
COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 49

EFFECTIVE WEB SERVICE
LOAD BALANCING

THROUGH
STATISTICAL

MONITORING
By GEORGE PORTER and RANDY H. KATZ

eb services are increasingly used for deploying
Web-based application portals such as eBay and

Amazon.com. They are commonly built using
middleware, that is, composable building blocks

such as HTTP containers, Java-based appli-
cation beans, and persistent state management. These components are
distributed across tiers of servers—Web, application, and database. As Web
services offer newer and more sophisticated functionality, the underlying
realization of those services in the middleware becomes more complicated.
Today’s Web services can consist of dozens or hundreds of request types and
middleware components.

Identifying the correlated effects between
components to improve response to overload.

ILLUSTRATION BY JEAN-FRANÇOIS PODEVIN

W

50 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

T
his separation and replication of compo-
nents allows Web services to scale in
response to new resource demands. This
is accomplished by introducing new
servers hosting the particular, needed

component. Despite this scalability, flash traffic pat-
terns can drive a Web system’s middleware compo-
nent (or components) into
overload. This leads to poor
performance as the system
is unable to keep up with
the demands placed on it,
and users see increased
response times for their
requests (see Figure 1).
Experiments have indicated
that users can tolerate
roughly eight seconds of
delay before they either
retry their request or leave
the site [2].

While the need for an admission control scheme is
clear, formulating an effective system is daunting and
error-prone. This is due to the large number of
request types and middleware components. Different
requests to a Web service stress different middleware
components [1, 3]. It is advantageous to preferentially
throttle those requests most correlated with the bot-
tleneck. To do that, better visibility into the relation-
ship between requests and their effects is necessary.
Unfortunately, current system software and site-mon-
itoring tools do not provide the operator with this vis-
ibility. For Web services to be more self-adaptive, they
need to be more introspective, identifying correlated
effects between internal components, so that the

operator can act to shed load from overloaded com-
ponents without penalizing all users of the Web site.

To design such self-adaptive Web services able to
gracefully respond to overload, we propose four
design mechanisms: simple statistical techniques for
uncovering request effects in multi-tier systems; a
black-box approach to middleware component mon-

itoring; a visualization
tool summarizing statis-
tical findings to facilitate
human decision making;
and efficient techniques
for operators to invoke
admission control deci-
sions based on those
findings. We will also
argue that including
humans in the loop
complements, rather
than detracts from, self-
adaptive design goals.
We present ongoing
work on a Web service
based on the open
source RUBiS auction
site (see rubis.objectweb.

org) that embodies these mechanisms. RUBiS is a
Web-service benchmark designed to profile the per-
formance of an auction site like eBay. Our approach
leads to a Web service that is able to serve 70% more
requests per second. Additionally, the maximum
request latency seen by the user is reduced by 78%.
These initial results show promise that middleware-
based Web services can greatly benefit from more
self-adaptive design.

WE NEED A MORE SOPHISTICATED WAY OF LOOKING THROUGH
THE LARGE AMOUNT OF DATA COLLECTED AT EACH POINT TO

DISCERN CORRELATIONS BETWEEN COMPONENTS.

Porter fig 3 (3/06)

Figure 3. Selectively applying admission control to
those requests correlated with the system

bottleneck substantially reduces average request
latency for the Web service.

25
23
21
19
17
15
13

11
9
7
5
3
1

0 500 1000 1500

Request latency (in ms)

Admission control effect on request latency

R
eq

u
es

t
ty

p
e

2000 2500 3000

Baseline

Admission control

Figure 1. Selectively applying
admission control to those
requests correlated with the system
bottleneck substantially reduces
average request latency for the
Web service.

RELATED WORK

We can study the performance and operation of
Java-based middleware systems using the RUBiS sys-
tem. The authors of RUBiS showed that the mixture
of requests—the workload—plays a significant role
in determining system bottlenecks [1, 3].

O
ur approach differs from previous
attempts to apply control theory to
operating systems and three-tier sys-
tems, which have assumed that
requests to the system are homoge-

neous (affect the system in the same way). The
SWIFT system [6, 7] is a systematic approach to
introducing input/output interfaces to operating sys-
tem components, which
matches well with the well-
defined interfaces between
middleware components.
The ControlWare system
[10] is a toolkit for auto-
matically mapping QoS
requirements into simple
control loops in three-tier
systems.

Considerable work has
been applied to correlation analysis of Web services
both in research literature and in industrial best prac-
tices. The SLIC project at HP Labs [4] attempts to
identify which components are responsible for Web
service violations of Service-Level Operations (SLOs)
by using fine-grained monitoring and instrumenta-
tion. The Performance Management project at IBM
has explored using control theory and statistical mon-
itoring to detect and adapt to unexpected traffic
surges [8, 5]. Techniques for visualizing structured
data are described in [9].

OVERLOAD AVOIDANCE IN SELF-ADAPTIVE WEB SERVICES

Overload occurs when the load placed on a Web ser-
vice exceeds its ability to serve requests. Flash traffic
and sudden load spikes operate at timescales faster
than operators can upgrade their systems. Web ser-
vice operators can manage load in a number of ways.
One way is to direct load to spare servers that can
handle the surge. This technique is an example of
load balancing. Complex Web services are often
built in multiple layers of interconnecting compo-
nents (see Figure 2). Applying a load-balancing strat-
egy in this environment is non-trivial, since detailed
instrumentation of the internal components is usu-
ally not available.

High-level overload mitigation strategies can be
used, at least temporarily, during this time (such as

HTTP 503 TOO BUSY responses). However, this
adversely affects all traffic to the site, even when the
bottleneck is driven by a small population of requests
(about 15%, in our RUBiS emulation). This moti-
vates the desire for a less disruptive, selective admis-
sion control.

I
n selective admission control, we first throttle
back requests contributing to the overload,
while leaving all other requests unaffected. In
our implementation, the bottleneck was the
database’s CPU, and the two contributing

requests involved searching for items. In general, it is
quite difficult to determine the runtime connections
between components in a distributed system. Often

these are determined by
the workload, and can
change over time. In
addition to the lack of
visibility into these con-
nections, it is non-trivial
to map those connec-
tions from a request to a
bottleneck(s). We seek to
make use of measure-
ment data in this
process.

PPrroobblleemm SSttaatteemmeenntt::
Given a system bottle-

neck component C, identify those requests correlated
with C. The data used for that purpose should be col-
lected with minimal disruption to the system. Once
identified, reduce the number of correlated requests
until the system is no longer overloaded.

We now outline the four mechanisms of our
approach in more detail.

UNCOVERING REQUEST EFFECT THROUGH

CORRELATIONS

When a request arrives at the Web server, it may
invoke processing in one or more Java components
in an application tier. In turn, these either access
the database or return a result directly to the user.
While logging and status information is available
on each of the servers hosting these tasks, there are
no good system tools for understanding crosscuts
through the layers. Given the large number of pos-
sible crosscuts, we need a more sophisticated way of
looking through the large amount of data collected
at each point to discern correlations between com-
ponents.

To find which requests are correlated with our bot-
tleneck, we make use of the Apache Web logs col-
lected from the Web tier and the CPU load average as

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 51

Porter fig 1 (3/06)

Figure 1. A complex Web service consisting of multiple Web,
application, and database components.

App

App

Application Tier
Database

TierWeb Tier

App
DB

Web

Web

Web

App

Figure 2. A complex Web service
consisting of Web, application,
and database components.

reported by the sysstat tool. We chose to use Pear-
son’s Correlation Coefficient to find the relationship
between request type and CPU load, because it is effi-
cient and simple to calculate, and gives good results in
practice. For that statistical technique, we processed
the logs as follows:

1. Divide the Apache Web log into time intervals
tint (we chose tint = 1s).

2. For each interval, count
the number of each
request type.

3. Form a n x m matrix M
where n is the number of
time intervals, and m is
the number of request
types. Element (i,j) of M
represents the number of
requests of type j that
arrived in time period i.

We then find the correlation
between columns of this
matrix and the vector of CPU
load from the database (this
technique can be used for
other bottlenecks such as disk
I/O). The result is shown in
Table 1. The request types
highlighted in bold are those
significant (to the a = 0.05
level) and positive. These are
the candidate request types
that should undergo admis-
sion control. We found the
results surprising, since before
performing the analysis we expected more of the
requests to be correlated with database CPU load, for
example BrowseCategories.php (which returns more
results than SearchItemsByCategory. php). In fact,
the requests identified by our algorithm represent a
small fraction of the total requests, yet account for a
large load on the database. One issue in large sys-
tems is uncovering “uninteresting” correlations.
Given a large number of systems metrics, many will
be correlated with almost any system component or
request workload. These cases can managed by
training the model, however this is outside the scope
of this work.

BLACK-BOX COMPONENT MONITORING

Self-adaptive systems rely on sufficient self-moni-
toring to drive statistical inference algorithms,
while monitoring should be as minimally invasive

as possible. There are at least three motivations dri-
ving this requirement:

• FFeeaarr ooff ddiissrruuppttiinngg aa rruunnnniinngg sseerrvviiccee.. When we
discussed implementing our approach on a large,
political Web log, the operator responded by say-
ing: “My concern, obviously, is that (the site) isn’t
a laboratory project, but a real-world application
that must maintain as high an uptime as possible.

So I’d be wary of experimenting
in a way that would potentially
compromise service.” Thus, we
based our statistical analysis on
data that was easily accessible
and routinely collected (Web
logs and sysstat measure-
ments). Additionally, instru-
menting operating systems
components like file systems
and system call interfaces is very
system-specific and requires
expert knowledge. Since hard-
ware and software changes are
often frequent events, such low-
level instrumentation code
would need to be rewritten each

time a component is upgraded or changed.
• RRaappiiddllyy cchhaannggiinngg sseerrvviicceess.. A fact of the Web

today is that it undergoes rapid changes: the
capabilities of the site change, as well as the pat-
terns of traffic arriving at the site. A large Web
site likely upgrades hardware and software com-
ponents on a regular basis. Operators will resist
invasive monitoring and instrumentation that
must be replicated whenever system components
are upgraded. By treating each component as a
black box, we do not modify individual system
components (such as the file system, operating
system calls, or other hooks). This makes our
approach more portable as well as less invasive.

• DDiissttrriibbuutteedd oowwnneerrsshhiipp ooff ccoommppoonneennttss.. Depend-
ing on the nature of the service, responsibility
for the site might be partitioned between several
system operators. Coordinating monitoring oper-
ations between these can be difficult. By focusing
on high-level component monitoring, different
groups do not have to coordinate software
upgrades and system modifications. Additionally,
it may be impossible to instrument components
that are not open source.

As our results will show, high-level measurements are
often sufficient for identifying correlations and request
effects that can greatly improve running systems.

52 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

Porter table 1 (3/06)

Request Type

BrowseCategories.php

BrowseRegions.php

SearchItemsByCategory.php

SearchItemsByRegion.php

AboutMe.php

RegisterUser.php

SellItemForm.php

RegisterItem.php

ViewItem.php

PutComment.php

ViewUserInfo.php

PutBidAuth.php

PutBid.php

BuyNowAuth.php

BuyNow.php

ViewBidHistory.php

P-value

Table 1. Request effects on the system bottleneck as
discovered by Pearson's correlation coefficient.

Highlighted entries are statistically significant and
have positive correlations. We choose these requests

as candidates for selective admission control.

0.1747

0.0926

0

0.0034

0.7702

0.4876

0.4891

0.8767

0.0953

0.5157

0.4646

0.8641

0.2566

0.971

0.1206

0.9741

Coefficient

-0.035

-0.0434

0.5654

0.0756

0.0075

-0.0179

0.0179

0.004

-0.0431

-0.0168

-0.0189

-0.0044

-0.0293

-0.0009

0.0401

-0.0008

Table 1. Request
effects on the system

bottleneck as discovered by
Pearson’s correlation coeffi-

cient. Highlighted entries
are statistically

significant and have
positive correlations.

We choose these requests
as candidates for selective

admission control.

A VISUALIZATION TOOL FOR AUTOMATIC OVERLOAD

MITIGATION

We advocate an approach for building self-adaptive
Web services in which the operator plays an impor-
tant role and remains “in the loop.” By better visual-
izing underlying connections between components
and load, we claim that
operators can become bet-
ter decision makers. An
example of the type of
visualization we advocate is
given in Figure 3, in which
the pie chart shows the
percentage of traffic that is
correlated to our bottle-
neck. Within the corre-
lated slice, specific request
types are enumerated.
From this simple graph, an
operator can see which requests would be affected by
selective admission control, as well as what percent-
age of the total traffic they represent.

Revising the three motivations from the previous
section, we see that the visualization component
reduces the disruption fear by providing a point for
the operator to see information needed to diagnose
and pinpoint performance problems. Once operators
feel more comfortable
with the tool, it can be
made more automatic.
Secondly, to cope with
rapidly changing services,
visualization tools allow
operators to choose
whether to implement
throttling depending on formal or informal business
rules that are known to the operator. Again, as the tool
is used more often, some admission control decisions
might be programmed to take effect automatically
without operator involvement. Lastly, we address the
distributed ownership of components. By visualizing
request effect through the system, observations across
different components (often in different parts of the
enterprise) can be correlated into one display that
gives more insight to the system’s operation.

EFFECTIVE ACTUATORS FOR ADMISSION CONTROL

Once a subset of the requests are identified as candi-
dates for selective admission control, the operator
needs a way to reduce the rate at which they arrive.
This can be done at the HTTP level through 503
TOO BUSY status messages, or at the network level
through bandwidth shaping. We chose to imple-
ment the throttling at the network level because that

did not involve modifying the Web tier. Correlated
requests were sent over a bandwidth-limited network
path. The effect on the end user for such requests is
they take longer than they used to. This means that
sessions, which consist of multiple, individual
requests, might take longer than before.

To tie together the
visualization tool and the
actuators for admission
control, we envision an
interface in which each
request type is listed,
along with its likelihood
of relieving the noticed
bottleneck based on our
statistical findings. Such a
display resembles a “top
talkers” graph. In Figure
3, they would be able to
select requests identified
by the bar graph. Once
selected, new filters could
be sent to the Web server
(in the case of HTTP-

based throttling), or to the network appliance (for net-
work-level throttling). In either case, the operator
would have a tactile way to see the effect of their choice

on both the bottleneck
and the arriving traffic.

RESULTS

We have deployed a Web
service based on the
RUBiS auction site that
embodies the four mech-
anisms outlined in this
article. Our testbed con-
sists of an IBM Blade-
Center with two Nortel
Layer 2-7 Gigabit
switches. The Nortel
switches can perform

deep packet inspection to identify HTTP request
types (based on URL pattern matching) at gigabit
rates and assign VLAN tags to packets that should be
subject to admission control. To perform the band-
width throttling, we use the Linux Traffic Control
(tc) extensions to reduce the rate of correlated
requests from 3.5Mbit/s (the baseline rate) to
1Mbit/s.

As Figure 1 and Table 2 show, performing this
selective admission control greatly improves the per-
formance of the Web service for users who are not
causing bottlenecks. In our deployment, the number

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 53

Porter fig 2 (3/06)

Figure 2. This visualization shows the requests identified by
our system as candidates for selective admission control.

Additionally, the graph shows their percentage of
the total number of requests.

Correlated vs. Uncorrelated Requests

85% 15%
11%

4%

Uncorrelated SearchItemsByCategory.php
SearchItemsByRegion.php

Figure 3. This visualization
shows the requests identified by
our system as candidates for
selective admission control.
Additionally, the graph shows
their percentage of the total
number of requests.

Porter table 2 (3/06)

Scenario

Stock

Selective
Admission
Control

Total
Requests

756,137

1,143,264

Correlated
URLs

112,521
(14.9%)

105,964
(9.3%)

Requests/
Second

462

782

Average
Session
Time (s)

670 s

872 s

Maximum
Request
Time (s)

154.7 s

32.7 s

Table 2. Performance measurements for a stock deployment
and one that utilizes selective admission control. Both

measurements represent 30 minutes of elapsed time with
3500 concurrent clients. A session represents a series

of operations on the auction site.

Table 2. Performance
measurements for a stock
deployment and one that utilizes
selective admission control.
Both measurements represent
30 minutes of elapsed time with
3,500 concurrent clients. A session
represents a series of operations
on the auction site.

of requests per second went from 462 to 782. This
gain is possible because the number of heavy requests
(those correlated with the bottleneck) allowed per
unit time is reduced. Therefore, it will take longer to
search for a series of several items. This is highlighted
in the longer average session time (872 seconds vs.
670 seconds), as each session consists of a set of sub-
sequent searches, among other operations. As demon-
strated by the positive effect on the number of
requests per second and the maximum request time,
such a reduction provides a great benefit for many vis-
itors of the Web site.

CONCLUSION

We have proposed an approach to building self-
adaptive Web services based on four design mecha-
nisms: simple statistical techniques for uncovering
request effects in multi-tier systems; a black-box
approach to component monitoring; a visualization
tool for summarizing statistical findings; and effi-
cient techniques for invoking admission control
decisions. We are in the process of building an auc-
tion Web service embodying these mechanisms, and
preliminary results are promising: we achieved a
70% increase in the number of pages served per sec-
ond, and a 78% decrease in the maximum latency
seen by users accessing the Web site. We are encour-
aged by these results, as they show the promise
in building and deploying more self-adaptive Web
services.

References
1. Amza, C., Cecchet, E., Chanda, A., et al. Specification and implemen-

tation of dynamic Web site benchmarks. In Proceedings of IEEE 5th
Annual Workshop on Workload Characterization (WWC-5), (Austin,
TX, Nov. 2002).

2. Bhatti, N., Bouch, A., and Kuchinsky, A. Integrating user-perceived

quality into Web server design. In Proceedings of the 9th International
World Wide Web Conference (WWW9), (Amsterdam, The Netherlands,
May 2000).

3. Cecchet, E., Chanda, A., Elnikety, S., et al. Performance comparison
of middleware architectures for generating dynamic Web content. In
Proceedings of the 4th ACM/IFIP/USENIX International Middleware
Conference, (Rio de Janeiro, Brazil, June 2003).

4. Cohen, I., Chase, J.S., Goldszmidt, M., et al. Correlating instrumenta-
tion data to system states: A building block for automated diagnosis
and control. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI ’04), (San Francisco, CA, Dec.
2004).

5. Diao, Y., Lui, X., Froehlich, S., et al. On-line response time optimiza-
tion of an Apache Web server. In Proceedings of the 11th International
Workshop on Quality of Service (IWQoS ’03), (Monterey, CA, June
2003).

6. Goel, A., Steere, D., Pu, C., et al. Adaptive resource management via
modular feedback control, 1999.

7. Goel, A., Steere, D., Pu, C., et al. Swift: A feedback control and
dynamic reconfiguration toolkit. Technical Report CSE-98-009, Ore-
gon Graduate Institute, Portland, OR, June 1998.

8. Lassettre, E., Coleman, D.W., Diao, Y., et al. Dynamic surge protec-
tion: An approach to handling unexpected workload surges with
resource actions that have lead times. In Proceedings of the 14th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2003), (Heidelberg, Germany, Oct 2003).
LNCS, Vol. 2867, Springer, 82–92.

9. Tufte, E. Envisioning Information. Graphics Press, 1990.
10. Zhang, R., Lu, C., Abdelzaher, T., and Stankovic, J. Controlware: A

middleware architecture for feedback control of software performance.
In Proceedings of the 22nd International Conference on Distributed Com-
puting Systems (ICDCS 2002), (Vienna, Austria, July 2002).

George Porter (gporter@cs.berkeley.edu) is a doctoral student in
Computer Science at the University of California, Berkeley.
Randy H. Katz (randy@cs.berkeley.edu) has been a faculty
member in Computer Science at UC Berkeley since 1983, where he is
now the United Microelectronics Corporation Distinguished Professor.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0300 $5.00

c

54 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

SELF-ADAPTIVE SYSTEMS RELY ON SUFFICIENT SELF-MONITORING
TO DRIVE STATISTICAL INFERENCE ALGORITHMS, WHILE

MONITORING SHOULD BE AS MINIMALLY INVASIVE AS POSSIBLE.

