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Abstract Web service applications are distributed processes that are composed of
dynamically bounded services. In this paper, we give a definitive description of a
framework for performing runtime monitoring of web service applications against
behavioural correctness properties described as finite state automata. These properties
specify forbidden and desired interactions between service partners. Finite execution
traces of web service applications described in BPEL are checked for conformance
at runtime. When violations are discovered, our framework automatically proposes
adaptation strategies, in the form of plans, which users can select for execution. Our
framework also allows verification of stated pre- and post-conditions of service part-
ners and provides guarantees of correctness of the generated recovery plans.
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1 Introduction

Web service applications are distributed processes, called orchestrations, composed
of dynamically bounded services. Development and maintenance of quality web
service applications presents a major challenge in practice, mostly due to this dynamic
binding, and a variety of failures that can happen when potentially third party partners
communicate over the web. Some of the failures are due to the faulty logic, to invalid
input data, to incorrect service invocation, to hardware problems, and to network
failures. Most of these problems are not detectable statically, and thus a web service
needs to dynamically recover from errors as they are discovered at runtime.

An application is considered to be self-healing [15] if it can detect failures and
diagnose faults, and can adjust itself in response. Error recovery frameworks omit the
diagnosis phase and can thus be classified as simple self-healing systems.

Since runtime errors are inevitable (and potentially exposed to millions of users
before they are found/fixed), frameworks for running these types of applications typ-
ically include the ability to define faults and compensatory actions for dealing with
exceptional situations. Specifically, the compensation mechanism is the application-
specific way of reversing completed activities. For example, the compensation for
booking a car would be to cancel the booking. These error recovery mechanisms can
be used to minimize the impact of runtime bugs, but the developer must anticipate
possible runtime errors since these mechanisms are statically defined. Moreover, it is
hard to determine the state of the application after executing a set of compensations.

Several works [5,7,12,13,22] suggest “self-healing” mechanisms for web-service
applications. These approaches vary in applicability and effectiveness; yet they do not
provide guarantees of correctness of the resulting recovery strategies. A possible such
guarantee can be as follows: if the provided service pre- and post-conditions are valid
at runtime, then executing a recovery plan leaves the application in a non-error state
from where regular execution can continue.

In this paper, we report on a runtime monitoring and recovery framework for orches-
trations expressed in BPEL. Users specify desired and prohibited interactions between
partners. We also take advantage of service contracts (pre- and post-conditions), if they
are available, and use compensation—the “standard” error recovery mechanism built
into BPEL. The system then executes the chosen plan(s) as means of adaptation. To
the best of our knowledge, we are the first to suggest using this method for generating
“provably correct” recovery plans.

1.1 Motivating example

Consider a simple web-based Trip Advisor System (TAS). In a typical scenario, a
customer either chooses to arrive at her destination via a rental car (and thus books
it), or via an air/ground transportation combination, combining the flight with either
a rental car from the airport or a limo.

The TAS system interacts with two partners in order to achieve its business goals—
the Car system (which offers two web services: one to reserve cars and another to
reserve limos) and the Flight system (which offers two web services: one to reserve
flights and another to check whether the flights are cheap or expensive). Since the TAS
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system is a composition of several distributed services, its correctness depends on the
correctness of its partners and their interactions.

The requirement of the system is to make sure the customer has the transportation
needed to get to her destination (this is a desired behavior which we refer to as P1)
while keeping the costs down, i.e., she is not allowed by her company to reserve an
expensive flight and a limo (this is a forbidden behavior which we refer to as P2).

If the system produces an itinerary that is too expensive, we initiate a recovery
process. In this case, it will consist of either canceling the limo reservation (so that a
car can now be booked) or canceling the flight reservation to see if a cheaper one can be
found. In general, recovery from observing an undesired behavior or violating service
contracts entails using compensation actions to allow the application to “go back” to
an earlier state at which an alternative path that potentially avoids the fault is available.
We call such states “change states”; these include user choices and certain partner calls.

Yet just merely going back is insufficient to ensure that the system can produce a
desired behaviour. For example, the Flight system can go down while the user attempts
to book air transportation, thus preventing the entire system from getting the user to her
destination since the air/ground combination is no longer available. To adapt from this
fault, the system may suggest that the user rent a car for the whole trip instead. More
precisely, the recovery plan to the user’s destination (her “goal” state) includes either
calling the flight reservation again or canceling the reserved ground transportation
from the airport, if any, and trying to reserve the rental car from home instead. In order
to achieve such behaviours, we aim to compute plans that redirect the application
towards executing new activities, those that lead to goal satisfaction.

1.2 Overview of the approach

In our approach, developers supply a BPEL program, a set of service contracts (pre- and
post-conditions for partner invocations) and a set of correctness properties (in the form
of required and prohibited interactions between partners) that need to be maintained
by the program as it runs. The BPEL program is enriched, by its developers, with
the compensation mechanism, which allows us to undo some of the actions of the
program. Correctness properties are turned into monitors using techniques described
in [38]. In this paper, we focus on runtime monitoring and generation of recovery plans
should a violation be detected. Availability of service contracts allows us to provide
guarantees of correctness of the recovery plans. Figure 1 shows a schematic view of
our approach to runtime monitoring and error recovery.

In the Preprocessing phase, a formal model is extracted from the given BPEL
program and enriched with the compensation information. The Runtime Monitoring
phase runs the monitors in parallel with the BPEL application, stopping when one of
the monitors is about to enter its error state, or when service contracts are about to
be violated. The use of high-level properties and/or service pre- and post-conditions
allows us to detect the violation, and our event interception mechanism allows us to
stop the application right before the violation occurs and begin the Recovery phase.

In the Recovery phase, we identify a set of possible plans that recover from runtime
errors. Given an application path which led to a failure and a monitor which detected
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Fig. 1 Overview of our approach

Fig. 2 A schematic view on
plan generation

it, our goal is to compute a set of suggestions, i.e., plans, for recovering from these
failures. The overall recovery planning problem is as follows:

From the current (error) state in the system, find a plan to achieve the goal that
goes through a change state.

This process is shown schematically in Fig. 2.
When there are multiple recovery plans available, we automatically sort them based

on user preferences (e.g., the shortest, the cheapest, the one that involves the minimal
compensation, etc.) and enable the application user to choose among them.

1.3 Contributions

Parts of this project have been published elsewhere [39–43]. The novel contribution
of this paper is our ability to give guarantees of correctness of the generated recovery
plans. To do so, we extend our previously published approach in two ways: (1) we
specify service pre- and post-conditions and collect information about select predicates
in states of our formal model and (2) we define a concept of adequate compensation—
an ability to correctly compensate an action by returning to the state where this action
can be executed again. The collected information allows us to check correctness of
service contracts and adequacy of compensation. We can then prove that recovery
from an undesired behavior leaves the application in a previously observed state from
which an alternative behavior that avoids the violation is possible. We can also prove
that recovery from being unable to produce a desired behavior correctly returns the
application to a previously observed state from which the generated plan implements
the desired behavior.

This paper presents a definitive description of the input, analysis and recovery for-
malism. It also provides experiments measuring the cost and effectiveness of collecting

123



Monitoring and recovery for web service applications 227

Fig. 3 Example of an L2TS

information about program states and checking it for adequacy of compensation and
violations of service contracts. In addition, we suggest and implement a number of
heuristics for improving the quality of plan computation and reducing the number of
unusable plans presented to the user.

The rest of this paper is organized as follows: In Sect. 2, we present some required
notation. In Sect. 3, we describe inputs to our system: BPEL models (including com-
pensation mechanisms and service contracts) and correctness properties expressed as
monitors. In Sect. 4, we define the representation of BPEL models as Doubly Labeled
Transition Systems (L2TS), and show how to use this representation to check that
compensation is adequately defined and to identify change states and goal traces.
We discuss runtime monitoring in Sect. 5 and describe recovery from violations of
behavioral properties in Sects. 6 and 7. Both of these sections also include proofs
of correctness of the generated recovery plans. We report on our implementation in
Sect. 8. We have tested our framework on various case studies, with full results avail-
able in [38]. Instead, Sect. 9 focusses on assessing costs and benefits of doing the
adequate compensation check, using two web service examples. We also measure the
impact of the optimizations we have implemented to improve the quality of generated
plans. We compare our work with related approaches in Sect. 10. Finally, in Sect. 11,
we summarize the article and give suggestions for future work.

2 Preliminaries

In this work, we formalize BPEL using Doubly Labelled Transition Systems (L2TS)

which we define below.

Definition 2.1 (LTS [32]) A Labelled Transition System LTS is a quadruple
(S,Σ, δ, I ), where S is a set of states, Σ is a set of actions, δ ⊆ S × Σ × S is a
transition relation, and I ∈ S is the initial state. We often use the notation s

a−→ s′ to
stand for (s, a, s′) ∈ δ.

An execution, or a trace, of an LTS M is a sequence T = s0a0s1a1s2 . . . an−1sn

such that ∀i, 0 ≤ i < n, si ∈ S, ai ∈ Σ and si
ai−→ si+1.

Definition 2.2 (L2T S [34]) A Doubly Labelled Transition System L2TS is a quintuple
D = (S,Σ, δ, I,L ), where (S,Σ, δ, I ) is an LTS and L : S → 2AP is a proposi-
tional labelling function that associates a set of atomic propositions to each state. We
denote the substructure (S,Σ, δ, I ) of D, i.e., the underlying LTS associated to an
L2TS, by LTS(D).

An example L2TS is shown in Fig. 3, where S = {1, 2, 3}, Σ = {a, b, c},
δ = {(1, a, 2), (2, b, 2), (2, c, 3)}, I = 1, and L = {(1, {p, q}), (2, {q}), (3, {p})}.
The notion of a trace in an L2TS is defined analogously to the notion of a trace in an
LTS.
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Fig. 4 TAS workflow

3 Input

Inputs to our system are a BPEL program enriched with compensation actions and a set
of behavioral correctness criteria specified as simple safety and liveness properties. We
describe these below. More information about the core BPEL activities and variable
definition is given in the appendix.

3.1 BPEL programs

BPEL [35] is a standard for implementing orchestrations of web services (provided by
partners) by specifying an executable workflow using predefined activities, over a set
of global variables. Service interfaces, i.e., operations and their input/output messages
and ports, are described using Web Service Description Language (WSDL) [46]. These
services are then made available to the BPEL application by defining partner bindings
within the BPEL specification.

3.1.1 Process definition

Orchestrations are created by composing different types of activities, such as service
invocations (<invoke>) and variable assignments (<assign>), using standard control
structures. Activities can be logically grouped using <scope>s. The <pick> activity
is used to wait for one of several possible messages (specified using <onMessage>)
to arrive. An <empty> activity does nothing when executed.
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Fig. 5 a Part of the WSDL file tas.wsdl, showing the definition of the WSDL message types for the bc
service; and b partial declaration of TAS’s global variables

Figure 4 shows the BPEL-expressed workflow of the Trip Advisor System (TAS),
introduced in Sect. 1. We use the NetBeans SOA notation [36]. TAS interacts with
four external services: (1) book a rental car (bc), (2) book a limo (bl), (3) book a
flight (bf), and 4) check price of the flight (cf).The result of cf is then used to decide
which local service to invoke, broadcasting whether the flight is cheap (cheapF) or
expensive (expF). Service interactions are preceded by a symbol.

The workflow begins by <receive>’ing and validating input (ri), followed by
<pick>’ing (indicated by labeled 1©) either the car rental (onMessage onlyCar)
or the air/ground transportation combination (onMessage carAndFlight). The latter
choice is modeled using a <flow> (scope enclosed in bold, blue lines , labeled 2©)
since air (getFlight) and ground transportation (getCar) can be arranged indepen-
dently. The getFlight branch sequentially books a flight, checks if it is expensive, and
updates the state of the system accordingly. The ground branch <pick>’s between
booking a rental car and a limo. The end of the workflow is marked by a <reply>

activity, reporting that the destination has been reached (rd).
BPEL global variables are those accessible throughout the BPEL process; local vari-

ables are only available to the activities within the <scope> in which they are defined.
Allowed variable types are defined using an XSD schema; these types are then used to
define service input and output messages, as well as global BPEL variables. Figure 5a
shows the definition of the input and output messages of the bc service. For example,
in_bc, bc’s input message, consists of three parts: city, fromDate and toDate,
where city is a string and both date fields are integers. Figure 5b shows the defini-
tion of three global variables of the TAS system: tripData, inputBookCar and
outputBookCar. The first variable is used to maintain the state of the application,
while the second two are the input and output variables of the bc service. The details
of how these variables are defined can be found in the appendix.
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Fig. 6 a A fragment of Fig. 4, showing the <assign> activities placed before and after the bc service
invocation. The BPEL definitions of b prep_bc_input and c save_bc_output

Before a service can be invoked, its input message must be initialized by copying
the pertinent variable values from tripData. This is done via an <assign>ment
activity placed right before the service invocation (shown in Fig. 6a using a sym-
bol). Assignment activities consist of multiple <copy> rules, each with their own
<from> and <to> parts, representing the source and destination data, respectively.
For example, Fig. 6b shows the BPEL definition of the prep_bc_input assignment
activity, which has three simple <copy> rules, one for each message part of in_bc
defined in Fig. 5a.

In a similar fashion, when a service returns a message to the application,
the application state must be updated to reflect the outcome of the service
invocation. This is done by placing an <assign> activity right after the ser-
vice invocation. The post-service invocation <assign> activity for bc is shown
in Fig. 6c. Here, $tripData.carBookingNo, $tripData.carStatus and
$tripData.carType are updated with values extracted from the service’s output
message. In the TAS example, each service invocation is surrounded by two assign-
ment activities like those described for bc; however, these have been omitted from
Fig. 4 for clarity.
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Fig. 7 a BPEL definition of a flight booking service invocation (bf), including its compensation; and
b LTS translation of the bf activity and its compensation (bold))

3.1.2 Compensation

BPEL’s compensation mechanism allows the definition of the application-specific
reversal of completed activities. This is done by attaching a compensation handler
(CH) to a <scope> or <invoke> activity: the activities defined in the CH are executed
when compensation is initiated using the <compensate> activity. For example, the
compensation for booking a flight (bf) is to cancel the booking (cancelF). This is
described in BPEL as shown in Fig. 7a.

The default compensation respects the forward order of execution of the scopes
being compensated:

If a and b are two activities, where a completed execution before b, then
compensate(a; b) is compensate(b); compensate(a).

If an activity does not provide compensation, or has already been compensated,
then attempts to invoke compensation are treated as executing an <empty> activ-
ity, denoted by τ .

3.1.3 Service pre- and post-conditions

As mentioned at the beginning of Sect. 3.1, BPEL service interfaces are defined
in WSDL. These service interface definitions are semantically poor: neither service
requirements nor capabilities are specified. One way of improving these service spec-
ifications is to apply the principles of Design by Contract [31] to web services, where
assertions are used to formally specify service contracts in terms of pre- and post-
conditions: conditions that must hold before and after the execution of the service.
Various projects (e.g., [6,24,45]) have adopted this approach for improving the qual-
ity of service specifications, each proposing their own specification language. In this
work, we specify service contracts using WSCoL [6] (Web Service Constraint Lan-
guage).

The grammar of the WSCoL subset used in this article can be found in the appendix,
along with some examples of predicates. BPEL variables are accessed using XPath
expressions, and the typical Boolean, relational and mathematical operators, as well as
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some pre-defined functions and quantifiers are used to build more complex expressions.
Unlike other assertion languages such as JML [10], WSCoL does not use a special
keyword to distinguish between the value of a variable prior to a service invocation
and the value afterwards. This is because web services are treated as black boxes that
expose public methods, which produce an output while leaving their input unchanged.

We can now define contracts for our services. For example, the bc service requires
a non-empty destination city and a valid range of dates (dates are in the YYYYMMDD
format):

pre_bc : (($inputBookCar/city) != “”

&& $inputBookCar/fromDate < $inputBookCar/toDate,

and returns a three-digit car booking number, as well as two messages—the booking
status and rental type. If the booking was successful, these messages should be set to
“booked” and “car”, respectively:

post_bc : (($outputBookCar/bookingNo) >= 1000

&& ($outputBookCar/status) == “booked”

&& ($outputBookCar/type) == “car”
)

3.2 Application properties

Apart from the system to be monitored, our framework also receives a set of properties
that the application must satisfy. These properties, provided by the developer, are then
used to monitor the run, detect errors and guide the production of recovery plans.
As with any other property-based specification, it is possible that the property list
is incomplete (i.e., some system requirements are not captured) or even inconsistent
(i.e., satisfying the entire set of requirements is not possible). In this work, we restrict
ourselves to simple properties describing negative behaviors (that should not appear
in the application), and properties describing positive, or desired, behaviors (that the
system must have).

For example, property P1 of the TAS system (see Sect. 1) describes a positive
behavior (the destination must be reached), while P2 describes a negative scenario
that should be avoided (a limousine and an expensive flight are booked). Negative
scenarios are commonly called safety properties, and require a finite sequence of
actions to witness their violations. For property P2, one such violating witness is
“book an expensive flight, and then book a limo”. For safety properties, no finite
sequence of actions can show satisfaction.

Positive behaviors, on the other hand, can also be (locally) satisfied. This happens
when the desired sequence is fully seen even though the property calls for repeated
sequences of desired behaviour. For example, for property P1, if rd has been seen, and
a new ri was not yet initiated, the specification is locally satisfied. Our notion of local
satisfaction of positive behaviours is related to finitary liveness [2] in which there
exists a fixed bound b such that something good must happen within b transitions.
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Fig. 8 Monitors: aA1, bA2, cA3, and d a more permissive version of A3. Red states are shaded horizontally,
green states are shaded vertically, and yellow states are shaded diagonally

The bound b may be arbitrarily large, but in our case it is limited by the length of the
trace collected at runtime. In many cases, properties may have both a negative and a
positive component, and thus we refer to such properties as mixed.1

In order to be verified, properties are translated into deterministic finite automata
(DFAs), which we call “monitors”. For example, Fig. 8a shows the monitor that checks
property P1: if the application terminates before rd appears, the monitor moves to the
(error) state 3. State 1 is a good state since the monitor enters it once the booked
transportation reaches the destination (rd). Monitor A2 in Fig. 8b represents the two
execution paths that lead to a violation of property P2—it enters its error state (4)
when either a limo was booked and later an expensive flight, or an expensive flight
was booked first and then a limo (violating P2). We formalize (coloured) monitors
below.

Definition 3.1 (Monitor) A monitor is a 5-tuple A = (S,Σ, δ, I, F), where
(S,Σ, δ, I ) is an LTS and F ⊆ S is a set of final states.

Monitor A accepts a word a0a1a2 . . . an−1 ∈ Σ∗ iff there exists an execution
s0a0s1a1s2 . . . an−1sn of A such that s0 ∈ I and sn ∈ F . In our case, the accepted
words correspond to bad computations, and the set F of accepting states represents
error states.

Let A = (S,Σ, δ, I, F) be a monitor. In order to facilitate recovery, we assign
colours to states in S. Accepting states are coloured red, signalling violation of the

1 Formally, mixed properties are either finitary liveness properties or a mixture of finitary liveness and
safety properties.
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property. State 3 of Fig. 8a and state 4 in Fig. 8b are red states (also shaded horizontally).
Yellow states are those from which a red state can be reached through a single transition.
Formally, for a state s ∈ S,

colour(s) = yellow if ∃a ∈ Σ, s′ ∈ F s.t. (s, a, s′) ∈ δ.

State 2 in Fig. 8a, and states 2 and 3 in Fig. 8b are yellow states (also shaded diagonally).
The green colour is used for states that can serve as good places to which a recovery

plan can be directed. We define green states to be those states that are not red or yellow,
but that can be reached through a single transition from a yellow state. Formally,

colour(s) = green iff
(colour(s) �= red) ∧ (colour(s) �= yellow) ∧
(∃a ∈ Σ, ∃s′ ∈ Ss.t. (colour(s′) = yellow) ∧ ((s′, a, s) ∈ δ)).

State 1 in Fig. 8a is coloured green (also shaded vertically). States that are neither
red, yellow or green are white.

Note that not all monitors have green states. For example, in A2 of Fig. 8b every
yellow state (2 and 3) has outgoing transitions only to yellow or red states. Thus these
states are “inescapable”, and the monitor has no green states. A monitor with no green
states is called a safety monitor. Otherwise, it is called a mixed monitor.

Definition 3.2 (Safety monitor) A monitor (S,Σ, δ, I, F) is a safety monitor if
∀s ∈ S\F, colour(s) ∈ {white, yellow} and ∀s ∈ F, colour(s) = red.

Definition 3.3 (Mixed monitor) A monitor (S,Σ, δ, I, F) is a mixed monitor
if ∀s ∈ S\F, colour(s) ∈ {white, yellow, green} and ∀s ∈ F, colour(s) = red.

In this work, we assume that the set A = {A1, . . . , An} of monitors is provided by
the application developers. However, we do use the BPEL application to suggest how
to make some of the automata more permissive, to allow sequences of events to be
recognized in any order. Recall that BPEL’s <flow> captures the parallel composition
of the enclosed activities, allowing their execution in any order. This allows us to flag
the monitors that use these activities as events, build more permissive automata and
suggest that the developers use them. For example, analyzing the TAS workflow in
Fig. 4, we note that air (getFlight) and ground (getCar) transportation can be arranged
in any order. Thus, if we had a monitor A3 for a mixed property “if air transportation is
arranged, then ground transportation should also be arranged”, depicted in Fig. 8c, we
would suggest to use the monitor in Fig. 8d, which allows processing of these events
in any order.

In [38], we discuss property specification languages and property patterns for web
service applications, as well as provide detailed algorithms for creating (regular, not
more permissive) monitors from these specifications.

4 Preprocessing

The inputs to the Preprocessing stage of our framework are the BPEL program B
and the set of properties expressed as monitoring automata (see the previous section).
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We begin by converting B into a Labelled Transition System and adding transitions on
compensation actions (see Sect. 4.1). We then enrich the LTSs with state information
coming from predicates in if statements and loops and service contracts, resulting in
Doubly Labelled Transition Systems (L2TSs). We use the state information in order
to determine whether compensation is adequately specified (Sect. 4.2). Finally, in
Sect. 4.3 we formalize change states and potential goal traces and provide an algorithm
for computing these statically on the resulting L2TS.

4.1 BPEL to LTS

In order to reason about BPEL applications, we need to represent them formally, so
as to make precise the meaning of “taking a transition”, “reading in an event”, etc.
Several formalisms for representing BPEL models have been suggested [21,25,37].
In this work, we build on Foster’s [19,20] approach of using an LTS as the underlying
formalism.

4.1.1 Existing translation

In [19,20], Foster specified how to map all BPEL 1.1 activities into LTS. For example,
Fig. 7b shows the translation of the <invoke> activity bf defined in Fig. 7a, which
returns a confirmation number. The activity is a sequence of two transitions: the actual
service invocation (invoke_bf) and its return (receive_bf).2

Conditional activities like <while> and <if> are represented as states with two
outgoing transitions, one for each valuation of the condition. The LTSs for these two
activities are shown in Fig. 9a. Note that both LTSs have two transitions from state

1: 1
expr_true−→ 2 and 1

expr_false−→ 3. <pick> is also a conditional activity, but can
have one or more outgoing transitions: one for each <onMessage> branch (there are
two of these in the example in Fig. 9a). <sequence> and <flow> activities result
in the sequential and the parallel composition of the enclosed activities, respectively
(see Fig. 9b). Note that BPEL processes may have multiple <receive> activities. For
such processes, the BPEL engine non-deterministically chooses a creation point in the
execution. In his thesis, Foster assumes that processes have only one creation point, the
first <receive> that appears in the process definition. We make the same assumption
in this work.

Thus, we represent a BPEL program B by its LTS translation L(B). The set of labels
Σ of L(B) is derived from the possible events in B: service invocations and returns,
<onMessage> events, <scope> entries, and condition valuations. It also includes the
new system event TER, modeling termination. The set of states S in L(B) consists of
the states produced by the translation as well as a new state t, reachable from any state
of S via a TER event: ∀s ∈ S \ {t}, (s, TER, t) ∈ δ.

2 Foster’s translation includes partner, activity and variable names in the labels, in order to include trace-
ability information, but we omit these in this paper for simplicity.
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Fig. 9 a BPEL conditional activities and their corresponding LTSs; b BPEL structural activities and their
corresponding LTSs

4.1.2 Formalizing compensation

In order to capture BPEL’s compensation mechanism, we introduce additional, back-
wards transitions. For example, the compensation for bf, specified in Fig. 7a, is cap-

tured by adding the transition 3
invoke_cancelF−→ 1 as shown in Fig. 7b. Taking this

transition effectively leaves the application in a state where bf has not been executed.
We denote by τ an ‘empty’ action, allowing undoing of an action without requiring
an explicit compensation action.

Note that we have made a major assumption that compensation returns the appli-
cation to one of the states that has been previously seen. Thus, given a BPEL program
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B and its translation to LTS L(B) = (S,Σ, δ, I ), we translate B with compensation
into an LTS LC(B) = (S,Σ ∪ Σc, δ ∪ δc, I ), where Σc is the set of compensation
actions (including τ ) and δc is the set of compensation transitions.

Figure 10a shows LC(TAS). To increase legibility, we do not show the termination
state t and transitions to it. Also, we only show one transition for each service invo-
cation, abstracting the return transition and state. In this notation, the LTS in Fig. 7b

has two transitions between states 1 and 3: 1
bf−→ 3 and 3

cancelF−→ 1. This allows
us to visually combine an action and its compensation into one transition, labeled in
the form a/ā, where a is the application activity and ā is its compensation. In other

words, each transition s
a/ā←→ t in Fig. 10a represents two transitions: (s, a, t) ∈ δ

and (t, ā, s) ∈ δc.
The <pick> activity labeled 1© in Fig. 4) corresponds to state 2 of Fig. 10a. The

choice between onlyCar and carAndFlight is represented by two outgoing transitions
from this state: (2, onlyCar, 3) and (2, carAndFlight, 6). Since these actions do not
affect the state of the application, they are compensated by τ . The <flow> activity (
labeled 2© in Fig. 4) results in two branches, depending on the order in which the air
and ground transportation are executed. The compensation for these events is also τ .

4.2 Adequate compensation

According to the BPEL standard, compensation for a service is well-defined if: (1) the
compensation activity can be executed after the service has been invoked, and (2) the
execution of a service’s compensation activity leaves the application in a state where
the service can be executed again. This corresponds to our translation of compensation,
where compensation for an activity leaves the application back in its original state.
However, we cannot guarantee that this condition holds at runtime, and thus, some
of our recovery plans may fail. In the future, we plan to improve this result by using
information about the application’s state and service contracts to statically check these
conditions.

We begin by defining how we collect state information. Conditional activities
like <if> and <while>generate predicates about the state of the system. Another
source of predicates are service pre- and post-conditions. For example, the pre-
condition for the booking service, pre_bc, defined in Sect. 3.1.3, generates two
predicates: $inputBookCar/fromDate < $inputBookCar/toDate and
$inputBookCar/city != “”.

Assignment activities can both generate and kill predicates. For example, in
the state before executing bc, we know that $tripData/carType == “”
is true (derived from the BPEL variable initialization). We also know that
$outputBookCar/type == ‘‘car ’’ should hold in the state after invoking bc,
since it is guaranteed by its post-condition. Now, since the <assign> activity
save_bc_output copies the value of $outputBookCar/type to $tripData/
carType, we can conclude that $tripData/ carType == ‘‘car ’’ holds after
save_bc_output is executed (so $tripData/carType == “” is killed).

We use standard data-flow analysis techniques to propagate these predicates for
the L2TSL(B), constructing L (s)—the set of predicates that hold in state s. Fig. 10b
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Fig. 10 a LTS LC(TAS): downward and upward arrows show forward and compensation logic, respec-
tively. 1-step goal transitions are depicted by tiny-dashed transitions and change states are shaded diagonally
in purple. Traces t1 (dotted) and t2 (dashed) are also shown; b A fragment L2TS LC(TAS), showing the
predicates collected for states 17 and 23; c A fragment of L(TAS)× A1 (colour figure online)

shows the result of this analysis on states 17 and 23 of the LTS L(TAS). In the rest
of this paper, we will abuse the notation somewhat, referring to both the LTS and the
L2TS of a program B as L(B), and doing the same for the version with compensation,
LC(B). We will explicate its type if it is not clear from the context.

Now we can define adequate compensation:

Definition 4.1 (Adequate compensation) Let B be a BPEL application and LC(B) =
{S,Σ∪Σc, δ∪δc, I,L }be the L2TS of B with compensation. A transition (s, a, s′)∈δ

has adequate compensation when used in B if there is a transition (s′, aC , s) ∈ δC ,
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where aC is the compensation action for a, and both {postcond(a) ∧ L (s′) ⇒
precond(aC )} and {postcond(aC )∧L (s)⇒ precond(a)} hold. Actions compensated
by τ (the empty action) are always adequately compensated.

In the rest of this work, when we refer to the L2TS LC(B), we assume that δc only
contains adequate compensation transitions.

For example, according to Fig. 10b, cancelC is the compensation action for bc.
Suppose the contract for cancelC is as follows:

pre_cancelC : (($inputCancelCar/bookingNo) >= 1000
)

post_cancelC : (($outputCancelCar/status) == ”

&& ($outputCancelCar/type) == “ ”),

and suppose that the corresponding <assign> activities prep_cancelC_input and
save_cancelC_output are similar to those defined for bc. Then the compensation is
adequately defined since

post_bc ∧L (17)⇒ pre_cancelC

and

post_cancelC ∧L (23)⇒ pre_bc

We perform such checks using an SMT solver, such as MathSAT [16].
What happens if an SMT solver is unable to prove that the compensation is ade-

quate? The reason might be an error in the specification or simply incomplete state
information (since our predicate-collecting approach is pretty “light”). In such cases,
we have to rely on user feedback—they can augment our automated analysis by either
(1) confirming that the compensation is not adequate and removing it; (2) changing
its contract, whereby we would again try to prove adequacy; or (3) stating that it is
adequate, without proof, in which case we cannot guarantee that plans that use this
activity will run to completion (i.e., the correctness claims we make in Sects. 6.2 and
7.4).

4.3 Goal traces and change states

The last part of the preprocessing phase statically identifies key states and transitions
of the application L(B), aimed to help find an efficient recovery plan when a violation
is encountered (see Sects. 6 and 7).

4.3.1 Goal traces

In order to find a good recovery plan, we first need to compute a set of goal traces, that
is, traces which eventually result in the satisfaction of some properties. We compute
these on a per-property basis. Further, recall that only mixed properties can be satisfied,

123



240 J. Simmonds et al.

which is indicated by the monitor reaching a green state; safety properties can only
be violated. Thus, for each mixed monitor A, we are looking for traces in L(B) =
(S,Σ, δ, I,L ) which make A enter its green state(s). We find those using the cross-
product between the model and the automaton, L(B)×A. The traces can vary in length,
using a parameter i : as i gets larger, the analysis gets more precise but more expensive
(see the experiments in Sect. 9).

Definition 4.2 (i -Step Goal Trace) s0a0 . . . si−1ai−1si is an i -step goal trace in L(B)

iff ∃q0a0 . . . qi−1ai−1qi ∈ A s.t. colour(qi ) = green ∧ ∀ j, (0 ≤ j < i) ⇒
((s j , q j )

a j−→ (s j+1, q j+1) ∈ δL(B)×A) ∧ (colour(q j ) �= green).

That is, the last step of the trace, si−1
ai−1−→ si , corresponds to taking a transition on

ai−1 into a green state of A. si is called a goal state. The resulting set of goal traces
is denoted by Gi(B, A). For example, consider the fragment of L(TAS) × A1 shown
in Fig. 10c. The green state of A1 is state 1, with a transition on rd leading to it. In
this example, the set of 1-step goal traces is G1(TAS,A1) = {(4, rd, 5)} (depicted by
tiny-dashed transitions in Fig. 10a).

The set of two-step goal traces in our example is

G2(TAS,A1) = {(3, bc, 4, rd, 5), (22, cheapF, 4, rd, 5), (21, expF, 4, rd, 5),

(13, bc, 4, rd, 5), (24, bl, 4, rd, 5)}.

Note that while it is computed using L(B) × A, the set Gi(B, A) contains transitions
only of L(B).

Given a set of goal traces Gi(B, A), let Gs
i (B, A) = {(s0, 〈a0, . . . , ai−1〉)} s.t.

(s0, a0, . . . , si−1, ai−1, si ) ∈ Gi(B, A), i.e., we explicate a source state, i steps away
from a goal state, and an i-step sequence of actions that can be executed to reach the
goal state. In our example,

Gs
2(TAS,A1)) = {(3, 〈bc, rd〉), (13, 〈bc, rd〉), (21, 〈expF, rd〉),

(22, 〈cheapF, rd〉), (24, 〈bl, rd〉)}.

When we compute recovery plans, we need to direct the application towards execut-
ing its goal traces, i.e., towards reaching source states and then executing the follow-on
sequences of actions that would reach the goal state and move the corresponding mon-
itor to the green state.

4.3.2 Change states

Given an erroneous run, how far back do we need to compensate before resuming
forward computation? If we want to avoid repeating the same error again, we need
the application to take an alternative path. States of L(B) that have actions executing
which can potentially produce a branch in control flow of the application are called
change states.

Flow-changing actions are user choices, states modelling the <flow> activity (since
each pass through this state may produce a different interleaving of actions), and
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those service calls whose outcomes are not completely determined by their input
parameters but instead depend on the implicit state “of the world”. Services whose
result is fully determined by the input are sometimes referred to as idempotent services,
since multiple invocations of the same service yield the same results. We refer to all
other services as non-idempotent. Thus, non-idempotent service calls also identify
change states. For example, cheapF is a call to determine whether a given flight is
cheap and, unless the specification of what cheap means changes, returns the same
answer for a given flight. On the other hand, bf books an available flight, and each
successive call to this service can produce different results. Non-idempotent service
calls are identified by the BPEL developer as XML attributes in the BPEL program.

Definition 4.3 (Change state) A state is a change state if it is identified by:
(1) a <flow> activity, (2) a <pick> activity, or (3) a non-idempotent service call.

We denote by C(B) the set of all change states in the L2TS of the application B.
For example, in the L2TS in Fig. 10a, state 6 corresponds to the <flow> activity and
represents the different serialization order of the branches. States 2, 12 and 15 model
user choices. Non-idempotent partner calls are bf, bc, bl, and thus

C(TAS) = {1, 2, 3, 6, 7, 12, 13, 15, 16, 18, 23, 24},

identified in Fig. 10a by purple diagonal shading.
A recovery plan should pass through at least one change state, to allow a change

in the execution. Furthermore, if all paths from a change state lead to an error, such
change states are not useful for recovery and should be removed from C(B) (the TAS
example does not have such states). Candidates for removal can be easily identified
using static analysis. In the remainder of the paper, we assume that C(B) has already
been filtered using this technique.

5 Runtime monitoring

The runtime monitoring phase uses the set of monitors to analyze the BPEL program B
as it runs on a BPEL-specific Application Server. The runtime monitoring component
of our recovery framework is based on that of [43], which has been implemented within
the IBM WebSphere business integration products [26]. We capture events in Σ as they
pass between the application server and the program, and use these events to update
the state of the monitors and store them as part of the execution trace T. By default,
service timeouts trigger application termination. Monitors can be dynamically enabled
(e.g., to monitor new properties) and disabled (e.g., to reduce monitoring overhead).
Since the application properties are specified separately from the BPEL program, no
code instrumentation is required in this step, enabling non-intrusive (and scalable)
online monitoring.

In our earlier work [43], we have used the interception mechanism based on
eavesdropping—watching events as they pass between partners and updating mon-
itors accordingly. While adequate for identifying and reporting property viola-
tions, it is insufficient for recovery. For example, we do not want to execute a
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TER event before knowing whether its execution causes any monitor violations,
since we cannot reverse application termination. We also want to avoid executing
other events that may directly lead to monitor violation, since these events will
be inevitably compensated during recovery. Thus, instead of allowing all events
to pass, our monitoring component delays the delivery of events that cause termi-
nation or property violation. If no violation is detected during analysis, the event
is delivered and execution continues as usual. Otherwise, the event is not deliv-
ered and recovery is initiated—our framework computes and presents a set of
recovery plans, and the BPEL engine attempts to execute the plan chosen by the
user. Using a <collaboration> scope, the corresponding compensation handler is
updated with the plan chosen by the user and then activated (<collaboration>

scopes can be used to dynamically modify BPEL applications, see Sect. 8 for
details).

During the execution of the application B, represented as L(B) = (S,Σ, δ, I,L ),
we store its trace

T = s0
a0−→ s1

a1−→ · · · an−1−→ sn .

We say that T is a successful trace iff ∀Ai ∈ A, a0a1 . . . an−1 is rejected by Ai. T is
a failure (or an error) trace iff ∃Ai ∈ A s.t. a0a1 . . . an−1 is accepted by Ai. In such a
case, state sn is an error state of the application.

Recall that each state of the L2TS L(B) had information about predicates har-
vested from control flow conditions and service contracts. At runtime, we main-
tain the exact values of variables over which these predicates were defined, which
allows us to check correctness of service contracts. Specifically, if a step si of the
trace T arrives at an invocation of some service svi , we check that svi ’s precondi-
tion holds. For example, ($inputBookCar/city!= “”) is part of bc’s precondi-
tion (see Sect. 3.1.3). During the run, we keep the values $inputBookCar/city
in each state and, if upon reaching state 17 (see Fig. 10a), its value is “”, then
the precondition is violated and we report an error. In a similar manner, we can
check whether service svi leaves the application in the expected state by checking
whether post(svi ) holds after executing svi . These checks are, in effect, application-
independent safety properties (e.g., “the system does not have behaviours which vio-
late stated pre- and postconditions for service invocations”) that we check without
constructing special-purpose automata. We discuss recovery from such violations in
Sect. 6.

In addition to T, we also store traces TA1 . . . TAn that correspond to the executions
of the monitorsA1 . . . An, respectively. These are used in the recovery phase to reverse
the state of the monitors. Note that all traces corresponding to a single execution differ
in their states (e.g., application states are different from states of each monitor) but
agree on the events which got executed. In what follows, traces corresponding to the
application have no superscripts, whereas monitor traces are superscripted.

For example, consider the execution of TAS in which the customer chooses the
air/ground option (carAndFlight), and then tries to book the flight before the car. In
this example, there is a communication problem with the flight system partner, and
the invocation of the cf service times out. This scenario corresponds to the trace t1,
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depicted by dotted transitions in Fig. 10a. In addition to t1, our tool stores tA1
1 and

tA2
1 —the corresponding traces of the enabled monitors:

t1 = 1
ri−→ 2

carAndFlight−→ 6
getFlight−→ 7

bf−→ 8
cf−→ 9,

tA1
1 = 1

ri−→ 2
carAndFlight−→ 2,

getFlight−→ 2
bf−→ 2

cf−→ 2,

tA2
1 = 1

ri−→ 1
carAndFlight−→ 1

getFlight−→ 1
bf−→ 1

cf−→ 1.

The application server detects that the cf invocation timed out, and sends a TER
event (not shown in Fig. 10a) to the application. Our framework intercepts this TER
event and determines that executing it turns t1 into a failing trace, because the monitor
A1 would enter its error (red) state 3. In response, our framework does not deliver the
TER event to the application, and instead initiates recovery.

In another scenario, the customer attempts to arrive at her destination via a limo (bl)
and an expensive flight (expF). This corresponds to the trace t2, depicted by dashed
transitions in Fig. 10a (the trace corresponding to A1 is omitted):

t2 = 1
ri−→ 2

carAndFlight−→ 6
getCar−→ 15

limo−→ 16
bl−→ 17

getFlight−→ 18
bf−→ 19

cf−→ 20
exp_true−→ 21

expF−→ 4.

tA2
1 = 1

ri−→ 1
carAndFlight−→ 1

getCar−→ 1
limo−→ 1

bl−→ 3
getFlight−→ 3

bf−→ 3
cf−→ 3

exp_true−→ 3
expF−→ 4.

Before delivering an event to the application, our framework first checks whether
doing so would cause an error. For example, during the execution of t2, when the
application is in state 21 and the monitor A2 is in state 3, we note that the monitor has
a transition on expF to its error state. Thus, our framework checks whether the next
received event is expF. If so, t2 is determined to be a failing trace, initiating recovery.
Otherwise, the event is passed to the monitor and the application, and the monitoring
continues.

6 Recovery plans for safety property violations

Once an error has been detected during runtime monitoring, the goal of the recovery
phase is to suggest a number of recovery plans that would lead the application away
from the error.

Definition 6.1 (Plan) A plan is a sequence of actions. A BPEL recovery plan is a
sequence of actions consisting of user interactions, compensations (empty or not) and
calls to service partners.

Recovery plans differ depending on the type of property that failed. We treat safety
properties below, and recovery from mixed properties is described in Sect. 7.
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Fig. 11 a Plans for TAS for recovery from the safety violation of trace t2; b XML version of recovery
plan r18

6.1 Computing plans

The recovery procedure for a safety property violation receives LC(B)—the L2TS of
the running application B enriched with compensation (see Sect. 4.1), T—the executed
trace ending in an error state e (see Sect. 5) and C(B)—the set of change states (see
Sect. 4.3.2). It does not need to know which monitor discovered a violation and thus
works the same way for violation of application-specific safety properties and service
contracts.

In order to recover, we need to “undo” a part of the execution trace, executing
available compensation actions, as specified by δc. We do this until we either reach a
state in C(B) or the initial state of LC(B). Multiple change states can be encountered
along the way, thus leading to the computation of multiple plans.

For example, consider the error trace t2 described in Sect. 5 and shown in Fig. 10a.
{1, 2, 6, 15, 16, 18} are the change states seen along t2. This leads to the recovery plans
shown in Fig. 11a. We add state names between transitions for clarity and refer to plans
as to mean “recovery to state s”. A given plan can also become a prefix for the follow-on
one. This is indicated by using the former’s name as part of the definition of the latter.
For example, recovery to state 16 starts with recovery to state 18 and then includes
two more backward transitions, the last one with a non-empty compensation. Plan r18
can avoid the error if, after its application, the user chooses a cheap flight instead of an
expensive one. Executing plan r15 gives the user the option of changing the limousine
to a rental car, and plan r2—the option of changing from an air/ground combination
to just renting a car. Both of these behaviours do not cause the violation of A2.

Computed plans are then converted to BPEL for presentation to the user. For exam-
ple, plan r18 is shown in Fig. 11b. The chosen plan can then be applied (see Sect. 8),
allowing the program to continue its execution from the resulting change state.

6.2 Analysis

Let L(B) and LC(B) be L2TSs, as previously defined, and let T = s0
a0−→ s1

a1−→
· · · an−1−→ sn be an execution trace, where sn = e (the error state), and rl = sn

cn−1−→
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sn−1
cn−2−→ · · · cl−→ sl be a safety recovery plan for T that leaves the application in state

sl , where ck compensates ak and sl ∈ C(B). Finally, let CT(B) be the set of change
states that appear in T: CT(B) = {s|(s, a, s′) ∈ T ∧ s ∈ C(B)}. Note that we cannot
guarantee the correct execution of a recovery plan if a service that appears in the plan
times out during its execution.

Definition 6.2 (Compensated execution trace) Let T = s0
a0−→ s1

a1−→ · · · an−1−→ sn be

an execution trace, where sn = e (the error state), and rl = sn
cn−1−→ sn−1

cn−2−→· · · cl−→sl

be a safety recovery plan for T. The compensated execution trace Trl is the result of
applying rl to T, assuming that none of the participating services timeout. In other

words, Trl = s0
a0−→ s1

a1−→ · · · ai−1−→ sl .

Proposition 6.1 Let T = s0
a0−→ s1

a1−→ · · · an−1−→ sn be an execution trace, where

sn = e (the error state), and rl = sn
cn−1−→ sn−1

cn−2−→ · · · cl−→ sl be a safety recovery
plan for T. If compensation for actions al , . . . , an−1 is adequate, and the default BPEL
compensation order is observed at runtime, then the compensated execution trace Trl

is the l-length prefix of T, i.e., Trl = s0
a0−→ s1

a1−→ · · · al−1−→ sl , where sl ∈ C(B).

This proposition follows from Definitions 4.1 and 6.2. Since the default BPEL com-
pensation respects the forward execution order during compensation, compensating
the tail of the execution trace leaves the application in the state from which the tail
sequence of actions was executed.

The exact number of plans is determined by the number of change states encountered
along the trace. The maximum number of plans computed by our tool is set by user
preferences either directly (“compute no more than 3 plans”) or indirectly (“compute
plans of up to length 20” or “compute plans with the overall number of compensation
actions fewer than 10”).

In the worst case, the maximum number of plans and the maximum plan length are
both at least n, |CT(B)| = n − 1, and each transition in T is compensatable. In other
words, each non-error state in T is a change state, and each one is reachable from the
current error state. According to our approach, we compute one recovery plan for each
state in CT(B), so computing recovery plans for safety violations is linear in the size
of the error trace T.

In the average case, we expect that the maximum number of plans will be smaller
than the size of the average execution trace, since execution traces contain many
BPEL-induced actions that are not used to identify change states. We also expect that
developers will set the maximum number of plans to be generated to a relatively small
number (e.g., five) thus making recovery plan generation very feasible in practice.

7 Recovery plans from mixed property violations

Failure of a mixed monitor during execution means that some required actions have
not been seen before the application tried to terminate, and the recovery plan should
attempt to perform these actions. The recovery procedure receives:
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– A, the monitor that identified the violation,
– LC(B), the L2TS of the application,
– Gi(B, A), the set of i-step goal traces corresponding to A (and its refactored version,

explicating source states and sequences of actions, Gs
i (B, A)),

– T, the executed trace ending in an error state e, and
– C(B), the set of change states.

A recovery plan effectively “undoes” actions along T, starting with e and ending in
a change state (otherwise, the plan would not be executable!) and then “re-plans” the
behaviour to reach the goal (see Fig. 2 for a schematic view of the overall process).
Our solution adapts techniques from the field of planning [18], described below.

7.1 Recovery as a planning problem

A planning problem is a triple P = (D, ini t, G), where D is the domain, init is the
initial state, and G is a set of goal states.

In addition to P , a planner often gets as input k—the length of the longest plan to
search for, and applies various search algorithms to find a plan of actions of length
≤ k, starting from init and ending in one of the states in G. Typically, the plan is found
using heuristics and is not guaranteed to be the shortest available. If no plan is found,
the bound k can be increased in order to look for longer plans.

To convert a recovery problem into a planning problem P(B, A, T), we use LC(B)

as the domain and e as the initial state. The third component needed is a set of goal
states. For that, we use source states from Gs

i (B, A). I.e., we aim to compute a path (of
length k) from the initial state to one of the states s s.t. (s, 〈a0, . . . , ai−1〉) in Gs

i (B, A)

and then extend it with 〈a0, . . . , ai−1〉, resulting with a plan of length k + i .
For example, consider the trace t1 of Fig. 10a, described in Sect. 5, in which monitor

A1 fails and assume that we want to use goal traces of length 1. We define the planning
problem P(TAS,A1, t1) = (LC(TAS), 9, {4}), where 9 is the initial state (see Fig. 10a)
and Gs

1(TAS,A1) = {(4, 〈rd〉)}. The resulting plan p should than be extended to

p
rd−→ 5.

Unfortunately, not every trace returned by solving P(B, A, T) is acceptable: the
recovery plans for mixed violations should go through change states. Thus, we cannot
simply use a planner as a “black box”.

Instead, we look at how planners encode the planning graph and then manipulate
the produced encoding directly, to add additional constraints. Consider the LTS in
Fig. 12a, which is the planning domain, with s as both the initial and the goal state.
The planning graph expanded up to length 3 is shown in Fig. 12b and is read as follows:
at time 1 we begin in state s1. If action a occurs (modelled as a2), then at time 2 we
move to state t (modelled as proposition t2 becoming true); otherwise, we remain in
state s (i.e., proposition s2 is true). If action b occurs while we are in state t (modelled
as b3), then at time 3 we move to state s. Two plans of length 2 are extracted from this
graph: a2, b3, corresponding to executing a first, followed by b, and “do nothing”—a
planner-specific treatment of a sequence of no-ops.
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Fig. 12 a A simple LTS and b its encoding as a planning graph of size 3

Several existing planners, such as BlackBox [28], translate the planning graph into
a CNF formula and then use a SAT solver, such as SAT4J [8], to find a satisfying
assignment for it. Such an assignment, if found, represents a plan. For example, the
CNF encoding of the planning graph in Fig. 12b is as follows:

flts = (¬no-op_s2 ∨ s1) ∧ (¬a2 ∨ s1) ∧ (¬no-op_s3 ∨ s2)

∧(¬b3 ∨ t2) ∧ (¬s2 ∨ no-op_s2) ∧ (¬t2 ∨ a2)

∧(¬no-op_s3 ∨ s3) ∧ (¬b3 ∨ s3) ∧ (s1) ∧ (s3).

Note that it explicitly models pre- and post-conditions of the execution of actions.
Such a formula is passed to a SAT solver which produces a satisfying assignment s, if
one exists. The desired plan is extracted from s by taking propositions that correspond
to actions and that are assigned positive values in s. For the above example, these are
a2, b3 and “do nothing”.

Our approach has been inspired by existing work on a related problem—that of
automatically creating new web service compositions that accomplish non-trivial
tasks [29,30,33,44]. In this case, the planning domain is the set of available web
services, the goal is a specification of the desired behaviour, and plans are service
compositions that accomplish the desired behaviour. Research in this area has focused
on using different planning techniques to solve this problem in an efficient manner,
dealing with the nondeterministic behaviour of web services, the partial observability
of their internal status, and the specification of complex goals expressing temporal con-
ditions and preference requirements. In this work, we do not use planning to generate
new service compositions, but use it instead to explore existing applications. However,
the approach presented here can be augmented with the work presented in [30,33,44],
especially in the case when there is not enough compensation or redundancy in the
application to permit the computation of recovery plans according to our approach.

In what follows, we first discuss how to produce a single recovery plan using a
SAT-based approach (Sect. 7.2) and then show how to extend it to produce multiple
plans (Sect. 7.3).

7.2 Producing a single recovery plan

Let fP be the encoding of the planning problem P(B, A, T) produced by an existing
planner. We augment fP to follow our “compensate until a change state and then exe-
cute” approach by adding conjuncts to fP with the purpose of restricting its solutions.
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For efficiency, some additional filtering is done after all plans have been computed
(see Sect. 7.5).

1. We want to make sure a recovery plan visits at least one of the change states
encountered on the execution trace T. Let S(T) be the set of states on T. We define
C(T) = S(T) ∩ C(B) to be the change states that appear on T and denote by
c1, . . . , cn the propositions that correspond to states in C(T). If k is the maximum
length of the plan which is being searched for, propositions c j

1 , c j
2 , . . . , c j

k corre-
spond to expansions of c j to times 1 . . . k. For example, consider Fig. 12 again.
If x is a change state and k = 3, then propositions x1, x2, x3 in flts correspond to
expansions of x to times 1, 2, 3. We define c = (c1

1 ∨ · · · ∨ c1
k ∨ · · · ∨ cn

1 · · · ∨ cn
k ),

or, in the case of our example, c = (x1 ∨ x2 ∨ x3). This formula is true when at
least one of the change states in C(T) is part of the plan.

2. In order to further lead the planner towards the “compensate and execute” plans,
we want to make sure that the only compensations used in the plan correspond to
actions in the original trace T. More formally, let TC be the set of compensation
actions corresponding to the actions in T, and let Σc\TC be all other compensation
actions. Let a be a formula which excludes (timed versions) of actions in Σc \TC:
i.e., neither of these compensation actions is true at any step in the plan. For
example, to avoid having the compensations cancelC and cancelF in a plan of
length 2, we would define a as

a = ¬cancelC1 ∧ ¬cancelC2 ∧ ¬cancelF1 ∧ ¬cancelF2

We now build a new propositional formula, based on fP:

R0(fP) = fP ∧ c ∧ a

R0(fP) describes the original planning problem for P(B, A, T), and in addition
requires that at least one of the change states is visited and no compensation
actions for events that did not occur in T appear in the plan.

7.3 Producing multiple recovery plans

Let π0 be the plan produced for R0(fP) (see Sect. 7.2), leading to a state g (we called
it the source state) s.t. (g, 〈a0, . . . ai−1〉) ∈ Gs

i (B, A). To give the user options for
recovery, we want to produce other plans, different from π0. The simplest way to do
this is to remove g from the set of desired goal states and repeat the process described
in Sect. 7.2. The new plan will be different from π0. However, this method cannot
produce multiple plans to the same destination.

Instead, we constrain R0(fP) to explicitly rule out π0. For example, to rule out the
plan a, b for the LTS in Fig. 12a, we use R0(flts) computed in Sect. 7.2 and modify it
as

R1(flts) = R0(flts) ∧ (¬a2 ∨ ¬b3)
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(a)

(b)

(c)
Fig. 13 a Plans for TAS of length≤ 10 for recovery from the mixed property violation of trace t1; b XML
version of recovery plan p0; and c plans p′1− p′3, the result of applying plan-loop filtering to plans p1− p3

This guarantees that the plan, if found, is different from the previously found one in
at least one action.

We continue this way, restricting Rj(fP) with the set of previously computed plans
to get Rj+1(fP), until the number of desired plans is reached or until no new plan can
be found, that is, Rj(fP) is not satisfiable for some j .

We now apply this method to the TAS problem and the error trace t1 shown in
Fig. 10a and ending in state 9. Looking for plans up to length 10 and using goal traces
of length 1, we get plans p0 − p3 shown in Fig. 13a. Each of these is extended with

the last transition 4
rd−→ 5.

Plan p0 is the shortest: if unable to obtain a price for the flight, cancel the flight
and reserve the car instead. Plans p1 through p3 also cancel the flight (since 8 is not
a change state whereas 7 is) and then proceed to re-book it and book a car (p1, p2) or
a limo (p3). Increasing the plan length, we also get the option of taking the getCar
transition out of state 6, book the car and then the flight.

The produced plans are then ordered based on the length of the plan and the number
of compensation actions in it. For example, plan p0 is the shortest and has only one
compensation action, for carAndFlight. Thus, it is the first plan to be presented.

In addition, we can aim to limit the number of recovery plans computed by taking
two issues into consideration: (a) making sure that the plan goes through only “rele-
vant” change states, i.e., those that affect the computation of the violating trace, and
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(b) removing those plans that result in the violation of some of the safety properties.
These optimizations are described in detail in [41] and are omitted in this paper. Sect. 9
includes several small experiments to show their effectiveness.

Chosen plans are then converted to BPEL for execution. The compensation part of
the plan is similar to the one shown in Fig. 11b, and the re-planning part consists of a
sequence of BPEL <invoke> operations. The XML translation of plan p0 is shown
in Fig. 13b.

7.4 Analysis

In the previous subsections, we described how to compute a plan p which first com-
pensates the trace until a change state is reached and then computes an alternative path
to a certain goal. Under which conditions can we guarantee that executing such a plan
effectively leaves the system in a desired state?

In what follows, let B be the BPEL application, L(B) = {S,Σ, δ, I,L } be the
L2TS that represents B, and C(B) be the set of change states of application B. Let
LC(B) = {S,Σ ∪Σc, δ ∪ δc, I,L } be the L2TS of application B with compensation,
where Σc is the set of compensation actions and δc the set of compensation transitions,
computed as described in Sect. 4.1.

Let T = s0
a0−→ s1

a1−→ · · · an−1−→ sn , where sn = e, be a trace of the program leading
to an error, A be the mixed monitor that detected the violation and Gs

i (B, A) be the
set of (source state, action sequence) pairs corresponding to A. Let p = (pl , pm, pi )

be a mixed recovery plan for T that tries to lead the application to the goal state sm

through the change state sl . The first part of the plan, pl , compensates trace T, leaving
the application in state sl . The second part, pm , is a trace that leads to the state sm such

that (sm, 〈. . .〉) ∈ Gs
i (B, A) when executed from sl . That is, pl = sn

cn−1−→ sn−1
cn−2−→

· · · cl−→ sl , where ck compensates ak and sl ∈ C(B), and pm = sl
b0−→ s j

b1−→
s j+1

b2−→ · · · bm−1−→ sm . The third part, pi , is a trace that executes the action sequence
associated with state sm in Gs

i (B, A).
Let Tpl be the compensated execution trace resulting from the application of pl to T

according to Definition 6.2. If we assume that compensation for actions al , . . . , an−1
is adequate, and that the default BPEL compensation order is observed at runtime,
then, according to Proposition 6.1, the execution of pl leaves the application in state
sl . Again, we cannot guarantee the correct execution of a recovery plan if a service
that appears in the plan times out during its execution.

Definition 7.1 (Updated execution trace) Let T be an execution trace, p =
(pl , pm, pi ) be a mixed recovery plan and Tpl be the compensated execution trace (as
defined above). The updated execution trace Tpi is the result of applying the sequence
of actions associated with pm , followed by the sequence of actions associated with
pi to the compensated execution trace Tpl , assuming that none of the participating
services timeout.

In other words, the updated execution trace Tpi is the result of executing the
sequence b0b1 . . . bm from state sl , followed by the i-step sequence associated with
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state sm ∈ Gs
i (B, A). Note that BPEL applications considered in this paper have sev-

eral sources of non-determinism (from <pick> and <flow> activities). In these cases,
we suggest a valid interleaving of events in the plan. An incorrect interleaving is caught
by the monitors during plan execution. In the proposition below, we define sufficient
conditions under which the trace produced as a result of executing pm followed by pi

reaches a goal state.

Proposition 7.1 Let T be an execution trace, p = (pl , pm, pi ) be a mixed recovery
plan and Tpi be the updated execution trace (as defined above). If compensation for
actions al , . . . , an−1 is adequate, the default BPEL compensation order is observed
at runtime, the user acts as suggested by the plan in the case of external choices, and
the suggested <flow> activity interleavings are executed, then the updated execution
trace Tpi is the result of compensating actions alal+1 . . . an−1, leaving the application
in state sl , then executing pm, leaving the application in state sm, and finally executing

pi , leaving the application in a goal state g, i.e., Tpm = s0
a0−→ s1

a1−→ · · · al−1−→ sl
b0−→

· · · bm−1−→ sm
c0−→ · · · ci−1−→ g, where sl ∈ C(B) and (sm, 〈c0, . . . , ci−1〉) ∈ Gs

i (B, A).

This proposition follows from Definitions 4.1 and 6.2, as well as the fact that
we expect both the user and the BPEL engine to execute the suggested actions. Of
course, ensuring that a particular execution of the <flow> is chosen is difficult—and
in fact, often unnecessary. Our approach, described in Sect. 3.2, of using events in
the <flow> to make the corresponding monitors more permissive, allows the plan to
execute successfully even when the BPEL engine produces events out of order.

Definition 7.2 (Successful mixed recovery plan) Let T be an execution trace, p =
(pl , pm, pi ) be a mixed recovery plan and Tpi be the updated execution trace (as
defined above). A mixed recovery plan p is successful on an execution trace T iff the
execution of the updated execution trace Tpi on the mixed monitor A (the monitor that
detected the violation) leaves A in a state whose color is green.

We now discuss the worst case analysis. SAT-based planning is an NP-hard prob-
lem [28]. However, due to advances in the SAT community, checking satisfiability has
a good average case performance, allowing the solution of problem instances involving
tens of thousands of variables and millions of constraints.

As with violations of safety properties, the maximum number of plans we compute
for mixed violations is controlled by the user either directly or indirectly, by controlling
the maximum plan length. In the latter case, the maximum number of plans is also
indirectly determined by the number of change states encountered along the trace and
the number of source states in the i-step goal traces reachable from these change states.
If nc change states and ng source states are reachable from the error state within k
steps, then the maximum number of plans of at most length k is nc × ng . We check
the satisfiability of an increasingly larger SAT instance in order to compute each new
plan, since we add a set of constraints for each plan found. This process continues
until all plans of length k are found, or the maximum number of plans is reached. In
the average case, we expect that the maximum number of plans will be much smaller
than the number of application change states and source states of i-step goal traces. As
in the case of safety property violations, we expect that the application developer will
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limit the maximum number of plans to a small number (≤ 5) to avoid overwhelming
users with a large number of plans. The maximum plan length should also depend on
how far apart the application goals are, since we want to ensure that at least one goal
is reachable from each possible error state.

7.5 Controlling unnecessary compensations

Plans p1, p2 and p3 (see Fig. 13a) seem to be doing an unnecessary compensation:
why cancel a flight and then re-book it if the check flight service call failed? The
reason is that our approach first goes back to a change state and then goes forward
to a goal. To circumvent this problem, we implemented plan-loop filtering which can
remove the loop that goes from an application state to a change state and then back.
Plan-loop filtering turns plans p1 − p3 into p′1 − p′3, respectively (see Fig. 13c). This
is done semi-automatically: once plan-loops are identified, they are presented to the
user, and, if the user requests it, the unnecessary compensations are removed, making
the plans more usable but not affecting the overall number of computed plans.

This step cannot be done automatically because we do not know a priori how the
output of non-idempotent service calls affects the rest of the execution. If, for example,
the execution of cf failed because it received an invalid booking number from bf, then
we must cancel the existing flight and book a new one, since cf would keep on failing
otherwise.

As plan lengths get large, the planner can generate plans with compensation loops
which involve doing an action and then immediately undoing it. For example, in
recovering from a violation in trace t1 in L2TS LC(TAS), shown in Fig. 10a, the plan
may include booking a flight and then cancelling it several times (i.e., going between
states 7 and 8 of LC(TAS)). Clearly, such situations should be avoided.

To circumvent such a problem, we implemented compensation-loop filtering. The
idea is based on the notion that desired plans “go back” only once, and then start going
forward. Thus, a plan where a compensatory action follows some non-compensatory
one can be removed. Our compensation-loop filtering is implemented as a simple
script. Instead, we could have encoded the negation of the above condition as a SAT
formula, conjoining it with R0(fP), so plans with compensation loops are not generated
at all. Since this encoding would mean propositionalizing two universal quantifiers
(ranging over all compensatory and all non-compensatory actions in the system), it
might make the SAT computation less efficient. We plan to experiment with it in the
future.

8 Tool support

In this section, we describe the implementation of the monitoring and recovery frame-
work described in this paper. Our tool is called RuMoR, which stands for RUntime
MOnitoring and Recovery. We have implemented RuMoR on top of the IBM Web-
Sphere product suite, using a series of publicly available tools and several short (200–
300 lines) new Python or Java scripts. It takes as input the target BPEL application,
enriched with the compensation mechanism allowing us to undo some of the actions
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Fig. 14 Architecture of the framework

of the program, and a set of properties (specified as desired/forbidden behaviours)
that need to be maintained by the application as it runs. We discuss the architecture
of our tool in this section, implementation details are available in [38]. When runtime
violations are discovered, RuMoR automatically proposes recovery plans which users
can then select for execution.

We show the architecture of our framework in Fig. 14. In this diagram, rectangles
are components of our framework, and ovals are artifacts. We have also grouped the
components and artifacts by phase: preprocessing—green, with a symbol; runtime
monitoring—brown, with a symbol; and recovery—blue, with a symbol. Artifacts
with a thick border are the initial inputs to our framework. The preprocessing and
runtime monitoring phases of our framework are the same for both safety and mixed
properties, but different components are required for generating plans from the two
types of properties.

Developers create properties for their web services using property patterns and
system events. During the preprocessing phase, the Property Translator (PT) com-
ponent receives the specified properties and turns them into monitors (this process
is out of scope of this paper and is described in [38]). The LTS Extractor (LE)
component extracts an LTS model from the BPEL program and augments it with
compensation links (see Sect. 4.1). The L2T S Builder (LB) component collects
predicate information and service contracts to augment the resulting LTS with state
information, resulting in an L2TS (see Sect. 4.2). The L2T S Analyzer (LA) uses
the SMT solver MathSAT to check which compensation links are adequate (see
Sect. 4.2), and computes goal links and change states using the techniques described
in Sect. 4.3.

During the execution of the application, the Event Interceptor (EI) component inter-
cepts application events and sends them to the Monitor Manager (MM) for analysis
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(see Sect. 5 for details). MM stores the intercepted events for recovery, updates val-
ues of state variables of the application, checks pre- and post-conditions of service
partners, and updates the state of each active monitor. This process continues until
an error has been found, which activates the recovery state, or all partners termi-
nate.

During the recovery phase, artifacts from both the preprocessing and the runtime
monitoring phases are used to generate recovery plans. In the case of safety proper-
ties, the Safety Plan Generator generates recovery plans that can only compensate
executed activities (see Sect. 6). For mixed properties, plans can compensate executed
activities and execute new activities. In this case, the Mixed Plan Generator (MPG)
first generates the corresponding planning problem and then modifies it in order to
generate as many plans as required (see Sect. 7). The MPG also uses a simple script to
identify plan-loops, as well as remove compensation loops from the computed plans
(see Sect. 7.5).

In addition, we have implemented two heuristics aimed to reduce the number (and
improve the quality) of generated plans. These are: (1) remove plans that require going
through unnecessary change states, where re-executing the partner call cannot affect
the (negative) outcome of the trace, and (2) remove plans that attempt to satisfy a
mixed property at the expense of violating some safety properties. The details of these
optimizations are available in [41].

All computed plans are presented to the application user through the Violation
Reporter (VR), and the chosen plan is executed by the Plan Executor (PE). VR gen-
erates a web page snippet with violation information, as well as a form for selecting a
recovery plan. These recovery plans may include plan-loops, depending on the user’s
choice. For example, the plans in the snippet in Fig. 15a generated for a violation of
P1 have plan-loops. Developers must include this snippet in the default error page, so
that the computed recovery plans can be shown when an error is detected. Figure 15b
shows the (simplified) source code of such an error reporting page, where the bolded
line has the instruction to include the snippet. After the recovery plans have been
computed, the snippet is displayed as part of the application, and the user must pick
a plan to continue execution. Figure 15c shows a screen shot of error.jsp after
recovery plans for P1 have been computed. The PE receives as input a BPEL plan.
Statically, we add a <collaboration> scope to each process before execution, and the
BPEL plan chosen by the user is set as the logic of this scope. As the chosen plan
gets executed, MM updates the states of the active monitors; if none are violated, the
framework switches back to runtime monitoring.

9 Experience

We have applied our framework on various case studies with full results available in
[38]. In this section, we focus on assessing the cost and effectiveness of the adequate
compensation check introduced in Sect. 4.2. Since this check may remove compen-
sation transitions from a L2TS, we expect that including this step in our framework
does not generate plans which are infeasible at runtime and thus result in fewer plans
altogether. We are also interested in the overhead that this analysis adds in practice.
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Fig. 15 Violation reporting: a snippet.jsp, automatically generated snippet that contains recovery
plans; b error.jsp, the application error handling page; c error.jsp displayed on a browser

To study this, we compare the results of applying three different configurations
of our framework to two of our case studies—TAS and the Travel Booking system
(TBS). TBS was described in [38]. Its L2TS model has 52 states (35 identified as
change states) and 67 transitions, and |Σ | = 33. We ran these two case studies using
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Table 1 Results of adding filtering and the adequate compensation check to our framework

Trace k |CT(B)| Baseline Adequate
compensation (AC)

AC + Optimizations [41]

Plans Time (s) Plans Plans Time (s) Plans Plans Time (s) Plans
(filtered) (filtered) (filtered)

t1 6 4 1 0.01 1 1 0.15 1 1 0.27 1

8 4 5 0.13 5 5 0.27 5 5 0.41 5

13 4 13 0.27 13 13 0.41 13 13 0.54 13

t2 6 2 2 0.01 2 2 0.15 2 2 0.27 2

8 4 4 0.01 4 4 0.15 4 4 0.27 4

13 6 6 0.01 6 6 0.15 6 6 0.27 6

t3 5 2 2 0.01 2 2 0.55 2 0 0.81 0

10 5 5 0.02 5 5 0.56 5 2 0.82 2

15 8 8 0.02 8 8 0.56 8 5 0.82 5

20 12 12 0.02 12 12 0.56 12 8 0.82 8

25 13 13 0.02 13 12 0.56 12 8 0.82 8

30 13 13 0.02 13 12 0.56 12 8 0.82 8

t4 5 4 0 0.01 0 0 0.55 0 0 0.82 0

10 7 2 0.14 2 2 0.68 2 2 1.13 2

15 10 8 1.37 8 8 1.91 8 5 3.73 5

20 10 18 4.72 11 13 3.95 11 8 6.84 8

25 10 60 29.16 32 42 20.95 24 23 29.62 18

30 10 68 61.34 38 42 38.43 24 23 47.08 18

three different framework configurations: (1) Baseline—1-step goal traces, without the
adequate compensation check and without extra optimizations, (2) Adequate Com-
pensation (AC)—the basic framework with only the adequate compensation check,
and (3) AC + Optimizations—includes both the adequate compensation check and
extra optimizations, described in Sect. 8 and in [41].

Table 1 summarizes our results. Traces t1 and t2 are those described in Sect. 5;
traces t3 and t4 correspond to the TBS system and are described in [38].3 Traces t1
and t4 violate mixed properties, while t2 and t3 violate safety properties. In the case
of safety property violations, no SAT instances are generated, and the running time
for the plan generation is trivial. We report the number of plans computed for each
framework configuration as well as the time it took to compute them. For TAS, we
generated plans starting with length k = 6 and going to k = 13, while we started
with length k = 5 and went to k = 30 for TBS. For example, at k = 25, a total of
13 plans were initially generated for t3; this total was reduced to 12 plans after we
checked for adequate compensation, and if we also considered other optimizations to
our framework, this total was further reduced to 8. In this case, our filtering techniques
did not help reduce the number of plans. However, it was effective for t4.

3 In [38], t3 and t4 are called tTBS1 and tTBS2 , respectively.
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We have included the data for the TAS traces for completeness: since all of its
compensation transitions are adequate and all its change states are relevant, neither
of the new framework configurations produce a reduction in the number of computed
plans. On the other hand, the adequate compensation check indicated that in TBS, the
service used to hold a hotel reservation (hh) was not adequately compensated. Since
hh appears in both t3 and t4, the Adequate Compensation framework configuration
computes fewer recovery plans for both traces (in both cases, there are no new plans
after k = 25). Also, since there is no compensation transition for hh, the third frame-
work configuration results in a further reduction in the number of plans, since fewer
change states are reachable from the error state.

The total time reported for both the second and third framework configurations
includes the time it took to do the required static analyses. In practice, most of these
analyses are only carried out once per L2TS, so most of the extra analysis cost should
be amortized as we increase k. For example, in the case of t4, we see that after k = 15,
the total time required by the second framework configuration is lower than the time
required by the basic framework—even though the adequate compensation check is
initially expensive, it effectively prevented the computation of about a third of the
initially generated plans. The analyses included in the third framework configuration
are a bit more expensive, but we see an even bigger reduction of number of plans for
large values of k.

Our initial experience shows that the adequate compensation check is both feasible
and effective, resulting in a relatively small number of relevant plans. This is impor-
tant, since the plans are presented to the user who must pick one in order to continue
execution.

We also studied the impact of varying i , the parameter in i-step goal traces used
for computing plans (see Sect. 4.3.1). Specifically, we generated recovery plans of
length 13 for trace t1 of TAS, starting with i = 1 and going up to i = 5. For each goal
trace, we measured the number of plans generated and the time it took to do so (using
the Baseline framework configuration with filtering). Table 2 summarizes our results.
For example, there were five 4-step goal traces (gt12-gt16). Using gt13, we computed
two plans for t1, taking 0.548 s, and overall, we computed 11 plans of length 13 (e.g.,
using plans of length 9 followed by a four-event sequence), taking 1.194 s. Note that
the time we report in the first row of Table 2 is larger than that for k = 13 in Table 1
since it also includes filtering.

Figure 16 summarizes the results in the table. As expected, as i increases, the
number of generated plans decreases since there are fewer valid “suffixes” for mixed
recovery plans. However, as i increases, the time to compute mixed plans increases
as well, due to the increased preprocessing, planning and filtering. Ideally, the value
of i should be determined experimentally for each application. We plan to continue
studying this issue in future case studies.

10 Related work

In this section, we survey current work on error recovery and adaptation and compare
it with our approach.
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Table 2 Results of varying i
when generating recovery plans
of length k = 13 for trace t1

i Goal trace Plans (filtered) Time (s) Total plans Total time (s)

1 gt1 13 0.364 13 0.364

2 gt2 2 0.194

gt3 4 0.254

gt4 1 0.264

gt5 2 0.260

gt6 2 0.222 11 1.194

3 gt7 2 0.248

gt8 2 0.269

gt9 1 0.277

gt10 4 0.306

gt11 2 0.318 11 1.418

4 gt12 1 0.112

gt13 2 0.548

gt14 1 0.560

gt15 3 0.352

gt16 2 0.300 9 1.872

5 gt17 2 0.564

gt18 1 0.560

gt19 2 0.218

gt20 2 0.242

gt21 2 0.248

gt22 0 0.236 9 2.068

Fig. 16 Summary of the data in Table 2

Existing infrastructures for web services, e.g., the BPEL engine [35], include mech-
anisms for fault definition, for specifying compensation actions, and for dealing with
termination. When an error is detected at runtime, they typically try to compensate all
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completed activities for which compensations are defined, with the default compen-
sation being the reversal of the most recently completed action.

Since these standard error recovery mechanisms are statically defined, one relatively
simple way of improving error recovery is to statically analyze the application and
suggest changes that improve the application’s fault tolerance. In [17], Dobson defined
a library of fault tolerance patterns, which are used to transform the original BPEL
process into a fault-tolerant one at compile time. This is done by adding redundant
behaviour to the application, but this may result in a significantly bigger, and slower,
program.

The work proposed by Baresi et al. [5] also enables recovery through the standard
error recovery mechanisms, but by attaching BPEL exception handlers to properties
that are checked at runtime. The advantage to this approach is that the new exceptions
are triggered by the violation of high-level properties which can help debugging. If
such an exception handler is not provided, execution terminates when a property is
violated.

Several works have suggested self-healing mechanisms for web service applica-
tions. The Dynamo framework [4] uses annotation rules in BPEL in order to allow
recovery once a fault has been detected. Such rules need to be statically defined by the
developers before the system can function. Fugini and Mussi [22] propose a frame-
work for self-healing web services, where all possible faults and their repair actions
are pre-defined in a special registry. This approach relies on being able to identify and
create recovery from all available faults.

The framework proposed by Carzaniga et al. [12] is the closest to ours in terms of
error recovery, as the authors also attempt to automatically compute recovery plans
for runtime errors. This framework exploits redundancy in web applications to find
workarounds when errors occur, assuming that the application is given as a finite-state
machine (without compensation), with an identified error state as well as the “fallback”
state to which the application should return (one per error).

A workaround is a path in the finite-state machine starting at the error state and
ending at a fallback state. Before computing all the possible workarounds for an error,
the current error transitions are removed from the application model. In some cases, this
makes the fallback state unreachable, and additional system events must be inserted
to make the model connected again. The approach then exhaustively generates all
possible workarounds, prioritizing them solely by length. Fallback states are manually
identified by the developer, whereas our method attempts to compute an approximation
of these states using user-specified properties of the system (goal transitions). Our
framework also attempts to filter out unusable recovery plans (those that do not include
change states) and ranks the remaining ones.

The work in [11] addresses some of the above limitations by generating
workarounds using general code-rewriting rules specified by the API developers
instead of the full model of the API behavior. The rules specify which operations
have no side-effects, which reverse effects of others, and which can serve as alterna-
tives to others. Upon discovery of an API error, the framework generates workarounds
that change the structure of the webpage being rendered, until one is accepted by the
user. Our use of compensations and idempotent service calls is similar to rule-based
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specification of operations, but our framework does not use alternatives. Furthermore,
the work in [11] does filtering based on different criteria from the ones presented here.

AI planning has been successfully used to automatically generate web service com-
positions (WSC) [29,30,33,44]. Replanning when an error occurs can be expensive,
so Yan et al. [47] propose a heuristic for repairing planning graphs, using service pre-
and post-conditions to add new transitions to the existing planning graph. This heuris-
tic stops when a new path to a goal state is found. This approach relies on the existence
of detailed service contracts, does not consider the possibility of compensation, and
limits repairs to service compositions.

Baresi and Pasquale [7] work at the requirements level, allowing the definition of
adaptive goals and strategies which are used to provide support for adaptation at run-
time. The adaptation goals are specified using a goal model, where LTL formulas and
adaptation strategies are associated with individual goals. If a goal’s LTL formula is
violated at runtime, the associated adaptation strategy is triggered. These strategies
include adding/removing goals from the goal model, modifing the LTL formula asso-
ciated to a goal, adding/removing/modifying operations (which changes future goal
operationalization). Like Yan et al. [47], this approach relies on the availability of
detailed service contracts, and also does not explicitly consider compensation.

Charfi et al. [13] propose a plug-in architecture for self-adaptation, based on the
aspect-oriented programming paradigm. The two types of aspects they allow to define
are monitoring, used to detect problems, and adaptation, used to hot deploy (i.e., apply
as the application runs) self-adaptation logic. This work extends the AO4BPEL [14]
language, allowing dynamic generation, activation and deactivation of these aspects
at runtime. It is the developer’s responsibility to write the self-adaptation logic of the
adaptation aspects, adding compensation manually if needed.

Unlike the above approaches, our framework does not explicitly check whether
services comply with their specified contracts—we use these contracts to help establish
our correctness guarantees. Our work does not require the definition of static recovery
strategies; furthermore, plans are generated using the already specified behavior, i.e.,
we do not add transitions to our formal model. We also maintain an explicit relationship
between actions and their compensations (unlike the AI-based systems) and take full
advantage of the predefined recovery mechanism—compensation. Yet we enrich the
standard compensation mechanism since runtime errors are defined w.r.t. high-level
partner interaction properties, and we can prove that the suggested recovery from
safety and bounded liveness property violations leaves the system in a desired state.
Finally, some of the above approaches [7,47] are complementary to ours and can be
applied in order to improve performance and/or quality of our plans.

11 Summary and future work

In this paper, we described our framework for runtime monitoring and recovery of web
service conversations. The monitoring portion is non-intrusive, running in parallel with
the monitored system and intercepting interaction events during runtime. It does not
require any code instrumentation and enables reasoning about partners expressed in
different languages. We have then used BPEL’s compensation mechanism to define
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and implement an online system for suggesting, ranking and executing recovery plans.
Furthermore, through collecting state information, we are able to check that partners
fulfill their posted service contracts and that compensation is adequately defined.
Finally, we are able to prove correctness of the generated plans. Our experience has
shown that this approach computes a small number of highly relevant plans, doing
so quickly and effectively, and in this paper we show that our framework remains
feasible even with the additional static analysis that checks adequacy of compensa-
tion.

In what follows, we discuss limitations of our approach and venues for future
research. A limitation of our approach is that we model compensations as going back
to states visited earlier in the run. While this model is simple, clean and enables
effective analysis, the compensation mechanism in languages like BPEL allows the
user to execute an arbitrary operation and thus end up in a principally different state.
For example, if we model the amount of money the user has as part of the state, then
booking and then canceling a flight brings her to a different state—the one where she
has less money and no flight. In such examples, we may not be able to prove adequacy
of compensation because of insufficient state information. We intend to experiment
with program analysis techniques such as abstraction refinement [3,23] to try to derive
additional information that should be kept in the state of our L2TSs. To the best of our
knowledge, such techniques have not been applied to web services.

In our framework, recovery is initiated only after an error has been discovered. An
alternative approach might be to use the available properties to generate plans a priori
and then re-plan if the user decides to deviate from the prescribed course of action
or something in the environment changes, in the GPS-like plan recalculation. This
should reduce the need for compensation and rework.

Finally, our work so far has assumed that all partners operate within the same
process server and thus a centralized monitoring and recovery is a viable option. In
practice, most web services are distributed, requiring distributed monitoring and recov-
ery. Techniques for turning a centralized monitor into a set of distributed ones, running
in different process servers, have been investigated by the DESERT project [27], but
we leave the problem of distributed plan generation and execution for future work.
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Appendix

This appendix gives additional background information on BPEL’s activities and vari-
ables. We also provide an overview of the WSCoL subset used in this article.
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BPEL activities and variables

The basic BPEL activities for interacting with partner web services are <receive>,

<invoke> and <reply>, which are used to receive messages, execute web services
and return values, respectively. Conditional activities are used to define the control
flow of the application: <while>, <if> and <pick>. The <while> and <if> activ-
ities model internal choice, as conditions are expressions over process variables. The
<pick> activity is used to model external choice: the application waits for the first
occurrence of one of several possible events (specified using <onMessage>), execut-
ing the activities associated to the corresponding event. The <pick> activity completes
once these activities are completed.

The structural activities <sequence> and <flow> are used to specify sequential
and parallel composition of the enclosed activities, respectively. <scope> is used to
define nested activities. In IBM WebSphere Integration Developer v7, developers can
also add <collaboration> scopes, inspired by the work on dynamic workflows [1],
which can be used to alter the application logic at runtime.

The <assign> activity is used to update the values of variables. Assignment activ-
ities consist of multiple <copy> rules, each with their own <from> and <to>

parts, representing the source and destination data, respectively. <copy> rules can
include data modification expressions, e.g., <copy><from> $i + 1 </from><to>

$i </to></copy> increments the value of $i by one, but can also be simple assign-
ments.

BPEL has both global and local variables. Global variables are available throughout
the process, while local variables are only available within the <scope> in which they
are defined. Variable types can be simple or complex XSD (XML Schema Definition)
types, schema elements, or WSDL message types, declared using the keywords type,
element and messageType, respectively. Multiple schema elements can refer to
the same complex XSD type.

Figure 17a shows the definition of the simple and complex XSD types used by the
TAS application. For example, fromDate and sourceCity are of the simple XSD
types xsd:int and xsd:string, respectively. On the other hand, tTripData
is a complex XSD type and includes a reference to every simple type declared in
the same figure. These type definitions are then available from the BPEL process by
importing the XSD file in which they are defined.

WSDL message types define abstract messages that can serve as the input or output
of an operation, and are thus defined in the corresponding WSDL file. WSDL messages
consist of one or more <part> elements, where each <part> is associated with an
existing XSD element. For example, as shown in Fig. 17b (copy of Fig. 5a), the
message type in_bc, which is the input message for the bc service, consists of three
parts: city, fromDate and toDate.

Once the necessary variable types are defined and imported, we can declare the
required BPEL variables. Figure 17c (copy of Fig. 5b) shows the definition of three
variables of theTAS system:tripData, inputBookCar andoutputBookCar.
The first variable is used to maintain the state of the application, while the second two
are the input and output variables of the bc service. We have defined similar input and
output variables for the rest of the services used by the TAS application.
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Fig. 17 a Part of the schema file tas.xsd, showing the definition of the TAS simple and complex XSD
types; b part of the WSDL file tas.wsdl, showing the definition of the WSDL message types for the bc
service; and c the declaration of various BPEL global variables

WSCoL

The grammar of the WSCoL subset used in this article is given in Fig. 18, where
identifier represents a valid BPEL variable identifier and xpath_expr repre-
sents a valid XPath expression. LIT and NUM are sets of BPEL literals and numbers,
respectively, while true, false, \forall, \exists, \avg, \sum, \product, \min, \max,
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Fig. 18 Grammar of the subset of the WSCoL language used in this work

\returnInt, \returnBool, and \returnString are terminal symbols. The full WSCoL
grammar is available in [9].

In WSCoL, we can write predicates about the state of a BPEL process by access-
ing its internal variables using XPath expressions. For example, the expression
$tripData/carBookingNo retrieves the car booking number for the current trip,
where tripData is the associated BPEL identifier and /carBookingNo is the
XPath expression pointing to the XSD type to be queried.

External data is accessed by invoking other web services. For example, the expres-
sion

\returnInt(‘WSDL’, ‘subtractDates’,
($tripData/fromDate, $tripData/toDate),

‘//parameters/subtractDatesResult/days’)

returns the difference between the trip start and end dates as an integer. This is done by
invoking the subtractDates service with parameters $tripData/fromDate
and $tripData/toDate, corresponding to the trip start and end dates, respectively.
The difference is stored in the variable//parameters/subtractDatesResult
/days, and the subtractDates service definition is available in a preconfigured
WSDL file.

The typical Boolean, relational and mathematical operators, as well as some pre-
defined functions, are used to build more complex expressions. For example, the
assertion

($tripData/carBookingNo) >= 1000

&& $tripData/fromDate < $tripData/toDate

checks that the car booking number is at least four digits long and that the trip end
date occurs after the trip start date.
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Predicates on sets of variables are defined through the use of general quantifiers
of the form (Q $V in R; C), where Q is one of the quantifiers listed in Fig. 18, R is
an XPath expression that represents a set of finite nodes, $V is the identifier used to
access each node, and C is a WSCoL predicate.

For example, the predicate

(\forall $L in $(outputGF/flights/flight/);
$(L/destCity) == $(tripData/destCity))

checks that all the flights returned by a getFlights service have the same destination
city as the one stored in $tripData.
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