edelsbrunner [1984]. For a given wireless
network A = 〈d, S, ψ,N , β, α〉, we define the corresponding weighted Voronoi system
VA = 〈SA, wA〉 in the following manner. The set of points SA corresponds to S positions
and wA

i = ψ
1/α

i , for every 1 ≤ i ≤ n. In what follows, we formally express the relation
between H(A) and WVOR(VA).

LEMMA 2.1. Hi(A) ⊆ WVORi(VA), for every i ∈ {1, . . . , n} and β ≥ 1.

PROOF. Consider a point p ∈ Rd such that p ∈ Hi(A). Let di = dist(si, p). We prove
that p ∈ WVORi(VA). Since p ∈ Hi(A), by (1),

ψi

dα
i

≥ β ·
⎛⎝∑

j �=i

ψ j

dα
j

+ N

⎞⎠ ≥ ψk

dα
k

⎛⎝1 +
∑
j �=k,i

ψ j/ψk(
dj/dk

)α

⎞⎠ ,

where ψk/dα
k = max j �=i(ψ j/dα

j ), and hence

ψi

dα
i

>
ψk

dα
k

and
ψ

1/α

i

di
>

ψ
1/α

k

dk
.

The choice of wi implies that p ∈ WVORi(VA), and the claim holds.

Consider the way the reception map H(Aα) of a given network Aα changes as α goes
to infinity while the other parameters (e.g., the set of stations, β the noise etc.) are
fixed. The map H(Aα) converges to is denoted by

H(A∞) = lim
α→∞H(Aα).

LEMMA 2.2. Hi(A∞) ⊆ VORi , for every i ∈ {1, . . . , n}.
PROOF. By Lemma 2.1, Hi(A) ⊆ WVORi(VA). It follows that Hi(A∞) ⊆ WVORi(VA∞ )

for wi = limα→∞ ψ
1/α

i = 1. But WVORi(VA∞) is simply VORi. This can also be seen
by considering the SINR function: as α gets larger, the power of the station becomes
negligible compared to distance between the station and the point p. In other words, it
gets closer to the uniform Voronoi diagram.
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Fig. 3. An instance of a 5-station system with two connected cells of H1.

We conclude this section by stating an important technical lemma from Avin et al.
[2009] that will be useful in our later arguments.

LEMMA 2.3 ([AVIN ET AL. 2009]). Let f : Rd → Rd be a mapping consisting of ro-
tation, translation, and scaling by a factor of σ > 0. Consider some network A =
〈d, S, ψ,N , β, α〉 and let f (A) = 〈d, f (S), ψ,N /σ 2, β, α〉, where f (S) = { f (si) | si ∈ S}.

Then for every station si and for all points p /∈ S, we have SINRA(si, p) =
SINR f (A)( f (si), f (p)).

3. DISCONNECTIVITY OF NONUNIFORM POWER SINR DIAGRAMS

The SINR diagram H(A) is a central concept of this article. We are interested in gaining
some basic understanding of its topology. Specifically, we aim toward finding some
“niceness” properties of reception zones and studying their usability in algorithmic
applications. In previous work, Avin et al. [2009] consider the simpler case where all
stations transmit with the same power. For a uniform power network, the reception
zone of each station is known to be connected and to exhibit some desirable properties
such as fatness and convexity. In the current work, we study the general (and common)
case of nonuniform transmission powers.

By considering a 2-station network with nonuniform power, it is apparent that the
reception zones of nonuniform power networks are not convex, however, connectivity
is maintained. Unfortunately, although this is true for 2-stations systems, it does not
hold in general. Connectivity might be broken even in networks with a small number
of participants, as illustrated by the 5-station system of Figure 3, where the reception
zone of s1 is composed of two connected cells. This raises the immediate question of
bounding the maximal number of cells a given SINR diagram might have.

A seemingly promising approach to studying this question is considering the corre-
sponding weighted Voronoi diagrams. Recall that by Lemma 2.1, Hi(A) ⊆ WVORi(VA). It
therefore seems plausible that the number of weighted Voronoi cells (bounded by O(n2)
[Aurenhammer and Edelsbrunner 1984]) might upper bound the number of connected
cells in the corresponding SINR diagram. Unfortunately, this does not hold in general,
since it might be the case that a single weighted Voronoi cell corresponds to several
connected SINR cells. This phenomenon is formally stated in the following lemma.
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LEMMA 3.1. There exists a wireless network A∗ such that a given cell of the corre-
sponding weighted Voronoi diagram WVOR(VA∗ ) contains more than one cell of H(A∗).

PROOF. Let A = 〈d, S, ψ,N , β, α〉 be a wireless network, where S = {s1, . . . , sn}
and H1(A) is not connected, that is, H1(A) is composed of more than one cell. Let
Am = 〈d,Sm,�m,N , β, α〉, where Sm = {s1} ∪ {s1

2 , . . . , sm
2 } ∪ . . . ∪ {s1

n, . . . , sm
n }, �m =

{θ1}∪ {θ1
2 , . . . , θm

2 }∪ . . .∪{θ1
n , . . . , θm

n }, where θ1 = ψ1 and θ l
i = ψi/m, for every i = 2, . . . , n

and l = 1, . . . , m. To avoid cumbersome notation, let Vm = VAm and let WVOR(Vm) be the
corresponding weighted Voronoi diagram of Am. In what follows, we show that for suf-
ficiently large m∗, the network Am∗ satisfies the conditions of the desired network A∗. It
is easy to verify that for large enough m∗, the weighted zone WVOR1(Vm∗ ) is connected.

On the other hand, WVOR1(Vm∗ ) contains more than one connected cell of H1(Am∗ ).
First, observe that H1(A) = H1(Am∗), and therefore H1(Am∗ ) is not connected as well.
This follows by noting that EA(s1, p) = EAm(s1, p) and IA(S \ {s1}, p) = IAm(Sm \ {s1}, p).
Next, by the connectivity of WVOR1(Vm∗ ) and Lemma 2.1, it follows that H1(Am∗ ) ⊆
WVOR1(Vm∗ ). Since H1(Am∗ ) is not connected, the lemma follows.

This lemma illustrates that the structural complexity of the SINR diagram can-
not be fully captured by the weighted Voronoi diagram. Specifically, it implies that
the number of connected cells in a nonuniform SINR diagram cannot be bounded by
the number of weighted Voronoi cells, hence a different approach is needed. This chal-
lenge is extensively discussed in this article, where we obtain bounds and provide
extreme constructions with respect to the the number of connected cells for a given sta-
tion. We conjecture that the obtained upper bounds are not tight, and our constructions
are close to the limit. Yet so far, no formal proof is available.

4. NUMBER OF CELLS IN NONUNIFORM SINR DIAGRAMS

In this section, we aim to achieve bounds for the number of connected cells in nonuni-
form diagrams. Section 4.1 provides upper bounds for the number of cells. Section 4.2
presents an extreme construction that, we believe, maximizes the number of cells of a
single transmitter.

4.1. Upper Bound

We now consider the general case of a network of the form A = 〈d, S, ψ,N , β, α = 2〉,
and establish upper and lower bounds on the number of connected cells. To obtain an
upper bound on the number of cells, we apply the following theorem of Milnor [1964]
and Thom [1965].

THEOREM 4.1 (THEOREM 5.4 OF [WALLACH 1996]). Let f1 . . . , fm be polynomials in Rd

with deg( fi) < K. Then, V = {x = (x1, . . . , xd) | fi(x) = 0 for every i ∈ {1, . . . m}} has at
most K(2K − 1)d−1 cells.

The following is a direct consequence of Theorem 4.1.

LEMMA 4.2.
∑n

i=1 τi = O(nd+1).

PROOF. Consider Fi
A(p), the characteristic polynomial of Hi(A) given in Eq. (3). As

deg(Fi
A(p)) ≤ 2 · n, Theorem 4.1 implies that τi(A) = O(nd). Summing over all n stations

yields the lemma.

In the same manner, we can also bound the number of connected cells in H∅(A), where
no station is received correctly.

COROLLARY 4.3. τ∅(A) = O(n2d).
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PROOF. We first show that for β ≥ 1, the characteristic polynomial of H∅(A) (also
known as the noise polynomial) is

F∅
A(p) = −

n∏
i=1

Fi
A(p). (4)

It is required to show that p ∈ H∅(A) if and only if F∅
A(p) < 0. The first direction is

trivial, as if p ∈ H∅(A), then Fi
A(p) > 0 for every i ∈ {1, . . . , n}, and hence F∅

A(p) < 0. For
the opposite direction, observe that if p /∈ H∅(A), then there exists exactly one station
s j such that p ∈ H j(A) and F j(A, p) ≤ 0. This is due to the fact that when β ≥ 1,
reception zones for different stations do not overlap. Hence Fi

A(p) > 0 for any i �= j,
and therefore F∅

A(p) ≥ 0 as required.
Consequently, the degree of the noise polynomial F∅

A(p) is bounded by deg(F∅
A(p)) ≤

2 · n2. By Theorem 4.1, it then follows that τ∅(d) < O(n2d).

4.2. Construction of �(n) Connected Cells for a Single Station

We focus on the station s1 with transmission power ψ1 and devise a construction scheme
that aims to maximize the number of connected cells τ1. This construction achieves
τ1 = �(n). We believe that this construction is close to the maximum possible, that is,
we suspect that

∑n
i=1 τi = �(n), yet no proof is currently available. For completeness,

we refer the interested reader to an alternative construction with τ1 = �(log ψ1) cells,
using the wires technique [Kantor et al. 2011].

We begin by providing a high-level intuition for such a construction and then describe
it in more detail for the case where d = 2 and α = 2. The same bounds can be obtained
for any given fixed d and α ≥ 1. First, we describe the recipe for generating a single
reception cell of s1 (later we repeat it to create �(n) cells). The key idea is to take some
compact domain D (e.g., a unit ball) that is sufficiently far away from s1. This would
guarantee that the received signal strength of s1 at every point in D is roughly the same,
and if s1 is sufficiently strong (compared to the other interfering stations), then it would
still be possible for some points on D to receive the transmission of s1 successfully. Next,
place a constant number c = f (d, α) of weak interfering stations on the boundary of D.
The precise locations and the powers of these stations are set so that the interference
experienced at any point on the boundary of D is strictly stronger than the interference
experienced by some internal point p inside D (e.g., the ball center). Hence, the point
p would have a larger SINR value (with respect to s1) than any point on D’s boundary
(i.e., p would be part of the cell of s1). To create �(n) cells, select many such domains
Di at sufficiently large distances from each other on the boundary of a very large
circle centered at s1. Since the domains are distant from each other, the interference
at any point inside each domain Di would be massively dominated by the interfering
stations located on the boundary of Di (i.e., the interference from stations on the other
domains is negligible). As a result, for each of the �(n) domains Di, the SINR(s1, p)
value evaluated in some internal point inside Di is higher than that of any point on
Di ’s boundary, which allows us to set the desired SINR threshold. This completes the
high-level description.

The Construction. For the sake of simplicity, throughout the remainder of this section,
we consider the case where α = 2 and the two-dimensional Euclidean plane, that is,
d = 2. The goal of the construction is as follows. Given n ≥ 1, find a placement of 4n+ 1
stations S = {s0, . . . , s4n} and a power assignment ψ such that τ0 = n + 1, that is, s0 is
correctly received in n + 1 different connected cells.

Let us partition S \ {s0} into n quadruples Si = {s4i+1, . . . , s4i+4}, 0 ≤ i ≤ n − 1,
each corresponding to the vertices of an axis-aligned square. We assume the SINR
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Fig. 4. Geometric view of the construction.

parameters α = 2, N = 1, β = 1, and ψi = 1 for i > 0. The value of ψ0 and the positions
of S will be determined later on. The resulting network is A = 〈d = 2, S, ψ,N = 1, β =
1, α = 2〉. We next present the construction and then analyze the resulting structure.

Locate station s0 at the origin (0, 0) and draw a circle C̃ of radius R around it. Place
n points C0, . . . , Cn−1 at equidistant locations on C̃, with Ci = 〈Rcos( 2π

n i), Rsin( 2π
n i)〉

for 0 ≤ i ≤ n − 1. Around each point Ci draw a unit circle. Locate the stations of Si on
the vertices of the axis-aligned

√
2 × √

2 square enclosed by the ith unit-circle. Let Ŝi
be the square defined by its four vertices Si (see Figure 4).

We make use of the following equalities.

FACT 4.4. (a) dist(C0, Ci) = 2Rsin
(

π
n i

)
. (b)

n−1∑
i=1

1
sin2

(
π
n i

) = n2 − 1
3

.

PROOF. By definition, C0 = (R, 0), then

dist(C0, Ci)2 =
(

R − Rcos
(

2π

n
i
))2

+ R2 · sin2
(

2π

n
i
)

= R2
(

1 − 2 cos
(

2π

n
i
)

+ cos2
(

2π

n
i
))

+ R2 · sin2
(

2π

n
i
)

= 2R2
(

1 − cos
(

2π

n
i
))

= 2R2
(
1 −

(
cos2

(π

n
i
)

− sin2
(π

n
i
)))

= 4R2 · sin2
(π

n
i
)

,

where the penultimate equality follows by the trigonometry equality that cos 2θ =
cos2 θ − sin2 θ . Part (a) follows. Part (b) is a general inequality verified using
Wolfram [2010].
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Fig. 5. Zoom-in on the unit circle of Si and on the square Ŝi .

COROLLARY 4.5.
n−1∑
i=1

1
dist(C0, Ci)2 = n2 − 1

12R2 .

PROOF. By Fact 4.4(a),

n−1∑
i=1

1
dist(C0, Ci)2 = 1

4R2 ·
n−1∑
i=1

1
sin2

(
π
n i

) ,
n2 − 1
12R2 ,

where the last inequality follows by Fact 4.4(b).

LEMMA 4.6. For every 0 ≤ i ≤ n − 1, the following hold.

(a) For the center point Ci, I(Si, Ci) = 4.

(b) For any boundary point p ∈ �(Ŝi), I(Si, p) ≥ 4 4
5 .

PROOF. For convenience, let us translate the square Si to the origin, that is, map
Ci to (0, 0). Let Si = {(−a, a), (a, a), (a,−a), (−a,−a)} be the vertices of the resulting
2a × 2a square, where a = 1/

√
2. (see Figure 5). The interference of Si on the center

point Ci = (0, 0) is given by I(Si, Ci) = I(Si, (0, 0)) = 4 · (1/(
√

2a)2) = 4, implying part
(a) of the lemma.

We next prove part (b). Due to symmetry, we may restrict attention to a single square
edge, say, the upper edge e = {p = (x, y) | −a ≤ x ≤ a , y = a}. The interference of the
four stations of Si on a point p = (x, y) ∈ e is given by

I(Si, (x, a)) = 1
(x − a)2 + 1

(x + a)2 + 1
(x − a)2 + 4a2 + 1

(x + a)2 + 4a2 . (5)

Let Mi = (0, a) be the middle point on edge e. Consider the first derivative of the
interference function
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∂I(Si, (x, a))
∂x

= − 2
(x − a)3 − 2

(x + a)3 − 2(x − a)
(4a2 + (x − a)2)2 − 2(x + a)

(4a2 + (x + a)2)2

= 8x(935a10 + 765a8x2 + 286a6x4 + 50a4x6 + 11a2x8 + x10)
(a − x)3(a + x)3(5a2 − 2ax + x2)2(5a2 + 2ax + x2)2 .

The point Mi is the only local optimum of I(Si, (x, a)) in the range x ∈ (−a, a), as
∂I(Si ,(x,a))

∂x = 0 implies x = 0. The second derivative is given by

∂2I(Si, (x, a))/∂x2 = 6/(x − a)4 + 6/(a + x)4 + (8(x − a)2)/(4a2 + (x − a)2)3

− 2/(4a2 + (x − a)2)2 + (8(a + x)2)/(4a2 + (a + x)2)3

− 2/(4a2 + (a + x)2)2.

Since ∂2I(Si, (x = 0, a))/∂x2 = 1496/(125a2) > 0, we conclude that Mi is indeed a
local minimum. In particular, we get that I(Si, Mi) = I(Si, (0, a)) = 12/(5a2) = 24/5,

and I(Si, Mi) ≤ I(Si, p) for any boundary point p = (x, y) ∈ �(Ŝi), that is not an edge
midpoint, establishing part (b) of the lemma.

4.2.1. Construction Strategy. The desired construction should impose two requirements
for each 0 ≤ i ≤ n − 1:

(1) (R1) SINR(s0, Ci) ≥ 1,
(2) (R2) SINR(s0, p) < 1 for every boundary point p ∈ �(Ŝi).

Requirement (R1) guarantees that s0 is correctly received at n regions, namely, the
immediate ε-neighborhoods of the points Ci for sufficiently small ε > 0, whereas re-
quirement (R2) implies also that s0 is not received on any point on the perimeters of
the n squares, and hence guarantees the n reception regions to be disconnected cells.

Having fixed the station locations up to the choice of R and the transmission powers
of all stations except s0, it remains to select values for R and ψ0 that will ensure (R1) and
(R2). We employ the following strategy. For each boundary point p ∈ �(Ŝi), we establish
an overestimate for the signal energy received at Mi from s0, and an underestimate for
the interference caused by S \ {s0}. For each Ci, we establish an underestimate for the
signal energy received at Ci from s0, and an overestimate for the interference caused by
S \ {s0}. We then select ψ0 and R that satisfy requirements (R1) and (R2) under these
stricter conditions. Intuitively, by choosing the radius R to be “large enough,” we ensure
that the signal energy generated by station s0 and the interference generated on square
i by all other stations S \ {s0, s4i+1, . . . , s4i+4} is almost identical on the center point Ci

and on the boundary points of the square surrounding it, �(Ŝi). This implies that the
difference in the SINR between the center point Ci and the points of �(Ŝi) is influence
mostly by the difference in the signal energy generates by four stations s4i+1, . . . , s4i+4

on the square Ŝi, which is at least 1/4. Therefore, if we first choose a sufficiently large
R, then it is possible to set the power ψ0 so that it satisfies requirements (R1) and (R2)
as well.

LEMMA 4.7. If R ≥ sin−1(π/n) and ψ0 ≥ 5R2 + 4(n2 − 1)/3, then requirement (R1)
holds, namely, SINR(s0, Ci) ≥ 1 for every 0 ≤ i ≤ n − 1.

PROOF. Let ŝ j = s4 j+k for some k ∈ {1, . . . , 4} be the closest station to Ci in S j , that is,
such that dist(Ci, ŝ j) = min1≤l≤4 {dist(Ci, s4 j+l)}. To overestimate the interference of
S j on Ci, we eliminate the other three stations of S j and assign ŝ j transmission power
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ψ̂ j = 4. By the triangle inequality, dist(̂s j, Ci) > dist(Ci, C j) − 1, and therefore,

I(S \ (Si ∪ {s0}) , Ci) =
∑
j �=i

I(S j, Ci) <
∑
j �=i

I(̂s j, Ci) <
∑
j �=i

4
(dist(Ci, C j) − 1)2 .

By Fact 4.4(a),

I(S \ (Si ∪ {s0}) , Ci) =
∑
i �=0

4(
2R · sin

(
π
n i

) − 1
)2 ≤

∑
i �=0

4
(R · sin(π

n i))2 ,

where the last inequality follows by the fact that R · sin(π
n i) ≥ 1 for every i (by the first

assumption of the lemma). By Corollary 4.5,

I(S \ (Si ∪ {s0}) , Ci) <
4(n2 − 1)

3R2 .

By Lemma 4.6(a), it follows that I(S \ (Si ∪ {s0}) , Ci) < 4 + 4(n2 − 1)/(3R2). Finally, by
plugging this into Eq. (1), recalling that N = 1, we get that

SINR(s0, Ci) ≥ ψ0 · R−2

5 + 4(n2 − 1)/(3R2)
> 1,

where the last inequality follows by the second assumption of the lemma. Hence,
requirement (R1) holds.

We now turn to selecting R and ψ0 ensuring requirement (R2) at every boundary
point p ∈ �(Ŝi). By construction, R − 1 is the minimal distance from the origin to any
point on a unit circle centered at Ci. Hence we have the following.

OBSERVATION 4.8. E(s0, p) < ψ0/(R − 1)2, for every p ∈ �(Ŝi).

LEMMA 4.9. If R ≥ sin−1(π/n) and ψ0 < (5 4
5 + n2−1

27R2 ) · (R− 1)2, then requirement (R2)
holds, namely, SINR(s0, p) < 1 for every p ∈ �(Ŝi), 0 ≤ i ≤ n − 1.

PROOF. We underestimate I(S j, p), p ∈ �(Ŝi) by considering only the station
ŝ j = s4 j+k (for some k ∈ {1, . . . , 4}) closest to p in S j . The distance dist(̂s j, p) can be
overestimated by the distance between p and center Cj . Formally, we have

I(S j, p) > I(̂s j, p) > I(Cj, p) >
1

(dist(Cj, Ci) + 1)2 >
4

(3 · dist(Cj, Ci))2 . (6)

To see the last inequality, note that since R ≥ sin−1(π/n) by the first assump-
tion of the lemma, Fact 4.4(a) guarantees that dist(C0, C1) ≥ 2. As dist(C0, C1) =
mini �= j dist(Ci, C j), it follows that also dist(Ci, C j) ≥ 2 for every i and j. We therefore
have, by Inequality (6) and Fact 4.4(b), that

I(S \ (Si ∪ {s0}) , p) =
∑
j �=i

I(S j, p) >
4
9

·
∑
j �=i

dist(Cj, Ci)−2 = n2 − 1
27R2 .

Next, by combining Observation 4.8 and Eq. (1), we have that

SINR(s0, p) ≤ ψ0 · (R − 1)−2

5 4
5 + (n2 − 1)/(27R2)

< 1,

where the last inequality follows by the second assumption of the lemma. The lemma
follows.
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Finally, we combine the conditions developed in the previous sections for require-
ments (R1) and (R2) (Lemmas 4.7 and 4.9) and show that there exists a feasible solu-
tion, namely, a choice of R and ψ0 such that both requirements hold.

Clearly, R should be greater than sin−1(π/n). Let U = (5 4
5 + n2−1

27R2 ) · (R − 1)2 and
L = (5 + 4(n2−1)

3R2 ) · R2. Then, by Lemmas 4.7 and 4.9, ψ0 should be chosen to satisfy
ψ0 < U and ψ0 ≥ L. It is left to verify that for every n, there exists a choice of
R > sin−1(π/n) such that U > L. If this holds, then any choice of ψ0 in the range
U > ψ0 ≥ L satisfies the requirements. Letting


 = U − L =
(

5
4
5

+ n2 − 1
27R2

)
· (R − 1)2 −

(
5 + 4(n2 − 1)

3R2

)
· R2, (7)

it suffices to show that 
 > 0 for sufficiently large R. This is done by developing Eq. (7)
taking into account leading factors. For ease of analysis, let n∗ = n2−1. Then, by Eq. (7),
we need R to satisfy R2 · (4n∗/(3R2) + 5) < (R− 1)2 · (n∗/(27R2) + 29/5). Multiplying by
R2 and rearranging, the requirement becomes

4
5

R4 − 58
5

R3 + 29
5

R2 >

(
35
27

R2 − 2
27

R + 1
27

)
n∗.

For sufficiently large R, the left-hand side expression is greater than 3
5 R4, and the right-

hand side expression is smaller than 12
5 R2 ·n∗, so it suffices to require that 3

5 R4 > 12
5 R2 ·

n∗, or after simplification, that R > 2n. We therefore established the following.

THEOREM 4.10. There exists a network A such that τ1 = �(n).

5. CONNECTIVITY OF RECEPTION ZONES IN Rd+1

In this section, we consider the case where the stations are embedded in Rd but study
the topological properties of their reception zones in Rd+1, where niceness properties
emerge. We show that zones in Rd+1 obey a stronger property, namely, hyperbolic
convexity.

Let S = {s1, . . . , sn} be a set of stations embedded in the d-dimensional space Rd.
We consider on the network A = 〈d, S, ψ,N , β, 2α ≥ 2〉 in Rd and the reception map
H(Ad+1) created for it in Rd+1. We assume without loss of generality that the sta-
tions are embedded in the hyperplane xd+1 = 0 in Rd+1, with positions (xsi

1 , . . . , xsi
d , 0).

Throughout this section, we slightly abuse notation by occasionally considering a point
p = (xp

1 , . . . , xp
d ) in Rd as a point in Rd+1, namely, (xp

1 , . . . , xp
d , 0). This section concerns

what happens when we go one dimension higher and consider the SINR diagram in
dimension d + 1 for S. Recall that

Hi(Ad+1) = {p ∈ Rd+1 \ {S} | SINR(si, p) ≥ β} ∪ {si}.
The following theorem shows that the situation improves dramatically in this setting.

THEOREM 5.1. Given a network A = 〈d, S, ψ, N, β, 2α ≥ 2〉, Hi(Ad+1) is connected for
every i ∈ {1, . . . , n}.

In what follows, we concentrate on s1 and show that H1(Ad+1) is connected. Let
p = (xp

1 , . . . , xp
d , xp

d+1) ∈ Rd+1 be any point that correctly receives the transmission of
station s1 = (xs1

1 , . . . , xs1
d , 0). To prove that H1(Ad+1) is connected, we show that there

exists a continuous curve connecting s1 and p ∈ Rd+1 such that s1 is correctly received
at any point along this curve. In fact, we establish a stronger property, namely, that
for any two points p1 = (xp1

1 , . . . , xp1
d , xp1

d+1) and p2 = (xp2
1 , . . . , xp2

d , xp2
d+1) in H1(Ad+1),
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Fig. 6. The hyperbolic geodesic of points p1 and p2 corresponds to either (a) a vertical line (case HC1), or (b) a
hyperbolic arc (case HC2).

residing on the same side of the hyperplane xd+1 = 0, that is, satisfying

sign
(
xp1

d+1

) · sign
(
xp2

d+1

) ≥ 0, (8)

there exists a continuous curve connecting p1 and p2 in Rd+1 such that s1 is correctly
received at any point along this curve. In particular, this curve corresponds to the
hyperbolic geodesic of p1 and p2 denoted by h(p1, p2). Note that this indeed guarantees
the connectivity of H1(Ad+1) by taking p1 = s1.

We begin by recalling some facts about hyperbolic geometry, see Thurston [1997] for
details. Specifically, we consider a standard model of hyperbolic planes, namely, the
upper half-plane model. Under this model, the geodesic of two points p1, p2 ∈ Rd is
either a vertical line or an arc, as will be formulated later. A point set P is hyperbolic
star-shaped with respect to point p1 ∈ P if the hyperbolic geodesic of p1 and every
point p2 ∈ P, is contained in the point-set P as well, for example, h(p1, p2) ⊆ P (where
p1 and p2 satisfy Eq. (8)). A point set P is hyperbolic convex if it is star-shaped with
respect to any point p1 ∈ P. In other words, for any two points p1, p2 ∈ P obeying
Eq. (8), h(p1, p2) ⊆ P as well. In this section, we show that the reception zone H1(Ad+1)
is hyperbolic convex and therefore connected.

We proceed by considering two cases, one for each type of hyperbolic geodesics.

Case HC1. xp1
i = xp2

i for i ∈ {1, . . . , d}; h(p1, p2) corresponds to a vertical line denoted
by p1 p2, see points p1 and p2 of Figure 6(a).

Case HC2. There exists some i ∈ {1, . . . , d} such that xp1
i �= xp2

i ; h(p1, p2) corresponds to
an arc, denoted by p̂1 p2, see points p2 and p3 of Figure 6(b).

We next consider Case HC1 and show that if p1 and p2 are in H1(Ad+1), then so is any
point on the segment p1 p2. Then, we turn to Case HC2 and show that if p1 and p2 are
in H1(Ad+1), then there exists an arc p̂1 p2 fully contained in H1(Ad+1). In particular,
for p1 = s1, there exists an arc ŝ1 p2, for every reception point p2 ∈ H1(Ad+1), such that
ŝ1 p2 ⊆ H1(Ad+1), that is, the zone is hyperbolic star-shaped with respect to s1, hence it
is connected.

5.1. Analysis of Case HC1

For Case HC1, we state the following lemma.

LEMMA 5.2. Let p1, p2 ∈ H1(Ad+1) be points satisfying Eq. (8) such that xp1
j = xp2

j for
j ∈ {1, . . . , d}. Then, p ∈ H1(Ad+1), for every internal point p ∈ p1 p2. (For a pictorial
description, see Figure 7(a).)
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Fig. 7. Hyperbolic convexity in R2. The stations s1 and s2 are embedded in R1. (a) Convexity on a straight vertical
line in R2, p1 p2, (b) Hyperbolic convexity on a circular arc in R2, p̂1 p2.

PROOF. Assume without loss of generality that xp1
d+1 < xp2

d+1. Consider an internal
point p = (xp1

1 , . . . , xp1
d , xp

d+1) ∈ p1 p2, that is, xp1
d+1 < xp

d+1 < xp2
d+1. Due to symmetry, we

may restrict attention to xp1
d+1 ≥ 0. (To simplify notations, when it is clear from the

context, we may omit p from xp
d+1 and write xd+1.) Let p′ = (xp1

1 , . . . , xp1
d , 0). For ease

of notation, let ai = dist2(si, p′) and let bi(xd+1) = ai + x2
d+1. Note that dist2α(si, p) =

bα
i (xd+1), for every i ∈ {1, . . . , n}. Thus, the SINR function of s1 restricted to such point

p is given by

SINR(s1, p) =
ψ1

b1(xd+1)α

n∑
i=2

ψi

bi(xd+1)α
+ N

.

Let li(xd+1) = b1(xd+1)/bi(xd+1) and mi(xd+1) = (ai − a1) /bi(xd+1)2. In this context, it may
be convenient to consider the reciprocal of the SINR function (Eq. (2)),

SINR−1(s1, p) =
n∑

i=2

ψi

ψ1
· lαi (xd+1) + N · bα

1 (xd+1)
ψ1

. (9)

We first show that this function is twice differentiable in xd+1 on p1 p2. In particular,
it is sufficient to show that it is continuous. Assume the contrary. Since the function is
undefined only at stations positions, discontinuity implies that there might exist some
station si ∈ p1 p2, where 2 ≤ i ≤ n. Since xsi

d+1 = 0, only p1 might correspond to such si.
But p1 is a reception point of s1, contradiction. To characterize the optimum points, we
next consider the first and second derivatives of the function SINR−1 on p1 p2.

Note that ∂li (xd+1)
∂xd+1

= 2xd+1 · mi(xd+1), ∂mi (xd+1)
∂xd+1

= −4xd+1mi(xd+1)/bi(xd+1), and ∂bi (xd+1)
∂xd+1

=
2xd+1. Thus,

∂SINR−1(s1, p)
∂xd+1

= 2α · xd+1

(
n∑

i=2

ψi

ψ1
· lα−1

i (xd+1) · mi(xd+1) + N · bα−1
1 (xd+1)
ψ1

)
, (10)
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and

∂2SINR−1(s1, p)
∂x2

d+1

= 2α

(
n∑

i=2

ψi

ψ1
· lα−1

i (xd+1) · mi(xd+1) + N · bα−1
1 (xd+1)
ψ1

)
(11)

+ 4α · (α − 1) · x2
d+1 ·

(
n∑

i=2

ψi

ψ1
lα−2
i (xd+1) · m2

i (xd+1) + N · bα−2
1 (xd+1)
ψ1

)

− 8αx2
d+1

n∑
i=2

ψi

ψ1
· lα−1

i (xd+1) · mi(xd+1)
bi(xd+1)

.

Let Jpos = {i ∈ {2, . . . , n} | ai ≥ a1} and Jneg = {i ∈ {2, . . . , n} | ai < a1}.
We distinguish between two cases.

Case 1. Jneg = ∅. In this case, mi(xd+1) ≥ 0, therefore, by Eq. (10), we get that
∂SINR−1(s1,p)

∂xd+1
≥ 0, for every p ∈ p1 p2. This implies that SINR−1(s1, p) ≤ SINR−1(s1, p2),

thus SINR(s1, p) ≥ SINR(s1, p2) ≥ β as required.

Case 2. Jneg �= ∅. There exists some 2 ≤ i ≤ n such that ai < a1. This implies the
possible existence of other optimum points. Consider an optimum point of the form
popt = (xp1

1 , . . . , xp1
d , xopt

d+1), where xopt
d+1 �= 0. Thus by Eq. (10), we have that

∂SINR−1(s1, popt)
∂xopt

d+1

= 2α · xopt
d+1

(
n∑

i=2

(
ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)) + N · bα−1
1

(
xopt

d+1

)
ψ1

)
= 0.

(12)
In turn, this implies that

n∑
i=2

ψi

ψ1

(
lα−1
i

(
xopt

d+1

) · mi
(
xopt

d+1

)) + N · bα−1
1

(
xopt

d+1

)
ψ1

= 0. (13)

Plugging this equality into Eq. (12), the second derivative of SINR−1 at popt becomes

∂2SINR−1(s1, popt)

∂
(
xopt

d+1

)2 = 4α(α − 1)
(
xopt

d+1

)2

(
n∑

i=2

ψi

ψ1
lα−2
i

(
xopt

d+1

) · m2
i

(
xopt

d+1

) + N · bα−1
1

(
xopt

d+1

)
ψ1

)

− 8α
(
xopt

d+1

)2
n∑

i=2

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)
bi

(
xopt

d+1

) . (14)

To prove the lemma, we wish to show that the SINR function has no-local minimum
on the vertical line segment, p1 p2, or that the second derivative of SINR−1 restricted
to extreme internal points in the segment is nonnegative. Define

℘
(
xopt

d+1

) = −8α
(
xopt

d+1

)2
n∑

i=2

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi(xd+1)
bi(xd+1)

. (15)

Since α ≥ 1, li(x
opt
d+1) ≥ 0, and b1(xopt

d+1) ≥ 0, thus by Eq. (14), it is sufficient to show that
℘(xopt

d+1) ≥ 0. Note that Jpos and Jneg separate Eq. (15) into its positive and negative
terms. Let

Spos =
∑

i∈Jpos

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)
bi

(
xopt

d+1

) and Sneg =
∑

i∈Jneg

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)
bi

(
xopt

d+1

) .
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Then, ℘(xopt
d+1) = −8(xopt

d+1)2(Spos +Sneg). Recall that by the definition of b1(xopt
d+1), it follows

that

b1
(
xopt

d+1

)
< bi

(
xopt

d+1

)
iff ai > a1,

for any 1 ≤ i ≤ n. Since bi(x
opt
d+1) > 0 for every i, we have that

Spos ≤
∑

i∈Jpos

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)
b1

(
xopt

d+1

) and Sneg <
∑

i∈Jneg

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)
b1

(
xopt

d+1

) ,

This implies that

Spos+Sneg <
1

b1
(
xopt

d+1

) ·
(

n∑
i=2

ψi

ψ1
· lα−1

i

(
xopt

d+1

) · mi
(
xopt

d+1

)) = 1
b1

(
xopt

d+1

) · −N · bα−1
1

(
xopt

d+1

)
ψ1

≤ 0,

where the equality holds by Eq. (13). Thus, ℘(xopt
d+1) ≥ 0 and ∂2SINR−1(s1, popt)/

∂(xopt
d+1)2 ≥ 0. That is, any local optimum point other than p′ = (xp1

1 , . . . , xp1
d , 0) is a

local minimum. Since Eq. (9) is continuous and twice differentiable in p1 p2, this case
corresponds to three local optimum points: two local minima, namely, (xp1

1 , . . . , xp1
d , xopt

d+1)
and (xp1

1 , . . . , xp1
d ,−xopt

d+1), and one local maximum point, p′ = (xp1
1 , . . . , xp1

d , 0) in between.
In sum, there is no local maximum inside p1 p2, which implies that

SINR−1(s1, p) ≤ max{(SINR−1(s1, p1)), SINR−1(s1, p2)},
and thus

SINR(s1, p) ≥ min{SINR(s1, p1), SINR(s1, p2)} ≥ β.

The lemma follows.

A direct consequences of this claim is the following.

COROLLARY 5.3. Let p1, p2 ∈ H1(Ad+1) be points satisfying Eq. (8) s.t xp1
j = xp2

j for
j ∈ {1, . . . , d}. Then the line L extrapolated by the segment p1 p2 intersects H1(Ad+1) at
most four times.

PROOF. The proof follows immediately by the fact that L has at most three extremum
points. Note that in general, the number of intersections is bounded by O(n), due to the
degree of the SINR function.

5.2. Analysis of Case HC2

Let p1, p2 ∈ Rd+1 be two points of interest such that xp1
j �= xp2

j for some j ∈ {1, . . . , d}
(recall that p1 and p2 obey Inequality (8)). The hyperbolic geodesic of p1 and p2, p̂1 p2, is
defined as follows. Let pd

1 = (xp1
1 , . . . , xp1

d , 0) and pd
2 = (xp2

1 , . . . , xp2
d , 0) be the projection

of the points p1 and p2 to the hyperplane xd+1 = 0, respectively. Consider a point
q ∈ Rd ×{0} equidistant from p1 and p2 and positioned on the line defined by the points
pd

1 and pd
2. Let r = dist(p1, q) = dist(p2, q). The hyperbolic geodesic, p̂1 p2, corresponds

to the shorter arc connecting p1 and p2 on the circumference �(Bd+1(q, r)).

LEMMA 5.4. Let p1, p2 ∈ H1(Ad+1) obeying (8). Then p̂1 p2 ⊆ H1(Ad+1). (For a pictorial
description, see Figure 7(b)).

PROOF. By Lemma 2.3, we may assume without loss of generality that xp1
j = xp2

j

for j ∈ {2, . . . , d}, and by q definition, it follows that xq
j = xp1

j for j ∈ {2, . . . , d}. Due
to symmetry, we may restrict attention to the case where xp1

d+1 ≥ 0 and xp2
d+1 ≥ 0. We
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begin by showing that the SINR function has no local minimum on p̂1 p2. Recall that
r = dist(q, p1). The circumference �(Bd+1(q, r)) is defined by the following equation:

d∑
j=1

(
xj − xq

j

)2 + x2
d+1 = r2. (16)

Equivalently, the xd+1 coordinate of points on the circumference can be expressed as

xd+1 = ±
√√√√r2 −

d∑
j=1

(
xj − xq

j

)2
.

Let g(x1, . . . , xd) =
√

r2 − ∑d
j=1(xj − xq

j )2, for every (x1, . . . , xd) ∈ Rd. We consider the

function SINR−1(s1, p) of Eq. (2), restricted to a point p = (x1, . . . , xd, g(x1, . . . , xd)) on
�(Bd+1(q, r)). For ease of notation, let ai = (xsi

1 − xq
1 ) and bi = ∑d

j=1((xsi
j )2 − (xq

j )
2) −

2
∑d

j=2(xsi
j − xq

j )xj + r2. We then have that

dist2(si, p) =
d+1∑
j=1

(
xsi

j − xj
)2 = bi − 2aix1. (17)

Let li(x1) = dist2(s1, p)/dist2(si, p). By plugging Eq. (17) into the SINR−1 function
(Eq. (2)), we get

SINR−1(s1, p) =
n∑

i=2

ψi

ψ1
· lαi (x1) + N(b1 − 2a1x1)α

ψ1
. (18)

Note that since xp1
j = xp2

j for j ∈ {2, . . . , d}, it follows by the definition of p̂1 p2, that
xp

j = xp1
j for j ∈ {2, . . . , d} for every p ∈ p̂1 p2. To characterize the optimum points,

it is sufficient, therefore, to consider the derivatives of Eq. (18) with respect to x1
only (i.e., treating xj for j ∈ {2, . . . , d} as constants). It is important to note that
Eq. (18) is twice differentiable on p̂1 p2. To see this, it in enough to argue that it
is continuous or that no station si other than s1 belongs to p̂1 p2 (this is indeed a
sufficient condition for continuity). Assume, to the contrary, that there might be some
station si ∈ p̂1 p2 for 2 ≤ i ≤ n. Since the arc endpoints, p1 and p2, are in H1(Ad+1),
neither of them correspond to si, for i > 1. It follows that si occurs at some internal
point on the arc. Since p1 and p2 satisfy Inequality (8), it follows that xp

d+1 > 0 for
every p ∈ p̂1 p2 \ {p1, p2}. Yet, xsi

d+1 = 0, for every si ∈ S, yielding a contradiction.
Define mi(x1) = 2 (aib1 − a1bi) / (b1 − 2a1x1)2, for examples, mi(x1) = ∂li(x1)/∂x1. Note
that ∂mi(x1)/∂x1 = 4ai ·mi (x1)

b1−2a1x1
= −4ai ·mi (x1)

dist2(si ,p)
.

Consider an optimum point popt ∈ p̂1 p2 \ {p1, p2}. This optimum point satisfies

∂SINR−1(s1, popt)
∂xopt

1

= α

(
n∑

i=2

ψi

ψ1
· li

(
xopt

1

)α−1 · mi
(
xopt

1

) − 2a1 · N · (
b1 − 2a1xopt

1

)α−1

ψ1

)
= 0.

(19)
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The second derivative with respect to xopt
1 is given by

∂2SINR−1(s1, popt)

∂
(
xopt

1

)2 = α(α − 1)

(
n∑

i=2

ψi

ψ1
· lα−2

i

(
xopt

1

) · m2
i

(
xopt

1

) + 4a2
1 · N

(
b1 − 2a1xopt

1

)α−2

ψ1

)

+ 4α

n∑
i=2

ψi

ψ1
· lα−1

i

(
xopt

1

) · ai · mi
(
xopt

1

)
dist2(si, popt)

.

Define

℘(popt) = 4α

n∑
i=2

ψi

ψ1
· lα−1

i

(
xopt

1

) · ai · mi
(
xopt

1

)
dist2(si, popt)

.

Since α ≥ 1, it is sufficient to show that ℘(popt) ≥ 0. We separate the summation of
Eq. (20) into two parts: Spos and Sneg, the summation of elements that correspond to
positive (respectively, negative) elements in the left term of Eq. (19). Formally, letting
Jpos = {i ∈ {2, . . . , n} | aib1 ≥ a1bi} and Jneg = {i ∈ {2, . . . , n} | aib1 < a1bi}, we have
℘(popt) = 4α(Spos + Sneg), where

Spos =
∑

i∈Jpos

ψi

ψ1
·li

(
xopt

1

)α−1· ai · mi
(
xopt

1

)
dist2(si, popt)

and Sneg =
∑

i∈Jneg

ψi

ψ1
·li

(
xopt

1

)α−1· ai · mi
(
xopt

1

)
dist2(si, popt)

.

Let ci(x) = ai/dist2(si, popt). Then, sign(ci(x
p
1 )) = sign(ai) for any p ∈ �(Bd+1(q, r)) \ {s1}.

Therefore it follows that c1(xopt
1 ) ≤ ci(x

opt
1 ) if aib1 ≥ a1bi (i.e., i ∈ Jpos), and that c1(xopt

1 ) >

ci(x
opt
1 ) if aib1 < a1bi (i.e., i ∈ Jneg), implying that

Spos ≥
∑

i∈Jpos

ψi

ψ1
· lα−1

i

(
xopt

1

) · c1
(
xopt

1

) · mi
(
xopt

1

)
and Sneg

>
∑

i∈Jneg

ψi

ψ1
· lα−1

i

(
xopt

1

) · c1
(
xopt

1

) · mi
(
xopt

1

)
.

Therefore,

℘(popt) ≥ 4α · c1
(
xopt

1

) n∑
i=2

ψi

ψ1
· lα−1

i

(
xopt

1

) · mi
(
xopt

1

)
= 8α · c1

(
xopt

1

) · a1 · N · (b1 − 2a1x1)α−1

ψ1

= 8α · a2
1 · N

ψ1 · dist4−2α(s1, popt)
≥ 0,

where the second equality follows by Eq. (19). It therefore holds that
∂2SINR−1(s1, popt)/∂(xopt

1 )2 ≥ 0 as required. We showed that there is no local maximum
point of SINR−1(s1, p) on p̂1 p2. Thus, there is no local minimum point of SINR(s1, p)
on p̂1 p2. Hence,

SINR(s1, p) ≥ min(SINR(s1, p1), SINR(s1, p2))) ≥ β

for every point p ∈ p̂1 p2, as required. Lemma 5.4 follows.

Finally, we turn to complete the proof for Thm. 5.1.
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PROOF OF THEOREM 5.1. By Lemma 5.4, H1(Ad+1) is hyperbolic convex. It follows that
H1(Ad+1) is hyperbolic star-shaped with respect to s1 and is therefore connected.

5.3. Application for Testing Reception Conditions

We now describe a direct implication of the hyperbolic convexity property of Hi(Ad+1).
Let C ∈ Rd+1 be a closed shape (not necessarily convex) that does not contain any
station, C ∩ S = ∅, contained in the positive (or negative) half-plane xd+1 > 0 (resp.
xd+1 < 0), that is, Inequality (8) is satisfied for every two points p1, p2 ∈ C. The following
corollary uses the hyperbolic convexity of Hi(Ad+1) to show that if �(C) receives the
transmission by si successfully, so does any internal point p ∈ C. In addition, if no
point on the boundary, �(C), is able to receive the transmission by si successfully, then
SINR(si, p) < β for any internal point p ∈ C. In other words, for any closed shape C
such that �(C) ∩ �(Hi(Ad+1)) = ∅, by testing merely the boundary �(C) for reception
of si, one can deduce about the reception of an internal point p ∈ C.

COROLLARY 5.5. (a) if �(C) ⊆ Hi(Ad+1), then C ⊆ Hi(Ad+1). (b) if �(C) ∩Hi(Ad+1) = ∅,
then C ∩ Hi(Ad+1) = ∅.

PROOF. Property (a) follows by Lemma 5.2. To prove property (b), assume, by way
of contradiction, that there exists a point p ∈ C such that SINRA(si, p) ≥ β. By
Theorem 5.1, Hi(Ad+1) is connected and is hyperbolic star-shaped with respect to si.
This implies that there exists an arc p̂ si such that p̂ si ⊆ Hi(Ad+1). Since p is an inter-
nal point and si /∈ C, the arc p̂ si must intersect �(C), implying that there exists some
point q ∈ �(C) such that SINRA(si, q) ≥ β, contradiction.

6. THE FATNESS OF THE RECEPTION ZONES

In Section 5, we show that the reception zone Hi(Ad+1) of each station si in a nonuniform
power network is hyperbolic-convex. In this section, we develop a deeper understand-
ing of the shape of the reception zones Hi and Hi(Ad+1) by analyzing their fatness.
Consider a nonuniform power network A = 〈d, S, ψ,N , β, α〉, where S = {s1, . . . , sn}
and α > 0 and β > 1 are constants. We focus on s1 and assume that its location is not
shared by any other station (otherwise, its reception zone is H1 = {s1}). In addition,
without loss of generality, we let the minimal transmission energy be 1 and denote the
maximal transmission energy by �. We next establish explicit bounds on the maximal
and minimal radii 
(s1,H1) and δ(s1,H1) of the zone H1, and provide a bound on the
perimeter of Hi by bounding the length of the curve �(Hi).

6.1. Explicit Bounds

We first establish an explicit lower bound on δ(s1,H1(A)) and an explicit upper bound
on 
(s1,H1(A)). To avoid cumbersome notation, we assume a two-dimensional space
(d = 2) throughout this section; the proof trivially generalizes to arbitrary dimensions
d.

Fix κ = min{dist(s1, si) | i > 1}. For establishing a lower bound on δ(s1,H1), an
extreme scenario (making δ as small as possible) would be to place s1 at (0, 0) with
ψ1 = 1 and all other n − 1 stations at (κ, 0) with ψi = � for i ∈ {2, . . . , n}. For the
sake of analysis, let us replace the noise N by a new imaginary station sn+1 located
at (κ, 0) whose power is N · κ2. This introduces the nonuniform power network Aδ =
〈2, {(0, 0), (κ, 0), . . . , (κ, 0)}, {1, �, . . . , �, N · κ2}, 0, β, α〉. Note that the signal energy of
the new station sn+1 at point (x, 0) satisfies (1) E(s, (x, 0)) > N for all 0 < x < κ;
(2) E(sn+1, (x, 0)) = N for x = 0; and (3) E(sn+1, (x, 0)) < N for all x < 0. Therefore,
the value of δ(s1,H1) can only get smaller by this replacement, that is, δ(s1,H1(Aδ)) <
δ(s1,H1(A)). The point qδ whose distance to s1 realizes δ(s1,H1) is thus located at (d̂, 0)

Journal of the ACM, Vol. 62, No. 5, Article 37, Publication date: October 2015.



37:24 E. Kantor et al.

for some 0 < d̂ < κ that satisfies the equation SINRAδ (s1, qδ) = β, or d̂−2/((�(n − 1) +
N · κ2)(κ − d̂)−2) = β. Solving for d̂ yields

d̂ = κ√
β(�(n − 1) + N · κ2) + 1

≥ κ

2
√

2β · � · n)
,

where the inequality follows by assuming that N · κ2 ≤ � · n. Hence we have the
following.

LEMMA 6.1. δ(s1,H1(A)) ≥ �(κ/
√

� · n).

To establish an upper bound on 
(s1,H1(A)), consider the case where s1 transmits with
power � while the other stations remain silent (ψi = 0, for i > 1). The point q
 whose
distance to s1 realizes 
(s1,H1) is thus located at (±d̂, 0) for d̂ ≤

√
�/(β · N ), hence we

get the following.

LEMMA 6.2. 
(s1,H1) ≤
√

�/(β · N ).

COROLLARY 6.3. The fatness parameter of H1(A) with respect to s1 satisfies

ϕ(H1(A)) ≤ O
(

�

κ
·
√

n
N

)
.

6.2. Bounding the Perimeter of H1 (A)

We next provide an upper bound on the perimeter length per(H1(A)). The perimeter of
a cell H1,i(A) is the length of the closed curve given by �(H1,i(A)). The perimeter length
of a zone is the sum of the perimeters of the cells it contains. Again we assume d = 2
for clarity of presentation, yet the bound can be naturally extended to any dimension
d. In the case of an uniform power network, a bound on the perimeter of H1(A) is
simply given by the perimeter of the large disk of radius 
(s1,H1(A)). In the case of
a nonuniform power network, H1(A) is nonconvex, and therefore, the trivial bound of
2π ·
(s1,H1(A)) = O(

√
�/N ) does not hold. We begin by providing the following useful

fact in this context.

FACT 6.4 ([SANTALÓ 2004]). Let Cout be a closed curve of length lout. Let Cin be a
curve of length lin enclosed by Cout. Let Y(L, C) be the number of intersection points
between the straight line L and the curve C. Then there exists a straight line L such that
Y(L, Cin) ≥ 2lin/lout.

COROLLARY 6.5. per(H1(A)) ≤ O(
(s1,H1(A)) · n3).

PROOF. We first bound from above the perimeter of a cell H1,i(A) ⊆ H1. Let f (L) be
the projection of F1

A(p = (x, y)) on the line L = ax + b. Then, deg( f ) ≤ 2n (when N �= 0)
and Y(L,�(H1,i(A))) ≤ 2n. Recall that any connected cell H1,i(A) is enclosed by a disk
of radius 
(s1,H1(A)). Combining this with Fact 6.4, we have that there exists a line L
such that

2 · per(H1,i(A))
2π · 
(s1,H1(A))

≤ Y(L,�(H1,i(A))) ≤ 2n.

Hence, per(H1,i(A)) ≤ 2π · 
(s1,H1(A)) · n for every i ∈ {1, . . . , O(n2)}. Summing over
the connected cells of s1, whose number is at most O(n2) by Theorem 4.1, the claim
follows.
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In summary, we get the following.

THEOREM 6.6. In a nonuniform network A = 〈d = 2, S, ψ,N , β, α = 2〉, where S =
{s1, . . . , sn−1} and α > 0 and β > 1 are constants, if κ = min{dist(s1, si) | i > 1} > 0, then

�

(
κ2

� · n

)
≤ area(H1(A)) ≤ O

(
�

N

)
,

�

(
κ√

� · n

)
≤ per(H1(A)) ≤ O

(
n3 ·

√
�

N

)
.

7. APPROXIMATE POINT LOCATION

Our goal in this section is to show how a data structure supporting approximate point
location queries is constructed. The performance of our constructions (e.g., memory
requirements, query time) would be a function of the fatness bound established in the
previous section.

7.1. The Setting

Consider a nonuniform power network A = 〈d = 2, {s1, . . . , sn}, �,N , β, α = 2〉. Given
some point p ∈ R2, we are interested in the question: is s1 heard at p under the
interference of S\{s1} and background noise N ? One can directly compute SINRA(s1, p)
in time �(n) and answer this question. However, typically, this question is asked for
many different points p, thus linear time computations may be too expensive. Our
goal in this section is to provide mechanisms that answer some approximated variants
of this question much faster. In Section 7.2, we present a point location scheme for
the case where all stations are aligned on a line. In Section 7.3, we provide several
schemes for point location for the general case where the stations are embedded in Rd.
Generally speaking, the mechanisms we present construct an efficient data structure
that maintains a partition of the Euclidean plane. We consider two types of data
structures. The first partitions the plane, for every station si with reception zone Hi,
into three disjoint zones, R2 = H+

i ∪H−
i ∪H?

i , such that (1) H+
i ⊆ Hi; (2) H−

i ∩Hi = ∅; and
(3) H?

i is a bounded set determined by the requested accuracy level of the algorithm.
The second type partitions the plane, again for a given station si, into two disjoint
zones R2 = H+

i ∪H−
i , such that the set of misclassified points is bounded. We construct

a separate data structure QDSi for every 1 ≤ i ≤ n. The final data structure DS is the
union of the n data structures QDS1, . . . , QDSn.

Given a query point p ∈ R2, QDSi answers in logarithmic time (with respect to the
fatness parameter and number of stations) whether p is in H+

i , H−
i , or H?

i (this last
case being possible only for QDSi of the first type).

Recall that by Lemma 2.1, a point p cannot be in Hi unless it belongs to WVORi(VA),
where WVORi(VA) is the weighted Voronoi cell of si with weight wi = ψ

1/α

i . Thus for
such a point p there is no need to query the data structure QDS j for any j �= i.

Due to Aurenhammer and Edelsbrunner [1984], a weighted Voronoi diagram of
quadratic size for the n stations is constructed in O(n2) preprocessing time. Then given
a query point p ∈ R2, the station si such that p ∈ WVOR(si) can be identified in time
O(log n). We then invoke the appropriate data structure QDSi.

We first provide some notation and then present the common framework for all point-
location schemes discussed next. For ease of notation, we focus hereafter on station s1
and its data structure QDS1, and let Fβ(p) denote the characteristic polynomial of H1(A),
namely, F1

A(p), see Eq. (3). In the same manner, the characteristic polynomial ofH1(Aβ ′),
for β ′ �= β, is given by Fβ ′ (p). Let QDS = QDS1. In addition, for station si ∈ S, define 
i
as the upper bound on 
(si,Hi), δi as the lower bound on δ(si,Hi) and ϕi as the upper
bound on ϕ(Hi) (i.e., 
i/δi).
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Fig. 8. Pseudocode of algorithm SegTest.

QDS is based upon imposing a γ ∈ R>0-spaced grid, denoted by Gγ , on the Euclidean
plane, γ is determined later on. The notions of grid columns, rows, vertices, edges, and
cells are defined in the natural manner. We assume that Gγ is aligned so that the point
s1 is a grid vertex.

The parameter γ is set to be sufficiently small so that the cell containing point s1 is
internal to the ball inscribed in H1, namely, B (s1, δ1).

In fact, we take γ ≤ min{δ1/(2
√

2)} so that the ball of radius δ1 centered at s1 is
guaranteed to contain �((
1/δ1)2) cells (all of them are internal by definition). The main
ingredient of our algorithm is a segment testing procedure [Avin et al. 2009], named
hereafter procedure SegTest. Given a segment σ , this procedure returns the number of
distinct intersection points of σ and �(H1(A)). The segment test is implemented to run
in time O(n2) by employing the Sturm condition [Basu et al. 2003] of the projection of the
polynomial Fβ(p) on σ and by direct calculation of the SINR function2 in the endpoints
of σ . In particular, the segment testing allows one to decide whether σ ∩ H1(A) = ∅ or
not. Procedure SegTest, presented formally next, is common to the two point-location
schemes presented later on.

Given a grid Gγ , procedure SegTest (Figure 8) is invoked for each of the four edges
for every cell ci ∈ Gγ at distance at most 
1 from s1. The overall number of invocations
is thus bounded by O(π · 
2

1/γ
2). The difference between the schemes we present is

in the definition of the performance parameter ε. We conclude this section by evaluat-
ing the memory costs MA(QDS), preprocessing time TA(QDS), and query time T query

A (QDS)
of the procedure and the schemes that use it, in terms of γ . Each of the schemes chooses
γ so that the error is controlled (where the precise notion of error is scheme-dependent).
We begin with bounding the size of the data structure QDS. Let Cγ denote the number
of cells in Gγ . Then, due to area consideration, Cγ = O((
1/γ )2). It is required to keep
the tag of each cell tag, therefore QDS is of size

MA(QDS) = O((
1/γ )2). (20)

Note that it is sufficient to keep in QDS only cells in H+
1 ∪ H?

1. Next, we bound the
preprocessing time complexity, TA(QDS). The dominating steps are the invocations of
procedure SegTest (Figure 8). As the cost of a single SegTest invocation is O(n2) and
there are O(Cγ ) invocations, we get

TA(QDS) = O(((n · 
1)/γ )2). (21)

2The segment test procedure can be implemented in time O(n log n) by applying advanced numerical tech-
niques.
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Fig. 9. Pseudocode of algorithm SturmCellCollinear.

Finally, we analyze the time for a single point-location query, which corresponds to the
time for finding the cell to which p belongs. This can be done by preforming binary
search on Cγ cells. Recall that there is a prior step involving an access to the weighted
Voronoi diagram data structure. As mentioned, that step is bounded by O(log n), which
is dominated by O(log Cγ ). Therefore,

T query
A (QDS) = O(log Cγ ) = O(log(
1/γ )). (22)

7.2. Collinear Networks

In this section, we focus on the Euclidean plane R2 and consider a special type of
nonuniform power network. A network A = 〈d = 2, {s1, . . . , sn−1}, �,N , β, α = 2〉 is
said to be collinear [Avin et al. 2009] if s1 = (0, 0) and si = (ai, 0) for ai ∈ R for every
1 ≤ i ≤ n − 1. The point-location task is simpler for collinear networks due to the
following lemma.

LEMMA 7.1. Let A be a collinear nonuniform power network. Then H1 is hyperbolic-
convex and therefore connected.

PROOF. The proof follows immediately by Theorem 5.1, setting d = 1. Specifically,
the stations of collinear network are essentially embedded in R1, and therefore their
two-dimensional reception zones Hi(Ad=2) are hyperbolic-convex.

Note that by Lemma 7.1, the reception zones H1 of collinear network follow the
property of Corollary 5.5. We now complete the description of the data structure QDS. Let
ci ∈ Gγ be a grid cell. Procedure SturmCellCollinear (Figure 9) is a tagging mechanism
invoked for every cell ci ∈ Gγ (in fact, due to symmetry, it is sufficient to restrict
attention to the half space y ≥ 0).
QDS maintains the collection of H?

1 ∪ H+
1 cells, where ci ∈ H?

1 if SturmCellCollinear-
(ci,H1) returns ? and ci ∈ H+

1 if SturmCellCollinear(c+,H1) returns +. We begin by
bounding the number of cells in H?

1. Let Cγ be the number of rows and columns in Gγ .
Then Cγ ≤ 4π
1/γ . Since deg(Fβ) ≤ 2n, the number of intersection points of Fβ(p) with
any grid row or column is at most 2n (see Eq. (3) for definition). Overall, we get that
the total number of intersection points of Fβ(p) with any of the Cγ rows and columns in
Gγ is at most3 2n · Cγ . Hence the total number of H?

1 cells is bounded by 2n · Cγ . Since
the area of each cell is γ 2, it follows that

area
(
H?

1

) ≤ 8π · n · 
1 · γ. (23)

3Note that by the hyperbolic convexity property of H1 we have that the number of intersection points of
Fβ (p) and any vertical line (grid column) is at most 4, see Corollary 5.3; To keep things simple we do not
take it into account.
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Fig. 10. Pseudocode of algorithm SturmCell.

In order to guarantee that area(H?
1) ≤ ε ·area(H1), we demand that 8π ·n·
1 ·γ ≤ ε ·πδ2

1
(this is sufficient as area(H1) ≥ B (s1, δ1)). Therefore, it is sufficient to fix

γ = εδ1

8n · ϕ
. (24)

We are now ready to establish the correctness of procedure SturmCellCollinear
(Figure 9).

LEMMA 7.2.
(a) If SturmCellCollinear(ci,H1(A)) returns +, then ci ⊆ H1(A).
(b) If SturmCellCollinear(ci,H1(A)) returns −, then ci ∩ H1(A) = ∅.
(c) Let ci ⊆ B (s1,
) be such that SturmCellCollinear(ci, H(s1, β)) returns ?. Then the total
area of such ci cells is bounded from above by ε · area(H1).

PROOF. (a) and (b) follow by Corollary 5.5, where the grid cell ci corresponds to a
closed shape whose circumference is tested. Finally (c) is guaranteed by the way we
set γ .

Let ϕmax = maxn
i=1{ϕi} and ϕ4

sum = ∑n
i=1 ϕ4

i . Throughout this section, we establish the
following theorem, by Eqs. (21), (20), (22), and (24).

THEOREM 7.3. Given a collinear nonuniform power network A, it is possible to con-
struct, in Õ(n4 · ϕ4

sum/ε2) preprocessing time, a data structure DS of size O(n2 · ϕ4
sum/ε2)

that imposes a (2n+1)-wise partition H̄ = 〈H+
1 , . . . ,H+

n ,H?
1, . . . ,H?

n,H−〉 of the Euclidean
plane R2 (i.e., the zones in H̄ are pairwise disjoint and R2 = ⋃n

i=1 H+
i ∪ H− ∪ ⋃n

i=1 H?
i ),

such that for every 1 ≤ i ≤ n the following hold.

(1) H+
i ⊆ Hi .

(2) H− ∩ Hi = ∅.
(3) H?

i is bounded and its area is at most an ε-fraction of the area of Hi . Furthermore,
given a query point p ∈ R2, it is possible to extract from DS, in time O (log (n · ϕmax/ε)),
the zone in H̄ to which p belongs.

7.3. General Networks

In this section, we assume the general setting where stations are embedded in Rd and
therefore their reception zonesHi are not necessarily hyperbolic convex. Specifically, we
cannot assume our zones to satisfy the property of Corollary 5.5. We begin by presenting
the basic tagging procedure SturmCell (Figure 10) invoked on each cell ci ∈ B (s1,
1).

Let 0 < ε < 1 be a predetermined performance parameter. We construct in
O(ϕ2 · n2/ε2) preprocessing time a data structure QDS of size O(ϕ2/ε2). QDS essentially
partitions the Euclidean plane into three disjoint zones R2 = H+

1 ∪ H−
1 ∪ H?

1, where
(1) H+

1 ⊆ H1; (2) H−
1 ∩ H1 = ∅; and (3) H?

1 ⊆ H1(β̂), for β̂ > (1 − ε)2α · β. Procedure
TagCell tests �(ci) for high and low β, namely, (1 + ε)α · β and (1 − ε)α · β respec-
tively. If there exists at least one point p ∈ �(ci) such that SINR(s1, p) ≥ (1 + ε)α · β,
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Fig. 11. Pseudocode of algorithm TagCell.

then the entire cell is declared to be in H1. In addition, if SINR(s1, p) < (1 − ε)α · β,
for any point p ∈ �(ci), then the cell is declared to be out of H1. Otherwise the cell
ci is “questionable.” Essentially, the questionable cells correspond to the case where
(1 − ε)2α · β ≤ SINR(s1, p) ≤ (1 + ε)2α · β for any p ∈ ci.

Let γ (grid resolution) be given by

γ = εδ1

3 · √
2

(25)

The rest of this section is dedicated for establishing the correctness of procedure TagCell
(Figure 11). We begin by showing that the SINR ratio of neighboring points within a
grid cell ci is similar. This is stated formally in the following lemma.

LEMMA 7.4. Let SINR(s1, p) = β̂. Then, SINR(s1, p̃) ∈ [( 1−ε̂
1+ε̂

)α · β̂, ( 1+ε̂
1−ε̂

)α · β̂] for any
p̃ ∈ B (p,

√
2γ ), where ε̂ = ε/3.

PROOF. Let γ ′ = √
2γ . Note that we are interested in the points p such that p /∈

B (si, δ1) for any si ∈ S (since for other points p, the location is determined easily). It
then follows that

E(si, p̃) = ψi · dist−α(s1, p̃) ≥ ψi · (dist(si, p) + γ ′)−α = ψi · (dist(si, p) + ε̂ · δ1)−α

≥ ψi · ((ε̂ + 1) · dist(si, p))−α ≥ 1
(ε̂ + 1)α

E(si, p),

relying on the equality of γ ′ = ε̂ · δ1, which follows by Eq. (25). In the same manner,

E(si, p̃) = ψi · dist−α(si, p̃) ≤ ψi · (dist(si, p) − γ ′)−α ≤ ψi · (dist(si, p) − ε̂δ1)−α

≤ ψi · ((1 − ε̂) · dist(si, p))−α ≤ 1
(1 − ε̂)α

E(si, p),

obtained by using Eq. (25) again. Overall, we get that

SINR(s1, p̃) = E(s1, p̃)
I(S \ {s1}, p̃) + N

⊆
[(

1 − ε̂

1 + ε̂

)α

· E(s1, p)
I(S \ {s1}, p) + N

,

(
1 + ε̂

1 − ε̂

)α

· E(s1, p)
I(S \ {s1}, p) + N

]
⊆

[(
1 − ε̂

1 + ε̂

)α

· SINR (s1, p) ,

(
1 + ε̂

1 − ε̂

)α

· SINR (s1, p)
]

,

which yields our claim.
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We now turn to prove the correctness of procedure TagCell.

LEMMA 7.5.

(a) If TagCell(ci, Fβ (p)) returns +, then ci ⊆ H1.
(b) If TagCell(ci, Fβ (p)) returns −, then ci ∩ H1 = ∅.
(c) Let ci ⊆ B (s1,
1) be such that TagCell(ci, Fβ (p)) returns ?. Then ci ⊆ H1((1− ε)2α ·β),

or SINR(s1, p) ∈ [(1 − ε)2α, (1 + ε)2α], for every p ∈ ci;

PROOF. Let ε̂ = ε/3. We begin with property (a). Let ci be such that TagCell(ci, Fβ (p))
returns +. That implies that there exists a point p ∈ �(ci) such that SINR(s1, p) ≥
(1 + ε)α · β. By Lemma 7.4, it then follows that

SINR(s1, p̃) ≥
(

1 − ε̂

1 + ε̂

)α

(1 + ε)α · β ≥ β, for every p̃ ∈ B (p,
√

2γ ),

where the last inequality follows from the choice of ε̂. In particular, this holds for any
point p̃ in ci, and (a) is established.

Let ci be such that TagCell(ci, Fβ (p)) = −. That implies that SINR(s1, p) < (1 − ε)α ·
β, for every p ∈ �(ci). Assume, by the way of contradiction, that there exists some
point p̃ ∈ ci such that SINR(s1, p̃) ≥ β. Then by Lemma 7.4, it must be the case that

SINR(s1, p) ≥
(

1 − ε̂

1 + ε̂

)α

· β ≥ (1 − ε)α · β, for every p ∈ B ( p̃,
√

2γ ).

Thus SturmCell(ci, F(1−ε)α ·β(x, y)) returns +, and we end with contradiction, which es-
tablishes (b).

Finally, it is left to prove (c). As SturmCell(ci, F(1+ε)α ·β(x, y)) does not return +,
SINR(s1, p) < (1 + ε)α, for every p ∈ �(ci), and therefore,

SINR(s1, p̃) ≤ (1 + ε)α ·
(

1 + ε̂

1 − ε̂

)α

≤ (1 + ε)2α · β for every p ∈ ci.

Next, as SturmCell(ci, F(1−ε)α ·β(x, y)) does not return −, there exists p ∈ �(ci) such that
SINR(s1, p) ≥ (1 − ε)α. Therefore,

SINR(s1, p̃) ≥ (1 − ε)α ·
(

1 − ε̂

1 + ε̂

)α

≥ (1 − ε)2α · β for every p ∈ ci,

establishes the claim.

Let ϕmax = maxn
i=1{ϕi} and ϕsum = ∑n

i=1 ϕi. Combining Eqs. (20), (21), (22), and (25),
we establish the following theorem.

THEOREM 7.6. It is possible to construct, in O(n2 ·ϕsum/ε2) preprocessing time, a data
structure DS (given by the union of QDS1, . . . , QDSn) of size O(ϕsum/ε2) that imposes a
(2n+1)-wise partition H̄ = 〈H+

1 , . . . ,H+
n ,H?

1, . . . ,H?
n,H−〉 of the Euclidean plane R2 (i.e.,

the zones in H̄ are pairwise disjoint and R2 = ⋃n
i=1 H+

i ∪ H− ∪ ⋃n
i=1 H?

i ) such that for
every 1 ≤ i ≤ nthe following hold.

(1) (1) H+
i ⊆ Hi .

(2) (2) H− ∩ Hi = ∅.
(3) (3) H?

i ⊆ Hi((1 − ε)2α · β).

Furthermore, given a query point p ∈ R2, it is possible to extract from DS, in time
O (log (ϕmax/ε)), the zone in H̄ to which p belongs.
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Overall, in this section, we present several schemes for solving approximate point
location tasks. We consider two approaches for interpreting the approximation param-
eter ε. The first approach (used in our two first schemes), following Avin et al. [2012],
returns an uncertain answer for points coming from an ε fraction of the area of the
reception zone. The second approach (used in our third scheme) interprets the approxi-
mation parameter ε as the amount of the allowed slack on the required SINR threshold
β, that is, there is an uncertainty interval of [(1 − ε)β, (1 + ε)β].

The quality of the first scheme depends heavily on the fatness parameter of the
regions and on the number of connected components. Improving the bounds on these
key parameters will have an immediate effect on the efficiency of this scheme. We
then considered the restricted case of collinear networks where the queries are in R2.
In this case, one can exploit the connectivity of the zones (in R2) to obtain a better
point location scheme. For a recent work on batched point location schemes whose
performance guarantees do not depend on the topological parameters of the reception
regions, see Aronov and Katz [2014].

8. CONCLUSION

In this article, we introduce the study of SINR diagrams with nonuniform powers. A
major long-term goal of the study of SINR diagrams is to develop the area of “wireless
computational geometry” in which SINR diagrams play a role that is similar to that of
Voronoi diagrams in computational geometry.

Towards achieving this goal, we focus on key topological properties of these maps: con-
nectivity and convexity. Specifically, our main efforts went into bounding the number of
connected components such diagrams may assume. We also aimed toward developing a
weaker notion of convexity for these reception regions as well as their application in the
fundamental point location task. Whereas our key result demonstrates the hyperbolic
convexity of these regions in Rd+1, the question of defining nice properties for these
region in Rd remains open. An additional major open problem concerns the current gap
on the number of cells in n station networks. Other geometrical parameters such as
fatness and perimeter call for tighter bounds as well.

Finally, it would be of great interest to develop additional algorithmic applications
for these networks, in particular one that can enjoy their hyperbolic convexity.
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