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Abstract
The understanding of protein-folding mechanisms is often considered to be an important goal that will enable struc-
tural biologists to discover the mysterious relationship between the sequence, structure and function of proteins.
The ability to predict protein-folding rates without the need for actual experimental work will assist the research
work of structural biologists in many ways. Many bioinformatics tools have emerged in the past decade, and each
has showcased different features. In this article, we review and compare eight web-based prediction tools that are
currently available and that predominantly predict the protein-folding rate. The prediction performance, usability
and utility, together with the prediction tool development and validation methodologies for these tools, are critic-
ally reviewed. This article is presented in a comprehensible manner to assist readers in the process of selecting the
most appropriate bioinformatics tools to meet their needs.

Keywords: prediction tool; in silico prediction; machine learning algorithm; prediction model; statistical analysis; molecular
biology

INTRODUCTION
The fate of a protein to be either functional or in-

active depends upon the folding mechanism. The

failure of a protein to fold into the intended three-

dimensional (3D) structure will result in a misfolded

protein. The misfolded protein, which generally

exists in the form of an inclusion body, is typically

insoluble and biologically inactive [1]. Researchers

often concentrate on the determination of protein-

folding kinetics and rate constants because these are

important factors that can contribute to our under-

standing of the protein-folding mechanism [2].

Experimental determination of folding kinetics

and rate constants is generally time-consuming and
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labor-intensive, and accordingly, bioinformatics tools

have been developed as alternatives. Interestingly,

both protein solubility and folding kinetics are clo-

sely linked to one another, because the folding kin-

etics of proteins determine the tendency of a protein

to fold into its soluble native state or to misfold

forming an insoluble inclusion body [3, 4]. In this

regard, a variety of bioinformatics tools have been

developed in the past decade that focus on the pre-

diction of either protein-folding kinetics [5–12] or

protein solubility [4, 13–22]. These tools use infor-

mation regarding the 3D structure of proteins, and

their predictions have been shown to correlate clo-

sely with experimentally determined folding rates.

The features extracted from the 3D structural infor-

mation include contact order [23–25], long-range

order [24, 25], total contact distance [25], n-order

contact distance [26] and geometric contact

number [12]. Although the predictions of protein-

folding rates using these aforementioned methods

have yielded reasonably good performance in terms

of correlation coefficients, prediction based merely

on the amino acid sequence is much preferred in

practice because the amino acid sequence is the

most readily available information. Apart from

the simplicity of using the amino acid sequence as

the only basis for prediction, the tremendous growth

in genomic studies has caused the rate of new protein

sequence discovery to outpace protein structural de-

termination [27]. This leaves a large gap between the

number of protein sequence entries and the number

of proteins for which the structure is known. As a

result, this expanding sequence-structure gap makes

sequence-based bioinformatics tools increasingly im-

portant for researchers. Moreover, sequence-based

tools present attractive advantages in handling

high-throughput data generated in the fast-growing

proteomics field.

Because the code for protein-folding kinetics has

been suggested to lie in the amino acid sequence

[28, 29], a variety of bioinformatics tools that use

the amino acid sequence have been developed to

predict protein-folding kinetics. Although most of

these tools apply similar algorithms in the develop-

ment procedure, they differ greatly in terms of per-

formance, usability and utility, which subsequently

affect the analysis outcome. Consequently, non-

bioinformaticians are often unable to fully explore

these bioinformatics tools owing to a lack of famil-

iarity with and fundamental knowledge of bioinfor-

matics tools. Gromiha and Huang in their work have

previously reviewed the existing machine learning

algorithms that predict both the protein-folding

rate and stability of mutant proteins [8]. These au-

thors have thoroughly reviewed the folding param-

eters that will possibly affect the protein-folding

process as well as the development progress of struc-

ture-based parameters. In addition, they included a

short introduction discussing two databases and five

web-based prediction tools that can predict protein-

folding rates. Distinctively, the present work empha-

sizes the usability, utility and performance of the

available prediction tools as well as the algorithms

used. This comparative review is intended to

enable readers to compare the available web-based

tools and to assist in decisionmaking.

This article presents a comprehensive comparison

of eight web-based tools for protein-folding rate pre-

dictions. The performance, usability and utility of

these tools, as well as the algorithm adopted in the

development stage, are critically reviewed to serve

as a gateway to assist researchers, especially non-

bioinformaticians, in choosing the most suitable

prediction tool to meet different requirements. In

addition, a brief description of the alternative tools

for protein-folding rate prediction is provided. As the

number of proteins discovered each year continues

to grow, protein-folding rate prediction tools appear

to have a promising future because the information

acquired is valuable for assisting researchers in study-

ing protein-folding mechanisms. The ability to com-

prehend and reveal the relationship between protein

sequence and the corresponding-folding rate will

benefit the field of pathology because some mis-

folded proteins have been generally considered to

be responsible for neurodegenerative diseases, such

as Alzheimer’s disease [1, 30].

EXISTING PROTEIN-FOLDING
RATE PREDICTION TOOLS
The comparison between the web-based tools cur-

rently available for protein-folding rate prediction is

summarized in Table 1. Tools assessed in this study

include SFoldRate [12], FOLD-RATE [31], Pred-

PFR [10], FoldRate [6], K-Fold [7], PRORATE

[9], SWFoldRate [5] and SeqRate [11]. These are

the only web-based protein-folding rate prediction

tools that are freely accessible to researchers at aca-

demic institutions. The criteria used in the com-

parison will be discussed in depth in the following

sections.
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Table 1: A comparison of the protein-folding rate prediction tools revieweda

Toolb SFoldRate FOLD-RATE Pred-PFR FoldRate K-Fold PRORATE SWFoldRate SeqRate

Correlation
coefficient

0.82 0.87c 0.88 0.88 0.74 0.85d; 0.88e 0.93 0.81d;0.80e

Statistical
deviationf

n/a x�1.19g

(MAD);
x� 0.23h

(MAD)

x� 2.03 x� 2.03 x�1.2 (SE);
x� 0.75i

(MAD)

x�1.95d,g;
x� 2.12e,g;
x�1.34d,h;
x�1.77e,h

x� 2.27 (SE) x� 0.79d

(MAD);
x� 0.68e

(MAD)
Application type WB WB WB WB WB WB WB WB, SA
Development
method

Statistical
method with
multiple
linear
regressions

Statistical
method with
multiple
linear
regressions

Ensemble
predictor
with multiple
statistical
models

Ensemble
predictor
with multiple
statistical
models

SVM classifier
with linear
kernel

SVR with
polynomial
kernel

Non-linear
SVM
regression
model with
sliding
window

Non-linear
SVM classi-
fier
with radial
basis
Gaussian
kernel and
regression
model

Performance
Evaluation strategy

Leave-one-out
cross-
validation

Leave-one-out
cross-
validation
and
back-check
prediction

Leave-one-out
cross-
validation

Leave-one-out
cross-
validation

Cross-
validation

Leave-one-out
cross-
validation
and
back-check
prediction

Leave-one-out
cross-
validation

Independent
test

Experimental
verification

No No No No No No No Yes

Size of training
data set (number
of proteins)

80 77 80 80 63 80 79 54

Size of test data
set (number of
proteins)

n/a n/a n/a n/a n/a n/a n/a 7

Input format FASTA Plain sequence Plain sequence Plain sequence PDB code/file PDB file FASTA Plain sequence
Additional input No Structural class

of
protein

No No No Protein-
folding
kinetic state

No Protein-
folding kin-
etic state

Outputs Folding rate
in natural
logarithm

Residues
composition,
protein
structural
class and
folding rate
in natural
logarithm

Folding rate
in natural
logarithm

Folding rate
in natural
logarithm,
half-folding
time

Contact order,
reliability
index,
protein-
folding kin-
etic
state and
folding rate
in logarithm
based 10

Topology
parameters,
network
parameters,
protein-
folding kin-
etic state
and
folding rate
in natural
logarithm

Folding rate
in natural
logarithm

Protein-
folding kin-
etic
state, con-
tact
number,
contact
order
and folding
rate in
logarithm
based 10 and
natural
logarithm

References [12] [31] [10] [6] [7] [9] [5] [11]

an/a¼ not applicable;WB¼web-based; SA¼ stand-alone; and SVR¼ support vector regression. bAll prediction tools provide open access and the
URL addresses to access the different prediction tools are as follows: SFoldRate - http://gila.bioengr.uic.edu/lab/tools/foldingrate/fr0.html; FOLD-
RATE - http://psfs.cbrc.jp/fold-rate/; Pred-PFR - http://www.csbio.sjtu.edu.cn/bioinf/FoldingRate/#; FoldRate - http://www.csbio.sjtu.edu.
cn/bioinf/FoldRate/; K-Fold - http://gpcr.biocomp.unibo.it/cgi/predictors/K-Fold/K-Fold.cgi; PRORATE - http://sunflower.kuicr.kyoto-u.ac.
jp/�sjn/folding/webserver.html; SWFoldRate - http://www.jci-bioinfo.cn/swfrate/input.jsp; SeqRate - http://casp.rnet.missouri.edu/fold_rate/index.
html. cOutcome with respect to proteins of unknown structural class. dOutcome with respect to two-state proteins. eOutcome with respect to
multistate proteins. fx ^ notation for predicted folding rate from respective prediction tool; statistical deviation reported as root mean square
error unless specified in parentheses. gOutcome obtained using LOOCV. hOutcome obtained using back-check prediction. iOutcome reported in
other literature [11].
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Prediction tool development method
With respect to the aforementioned prediction tools,

both statistical and machine learning algorithms have

been used as the basal algorithms for developing the

prediction tools. In general, statistical algorithms in-

clude linear regression and logistic regression,

whereas machine learning algorithms include deci-

sion trees and neural nets [32]. Statistical algorithms

such as linear regression often produce a straightfor-

ward and comprehensible representation to relate the

input variables to the corresponding output [32].

Multiple linear regression can be used to take into

account the effect of different input variables. In this

regard, SFoldRate and FOLD-RATE are built based

on multiple linear regression. Different weights are

assigned to indicate the significance of respective fea-

tures, which have been previously found to be highly

correlated with protein-folding rate.

Seven individual predictors are integrated into one

ultimate predictor, namely, Pred-PFR, to conduct

the protein-folding rate prediction. The ensemble

of multiple individual predictors, with each func-

tioning based on its own special features, has been

proven to perform more effectively when applied to

sophisticated biological systems [33, 34]. Similarly,

FoldRate adopts an ensemble predictor that fuses

three individual predictors based on different statis-

tical models. K-Fold and PRORATE are developed

using machine learning algorithms, particularly sup-

port vector machine (SVM). PRORATE is de-

veloped using support vector regression, which is

considered to be one of the SVM categories.

Linear kernel functions are incorporated into the

SVMs of both K-Fold and PRORATE. The incorp-

oration of kernel functions enables the application of

SVM to solve biological modeling problems, which

often involve the processing of non-vector data, such

as nucleotide and protein sequences [35, 36].

Machine learning algorithms are capable of

enhancing the performance of statistical methods

by introducing automated information discovery

and processing techniques to the existing statistical

methods. Both statistical and machine learning algo-

rithms are complementary to each other, rather than

incompatible. Statistical techniques provide estimates

on the probability of the possible outcome, while

machine learning algorithms often specify a deter-

ministic result for a classification task [37].

Moreover, statistical models are exceptionally suit-

able for processing continuous attributes, which sub-

sequently provide interpolative or extrapolative

approximations [38]. Conversely, machine learning

algorithms are frequently used to analyze discrete

attributes and give only predictive ranges [38, 39].

In view of this, SWFoldRate and SeqRate represent

prediction tools that incorporate both statistical and

machine learning techniques. This is for the purpose

of producing a powerful prediction tool that makes

use of the advantages of both techniques while off-

setting their respective shortcomings. Therefore,

both SWFoldRate and SeqRate can be seen as

tools that have been developed using the most

robust methodology out of the eight tools reviewed

in this article.

Feature selection
For any prediction tool, it is essential to perform

systematic feature selection procedures. This is

aimed at reducing the risk of overlooking certain

features that perchance are equally influential in

determining folding rates. Inclusion of too many fea-

tures may give rise to an over-fitting issue, while

inclusion of insufficient and redundant features may

not result in the best-performing prediction tool

[5, 35]. PRORATE adopts a recursive elimination

strategy during feature selection, aiming to improve

the prediction performance by removing features

with insignificant influence on the prediction accur-

acy [9]. The optimal features in SWFoldRate are

selected using combined forward feature selection

and sequential backward selection methods.

Sequential forward and backward selection [40] is

one of the classic deterministic heuristic feature

subset selection algorithms [41]. Heuristic search

outperforms an exhaustive search owing to reduced

computational effort, making it more practical, espe-

cially when handling a large pool of features [41]. In

contrast, the knowledge-based approach has been

applied in cases where a function needs to be built

to map the input to protein folding rates [11]. The

features that yield the best correlation scores will be

adopted in the training process of the respective pre-

diction tools. This method is used in SeqRate along

with the leave-one-out cross-validation (LOOCV)

procedure. Similarly, FOLD-RATE has adopted a

similar strategy to select the optimal combination

of features among the 49 features extracted at the

initial stage. Prediction tools that failed to undergo

a thorough and systematic feature selection proced-

ure would generally result in reduced performance

[41]. Accordingly, this places FoldRate, Pred-PFR

and SFoldRate in an unfavorable position, as their
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feature selection methodologies are not clearly

described. The absence of such information results

in an inability to assess the versatility of these predic-

tion tools based on their development methodolo-

gies. It also results in an inability to compare these

tools with other prediction tools.

Training and test data sets
In general, all prediction tools discussed in this work

are trained using data sets consisting of �80 instances.

This is in view of the limited number of proteins

available with experimentally determined folding

rates. This constraint would hamper the performance

of the prediction tools by lowering their reliability,

and generalization capability [19]. Consequently, the

reliability and generalization capability of both

K-fold and SeqRate may have been compromised

owing to their use of the two smallest training data

sets.

Biased prediction outcome and overestimation of

performance are foreseeable when there is an exten-

sive overlap between the training and test data sets

[19]. SeqRate is the only tool reviewed that has

adopted discrete training and independent test data

sets. The training and independent test data sets in

SeqRate are constructed by random selection of 90

and 10% of the data out of the 61 instances available,

respectively. Such a data partitioning strategy has

proven to be advantageous because the prediction

model is developed on a common training data set

while being completely blinded to the test data set

[42]. As an initiative to minimize the similarity

among subsets during cross-validation, K-Fold has

implemented a methodical approach for the parti-

tioning of data by using the BLASTclust program.

This program is capable of computing pairwise

matches and successively forms clusters with similar

sequences. Apart from sequence homology between

the training and test data sets, the issue of data re-

dundancy within the data set has to be addressed

appropriately. SWFoldRate, in particular, has

emphasized on the removal of homologous se-

quences from the training data set through the use

of UniProt sequence comparison (http://www.uni

prot.org/) [43]. In view of this, SeqRate, K-Fold

and SWFoldRate have training data sets of higher

quality compared with other tools that did not use

either data partitioning or sequence homology re-

duction strategies.

Prediction tools that are trained with an unba-

lanced data set often lead to prediction models

with poor performance [36, 44]. In this regard, the

types of data imbalance observed in the training data

sets of protein folding rate prediction tools can be

classified into two different categories, namely, im-

balances owing to the structural classification and

those owing to the folding kinetics of proteins.

The structural classification of a protein is defined

by the elements of its secondary structure, such as

a-helices and b-strands in the protein. All a-proteins

contain >40% a-helices while maintaining <5% of

b-strands and vice versa for all b-proteins, while

mixed class proteins contain at least 15% a-helices

and 10% b-strands [31]. On the other hand, the

folding kinetics of a protein are represented by the

kinetic order, which indicates the occurrence of an

intermediate state during the folding process [11].

Two-state proteins are generally smaller in size and

are able to fold at a faster speed [11], whereas multi-

state or three-state proteins form intermediates be-

fore the formation of the native 3D structure [7]. In

brief, the data in SWFoldRate are scaled before SVM

application to prevent domination of attributes in

greater numeric ranges over those in smaller numeric

ranges, as well as to avoid any possible numerical

difficulty during the calculation [5]. Similar efforts

to minimize the effect of unbalanced data have not

been observed in the development of other predic-

tion tools.

Performance evaluation strategy
Among the tools reviewed, a cross-validation test has

become popular as the validation and performance

gauging approach. Apart from SeqRate, which has

adopted an independent test data set, the remaining

tools discussed have evaluated the respective predict-

ive ability using cross-validation, predominantly with

LOOCV tests. This is in accordance with the note-

worthy attribute of LOOCV tests in offering ap-

proximately unbiased outcome estimation [45]. In

addition, the relatively small sizes of data sets used

in these tools actually favor the selection of LOOCV

as opposed to other cross-validation methods

[42, 45]. In contrast, the independent test conducted

by SeqRate allows strict assessment on the general-

ization capability of SeqRate on unseen data.

SeqRate is the sole tool reviewed that includes

experimental verification. Provided that the query

sequence was correctly classified in terms of its fold

kinetic category, precise estimation of the protein

folding rate can be achieved. For instance, the

DNA-binding protein Engrailed Homeodomain
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(PDB ID: 1ENH), which has an experimentally

measured fold rate of 10.5, was predicted to have a

fold rate of 10.05 (both values are reported in nat-

ural-base logarithm scale) [11]. Experimental verifi-

cation is an equally important validation method, as

this serves as the best evidence with which to assess

the applicability and operability of the tool in a real-

life scenario. In this regard, SeqRate has adopted a

better performance evaluation strategy compared

with other tools by validating the prediction model

with both an independent test data set and wet la-

boratory procedures.

Prediction performance
The performance of folding rate prediction tools is

mainly evaluated by correlation coefficient and

difference measures. The Pearson’s correlation coef-

ficient (PCC), also known as the Pearson product-

moment correlation coefficient [46], is used to

discover the correlation between the experimentally

determined and model-predicted values. Various

types of difference measures, such as standard error

(SE), mean absolute deviation (MAD) and root mean

square error (RMSE), are used in various prediction

tools to describe the extent of deviation of the

model-predicted values relative to the experimen-

tally determined value. Moreover, different valid-

ation schemes and varying training data sets are

used in all the prediction tools reviewed. Owing to

these variations, it is inappropriate to choose the best

tool by direct comparison of various indicators, as

reported by the respective prediction tool

developers.

To make a fair comparison of the performance of

various tools, we have conducted an empirical com-

parison using a standardized non-overlapping test

data set to evaluate the performance of each tool.

The PCC, RMSE and MAD of each tool were as-

sessed using the standardized non-overlapping test

data set, and the results are tabulated in Table 2.

This is a non-overlapping test data set independent

of the training data sets of each tool. This non-over-

lapping test data set comprises 28 samples

(Supplementary Table S1) that were collected from

multiple resources [47–51]. In addition, sequence re-

dundancy reduction has been conducted using the

CD-HIT suite [52] at 30% sequence identity to

remove highly similar sequences.

When subjected to performance evaluation using

the standardized non-overlapping test data set,

SeqRate was found to outperform the other tools

with the highest PCC and lowest RMSE and

MAD. This is mainly owing to the robust prediction

tool development methodology, efficient feature se-

lection strategy and high quality of the independent

training and test data sets that have been imple-

mented in SeqRate. Pred-PFR achieved the

second highest PCC with slightly higher statistical

deviations. Surprisingly, negative correlations have

been observed for SFoldRate, FOLD-RATE, K-

FOLD, PRORATE and SWFoldRate. A notable

work published by Willmott has demonstrated that

the application of PCC to compare the performances

of different models is often inappropriate and mis-

leading. Negative values of PCC are possible even

when the model-predicted values do not differ much

from the experimentally determined values. In con-

trast, Willmott has concluded that RMSE and MAD

are better overall measures of prediction model per-

formance. Both RMSE and MAD summarize the

average difference in the units of the predicted and

experimental values, thus giving more helpful and

straightforward information regarding the perform-

ance of the prediction model [53]. Therefore, in this

section, we compare the performance of each model

by examining the RMSE and MAD (Table 2). The

relatively high RMSE and MAD of both SFoldRate

and PRORATE indicate that these two tools per-

formed poorly when assessed objectively using this

independent test data set. The low overall perform-

ance of these tools might be related to the less robust

Table 2: Empirical comparison of the prediction per-
formance of web-based protein-folding rate prediction
tools using the standardized non-overlapping test data
seta

Tool PCC RMSE MAD

SFoldRate �0.0603 18.11 11.73
FOLD-RATE 0.3597 4.64 3.85
FOLD-RATEb 0.1348 8.84 7.71
Pred-PFR 0.5201 3.86 3.06
FoldRate 0.5038 4.12 3.28
K-Fold �0.4771 4.56 4.50
PRORATE �0.1720 94.18 60.79
PRORATEc �0.1720 94.18 60.79
SWFoldRate �0.3758 5.81 4.39
SeqRate 0.6750 2.46 2.09
SeqRatec 0.6349 2.54 2.16

aThe standardized non-overlapping test data set is available in
Supplementary Table S1 (Supplementary Materials). bPredictions are
conducted with protein structural information as the input.
cPredictions are conductedwith kinetic order information as the input.
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training algorithm and the low quality of the training

data sets.

The error measures produced from the standar-

dized non-overlapping test data set are called ‘out-

of-sample’ measures. In comparison, error measures

that are determined using a training data set

along with cross-validation strategies are known as

‘in-sample’ measures [54]. ‘Out-of-sample’ error sig-

nifies the generalization capability of the prediction

model when being applied to unseen data.

Therefore, it is of paramount importance to minimize

‘out-of-sample’ error instead of ‘in-sample’ error.

From a comparison of the ‘out-of-sample’ error

computed using the standardized non-overlapping

test data set and the ‘in-sample’ error as reported

by the respective prediction tool developers, it is ap-

parent that the ‘in-sample’ errors reported indicate

overestimated prediction performance. As men-

tioned earlier, SeqRate is the only tool that has

used an independent test data set for performance

assessment. Therefore, the PCC and MAD of

SeqRate determined using the standardized non-

overlapping test data set agree with the reported

values in Table 1 more closely than those of other

tools. It is clear that SeqRate performed best out of

all the prediction tools assessed in this study.

In addition to conducting prediction without any

protein structure or kinetic order information, the

performances of FOLD-RATE, PRORATE and

SeqRate were re-assessed using the standardized

non-overlapping test data set along with the protein

structure and kinetic order information. FOLD-

RATE adopts a different scheme comprising at

least three different prediction models for different

protein structural classifications. FOLD-RATE pre-

dictions perform more poorly than predictions made

without protein structural information. The struc-

tural classifications of proteins in this standardized

non-overlapping test data set are extracted

from the Structural Classification of Proteins

(SCOP) database (http://scop.mrc-lmb.cam.ac.uk/

scop/). Alternatively, instead of implementing pre-

diction models based on protein structural classifica-

tion, both SeqRate and PRORATE use individual

prediction models for query sequences with two-

state and multistate folding kinetics. Despite provi-

sion of the kinetic order information, PRORATE

was reported to perform similarly to prediction with-

out kinetic order information. SeqRate, on the

other hand, recorded slightly lower PCC and slightly

greater error measures. Nevertheless, SeqRate

remains the most reliable protein-folding rate predic-

tion tool and has an appealing generalization capabil-

ity when applied to unseen data.

Usability and utility
K-Fold and PRORATE only accept either a Protein

Data Bank (PDB) code or a PDB file as input. The

PDB is a public archive of structural data for biolo-

gical macromolecules [55]. The PDB code is the

accession code assigned to proteins whose structures

are deposited, annotated and validated in (and dis-

tributed by) the PDB database. In addition to the

accession code, the PDB file is available for down-

load from the database’s Web site. Newly discovered

protein sequences that have not been assigned a PDB

code will not be accessed by either K-Fold or

PRORATE. The fact that both K-Fold and

PRORATE require the availability of amino acid

sequence input in the form of a PDB code or PDB

file has restrained the usability of these tools. Another

important criterion to judge the usability of a pre-

diction tool is the degree of helpfulness. Pop-up

windows, error statements and examples of query

sequence, are criteria that can be used to outline

the degree of helpfulness. SWFoldRate and

SeqRate are unequipped with error statements or

pop-up windows even when an error has occurred

during execution.

SWFoldRate permits submission of multiple input

sequences of up to 10 sequences in FASTA format

at one time. Furthermore, batch submission with

50 sequences in FASTA format is available in

SWFoldRate. However, the use of batch submission

necessitates the upload of a file containing query se-

quences in FASTA format and the prediction out-

come is only available through email. SeqRate also

returns the prediction outcome via email instead of

direct output displayed on the web page. This re-

duces the efficiency of the prediction process owing

to indirect retrieval of the prediction outcome. In

addition to the inconvenience in retrieving the out-

come of the prediction, both K-Fold and SeqRate

generally require longer computing time compared

with the other prediction tools. In addition to

returning the protein folding rate, K-Fold,

PRORATE and SeqRate can return multiple

other outputs following the prediction process.

These include structural information on the query

sequence, such as contact number [56] and contact

order [23].
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To provide more useful information, a simplified

comparison of the eight web-based prediction tools

reviewed in this article is presented in Table 3. The

respective advantages, disadvantages and preferences

of each tool are summarized, along with the guid-

ance on the preferred tool under a variety of possible

conditions.

Alternative prediction tools
In addition to the methodologies discussed earlier, an

alternative mean of predicting the protein-folding

rate is through homologous sequence search via

databases such as PPT-DB (http://www.pptdb.ca/),

which is essentially a protein property database [50].

However, this method lacks flexibility and reliability

because protein-folding rate prediction is unable to

be conducted when the input sequence bears little

resemblance to those annotated in the database.

Moreover, the limited number of proteins available

in the database reduces the performance and usability

of this approach. PPT-DB can be used to make re-

liable prediction for approximately 75% of all query

sequences provided that this database encompasses

>10 000 sequences [50]. Nevertheless, PPT-DB

contains only 83 sequences with experimentally

determined folding rates, which is far less than the

expected amount. As a consequence of this data

deficiency, protein-folding rate prediction by simi-

larity searches using this database can be regarded as

unfeasible. Apart from PPT-DB, there exist other

freely available databases of experimental data re-

garding protein-folding, including KineticDB [57]

and PFD 2.0 [49]. In addition to predicting the pro-

tein-folding rate using homologous sequence search,

both PFR-AF [47] and the back propagation neural

network model [58] are alternative prediction tools

for protein-folding rate prediction. However, these

two prediction tools were not assessed in this study

owing to their inaccessibility through a web-server

and their prerequisite of demanding additional inputs

before prediction. More specifically, PFR-AF has to

be used in combination with secondary structure

prediction tools, such as PSI-PRED [59],

PROTEUS [60] and SSPRO [61]. The cumbersome

procedures involved in PFR-AF are believed to

reduce the interest of potential users.

Current limitations and future prospects
In the development of protein-folding rate predic-

tion tools that use the amino acid sequence as the

basis of prediction, any sequence-independent fac-

tors, such as temperature [62], macromolecular

crowding [63] and assistance from molecular chaper-

ones [64], have been disregarded during the

Table 3: Summary of the respective advantages, disadvantages and preferences of each prediction tool

Prediction tools SFoldRate FOLD-RATE Pred-PFR FoldRate K-fold PRORATE SWFoldRate SeqRate

Advantages
Ability to process ambiguous
residue ‘X’

Y ^ ^ ^ Y Y Y Y

Additional output ^ ^ ^ ^ Y Y ^ Y
Balanced training data set ^ ^ ^ ^ ^ ^ Y ^
Multiple sequence prediction ^ ^ ^ ^ ^ ^ Y ^
Sequence redundancy reduction ^ ^ ^ ^ ^ ^ Y ^

Disadvantages
Input format constraint ^ ^ ^ ^ Y Y ^ ^
Requirement on additional input ^ Y ^ ^ ^ Y ^ Y
Training data set <75 data ^ ^ ^ ^ Y ^ ^ Y
Restricted applicability to input
sequence with �50 amino acids

^ ^ Y Y ^ ^ ^ ^

Proposed conditions:
Multiple input sequences ^ ^ ^ ^ ^ ^ Preferred ^
Input sequence containing ambiguous
residue ‘X’

Preferred ^ ^ ^ Preferred Preferred Preferred Preferred

Input protein with known kinetic
order

^ ^ ^ ^ ^ Preferred ^ Preferred

Input protein with known
structural class

^ Preferred ^ ^ ^ ^ ^ ^

Input protein with unknown
kinetic order and structural class

Preferred ^ Preferred Preferred Preferred ^ Preferred ^

Input sequence <50 amino acids Preferred Preferred ^ ^ Preferred Preferred Preferred Preferred

Y¼ Yes.
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prediction process. Accordingly, the application of

these prediction tools is limited and they are incap-

able of identifying the fluctuations in folding rates

that occur under varying experimental conditions.

Indisputably, one of the major challenges in improv-

ing the existing tools for protein-folding rate predic-

tion is the limited amount of available experimental

data on folding rate [11]. Similarly, the relatively

small number of proteins with solved structures en-

tails a growing disparity between proteins with

known sequences and those with known structures.

However, with advanced artificial intelligence and

data-mining technology, users of bioinformatics

tools should remain optimistic in anticipating an in-

crease in data emergence in the near future. Lastly,

being unable to conduct the prediction in the pres-

ence of ambiguous residues, the application of the

associated prediction tools has been restricted to

query sequences that do not contain any ambiguous

residues. This limitation applies to FOLD-RATE,

Pred-PFR, FoldRate, K-Fold and PRORATE,

and reduces the usability of these tools. The exist-

ence of ambiguous residues is undoubtedly a great

hindrance in efforts to improve the performance of

the prediction tools. This is owing to the unknown

properties of the ambiguous residues in the amino

acid sequence. However, there is a trade-off between

the performance and usability of the prediction tool.

It is anticipated that future prediction tools will be

able to overcome this limitation by accepting the

presence of ambiguous residues in the query se-

quence while being able to achieve a satisfactory

prediction performance.

CONCLUSION
The ability to predict protein-folding rates without

the need for in vivo or in vitro experimental work has

motivated bioinformaticians to develop bioinfor-

matics tools that can be applied in the field of mo-

lecular biology. The comparison of eight distinct

web-based tools for protein-folding rate prediction

presented in this work can assist researchers in select-

ing the most appropriate tool in various circum-

stances. Non-bioinformaticians, in particular, can

benefit from this easily comprehensible review that

emphasizes the comprehensive comparison of the

most widely used web-based protein-folding rate

prediction tools. The development method, per-

formance, usability and utility of the prediction

tools have been reviewed and compared in depth.

Depending on the needs in particular circumstances,

different prediction tools reviewed in this work can

be used. In general, SeqRate is noted as the best

performing tool with the lowest error and highest

correlation coefficient, and it can be applied to

query sequences with ambiguous residues. With

the massive leap in bioinformatics tool development

and the accumulation of proteomic data in the past

decade, it is worthwhile anticipating that new pre-

diction tools with superior performance and usability

will be developed in the near future.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� This review serves as a helpful guide in selecting a suitable web-
based protein-folding rate prediction tool for use in specific
circumstances.

� Theperformance of each bioinformatics tool has been evaluated
based on a standardized non-overlapping test data set.

� The usability and utility of each bioinformatics tool have been
critically reviewed.
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41. Larrañaga P, Calvo B, Santana R, et al. Machine learning in
bioinformatics. Brief Bioinform 2006;7:86–112.

42. Simon RM, Subramanian J, Li MC, Menezes S. Using
cross-validation to evaluate predictive accuracy of survival
risk classifiers based on high-dimensional data. BriefBioinform
2011;12:203–14.

43. Apweiler R, Bairoch A, Wu CH, et al. UniProt: the uni-
versal protein knowledgebase. Nucleic Acids Res 2004;32:
D115–19.

44. duVerle DA, Mamitsuka H. A review of statistical methods
for prediction of proteolytic cleavage. Brief Bioinform 2012;
13:337–49.

45. Molinaro AM, Simon R, Pfeiffer RM. Prediction error
estimation: a comparison of resampling methods.
Bioinformatics 2005;21:3301–7.

46. Rodgers JL, Nicewander WA. Thirteen ways to look at the
correlation coefficient. AmStat 1988;42:59–66.

47. Gao J, Zhang T, Zhang H, et al. Accurate prediction of
protein folding rates from sequence and sequence-derived
residue flexibility and solvent accessibility. Proteins 2010;78:
2114–30.
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