
A NEW DISTRIBUTED PLATFORM FOR CLIENT-SIDE FUSION OF
WEB APPLICATIONS AND NATURAL MODALITIES—A
MULTIMODAL WEB PLATFORM

Izidor Mlakar1 and Matej Rojc2
1Roboti c.s. d.o.o., Maribor, Slovenia
2University of Maribor, Faculty of Electrical Engineering and Computer Science,
Maribor, Slovenia

& Web-based solutions and interfaces should be easy, more intuitive, and should also adapt to the
natural and cognitive information processing and presentation capabilities of humans. Today,
human-controlled multimodal systems with multimodal interfaces are possible. They allow for a more
natural and more advanced exchange of information between man and machine. The fusion of
web-based solutions with natural modalities is therefore an effective solution for users who would like
to access services and web content in a more natural way. This article presents a novel multimodal
web platform (MWP) that enables flexible migration from traditionally closed and purpose-oriented
multimodal systems to the wider scope offered by web applications. The MWP helps to overcome prob-
lems of interoperability, compatibility, and integration that usually accompany migrations from stan-
dard (task-oriented) applications to web-based solutions and multiservice networks, thus enabling the
enrichment of general web-based user interfaces with several advanced natural modalities in order to
communicate and exchange information. The MWP is a system in which all modules are embedded
within generic network-based architecture. When using it, the fusion of user front ends with new mod-
alities requires as little intervention to the code of the web application as possible. The fusion is imple-
mented within user front ends and retains the web-application code and its functionalities intact.

INTRODUCTION

Today, it is more and more important that systems allow for transparent
and natural human–machine interaction. Systems must be intelligent, more
natural, and easier to use. Therefore, a great deal of research is devoted to
the development of systems and applications that facilitate a natural interac-
tion between man and machine and systems that allow a user to use media
devices evoking natural modalities (e.g., eye, gaze, speech, gesture, etc.), while

Operation financed in part by the European Union, European Social Fund.
Address correspondence to Izidor Mlakar, Trža�sska cesta 23, 2000 Maribor, Slovenia. E-mail:

izidor.mlakar@uni-mb.si

Applied Artificial Intelligence, 27:551–574, 2013
Copyright # 2013 Taylor & Francis Group, LLC
ISSN: 0883-9514 print=1087-6545 online
DOI: 10.1080/08839514.2013.813167

Applied Artificial Intelligence, 27:551–574, 2013
Copyright # 2013 Taylor & Francis Group, LLC
ISSN: 0883-9514 print=1087-6545 online
DOI: 10.1080/08839514.2013.813167

communicating or exchanging information with the machine. The term
‘‘modality’’ represents the mode of interaction (data input and output)
between the user and a machine. Within current computing environments,
the human–machine interaction is still limited to the use of, for example,
the mouse, touch pad, keyboard, and screen. Multimodality then refers to
natural communicative channels that enrich the communication bandwidth
between human and machine. Therefore, the invocation of multimodalities,
also based on embodied conversational agents, allows for a more flexible inter-
action between user and machine. Several software frameworks support the
development of embodied conversational agents (ECAs), for instance,
the Articulated Communicator Engine (ACE; Kopp and Wachsmuth 2004),
the Behavior Expression Animation Toolkit (BEAT; Cassell, Vilhjálmsson,
and Bickmore 2001), and others. Nevertheless, they are, for the most part,
desktop oriented and require many system resources. These systems are
also, in general, indirectly compatible with web technologies or with different
end-user devices. Because data published on the web is becoming increasingly
important, the user accessibility of such data is becoming a crucial factor.
Accessing the web data should be easy, more intuitive, and should also adapt
to the natural and cognitive information processing and presentation capabi-
lities of humans (Cimiano and Kopp 2010). In addition, more and more
end-user devices support web browsers and are able to connect to different
networks. By exploiting these devices in combination with the importance
of web-based solutions, the use of multimodal human–machine interaction
(natural modalities) can be extended even further. Using natural modalities
can represent an effective way to accomplish a user’s computing tasks. Suitable
network-based architecture can also enable the user to have good communi-
cation and interaction with the machine on various devices and networks
(from anywhere), with the same quality. In light of the above facts, the issue
arises of how to integrate=fuse technologies that process=generate natural
modalities with web-based solutions. A key problem in web development is that
often the client will have difficulty articulating requirements at the commence-
ment of a project, particularly prior to any indication of possible solutions.
They are often able to express their requirements only in terms of a solution,
and are able to formulate those requirements in any detail only as the solution
is developed.

The motivation of this work is to fuse these natural modalities
(in general, web-incompatible technologies) and web applications. In other
words, to develop a platform for the efficient and flexible integration of
natural modalities, including embodied conversational agents, with general
web applications and web services, as follows:

a. to present web-based information using different humanlike multimodal
channels, simultaneously conveying web-based information as multimodal

552 I. Mlakar and M. Rojc

output (text, images, speech, gestures, facial expressions, emotions, and
body motion) using several natural communication channels;

b. to use an ECA as a mediator of web-based information in order to
improve user experience when interacting with the machine and to
minimize modality mismatches (e.g., presenting the information in such
a modality that the user cannot understand it);

c. to be able to integrate modality-dependent systems into any web-based
user interface, using minimal integration effort.

In light of these motivations and the fact that such multimodal user
interfaces are, in the Web of Data, yet to be developed (Cimiano and Kopp
2010), we propose a platform that can integrate several modality systems
(natural modalities such as speech and ECA) into new or already-existing
web applications, thus reducing the effort when developing or redeveloping
new modules, plug-ins, and interfaces within web applications. Developing
web applications with personalized multimodal interfaces including ECAs
is a multidisciplinary effort, joining web technology, animation technolo-
gies, artificial intelligence, computer graphic technologies, informatics,
and social sciences. All these disciplines together can provide a more
humanlike experience to today’s web applications. When using ECAs as part
of a web application, the minimal required modules are a text-to-speech
(TTS) system and an animation engine, with both engines running in real
time. The proposed Multimodal Web Platform (MWP) is capable of embed-
ding ECAs and other natural modality engines into web applications, both
flexibly and effectively.

This article is structured as follows: first, it addresses the related works,
followed by a detailed presentation of the proposed mechanism. Then the
integration process, based on an example, is discussed. In ‘‘Results,’’ a prac-
tical implementation is given for using the proposed MWP with an existing
web application. The example in that section also discusses two examples of
multimodal web services derived from the fusion of web technologies and
natural modalities. This article concludes with a discussion and an outline
of our future steps.

RELATED RESEARCH

Modality-dependent technologies, such as TTS synthesis and automatic
speech recognition (ASR), have already been integrated into different
web-based user interfaces. MTALK (Johnston, Di Fabbrizio, and Urbanek
2011), for instance, is a multimodal browser that enables the development
of mobile web-based multimodal interfaces combining natural modalities
such as speech, touch, and gesture. The MTALK-based approach to

The MWP Platform 553

integration is based on authoring. Instead of integrating the natural modal-
ities into existing web-based applications (e.g., as enhancement of the con-
tent), the authors suggest the development of a new web-based browser that
would integrate the web content into a multimodal environment. For the
purpose of integration, the authors present the MTALK browser, implemen-
ted by extending the open-source web browser engine and the custom
JavaScript bindings. If we wish a web application to become multimodal,
we have to adapt it to MTALK’s general architecture and build several
resources (Johnston, Di Fabbrizio, and Urbanek 2011), such as the user
interface (UI) of an MTALK application, client-based application logic writ-
ten in JavaScript, and so forth. The speech-centric natural modalities are
supported by the AT&T speech mashup (Di Fabbrizio, Okken, and Wilpon
2009). The AT&T speech mashup is a web-based service that implements
speech technologies, including both ASR and TTS synthesis, for web
applications. This system suggests a three-layered architecture using a
speech mashup server (hosting speech-centric natural modalities), a speech
mashup client (for relaying=accepting data on the client device), and an
application server (hosting the back end, performing data aggregation
and processing, hosting application logic). In Zaguia and colleagues
(2010), a multimodal fusion is suggested for accessing web services. This
approach consists of modules that detect the modalities involved, take into
account each modality’s parameters, and perform fusion of the modalities
in order to obtain the corresponding action that is to be undertaken. Simi-
larly as in Johnston, Di Fabbrizio, and Urbanek (2011), the authors assume a
network-based structure for natural modalities’ processing and a specifically
designed UI. This UI performs modality fusion and interacts with the rest of
the system. The system also includes processes for the XML-based modality-
description parsing, Extensible MultiModal Annotation markup language
(EMMA; Johnston 2009) parsing, and others. Similarly as in MTALK, Zaguia
and colleagues (2010) suggest that an application needs to be redeveloped,
or developed under certain architecture, if the users are to use natural mod-
alities in their UIs. Polymenakos and Soldatos (2005) present the main
design issues associated with multimodal-based web applications and a uni-
fying framework for the end-to-end design and implementation of compo-
nents that support multimodal-based web applications. The presented
solution is also compared with state-of-the-art initiatives such as XþV1

and speech application language tags (SALT2). Embodied conversational
agents are also increasingly used in various web-related contexts, for
example, teaching, socialization, chats, and branding websites (Diesbach
and Midgley 2008). Such agents have already been used in web applications
such as question-answering systems (Bickmore, Pfeifer, and Paasche-Orlow
2007; Theune et al. 2007; Goh et al. 2006), learning communicative agents
(Xu et al. 2010; Yuan and Chee 2005), or as communicative agents in

554 I. Mlakar and M. Rojc

different online networks (Repenning and Sullivan 2003; Jan et al. 2009;
Paraiso and Tacla 2009). Further examples of such applications are as
follows: pedagogical agents (Graesser et al. 2005), health counseling agents
(Bickmore, Pfeifer, and Paasche-Orlow 2007), direction-giving agents
(Cassell et al. 2002), and so on. In contrast to the web-based speech-centric
interfaces (mostly targeting mobile devices), web-based interfaces support-
ing embodied conversational agents address dialogue generation rather
than the integration of these virtual agents into different web-based inter-
faces. Kimihito (2005) proposes a framework in which end users can instan-
taneously modify existing web applications by introducing multimodal UIs.
Their idea is based on multimodal presentation markup language (MPML;
Prendinger et al. 2004) and IntelligentPad architecture (Tanaka 2003).
The IntelligentPad architecture is employed for the re-usage of existing
web applications’ functions. MPML gives users multimodal presentations
with character agents. The multimodal UI presents an external application
that performs conversion between HTML and MPML. ShockWave Flash
and Flash-based agents, such as DTask and Lite Body (Bickmore, Schulman,
and Shaw 2009), can also be found on several webpages. As a downside, such
agents usually provide only a tiny subset of the ECA’s core functionalities
today (e.g., the ECA talks to the user only with its head, while displaying
a limited range of nonverbal conversational behavior). The main common-
ality of the related work is to use different (primarily network-based)
architectures that host technologies for the generating=processing of natural
modalities. Specially developed (nongeneral) web-dependent interfaces
then relay data to the UI by using special web browsers, authored
web-application servers, or different client-side application programming
interfaces (APIs) (or even nonweb-based desktop=mobile applications).
The current state of the art, in both mobile and desktop web-based environ-
ments also shows the following tendencies:

a. to redevelop (or develop new) web-based applications=services and
author them to the selected multimodal architecture. Data between web
and nonweb processes is relayed through a newly designed application
core and different client-side scripts;

b. to develop rendering applications (e.g., multimodal web browsers)
that will render the web content and transmute data between web and
nonweb cores;

c. to minimize the integration=redevelopment effort by minifying the
modality-dependent services (natural modalities).

The research work presented in this article supports the idea of
network-based processing (off-device) regarding natural modalities, and
the usage of web-application servers as meditators between web and

The MWP Platform 555

nonweb content. However, in our approach, we have integrated natural
modalities into the existing web applications as an additional enhance-
ment, rather than the main functionality (e.g., integration of web
applications in a multimodal core). The presented approach is also
compatible with most web-browsing engines (e.g., Opera, FireFox, Internet
Explorer, etc.—no ActiveX or browser specific controllers are used). The
work presented in this article can, therefore, be easily adapted for usage
on any broadband-supported device. The code and logic of the web appli-
cation remains unchanged. The fusion of ‘‘natural’’ modalities with web
content is implemented through a client interface and a dialogue manager.
The ‘‘fused’’ client interface is implemented by using a device-=context-
independent Java API (relying on nontext data, e.g., speech transferred
to the engines for processing natural modalities), and context-dependent
JavaScript APIs. The dialogue manager used can be a simple set of rules
or a complex service that automatically models user context and services
(Cena 2011; Thang, Dimitrova, and Djemame 2007). Such managers can
be flexibly integrated into a cluster of engines for processing=generating
natural modalities. The mediation between web and nonweb services,
presented in our work, is implemented based on a general web application
and can be applied virtually to any web application by fusing any set of
natural modalities hosted by a network-based architecture. In order to
minimize the integration-process effort, and to allow several modalities to
be integrated into any web application, we propose an MWP with the fol-
lowing set of features:

. It enables the usage of task-oriented technologies for processing=
generating natural modalities within a broader scope (e.g., usage of
the visual speech synthesis of an unknown text can easily be extended
to any type=context of human–machine interface (HMI) interaction,
even to web applications).

. It inherits distributive principles and, by using cross-domain interaction,
extends the scope of traditional web applications with technologies
traditionally foreign to the web domain (e.g., TTS synthesis, ECAs,
ASR, etc.).

. It provides an efficient process for the client-side integration of advanced
HMIs with any existing web application. This platform adds no extra load
to the web-application server, and no extensive redesigning of the web
application is required.

. It provides client-side integration, based on IFRAME encapsulation, and
JavaScript cross-domain communication.

. There is a ‘‘universal’’ web-application server hosting virtual interfaces for
client-side integration and mediating between the cluster of engines for
processing=generating natural modalities and the web-based UI.

556 I. Mlakar and M. Rojc

MULTIMODAL WEB PLATFORM

The overall architecture of the proposed MWP for fusing web- and
nonweb-based technologies into advanced multimodal-based web inter-
faces is presented in Figure 1. It consists of the following modules:

. EVA Plug-in module: dedicated to web-based information storage and
presentation (e.g., stand-alone existing web page or web application).

. MWP’s core: a Tomcat-based3 web application that serves as an intermedi-
ate layer capable of interfacing with both web- and nonweb-based layers
and used in mediation between web content and nonweb technologies,
configuration, etc.

. DATA-Subsystem: a service-oriented cluster dedicated to the generating=
processing of natural modalities such as: TTS synthesis, ASR, and ECA
animation engines.

Figure 1 presents the architecture of the MWP. This platform fuses UIs
of web-based systems (e.g., web application’s front end) with engines for
generation=processing of natural modalities (DATA-Subsystem). The
presented platform suggests a mediating platform that is able to interact
with the web-based UI and at the same time with several engines within
the DATA-Subsystem. The web layer of the MWP architecture incorporates
an existing (MWP-independent) web application, its UI, and a web-based
EVA plug-in. The EVA plug-in is a small API that enables integration on
the client side and data exchange between the web-based UI and the
MWP. The layer of natural modalities’ engines is represented by the
cluster of engines running within the DATA-Subsystem. The cluster links
a TTS server, an ECA animation server, and possibly other engines for the

FIGURE 1 The proposed MWP architecture. (Color figure available online.)

The MWP Platform 557

generation=processing of natural modalities (e.g., dialogue management,
communicative-behavior generation engines, ASR, gesture recognizers, etc.).
The MWP layer of the discussed architecture integrates the middleware of
the MWP, the MWP’s application core. The different layers communicate
among each other using standard protocols, such as HTTP and Ajax 2, used
within web applications, and TCP=IP and real-time transport protocoal
(RTP), used for communication between the MWP and the DATA-Subsystem
cluster.

The DATA-Subsystem

The DATA-Subsystem is dedicated to providing natural modalities, such
as verbalization of information using ECAs, TTS synthesis, and other
possible instances of natural communicative behavior techniques (e.g.,
communication management, speech recognition and understanding, ges-
ture recognition and understanding, etc.), to general web applications.
This cluster represents an abstraction of both input- and output-based
modalities. Each server in the cluster is independent but uses common
input-=output-based protocols. As presented in Figure 1, the different
engines for processing=generating natural modalities are connected locally
within a cluster named the DATA-Subsystem. This DATA-Subsystem is based
on distributed network architecture, and is implemented using a
proprietary Java framework, named the DATA framework (Rojc and Mlakar
2009). This framework is a set of several Java packages that are used for
handling TCP=IP connections, the creation and management of common
proprietary protocols over TCP=IP connections, interfacing Java with a
native code (C=Cþþ), creation, compilation, validation and management
of finite-state machine (FSM) engines, interfacing modules with databases,
parsing and generating XML documents, and audio=video capturing=
transmitting over the internet. This framework uses several powerful Java
frameworks: the Java CC compiler framework (Copeland 2007), the
Unimod framework (Shalyto 2001; Weyns et al. 2007), and the Java Media
Framework (JMF) (Terrazas, Ostuni, and Barlow 2002). Within the MWP,
this framework is used for the implementation of Java-based distributed
network-based architecture, integrating several autonomous engines for
processing=generating natural modalities, using common protocols.
Namely, the DATA-Subsystem is complex client=server architecture, com-
posed of one main server (named DATA server), and several module servers,
named DATA module servers (Figure 2). Each natural modality engine
requires one module server in the cluster. The main server is the core of
the cluster and manages connections between clients (DATA clients are light
clients on the user’s side), and several module servers within the cluster. All

558 I. Mlakar and M. Rojc

modules are connected via the Internet using TCP=IP and UDP connec-
tions. The main server is able to handle one or several module servers for
each client (for each user). Furthermore, the main server can handle several
clients and corresponding cluster configurations simultaneously. Module
servers are also able to communicate with several clients (e.g., web-based
UIs), simultaneously. In general, module servers handle input=output data,
in XML-based data format (between the client, main server, and module
servers). Module servers that run acoustic-=video-based components and
generate audio=video data as output transfer the data via the main server
to the clients by using RTP=HTTP protocol.

The integration of new engines into the cluster must be as flexible as
possible. The DATA-Subsystem has been developed as an independent sub-
system, based on Java, and able to run on Linux and Windows platforms.
The implementation of the specific modality driven by a dedicated module
server is performed via the XML-based configuration file. In this way, it is
unnecessary to change the code, or to develop any additional APIs in order
to provide a new modality in the cluster and in the MWP. The DATA-
Subsystem’s modules are all multithreaded engines. In other words, each
module contains a pool of threads that is initiated with a predefined num-
ber of threads. These threads are used to serve the requests of different
light clients (on the user’s side). All requests coming from such clients
are redirected via the main server to the corresponding module server(s).
When the request is received, the main server and module server(s)
involved pick-up an available thread from the pool and establish the con-
nection. The dedicated session then runs for the corresponding client
within the assigned thread. If no threads are available in the pool, the main
server or module server rejects any further clients’ requests until some

FIGURE 2 Architecture of the DATA-Subsystem. (Color figure available online.)

The MWP Platform 559

connections are closed and some threads are set free again. Two interfaces,
based on the DATA-Subsystem, are used within the MWP:

1. A light Java-based client (DATA Client), that provides the ability for
audio communication in the direction: web-based UI ! DATA-Subsystem.
This API is integrated into the EVA plug-in (Figure 1) and automatically
runs as client web service. The API is also used for automatic registration
of the user’s device into the DATA-Subsystem, and also to enable
exchange of the device-dependent data streams (e.g., video stream of
the verbalized information performed by an ECA, audio stream for
ASR, etc.) with the DATA-Subsystem.

2. A multimodal service interface (MM service interface in Figure 1) inte-
grated into the MWP layer, provides the ability to communicate in the
direction: MWP ! DATA-Subsystem. The MM service interface compo-
nent serves as a low-level communication interface that enables the
web application to benefit from natural modalities within the DATA-
Subsystem. Functionally, the interface behaves as a DATA module server
and will, for each light Java-based client connected to the DATA-
Subsystem, create a dedicated TCP=IP session. The lifecycle of the session
ends when either the light Java-based client disconnects from the
platform, or the device’s web interface is closed.

EVA Plug-In

The major benefit of the proposed MWP is the already-mentioned
‘‘client-side’’ integration. In order to merge different (also incompatible)
technologies, we decided to implement an intermediate platform running
on external dedicated web servers. Each such intermediate web server can
also host one or more web applications. In this way, we prevent additional
server load of the existing web-application servers (publishing web content
and services).

In order to achieve full web compatibility, the MWP is implemented as a
web application. Its front end is represented by the EVA plug-in. This
plug-in serves as a user-front-end integration point; it encapsulates the UI
of the existing web application. Server-side integration was avoided for
the following reasons:

1. Conveying the information simultaneously over multiple channels
depends on the user and his=her device (which information channels
are desired=supported). The web-application servers are (in the context
of our work and fusion of modalities) data and web-service providers
and should retain their native (unchanged) form.

560 I. Mlakar and M. Rojc

2. Depending on the coding style and the architectural properties of the
web application, the integration effort may increase exponentially when
implementing server-side fusion.

3. The server-load of the web application should not increase, because of
the modality system’s integration. Because we wish to target any web
application, running on any kind of hardware, this assumption seems
only natural.

The EVA plug-in (Figure 3) is a user front end with no (or minimal) graphical
elements. It implements only:

. a web-based video player (e.g., Flash player),

. an IFRAME that encapsulates the UI of the existing web application,

. JavaScript event-handler, JavaScript API for IFRAME-based cross-domain
communication (Li et al. 2011; Chatti et al. 2011),

. a light Java-based client (DATA-Client) for direct data exchange between
the DATA-Subsystem and the user front end (e.g., for ASR or gesture
recognition).

As shown in Figure 3, the idea of the web layer and the EVA plug-in is to
fuse the web content from at least two sources: an existing web application,
and the MWP’s UI. The major issue for such integration is: the traditional
same-origin web-security model for obtaining third-party data. In order to

FIGURE 3 The EVA plug-in’s architecture. (Color figure available online.)

The MWP Platform 561

circumvent this security model, we implement a cross-domain API for
JavaScript-based cross-domain communication. The same-origin policy
protects those HTML documents to be loaded (accessed) by JavaScript,
originated within a foreign domain. However, this policy does not apply to
those scripts, which can be loaded from other domains and executed with
the privileges of the page that included them. Therefore, the cross-domain
API must be integrated into the EVA plug-in, and into the web-based UI.
The function of this API is to redirect events from one domain to another.
For instance, if the user wishes to perceive the selected text as multimodal
output (talking ECA), the text-data to be fed to the TTS and ECA engines
will be obtained by the web-based UI’s cross-domain API and relayed to
the EVA plug-in’s cross-domain interface as an appropriate function call
(e.g.,Read Selected Text is relayed to the EVA Plug-in as Process Read Request).This
cross-domain API also captures different JavaScript events performed on the
web application’s UI (e.g., page-click, URI change, text-selection, etc.), and relays
them to the cross-domain API contained within the EVA plug-in. The
cross-domain API contained within the EVA plug-in serves as a transponder.
It receives and relays messages to either a JavaScript-based event handler, or
to the cross-domain API, maintained within the web-based UI. The JavaScript
event-handler processes and relays different requests=actions toward either
the MWP’s web interface, or the cross-domain API contained within the
EVA plug-in. The event handler is written in jQuery.4 It contains client-side
procedures for Ajax-based communication with the MWP’s application core,
the Ajax=HTTP event listener, and the event processor that handles both
cross-domain and Ajax=HTTP events.

The Multimodal Web Platform’s Core

The MWP’s core in Figure 1 is a Tomcat-based web-application core that
enables interfacing with the DATA-Subsystem. The core facilitates the web
interface, web-application configuration repository, and the MM service-interface.
The web interface is further defined by the EVA plug-in, and a back end
(administration interface). The back-end interface is used for configur-
ation of the MWP (its users, user groups, and devices), and for setting up
the relations between user actions=web services (as performed=provided
by the existing web application), and the ‘‘multimodal’’ reactions per-
formed by the MWP. The web-application configuration repository is repre-
sented by an MySQL5 database that stores the following information:

. a user’s preferences (user’s background information, degree of gesturing
present during verbalization, degree of co-articulation and velocity of pro-
nunciation, ECA’s gender, and its other customizable preferences, etc.),

562 I. Mlakar and M. Rojc

. user’s multimodal-services (the usage of ASR, the usage of TTS synthesis,
and the usage of animating ECAs – visualization services),

. user-device properties (supported web-based video players, supported
web browser, device screen resolution, network interfaces, supported
multimodal services, full ECA, or talking head, etc.), and

. dialogue scenarios generated for the selected web application (e.g., user
action=web service mapped to a dialogue scenario and configuration
options).

All the preferences and scenarios are inserted into the web-application
configuration repository by using administration interfaces provided by the
MWP’s back end. The core is designed based on multithreaded web-
application architecture, as shown in Figure 4. The MM Service-Interface
component (Figure 4) implements software interfaces that allow the web
application to benefit from the DATA-Subsystem’s distributive architecture.
In the context of the DATA-subsystem, the MM Service-Interface represents
a DATA module-server, able to communicate with several clients (on the
users’ side), even simultaneously. The MM Service-Interface component
incorporates different protocols and procedures for low-level distributed
data transfer. Its main roles are to identify protocols that are executed on
the network, and to ‘‘translate’’ and process incoming=outgoing messages
between the web-interface and the DATA-Subsystem. The MM Service-
Interface component, therefore, recognizes the semantics of the message,
as received from the JavaScript’s event handler, transforms it into
a communication packet (based on the protocol defined by the DATA
framework) and relays it to the DATA server for further processing. The

FIGURE 4 Multi-threaded architecture of the MWP’s core. (Color figure available online.)

The MWP Platform 563

MM Service-Interface component also initiates and relays proper Ajax=
HTTP responses to the JavaScript event handler. In this way, the MM
Service-Interface component acts as a worker pool used for background
processing. The flow of servicing (Figure 4) web clients is two-staged. Dur-
ing the first stage (registration stage), the client device and UI try to regis-
ter to the DATA-Subsystem simultaneously. The client-device registration is
initiated by the Java-client (light Java-based client), whereas the UI tries to
register via the EVA Plug-ins by using the JavasScript event handler. Each
client-device’s registration request enters the TCP=IP accept queue, and
each UI registration enters the dedicated session manager’s accept queue.
In the second stage (if the maximal number of registered client devices has
not yet been reached), the DATA-Subsystem initiates a process of dedicated
worker-thread generation. In our model, each dedicated worker-thread is
represented as a station. Each such station is interfaced with those HTTP
sessions belonging to the user device, and those TCP=IP sessions connect-
ing it with the DATA-Subsystem. The maximum number of available ses-
sions depends on the current load of the DATA-Subsystem, whereas the
service response time depends on the service execution time. When the
registration process is concluded, and a proper station is created, the
DATA-Subsystem will automatically establish additional data-transfer sessions.
These extra sessions depend on the natural modalities to be used (e.g., an
RTP session for ECA’s visualization, a dedicated audio data transfer over the
TCP=IP session, as used for ASR, etc.). If, however, a proper module-server
station cannot be created, the user won’t be able to use supported multi-
modalities within his=her web interface. However, the core functionalities
of the existing web application will be available to him=her. The
module-server station is automatically destroyed when the user device’s
HTTP sessions are closed.

INTEGRATION

The previous sections have discussed the concept of the MWP in detail.
We have described its architecture and its three key building blocks: the
DATA-Subsystem, EVA plug-in, and the MWP’s core. The main idea of
the MWP is to provide the ability for general web applications to integrate
natural modalities that provide additional communication channels. The
TTS, ASR, and ECAs are some of those technologies that have already been
proven for bringing much more natural experiences when interfaced with
computer systems (e.g., web applications). In order to integrate these
‘‘multimodal’’ technologies into the web-application domain as flexibly
as possible, we have provided a simple, yet efficient, solution named
MWP. It provides subcomponents that can communicate with any web

564 I. Mlakar and M. Rojc

application, and also subcomponents that can communicate with all sys-
tems provided by the DATA-Subsystem. These subcomponents then
implement those protocols and algorithms needed for data transfer
between the web and the DATA-Subsystem domains. This section focuses
on the process of integration and configuration possibilities. The main
components used for the integration are the following:

. application-specific cross-domain API,

. application-unspecific web application running the MWP’s core, and

. application-specific configuration repository, as part of the web appli-
cation running the MWP’s core.

Client-Side Integration

Let’s say we have an operational online store within which we wish to
integrate the talking and affective ECA, and speech-driven browsing. The
key functionalities of these multimodalities are as follows: the ECA serves
as a virtual guide, or as a virtual presenter, and speech-driven browsing
enables users to also use speech. First, we have to define the cross-domain
APIs. The cross-domain API integrated into the header of the online store
implements a ‘‘listener’’ that informs the MWP which subpage the user is
currently viewing, or what element has been selected=clicked on the user
web interface. In addition, it also implements a method that allows jQuery-
based selectors, either to obtain web-based data back to the MWP or to
populate certain HTML form fields (e.g., checkbox, input field, initiating
click event on a button, etc.). The cross-domain API integrated into the
EVA plug-in consecutively implements a request transducer and response
‘‘listener.’’ The request-transducer transforms Ajax-based responses
(processed by the event handler) into proper client-side actions. Such
actions are, for example, ‘‘load URI’’ by changing the IFRAME’s uniform
resource identifier (URI), insert something into the search field, simulate
‘‘search’’ button click, propagate the jQuery selector for selecting product
titles, etc. The response ‘‘listener,’’ handled by the event handler, listens
and processes events initiated by the cross-domain API that is integrated into
the online store. These events are, for example, titles to be read, URI changed,
etc. The event handler is general and can be, as provided with the EVA
plug-in, used in any type of web-based application. After the cross-domain
APIs have been configured and integrated, we can proceed with the inte-
gration process; that is, to configure the EVA plug-in’s IFRAME to point
to the domain of our online store. With the described tasks, we have pre-
pared the MWP’s front end and encapsulated the online store. The MWP
can now exchange data with the online store. From now on, the newly
generated UI will also contain a web-based video player (for displaying

The MWP Platform 565

the ECA), the Java-client API used for audio capturing and transferring data
to the DATA-Subsystem, and an unchanged front end of the online store.
The second step of the integration anticipates that the MWP’s core will be
adjusted (configured) to the online store’s requirements (context), and
possibly for new interaction scenarios to be generated.

MWP’s Configuration and Advanced Human–Machine
Interaction Scenarios for the Web

The web-application configuration repository and the web interface’s
back-end UIs are used for the second step of the integration process.
A combination of both is used to specify different settings (e.g., devices
and device properties, users and application properties, etc.) and to specify
different interaction scenarios (multimodal-based scenarios). Multimodal-
based scenarios define how the enhanced user’s web interface will respond
to the user’s actions (e.g., certain URI loads, user speaks a word, etc.).

Figure 5 presents a general idea of how a multimodal-based interaction
scenario would look. We assume that any subpage (URI) of the web
application may require a different multimodal-based interaction scenario.
Each of such scenarios is then defined by a set of simultaneous=consecutive
tasks. Each task is further described by a set of configuration options. In
Figure 5 we decided that when loading the selected URI, the following tasks
are performed by the whole system:

1. A short introduction is spoken by an ECA. The text for the introduction
can be specified within the XML-based scenario description for the
DATA-Subsystem (e.g., transformed from meta description, specified
as a default introduction or as a user-defined custom greeting).

2. The titles of the articles, with short summaries, are presented to the user.
This task has two sets of configuration options. The first set of tasks

FIGURE 5 Generating a multimodal-based scenario for a selected URI-based location. (Color figure
available online.)

566 I. Mlakar and M. Rojc

defines how the information about titles and summary is obtained. The
second set of tasks defines whether the ECA will perform full-body or
only head-based visualization, and also the position of the web player
(where on the screen the ECA should appear).

3. The scenario concludes by synthesizing further available actions. This
synthesis is based on the currently presented web data (actions such as
read the selected title in detail, go back to the previous page, present
the selected titles again, etc.).

Using the presented concept, several human–machine interaction sce-
narios can be formed for different subpages of the online store. Each such
scenario then specifies how the ECA should respond to different events
(e.g., on page load, user click, etc.), propagated directly on the UI. Addition-
ally, such a scenario also defines which keywords (key-phrases) (or key-word
encapsulations for dynamical dictionaries) are to be recognized by the
MWP. By configuring the MWP according to the specification of the online
store, and by defining the human–machine interactive scenarios, we have
adjusted the MWP to the context of the web application. The final step of
the integration process is to interface the MWP with the DATA-Subsystem.
This step is performed automatically, based on the rules and procedures
discussed in the following section.

DATA-Subsystem Integration

Complex communications between several distributive machines within
the DATA-Subsystem are very flexibly and efficiently described, implemen-
ted, and executed in the form of FSM (Mohri 1996). The MM service-
interface component is, therefore, also implemented as a finite-state engine.
Finite-state engines are constructed by using a UniMod framework (Shalyto
2001; Weyns et al. 2007). This framework already defines objects for the con-
struction and execution of finite-state engines, but needs finite-state engine
descriptions in specific XML-based data format. A flexible and efficient
tool called the ProtocolGen tool has been developed in order to generate
XML-protocol scenario files for different clusters’ task scenarios (for all
DATA-Subsystems’ modules). The first step is to draw a graph represen-
tation of the cluster’s task by considering the supported protocols and
desired architecture of the cluster. These graphs are simply FSMs composed
of states, transitions, and events on transitions, which trigger graph traver-
sals during certain task executions. Graph representations are then trans-
formed into XML descriptions and stored in the form of XML-protocol
scenario files. The UniMod framework’s FSM description is too difficult to
read or to generate manually=directly from the graph representations.
Therefore, a proprietary XML format has been defined. The proprietary

The MWP Platform 567

XML format is ultimately just automatically converted into UniMOD XML
format. For this step, the corresponding Java parser is used based on
JavaCC and JavaC compilers. After the UniMod XML format is generated,
the XML-protocol scenario file can be used by all clusters’ modules. Nothing
has changed, from the user’s point of view, after the additional XML-
protocol scenario files have been added. The whole MWP is used in the
same way; only the DATA-Subsystem can give, in this way, a new human–
machine interaction experience to web-application users.

RESULTS

We have used the proposed MWP in order to interface a web appli-
cation, named BQ-portal, with the distributive DATA-Subsystem. The
DATA-Subsystem currently hosts two engines for generating=processing
natural modalities: the TTS system PLATTOS (Rojc and Kačič 2007) and
the ECA engine EVA (Mlakar and Rojc 2011). The DATA-Subsystem
automatically preprocesses (parses the document object model [DOM]
structure, removes html tags, and removes images and other nontextual
data) any web data and transforms it into speech and=or animated speech.

The output depends on the multimodal scenario specified in the con-
figuration repository. The animated speech is generated by automatic fusion
of TTS and ECA modalities (Rojc and Mlakar 2011). The BQ-portal
application is an information kiosk to be used by students and other visitors.
In addition to faculty-related information, it supports RSS feed technology,
the Google Translator API-based real-time translations, and several inter-
faces relating to control of the laboratory intelligent ambience (e.g., radio
frequency identification (RFID)-based electronic lock, lights, projector,
etc.). The BQ-portal web application and DATA-Subsystem, together,
present a fusion of web and nonweb modalities into a more natural, multi-
modal UI. The overall hardware architecture is presented in Figure 6. The
architecture currently consists of five computers connected within a 10=100
Mbit local area network. Three machines are used to run the
DATA-Subsystem’s services: the DATA server and two DATA module servers
(for the TTS PLATTOS and ECA EVA). One machine is used to run the
MWP and BQ-portal web application, and the last machine for the user’s
interface and DATA client API. The modality-dependent services within
the DATA-Subsystem are simultaneously used also in other proprietary
research systems (e.g., auto-attendant, IP-TV system). By using the architec-
ture as presented in Figure 6, the users of the BQ-portal application are able
to receive information via affective ECA EVA, instead of, for example, stan-
dard reading text data from the web application interface. Text data can be
spoken by ECA in three ways: automatically (if specified by the system’s scen-
ario), manually (by clicking the ‘‘read’’ button), or by any text selection

568 I. Mlakar and M. Rojc

within the web application interface. ECA EVA can additionally perform
synthesized body motions (e.g., lip-sync, facial expressions, hand gestures,
gaze, head and arm motions), resulting in even more humanlike experi-
ences when communicating with the computer. In the following subsec-
tions, multimodal-based services are presented, such as BQ-portal’s RSS
feed reader, and BQ-portal’s machine translator.

Multimodal-Based RSS Feed Reader

RSS feeds are usually presented as news, weather services, etc. The
BQ-portal implements a news-based RSS service environment, presenting
content from different news providers (national broadcast companies).
The UI for this service is presented in Figure 7.

When a user selects the RSS news list, the ECA EVA responds, as speci-
fied by the service’s scenario (Figure 8).

The ECA EVA ‘‘reads’’ an introduction, using the text defined in the
scenario. Then ECA EVA also ‘‘reads’’ all the new articles’ titles and their
short summaries. The text on the titles is stored within HTML a tags with
attributes type¼ ‘‘title’’ and for¼ ‘‘RSS.’’ The text regarding a short summary
is stored within summary tags with an attribute for¼ ‘‘RSS.’’ This text is fed to
the DATA-Subsystem, where it is converted into speech and fused with the
ECA EVA, played to the user as an audio-video stream. Similarly, when the
user selects some specific RSS news, the ECA EVA will ‘‘read’’ the specified
content to him. The idea behind the multimodal-based RSS Feed reader is
also to handle the visual-based speech synthesis of highly dynamic content,
as contained within the predefined HTML encapsulations. The response

FIGURE 6 Multimodal-enhanced web application: BQ-portal architecture. (Color figure available online.)

The MWP Platform 569

time (from page load to motion display) of the RSS feed-service is currently
about 500ms to 5 s, depending on the lengths of the text sentences
(phrases) to be synthesized by the TTS engine.

Multimodal-Based Machine Translation

The BQ-portal web application also enables machine translation on
selected text data. The text source can be obtained, either as text from
some webpages or as text entered by the user. The Google Translator API
has been adopted and implemented within the web application for the
machine translation service. In its raw form, the machine’s translation
service supports language translation for all languages supported by the

FIGURE 7 Multimodal-based RSS feed reader’s web interface. (Color figure available online.)

FIGURE 8 RSS feeds service’s scenario for human–machine interaction. (Color figure available online.)

570 I. Mlakar and M. Rojc

Google Translator API, whereas the multimodal-based version supports any-
language-to-Slovene machine translations, because the TTS engine currently
supports Slovenian language. The machine translation-service is activated
simply by selecting=entering text, and clicking the ‘‘read’’ button. Figure 9
presents the machine translation service’s UI. The selected=entered text is
first preprocessed and transformed into its raw form (e.g., without any
HTML elements, etc.). Then the text is passed to the BQ-portal’s machine
translation API and forwarded to the Google Translator’s web-service inter-
face. The response of the Google Translator’s web service is then handled as
any other text to be synthesized. As such, it is first passed to the DATA-
Subsystem as a user’s read-request, synthesized, and then fused into the
audio=video stream via the ECA EVA engine. Currently, the machine trans-
lator service uses completely external service providers. In the case of RSS
feeds, the text source for the speech synthesis was maintained within the
BQ-portal’s domain. However, the text source for the machine translator
API was only partiality maintained by the BQ-portal. The actual machine
translation service was performed by the Google translator web service.
The response time (from request to animated behavior) and the quality
of translation depended mainly on the translator web service.

CONCLUSION AND FUTURE RESEARCH

This article presented a novel MWP, which introduces a modular
approach for providing multimodal web applications in a distributive
manner. The presented approach performs a client-side integration based
on encapsulation rather than developing new web applications (Bickmore,

FIGURE 9 BQ-portal’s multimodal-based machine translation. (Color figure available online.)

The MWP Platform 571

Schulman, and Shaw 2009), multimodal browsers (Johnston, Di Fabbrizio,
and Urbanek 2011), or web-operating systems (Lamberti and Sanna
2011). Although the idea of merging different technologies into personal
desktop environments based on web technologies is promising and pro-
vides a unified access to end users, we believe that a more flexible and
end-user device-compatible solution should be based on remote proces-
sing networks accessed by different user devices=interfaces. Those applica-
tions exploiting different modalities should, however, be enhanced only
by those additional modalities and not redesigned=redeveloped. The
MWP enables an enhancement of general web applications with several
modalities and the further usage of these technologies on devices hosting
web browsers. The integration process of fusing web data (web-based UI)
with services for the generation=processing of natural modalities, as dis-
cussed in this paper, are quite simple. When using the MWP, it requires
as little as possible intervention to configure=code web applications or
multimodal services. By extending the concepts of IFRAME cross-domain
communication and multimodal scenarios, the integration process is
implemented automatically. The already-existing presentation layer of the
web application is simply encapsulated in the MWP’s front end, and light
JavaScript API is integrated into the HTML header of the web applica-
tion’s front end. The functionality and design of the general web appli-
cation remains unchanged. The mediating web-based application core,
provided by the MWP, is general and can easily be extended to virtually
any context within the web domain. As proof of this concept, we also have
developed a BQ-portal web application and fused it with TTS and ECA
natural modalities. By using the procedures presented in this article, a
web-based kiosk was flexibly and efficiently enhanced with affective ECA
EVA. By encapsulation of the web-based user front end into the MWP,
we have given the ECA the freedom of screen. In other words, our
approach enables the ECA to perform head, up-to waist, and full-body
animation by freely moving within the region defined by the screen.
The concepts presented in this article also enable other natural modal-
ities to be flexibly integrated into the DATA-subsystem, fused with the
web data, and subsequently used by different users running different
front ends on different devices. A part of our future plans is to integrate
three additional engines for generating=processing natural modalities, the
ASR engine, gesture recognition engine, and a dialogue processing=gen-
eration engine that will enable the fusing of all of the different natural
modalities into responsive, humanlike communicative behavior. Because
of the fact that the presented approach is browser independent and that
no processing is performed on the client’s device, we also plan to develop
a mobile edition of the BQ-portal application, and fuse it with natural
modalities.

572 I. Mlakar and M. Rojc

NOTES

1. http://en.wikipedia.org/wiki/XHTML%2Bvoice
2. http://msdn.microsoft.com/en-us/library/ms994629.aspx
3. http://tomcat.apache.org/
4. http://jquery.com/
5. http://dev.mysql.com/

REFERENCES

Bickmore, T., L. M. Pfeifer, and M. K. Paasche-Orlow. 2007. Health document explanation by virtual
agents. In Proceedings of the 7th international conference on intelligent virtual agents ‘07, 183–196. Paris.

Bickmore, T., D. Schulman, and G. Shaw. 2009. DTask and litebody: Open source, standards-based tools
for building web-deployed embodied conversational agents. In Proceedings of the 9th international
conference on intelligent virtual agents ‘09, 2009; 425–431. DOI: 10.1007=978-3-642-04380-2_46.
Amsterdam.

Cassell, J., H. Vilhjálmsson, and T. Bickmore. 2001. BEAT: The behavior expression animation toolkit.
In Proceedings of SIGGRAPH 2001, 477–486. DOI: 10.1.1.111.5468. New York.

Cassell, J., T. Stocky, T. Bickmore, Y. Gao, Y. Nakano, K. Ryokai, D. Tversky, C. Vaucelle, and
H. Vilhjálmsson. 2002. MACK: Media lab autonomous conversational kiosk. In The proceedings of
Imagina ‘02. Monte Carlo, Monaco, January 12–15.

Cena, F. 2011. Integrating web service and semantic dialogue model for user models interoperability on
the web. Journal of Intelligent Information Systems 36 (2): 131–166. DOI: 10.1007=s10844-010-0126-3.

Chatti, M. A., M. Jarke, M. Specht, U. Schroeder, and D. Dahl. 2011. Model-driven mashup personal
learning environments. International Journal of Technology Enhanced Learning 3 (1): 21–39. DOI:
10.1504=IJTEL.2011.039062.

Cimiano, P., and S. Kopp. 2010. Accessing the web of data through embodied virtual characters. Semantic
Web Journal 1 (1–2): 83–88. DOI: 10.3233=SW-2010-0008.

Copeland, T. 2007. Generating parsers with JavaCC. Alexandria, VA: Centennial Books.
Diesbach, P., and D. Midgley. 2008. Embodied agents on commercial websites: Modeling their effects

through an affective persuasion route. In Proceedings of the 3rd international conference on persuasive
technology PERSUASIVE ‘08, 283–286. Berlin, Heidelberg: Springer-Verlag. DOI: 10.1007=978-3-
540-68504-3_32.

Di Fabbrizio, G., T. Okken, and J. G. Wilpon. 2009. A speech mashup framework for multimodal mobile
services. In Proceedings of the 11th international conference on multimodal interfaces (ICMI 2009), 71–78.
Cambridge, MA.

Goh, O. S., C. C. Fung, K. W. Wong, and A. Depickere. 2006. An embodied conversational agent for
intelligent web interaction on pandemic crisis communication. In Proceedings of international confer-
ence on web intelligence and intelligent agent technology (WI-IATW ‘06), 397–400. DOI: 10.1109=
WI-IATW.2006.37. Washington, DC.

Graesser, A. C., P. Chipman, B. C. Haynes, and A. Olney. 2005. Autotutor: An intelligent tutoring system
with mixed-initiative dialogue. IEEE Transactions on Education 48 (4): 612–618. DOI: 10.1109=
TE.2005.856149.

Jan, D., A. Roque, A. Leuski, J. Morie, and D. R. Traum. 2009. A virtual tour guide for virtual worlds.
In Proceedings of the 9th international conference on intelligent virtual agents, 372–378. Amsterdam,
Netherlands: Springer. DOI: 10.1007=978-3-642-04380-2_40.

Johnston, M. 2009. Building multimodal applications with EMMA. In Proceedings of the 2009 international
conference on multimodal interfaces, ICMI-MLMI ‘09, 47–54. Cambridge, MA.

Johnston, M., G. Di Fabbrizio, and S. Urbanek. 2011. mTalk - A multimodal browser for mobile services.
Interspeech 2011, in submission.

Kimihito, I. 2005. Introducing multimodal character agents into existing web applications. Poster
presented at the 14th International Conference on World Wide Web, 966–967, Chiba, Japan,
May 10–14. DOI: 10.1145=1062745.1062821.

The MWP Platform 573

Kopp, S., and I. Wachsmuth. 2004. Synthesizing multimodal utterances for conversational agents.
Journal of Computer Animation and Virtual Worlds 15:39–52. DOI: 10.1002=cav.6.

Lamberti, F., and A. Sanna. 2011. Migration desktop applications to the internet: A novel virtualization
paradigm based on web operating systems. Journal of Web Engineering 10 (3): 234–272.

Li, Y., D. Shen, T. Nie, G. Yu, J. Shan, and K. Yue. 2011. A self-adaptive cross-domain query approach on
the deep web. In Web-age information management, Lecture Notes in Computer Science 6897:43–55,
ed. H. Wang et al. Berlin, Heidelberg: Springer-Verlag. DOI: 10.1007=978-3-642-23535-1_6.

Mlakar, I., and M. Rojc. 2011. Towards ECA’s animation of expressive complex behaviour. In Analysis of
verbal and nonverbal communication and enactment, Lecture Notes in Computer Science 6800:
185–199, ed. A. Esposito, A. Vinciarelli, K. Vicsi, C. Pelachaud, and A. Nijholt. Berlin, Heidelberg:
Springer-Verlag.

Mohri, M. 1996. On some applications of finite-state automata theory to natural language processing.
Natural Language Engineering 2 (1): 61–80. DOI: 10.1017=S135132499600126X.

Paraiso, E. C., and C. A. Tacla. 2009. Using embodied conversational assistants to interface users with
multi-agent based CSCW applications: The webanima agent. Journal of Universal Computer Science
15 (9): 1991–2010. DOI: 10.3217=jucs-015-09-1991.

Polymenakos, L. C., and J. K. Soldatos. 2005. Multimodal web applications: Design issues and an
implementation framework. International Journal of Web Engineering and Technology 2 (1): 97–116.
DOI: 10.1504=IJWET.2005.007466.

Prendinger, H., S. Descamps, and M. Ishizuka. 2004. MPML: A markup language for controlling the
behavior of life-like characters. Journal of Visual Languages and Computing 15 (2): 183–203. DOI:
10.1016/j.jvlc.2004.01.001.

Repenning, A., and J. Sullivan. 2003. The pragmatic web: Agent-based multimodal web interaction with
no browser in sight. In Proceedings of the ninth IFIP TC13 international conference on human-computer
interaction, 212–219. Zurich.

Rojc, M., and Z. Kačič. 2007. Time and space-efficient architecture for a corpus-based text-to-speech
synthesis system. Speech Communication 49 (3): 230–249. DOI: 10.1016=j.specom.2007.01.007.

Rojc, M., and I. Mlakar. 2009. Finite-state machine based distributed framework DATA for intelligent
ambience systems. In Proceedings of international conference on computational intelligence, man-machine
systems and cybernetics (CIMMACS ‘09), 80–85. Stevens Point, WI.

Rojc, M., and I. Mlakar. 2011. Multilingual and multimodal corpus-based text-to-speech system - PLAT-
TOS-. In Speech technologies Book 2, ed. Ivo Ip�ssié, Chapter 7. Rijeka, Croatia: In Tech.

Shalyto, A. A. 2001. Logic control and ‘‘reactive’’ systems: Algorithmization and programming. Auto-
mation and Remote Control 62 (1): 1–29. (Translated from Avtomatika i Telemekhanika 1:3–39.)

Tanaka, Y. 2003. Meme media and meme market architectures: Knowledge media for editing, distributing, and
managing intellectual resources. IEEE Press, John Wiley & Sons.

Terrazas, A., J. Ostuni, and M. Barlow. 2002. Java media APIs: Cross-platform imaging, media and visualiza-
tion. Sams Publishing.

Thang, M. D., V. Dimitrova, and K. Djemame. 2007. Personalised mashups opportunities and challenges
for user modelling. In User modeling 2007, Lecture Notes in Computer Science 4511:415–419. DOI:
10.1007=978-3-540-73078-1.

Theune, M., E. Krahmer, B. van Schooten, R. Opden Akker, W. Bosma, D. Hofs, A. Nijholt, E. Krahmer,
C. van Hooijdonk, and E. Marsi. 2007. Questions, pictures, answers: Introducing pictures in
question-answering systems. In Proceedings of the tenth international symposium on social communication,
450–463. Cuba.

Weyns, D., N. Boucke, T. Holvoet, B. Demarsin. 2007. DynCNET: A protocol for flexible transport
assignment in AGV transportation systems. Technical Report CW 478, Katholieke Universiteit
Leuven, Belgium.

Xu, F., P. Adolphs, H. Uszkoreit, X. Cheng, and H. Li. 2010. Gossip galore: An embodied conversational
agent for collecting and sharing pop trivia from the web. Agents and Artificial Intelligence 67:164–176.
DOI: 10.1007=978-3-642-11819-7_13.

Yuan, X., and S. Chee. 2005. Design and evaluation of Elva: An embodied tour guide in an interactive
virtual art gallery. Computer Animation and Virtual Worlds 16:109–119. DOI: 10.1002=cav.65.

Zaguia, A., M. D. Hina, C. Tadj, and A. Ramdane-Cherif. 2010. Using multimodal fusion in accessing
web services. Journal of Emerging Trends in Computing and Information Sciences 1 (2): 121–138.

574 I. Mlakar and M. Rojc

Copyright of Applied Artificial Intelligence is the property of Taylor & Francis Ltd and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

