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Hidden Markov model (HMM) has become increasingly popular in the last several years. Real-
world problems such as prediction of web navigation are uncertain in nature; in this case, HMM

is less appropriate i.e., we cannot assign certain probability values while in fuzzy set theory

everything has elasticity. In addition to that, a theory of possibility on fuzzy sets has been
developed to handle uncertainity. Thus, we propose a fuzzy hidden Markov chain (FHMC) on

possibility space and solve three basic problems of classical HMM in our proposed model to

overcome the ambiguous situation. Client's browsing behavior is an interesting aspect in web

access. Analysis of this issue can be of great bene¯t in discovering user's behavior in this way we
have applied our proposed model to our institution's website (www.ssn.edu.in) to identify how

well a given model matches a given observation sequence, next to ¯nd the corresponding state

sequence which is the best to explain the given observation sequence and then to attempt to

optimize the model parameters so as to describe best how a given observation sequence comes
about. The solution of these problems help us to know the authenticity of the website.

Keywords: Triangular fuzzy number (TFN); generalized division of TFN; possibility space;
conditional possibility; fuzzy Markov chain; hidden Markov model.

1. Introduction

Hidden Markov model (HMM) is a doubly stochastic process with an underlying

stochastic process that is not observable (it is hidden), but can only be observed

through another set of stochastic processes that produce the sequence of observed

symbols in such a way that the HMM constitutes of a initial probability, the tran-

sition probability and the output symbol observation probability. In HMM, there are

three basic problems of interest that must be solved for the model. These problems

are namely Evaluation problem, Optimization problem and Training problem.1

Nowadays fuzzy approach HMM is developing extensively and widely applied in

many areas. New smoothing method based on fuzzy vector quantization (FVQ) is

used to avoid more training data in speech recognition.2,3 Fuzzy Q functions of

observed data for discrete HMMs and continuous HMMs are exploited in the ¯eld of

Speech and Speaker Recognition.4,5 Fuzzy-C-means HMM is used to decide the

status of the tra±c with the assumption that the observable events are uncertain.6
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Detection of intrusion of a website using fuzzy similarity measure instead of the

probability measure is discussed in Ref. 7. In Ref. 8, fuzzy clustering function for the

emission and transition matrices to analyze the human wrist motion is discussed.

Classi¯cation of disease for transcranial doppler (TCD) study of the adult intra-

cerebral circulation using fuzzy discrete hidden Markov model (FDHMM) is given in

Ref. 9. Breast Cancer identi¯cation employing HMM-fuzzy rule approach is dis-

cussed in Ref. 10. Classi¯cation (hard class and fuzzy class) of satellite image seg-

mentation using hidden fuzzy Markov random ¯elds is given in Ref. 11.

Dempster�Shafer fusion in the context of di®erent multisensor Markov models to

show that the posterior distribution remains calculable in di®erent general situations

and the applications in remote sensing area is discussed in Ref. 12. In Ref. 13, the

authors discussed that fuzzy Markov random chains for image segmentation in one

hand and on the other hand, they modeled the uncertainty on the observed data

using Markovian Bayesian scheme models. It follows that, some authors assumed

observations are uncertain,4�6,9�13 and some authors assumed transition between

the hidden states and observations are uncertain.8 On the basis of their assumption

they used fuzzy concepts on HMM.

Our aim is to solve three basic problems of classical HMM to HMM on possibility

space, because this space is used to model the incomplete information in a °exible

way hence we named HMM on possibility space as fuzzy hidden Markov chain

(FHMC) by the existence theorem of possibility space. The word chain is due to the

assumption that the states and the time steps are discrete.14 To capture the real-

world fuzziness we have converted the elements of initial possibility distribution,

transition possibility between the hidden states and observation possibility of each

state in to a special type of fuzzy number called triangular fuzzy number. The

operations in the possibility theory is minimum and maximum whereas in the

probability theory it is multiplication and addition. The advantage of our proposed

model is that it solves the two problems namely Evaluation problem and Optimiz-

ation problem in a single algorithm, this is due to the operations we have handled

which shows that our time consumption is saved. Real-world problems such as web

navigation are very challenging to solve. Sur¯ng the website involves traversing the

connections among hyperlinked documents. In the literature survey for analyzing the

collection of data, questionnaire survey is commonly used to collect opinions and

views in the analytic hierarchy process (AHP) but in the AHP, the score items for a

comparison matrix in a questionnaire increase drastically if there are more com-

parisons, which result in longer survey. Therefore, induced bias matrix model

(IBMM) is proposed to estimate the missing item scores of the reciprocal pairwise

comparison matrix.15 A Multiple factor hierarchical clustering algorithm for large

scale text collection that combines user browsing and retrieval history is given in

Ref. 16. Co-word analysis technique is also used to collect the data with the software

named CoPalRed.17 Extracting the web log ¯les using web log analyzer to analyze

the user's navigated path obviously creates ambiguity. Hence, classical HMM is less

appropriate and to overcome this uncertainty, we have applied our proposed model
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to our institution website www.ssn.edu.in and we have performed the simulation to

analyze the accessibility of the website among the users.

In Sec. 2, we have discussed the preliminaries and HMM, FHMC and three pro-

blems of FHMC have explained in Sec. 3, in Sec. 4 illustration and simulation has

presented and ¯nally concluded.

2. Basic Concepts and Preliminaries

Fuzzy sets, as its name implies, basically, a theory of graded concepts. Let � be the

universe of discourse whose generic element is denoted by !. A fuzzy set ~A de¯ned on

� is a mapping from � to the unit interval ½0; 1�, � ~Að!Þ is referred to as the mem-

bership function whose value at ! signi¯es the grade of membership of ! of the fuzzy

set ~A and may vary from 0 to 1. A normalized convex fuzzy set ~A on � whose

membership function � ~A is piecewise continuous is called the fuzzy number. The

concept of a fuzzy number was introduced by Mizumoto and Tanaka in 1979.18 The

importance of the concept of fuzzy number is still growing due to its application in

the frame work of expert systems; roughly speaking a fuzzy number can be con-

sidered as a representation for an ill known quantity. A triangular fuzzy number
~A ¼ ða1; a2; a3Þ where a1 < a2 < a3 is a special type of fuzzy number and it satis¯es,19

(1) the membership function � ~AðxÞ ¼ 1 at x ¼ a2;

(2) the graph of y ¼ � ~AðxÞ on ½a1; a2� is a straight line from ða1; 0Þ to ða2; 1Þ and also

on ½a2; a3� the graph is a straight line from ða2; 1Þ to ða3; 0Þ;
(3) � ~AðxÞ ¼ 0 for x � a1 or x � a3.

An �-cut of a fuzzy set ~A denoted by ~A� is de¯ned as

~A� ¼ ½a1 þ �ða2 � a1Þ; a3 � �ða3 � a2Þ� ¼ ½a�; aþ�; 0 � � � 1: ð2:1Þ
0.5 cut of the fuzzy set ~A is depicted in Fig. 1.

1

0.5

0

left end point of 0.5 cut

right end point of 0.5 cut

Fig. 1. 0.5 cut.
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It is worth noting that contrary to what holds in set theory, ~A [ ~A
c 6¼ � and

~A \ ~A
c 6¼ � because it is not certain where ~A ends and ~A

c
begins. This is the fun-

damental reason that places probability and fuzzy sets apart and mathematical

apparatus of the theory of fuzzy sets provides a natural basis for the theory of

possibility. This theory was coined by Zadeh in the late 1970s as an approach to

model °exible restrictions constructed from vague pieces of information described by

means of fuzzy sets.20 Possibility theory is maxitive and not additive, i.e., the

possibility of a disjunction of events is the maximum of the possibilities of each event

A possibility space is a triple ð�;=; �Þ where21:

(i) = is a class of all subsets of �, i.e., elements of = represent the collection of events

of interest in that experiment.

(ii) For every A 2 =; the non-negative number �ðAÞ is the possibility that the event

A occurs. The map A ! �ðAÞ; called a possibility, if � : = ! ½0; 1�; with the

following properties:

(a) �ð�Þ ¼ 0 and �ð�Þ ¼ 1.

(b) For an arbitrary collection of sets Ai 2 =; �ð[i2IAiÞ ¼ supi2I�ðAiÞ:
In the possibility space ð�;=; �Þ, given B occurring, we consider the possibility of

A, i.e., �ðAjBÞ. Suppose �ðBÞ and �ðABÞ where �ðABÞ ¼ �ðA \ BÞ are known. They
represent possibilities of B and AB, respectively. We note B ¼ ðB � ABÞ [ AB. If

�ðBÞ ¼ �ðABÞ, then it can be said that B achieves its realization on AB. If

�ðBÞ > �ðABÞ, then it can be said that B achieves its realization on B � AB rather

than on AB. So, given B occurring, if B achieves its realization on AB, then A also

occurs. In this way there should be �ðAjBÞ ¼ 1. If B achieves its realization on

B �AB, then the occurrence of B makes no di®erence on occurrence of AB. Thus

�ðAjBÞ ¼ �ðABjBÞ ¼ �ðABÞ. The conditional possibility of A 2 = given B denoted

by �ðAjBÞ is de¯ned by,21

�ðAjBÞ ¼ 1; if �ðABÞ ¼ �ðBÞ;
�ðABÞ; if �ðABÞ < �ðBÞ:

�
ð2:2Þ

A possibilistic variable X is a mapping from � to an arbitrary universe U and the

possibility distribution function is given by gðxÞ ¼ �ðX ¼ xÞ8 x 2 U, the possibilistic

variable X determines a normalized fuzzy set de¯ned on U.21 A fuzzy Markov chain

on the possibility space has the ¯nite number of states S ¼ f1; 2; . . . ; sg; S 2 U and a

possibilistic variables X ¼ fXn; n 2 Ng an S valued stochastic process on possibility

space and whose possibility measure is � such that the chain satis¯es the Markov

property,22 i.e., for all j 2 S and for each time step n > 0 we have,

�ðXnþ1 ¼ jjX0;X1; . . . ;XnÞ ¼ �ðXnþ1 ¼ jjXnÞ: ð2:3Þ
The transition possibility ~pij of the system from state i to state j is de¯ned as for each

i; j 2 S

~pij ¼ �ðXnþ1 ¼ jjXn ¼ iÞ: ð2:4Þ

816 R. Sujatha, T. M. Rajalaxmi & B. Praba



In the case if ~pij is independent of time then we can say that the chain is an homo-

geneous fuzzy Markov chain. Let ~P ¼ ð~pijÞ is an s � s matrix of transition possibi-

lities and since the possibility theory is maxitive and not additive consequently

maximum element of a each row vector of transition matrix is 1 while in probability

theory the row sum is 1 (stochastic matrix). Initial possibility vector of the system is

denoted by ~pð0Þ ¼ ð~p ð0Þ
1 ; ~p

ð0Þ
2 ; . . . ; ~p

ð0Þ
s Þ, where ~p

ð0Þ
i ¼ �ðX0 ¼ iÞ is the possibility of

being in the state i initially. To capture the vagueness involved in the system, tri-

angular fuzzy number has been used to the elements of initial, transition possibilities

of each state.

2.1. Hidden Markov model

A classical HMM is a doubly embedded stochastic process with an underlying process

which is a discrete time ¯nite state homogeneous Markov chain that is not observable

(it is hidden), but can only be observed through another set of stochastic processes

that is a discrete time memory less invariant observations.1

Elements of HMM:

(i) s the number of states in the chain, we have denoted the state at time step n

as Xn;

(ii) m the number of distinct observation symbols per state, i.e., the discrete output

of system. We have denoted the individual symbols as V ¼ fv1; v2; . . . ; vmg;
(iii) the state transition probability distribution matrix, denoted by P ¼ ðpijÞ;
(iv) the observation symbol probability distribution in state j, denoted by B ¼

ðbjðkÞÞ where bjðkÞ ¼ Pðvk at njXn ¼ jÞ;
(v) the initial state distribution pð0Þ ¼ ðp ð0Þ

i Þ, where 1 � i; j � s and 1 � k � m.

Given appropriate values of s;m;P;B and pð0Þ, the HMM can be used as a gen-

erator to give an observation sequence

O ¼ fo0; o1; . . . ; oN�1g
(where each observation on is one of the symbol from V , and N � 1 is the number

of observations in the sequence). We need ¯ve elements to specify HMM. A

compact notation to indicate the complete parameter set of the model is denoted

by � ¼ ðP;B; pð0ÞÞ. Given the HMM, there are three basic problems of interest

namely:

(1) Evaluation Problem: Given the observation sequence O ¼ fo0; o1; . . . ; oN�1g, and
a model � ¼ ðP;B; pð0ÞÞ how do we e±ciently compute PðOj�Þ, the probability of

the observation sequence, for the given model?

(2) Uncover the hidden part of the model: Given the observation sequence O ¼
fo0; o1; . . . ; oN�1g, and the model � how do we choose a corresponding state

sequence X ¼ X0; . . . ;XN�1 which is optimal in some meaningful sense (i.e., best

\explains" the observations)?
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(3) Training of the Model: How do we adjust the model parameters � ¼ ðP;B; pð0ÞÞ
to maximize PðOj�Þ?

3. Fuzzy Hidden Markov Chain

In this section, we build a FHMC on possibility space in such a way that the initial

possibility, transition possibility and observation possibility values are constructed

as the Triangular Fuzzy Number to capture the imprecision and solved three basic

problems of classical HMM to our proposed model.

FHMC is similar to the HMM where the underlying unobservable process is the

fuzzy Markov chain and the observable process is the sequence of outcomes where the

observation on is independently generated by the state Xn. A formal de¯nition of

FHMC is a bivariate discrete process fXn; ongn�0, where fXng is a fuzzy Markov

chain on possibility space ð�;=; �Þ, fong is the sequence of observation such that the

conditional distribution of on only depends on Xn. We have denoted the set in which

fong takes its value from V .

By Eq. (2.2), the observation symbol possibility distribution in state j, ~B ¼
f~bjðkÞg,where ~bjðkÞ ¼ �ðvk at njXn ¼ jÞ; 1 � j � s; 1 � k � m, is the possibility of

individual symbol vk given that the state is j at step n.

~bjðkÞ ¼
1; if �ðvkjÞ ¼ �ðjÞ;
�ðvkjÞ; if �ðvkjÞ < �ðjÞ:

�
ð3:1Þ

Thus fuzzy theory replaces probability theory and this leads to a new de¯nition of

hidden Markov model parameters denoted by ~� ¼ ð ~P ; ~B ; ~pð0ÞÞ, where ~P ¼ ð~pijÞ the
state transition possibility distribution; ~B ¼ f~bjðkÞg, the possibility distribution

of observation and ~pð0Þ ¼ ð~p ð0Þ
i Þ; 1 � i; j � s; 1 � k � m, the initial possibility

distribution.

We have solved the evaluation problem of FHMC using forward system; the main

di®erence between this forward system and classical one is the operation. Here we

have used min�max operation instead of multiplication and addition, respectively.

We have computed the optimization path of FHMC by modi¯ed Viterbi algorithm.

The beauty of FHMC is it solves the evaluation problem and computation of optimal

path in a single modi¯ed Viterbi algorithm itself and this saves our time consump-

tion. Finally we have trained the model parameters of FHMC with the help of

backward system and with the generalized division of triangular fuzzy number.23 To

demonstrate how the FHMC works, let us consider an example.

3.1. Simple demonstration

Consider the state space as S ¼ fCSE; ITg and assume the outcomes as Faculty (F),

News (N), therefore the set of all outcomes V ¼ fv1; v2g ¼ fF ;Ng. We are interested

to ¯nd the user's accessibility and the most likely state sequence, hence it is necessary

to know the possibilities of using each state in user's navigation, as well as the
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conditional possibilities of hitting Faculty and News of each state. Mathematically,

(1) States: S ¼ fCSE; ITg ¼ f1; 2g.
(2) The set of all outcomes of each state: V ¼ fv1; v2g ¼ fF ;Ng.
(3) The sequence of the navigation: X ¼ ðx1; x2Þ and x1; x2 2 S: We have noticed

that there are 22 ¼ 4 possible sequences: X1 ¼ ð1; 1Þ;X2 ¼ ð1; 2Þ;X3 ¼ ð2; 1Þ and
X4 ¼ ð2; 2Þ.

(4) The sequence of outcomes: O ¼ ðo0; o1Þ: We have noticed that each observation

would take one of the outcomes, i.e., on 2 V (on ¼ F or NÞ, n ¼ 0; 1.

(5) By Eq. (2.4), the possibilities of using Departments CSE and IT in the sequence

is given by

~P ¼ ~p11 ~p12
~p21 ~p22

� �
;

where ~pij represents the possibility that state i is used ¯rst followed by state j.

(6) The possibility of hitting a Faculty and a News for CSE: ~p1ðFÞ ¼ ~�1 and

~p1ðNÞ ¼ ~�2. Similarly for IT: ~p2ðFÞ ¼ ~�3 and ~p2ðNÞ ¼ ~�4. This information can

be put into a vector:

~B ¼ ½~b1ðFÞ ~b1ðNÞ ~b2ðFÞ ~b2ðNÞ� ¼ ½~�1 ~�2 ~�3 ~�4�;
which we can get from Eq. (3.1).

(7) The possibilities of CSE and IT being used at initially: ~pð0Þ ¼ ½~p ð0Þ
1 ; ~p

ð0Þ
2 �:

If the model parameters, ~� ¼ f ~P ; ~B ; ~pð0Þg; are known, we can ¯nd the conditional

possibility of the outcome given the observation sequences. For example, assuming

that the observation is O ¼ ðN ;FÞ;
�ðOjX1; ~�Þ ¼ minf~b1ðNÞ; ~b1ðFÞg ¼ minf~�1; ~�2g;
�ðOjX2; ~�Þ ¼ minf~b1ðNÞ; ~b2ðFÞg ¼ minf~�2; ~�3g;
�ðOjX3; ~�Þ ¼ minf~b2ðNÞ; ~b1ðFÞg ¼ minf~�4; ~�1g;
�ðOjX4; ~�Þ ¼ minf~b2ðNÞ; ~b2ðFÞg ¼ minf~�4; ~�3g:

On the other hand, the conditional possibility of the user navigation sequence given

the model parameter ~� is given by

�ðX1j~�Þ ¼ minf~p ð0Þ
1 ; ~p11g;

�ðX2j~�Þ ¼ minf~p ð0Þ
1 ; ~p12g;

�ðX3j~�Þ ¼ minf~p ð0Þ
2 ; ~p21g;

�ðX4j~�Þ ¼ minf~p ð0Þ
2 ; ~p22g:

By Hisdal inequality,24 the possibilities of the observation sequences and state

sequences occur simultaneously is given by,

�ðO;X j~�Þ ¼ minf�ðOjX ; ~�Þ; �ðX j~�Þg
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or

�ðO;X1j~�Þ ¼ minf�ðOjX1; ~�Þ; �ðX1j~�Þg ¼ minf~p ð0Þ
1 ; ~�1; ~p11; ~�2g;

�ðO;X2j~�Þ ¼ minf�ðOjX2; ~�Þ; �ðX2j~�Þg ¼ minf~p ð0Þ
1 ; ~�2; ~p12; ~�3g;

�ðO;X3j~�Þ ¼ minf�ðOjX3; ~�Þ; �ðX3j~�Þg ¼ minf~p ð0Þ
2 ; ~�4; ~p21; ~�1g;

�ðO;X4j~�Þ ¼ minf�ðOjX4; ~�Þ; �ðX4j~�Þg ¼ minf~p ð0Þ
2 ; ~�4; ~p22; ~�3g:

Clearly, the most likelihood sequence of navigation is the one that has the maximum

value, which is not di±cult to ¯nd now. For example, see Table 1, given observation

sequence O ¼ ðN ;FÞ: The most likelihood sequence of navigation is X4 ¼ ð2; 2Þ ¼
ðIT ; ITÞ, maximum TFN value among these can be done by comparison of TFN.25

This number gives the exact approximation of lower and upper range of the value

rather than the single probability value in HMM and hence HMM is less suited for

this example. If the model parameters, ~�; are unknown, then we can ¯nd them by

maximizing the total possibility formula of the observation,21

�ðOj~�Þ ¼ max
i

fmin½�ðOjXi; ~�Þ; �ðXij~�Þ�g
¼ max

i
�ðO;Xij~�Þ: ð3:2Þ

In general, we need to compute �ðOj~�Þ the possibility of the observation sequence

O ¼ fo0; o1; . . . ; oN�1g; given the model ~�. The most easy technique of doing this is

by enumerating each likely state sequence of length N � 1 as in the previous dem-

onstration. Consider one such ¯xed state sequence X ¼ X0;X1; . . . ;XN�1 where X0 is

the initial state. The possibility of the observation sequence O for the above state

Table 1. Example of FHMC.

FHMC

Initial possibility vector

ð1; 1; 1Þ ð0:8; 0:85; 0:9Þ½ �:
Transition possibility matrix

ð1; 1; 1Þ ð0:5; 0:55; 0:6Þ
ð0:6; 0:67; 0:79Þ ð1; 1; 1Þ

� �
.

Output symbol observation possibility

ð0:4; 0:5; 0:65Þ; ð1; 1; 1Þ; ð0:6; 0:7; 0:79Þ; ð1; 1; 1Þ½ �:
�ðO;X1j~�Þ ð0:4; 0:5; 0:65Þ;
�ðO;X2j~�Þ ð0:5; 0:55; 0:6Þ;
�ðO;X3j~�Þ ð0:4; 0:5; 0:65Þ;
�ðO;X4j~�Þ ð0:6; 0:7; 0:79Þ:
Most navigated path

IT � IT

�ðOj~�Þ ¼ ð0:6; 0:7; 0:79Þ
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sequence is

�ðOjX ; ~�Þ ¼ min
0�n�N�1

�ðonjXn; ~�Þ; ð3:3Þ

where we have assumed statistical independence of observations. Thus we get

�ðOjX ; ~�Þ ¼ minf~bX0
ðo0Þ; ~bX1

ðo1Þ; . . . ; ~bXN�1
ðoN�1Þg: ð3:4Þ

The possibility of such a state sequence X can be written as

�ðX j~�Þ ¼ minf~�X0
; ~pX0X1

; ~pX1X2
; . . . ; ~pXN�2XN�1

g; ð3:5Þ
by Hisdal inequality,

�ðO;X j~�Þ ¼ minf�ðOjX ; ~�Þ; �ðX j~�Þg: ð3:6Þ
The possibility of observation given the model is obtained by maximizing this joint

possibility over all likely state sequences X giving

�ðOj~�Þ ¼ max
all X

f�ðO;X j~�Þg
¼ max

X0;X1;...;XN�1

fmin½~�X0
; ~bX0

ðo0Þ; ~pX0X1
; ~bX1

ðo1Þ; . . . ; ~pXN�2XN�1
; ~bXN�1

ðoN�1Þ�g:

The calculation of �ðOj~�Þ involves on the order of 2ðN � 1ÞsðN�1Þ calculations,

because there are s possible states which can be reached at every n ¼ 0; 1; . . . ;N � 1

and for each such state sequence about 2ðN � 1Þ calculations are required. This

calculation is computationally unfeasible, even for small values of s and N � 1.

Clearly a more e±cient algorithm is required.

3.2. Solution for evaluation problem

Forward system

Consider the forward variable �nðiÞ as
~�nðiÞ ¼ �ðo0; o1; . . . ; on;Xn ¼ ij~�Þ; ð3:7Þ

i.e., the possibility of the partial observation sequence, o0; o1; . . . ; on (until step n)

and state i at step n, given the model ~�. We have solved ~�nðiÞ inductively as follows:

(1) Initialization

~�0ðiÞ ¼ min½~p ð0Þ
i ; ~biðo0Þ� 1 � i � s:

(2) Induction

~�nþ1ðjÞ ¼ min max
1�i�s

½minð~�nðiÞ; ~pijÞ�
� �

; ~bjðonþ1Þ
� �

; 0 � n � N � 2; 1 � j � s;

see Fig. 2.

(3) Termination

�ðOj~�Þ ¼ max
1�i�s

½~�N�1ðiÞ�:
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Since ~�nðiÞ is the possibility of the joint event that o0; o1; . . . ; on are observed and

the state i at time step n, the expression minð~�nðiÞ; ~pijÞ is then the possibility of the

joint event that o0; o1; . . . ; on are observed and state j is reached at step n þ 1 via

state i at step n. Maximizing this expression over all s possible states i; 1 � i � s at

step n results in the possibility of j at step n þ 1 with all accompanying previous

partial observation. Once this is done and j is known it is easy to calculate ~�nþ1ðjÞ.
This shows that the computation involved for ~�nðjÞ; 0 � n � N � 1; 1 � j � s is on

the order of s2ðN � 1Þ.

Backward system

Backward possibilities of the system can be used to reestimate the parameters of the

system. Backward variable ~�nðiÞ on possibility space is de¯ned as

~�nðiÞ ¼ �ðonþ1; onþ2; . . . ; oN�1jXn ¼ i; ~�Þ; ð3:8Þ
i.e., the possibility of the partial observation sequence from n þ 1 to the end, given

state i at step n and the model ~�. We can solve for ~�nðiÞ inductively, as follows:

(1) Initialization:

~�N�1ðiÞ ¼ ð1; 1; 1Þ 1 � i � s:

(2) Induction:

~�nðiÞ ¼ max
1�j�s

fmin½~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞ�g; N � 2 � n � 0 1 � i � s;

see Fig. 3.

.

.

.

1

2

Fig. 2. A schematic representation of forward system.
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Step (2) shows that in order to have been in state i at time step n and to account

for the observation sequence from time step n þ 1 on, we have to consider all possible

states j at step n þ 1 accounting for the transition from i to j (the ~pij term) as well

as the observation onþ1 in state j (the ~bjðonþ1Þ term) and then account for the

remaining partial observation sequence from state j (the ~�nþ1ðjÞ term). Again, the

computation of ~�nðiÞ; 0 � n � N � 1; 1 � i � s requires the order of s2ðN � 1Þ
calculations.

3.3. Solution to ¯nd the optimal path

There are several ways to solve this problem, namely to ¯nd the `optimal' state

sequence associated with the given observation sequence. Solution to the above

problem is to maximize �ðX jO; ~�Þ which is equivalent to maximizing �ðX ;Oj~�Þ. To
¯nd the single best state sequence, X ¼ fX0;X1; . . . ;XN�1g for the given observation

sequence O ¼ fo0; o1; . . . ; oN�1g and the model, we need to de¯ne the quantity,

~	nðiÞ ¼ max
X0;X1;...;Xn�1

�ðX0;X1; . . . ;Xn ¼ i; o0; o1; . . . ; onj~�Þ; ð3:9Þ

i.e., ~	nðiÞ is the highest possibility along a single path, at time step n, which accounts

for the ¯rst n observations and ends in state i. By induction we have

~	nþ1ðjÞ ¼ min max
i

½minð~	nðiÞ; ~pijÞ�
� �

; ~bjðonþ1Þ
� �

;

i; j 2 S; 0 � n � N � 2; ð3:10Þ
~	0ðiÞ ¼ �ðX0 ¼ i; o0j~�Þ

¼ minf�ðo0jX0 ¼ i; ~�Þ; �ðX0 ¼ ij~�Þgðby Hisdal inequalityÞ
¼ minf~biðo0Þ; ~p ð0Þ

i g:

1

2

.

.

.

Fig. 3. A schematic representation of backward system.
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To retrieve the state sequence, we need to keep track of the argument which maxi-

mized Eq. (3.10),26 for each n and j. We have done this via the array ’nðjÞ: The
complete procedure for ¯nding the best state sequence can now be stated as follows:

Modi¯ed Viterbi Algorithm

(1) Initialization:

~	0ðiÞ ¼ min½ ~pið0Þ; ~biðo0Þ�; 1 � i � s;

’0ðiÞ ¼ 0:

(2) Recursion:

~	nþ1ðjÞ ¼ min max
1�i�s

½minð~	nðiÞ; ~pijÞ�
� �

; ~bjðonþ1Þ
� �

; 0 � n � N � 2; 1 � j � s;

’nþ1ðjÞ ¼ arg max
1�i�s

½minð~	nðiÞ; ~pijÞ�; 0 � n � N � 1; 1 � j � s:

(3) Termination

P� ¼ max
1�i�s

½~	N�1ðiÞ�;

X �
N ¼ arg max

1�i�s
½~	N�1ðiÞ�:

(4) Path (state sequence) backtracking:

X �
n ¼ ’nþ1ðX �

nþ1Þ; n ¼ N � 2; N � 3; . . . ; 0:

We can note that the modi¯ed Viterbi algorithm is same as the forward system

except for the backtracking. Hence one can easily ¯nd P� ¼ �ðOj~�Þ and the optimal

path in this algorithm itself.

3.4. Solution of parameter reestimation

The third problem of FHMC of the model is to determine a technique to adjust the

model parameters ~� ¼ ð ~P ; ~B ; ~pð0ÞÞ such that it maximize the possibility of the

observation sequence given the model. We have obtained the solution for this pro-

blem using iterative procedure.

In order to describe the procedure for reestimation of FHMC parameters, we have

to de¯ne ~
nði; jÞ, the possibility of being in state i at step n, and state j at step n þ 1,

given the model and the observation sequence, i.e.,

~
nði; jÞ ¼ �ðXn ¼ i;Xnþ1 ¼ j jO; ~�Þ: ð3:11Þ
It is clear that, from the de¯nitions of the forward and backward variables, we can

write ~
nði; jÞ in the form

~
nði; jÞ ¼
minf~�nðiÞ; ~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞg

max1�i�sfmax1�j�s½minð~�nðiÞ; ~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞÞ�g
: ð3:12Þ
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Here we have employed the generalized division of triangular fuzzy number where

the denominator gives the desired possibility measure and we have de¯ned ~�nðiÞ as
the possibility of being in state i at step n, given the observation sequence and the

model; hence we can relate ~�nðiÞ to ~
nði; jÞ by maximizing over j, giving

~�nðiÞ ¼ max
1�j�s

~
nði; jÞ: ð3:13Þ

If we take the max of ~�nðiÞ over the step index n, we obtain a quantity which can be

interpreted as the expected number of times that state i is visited, or equivalently,

the expected number of transitions made from state i by excluding the step n ¼
N � 1 from the maximization. Likewise, maximization of ~
nði; jÞ over n, i.e., from

n ¼ 0 to n ¼ N � 2 can be interpreted as the expected number of transitions from

state i to state j. Explicitly

max
0�n�N�2

~�nðiÞ : Expected number of transitions from state i; ð3:14Þ

max
0�n�N�2

~
nði; jÞ : Expected number of transitions from state i to state j: ð3:15Þ

By means of the above formulas we have given a system of reestimation of the

parameters of a FHMC. A set of reasonable reestimation formulas for ~pð0Þ; ~P and ~B

are

~p
ð0Þ
i ¼ expected number of times in state i at stepðn ¼ 0Þ ¼ ~�0ðiÞ; ð3:16Þ

~p ij ¼
expected number of transitions from state i to state j

expected number of transitions from state i

¼ max0�n�N�2
~
nði; jÞ

max0�n�N�2
~�nðiÞ

; ð3:17Þ

~b jðkÞ ¼
expected number of times in state j and observing symbol vk

expected number of times in state j

¼ max0�n�N�2;3 on¼vk
~�nðjÞ

max0�n�N�2
~�nðjÞ

: ð3:18Þ

By using the current model ~� ¼ ð ~P ; ~B ; ~pð0ÞÞ to compute the right-hand sides of

Eqs. (3.16)�(3.18) then we get the reestimated model as ~� ¼ ð ~P ; ~b ; ~pð0ÞÞ.
On the basis of the above procedure, if we iteratively use ~� in a place of � and

repeat the reestimation calculation, we then can improve the possibility of O

being observed from the model until some limiting point is reached. The ¯nal

result of this reestimation procedure is called a maximum likelihood estimate of

FHMC.
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4. Illustration

World Wide Web is a large, distributed hypertext repository of information, whose

users navigate through links and view through browsers. These links again have some

other new links. User hits the particulars of their own interest.

Web log ¯les contains the data regarding user's navigation of the website.

Extracting the log ¯les using web log analyzer even for one day can have the enor-

mous user's navigated path and this path also contains the meaningless path which

obviously creates the uncertainty. For this reason we cannot assign a certain prob-

ability values to the model. Hence in this situation our model suits well and in this

section we have illustrated our proposed model to our institution website (www.ssn.

edu.in) by assuming that the hidden states are the departments and observations are

the department attributes. Solution of the evaluation problem reveals that for a

given observation sequence how much possibility that the website is accessed by the

users on that particular day help us to know the familiarity of the department among

the users. Optimization of the users navigated path enables that the corresponding

state sequence is the best to explain the given observation. Finally, we trained the

model parameter to maximize the possibility of given observation sequence.

The style of our institution website is depicted in Fig. 4.

Let the state space S be the set of all departments

S ¼ fEEE;MECH ;BMEg; ð4:1Þ

and the attributes of each department is

V ¼ fAbout the Department;Faculty;Newsg ¼ fvA; vF ; vNg: ð4:2Þ

When we sketched out the data, we have experienced the sample observation

sequence as

O ¼ oF
0 ; o

A
1 ; o

A
2 ; o

F
3 ; o

N
4 ; o

A
5 ; o

N
6 ; o

F
7 ; o

F
8 ; o

A
9 ; o

N
10; o

N
11; o

N
12; o

A
13; o

F
14; o

F
15; o

F
16: ð4:3Þ

The above sequence shows that the observation is the faculty (F) at time step 0, and

the observation is the About the Department (A) at time step 1, etc. From the path

by extracting the web log ¯les using web log analyzer we have computed the initial

possibility vector ~pð0Þ, transition possibility ~P between the hidden states and the

observation possibility ~B for each state and ¯nally we have converted all the

Fig. 4. Style of the website.
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possibility values into the triangular fuzzy number. The values are given below

~pð0Þ ¼ ½ ð0:58; 0:65; 0:72Þ ð0:39; 0:48; 0:57Þ ð1:00; 1:00; 1:00Þ �;

~bðAÞ ~bðFÞ ~bðNÞ
~BEEE ¼ ½ ð0:32; 0:46; 0:60Þ ð1:00; 1:00; 1:00Þ ð0:27; 0:38; 0:50Þ �;

~BMECH ¼ ½ ð1:00; 1:00; 1:00Þ ð0:32; 0:47; 0:63Þ ð0:25; 0:40; 0:56Þ �;
~BBME ¼ ½ ð0:14; 0:27; 0:40Þ ð0:30; 0:43; 0:56Þ ð1:00; 1:00; 1:00Þ �:

Enhancing the modi¯ed Viterbi algorithm we obtained the result as follows:

~	0ðEEEÞ ¼ ð0:58; 0:65; 0:72Þ by ðA:1Þ;
~	0ðMECH Þ ¼ ð0:32; 0:47; 0:63Þ by ðA:2Þ;
~	0ðBMEÞ ¼ ð0:30; 0:43; 0:56Þ by ðA:3Þ;

’0ðEEEÞ ¼ 0; ’0ðMECHÞ ¼ 0; ’0ðBMEÞ ¼ 0 (by de¯nition). Changing the time

step from n ¼ 0 to n ¼ 1 we get,

~	1ðEEEÞ ¼ ð0:32; 0:46; 0:60Þ by ðA:4Þ;
’1ðEEEÞ ¼ EEE ðby the definition of ArgmaxÞ by ðA:5Þ;

similarly for MECH,

~	1ðMECH Þ ¼ ð0:35; 0:49; 0:61Þ by ðA:6Þ;
’1ðMECH Þ ¼ EEE by ðA:7Þ;

and for BME,

~	1ðBMEÞ ¼ ð0:14; 0:27; 0:40Þ by ðA:8Þ;
’1ðBMEÞ ¼ MECH by ðA:9Þ:

Then by Induction

~	16ðEEEÞ ¼ ð0:30; 0:45; 0:60Þ;
’16ðEEEÞ ¼ BME;

~	16ðMECHÞ ¼ ð0:30; 0:45; 0:60Þ;
’16ðMECHÞ ¼ BME;

~	16ðBMEÞ ¼ ð0:30; 0:43; 0:56Þ;
’16ðBMEÞ ¼ BME:

~P
� ¼ max½~	16ðEEEÞ; ~	16ðMECH Þ; ~	16ðBMEÞ� ¼ ð0:30; 0:45; 0:60Þ ¼ �ðOj~�Þ:

ð4:4Þ
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Possibility of given observation sequence and the model is obtained as ð0:30; 0:45;
0:60Þ. State sequence which is the best to explain the given observation sequence is

computed as follows:

X �
16 ¼ BME;

X �
15 ¼ ’16ðBMEÞ ¼ BME ;

X �
14 ¼ ’15ðBMEÞ ¼ BME ;

..

. ¼ ..
.

X �
5 ¼ ’6ðBMEÞ ¼ BME;

X �
4 ¼ ’5ðBMEÞ ¼ MECH ;

X �
3 ¼ ’4ðMECHÞ ¼ MECH ;

X �
2 ¼ ’3ðMECHÞ ¼ EEE;

X �
1 ¼ ’2ðEEEÞ ¼ EEE;

X �
0 ¼ ’1ðEEEÞ ¼ EEE:

The optimal path is depicted in Fig. 5.

Simulation

To evaluate the performance of parameter estimation on FHMC, we have executed

the experiment on iterative use of ~� in the place of ~�. Triangular fuzzy number

(lower, middle and upper) values of ~�nðiÞ; ~�nðiÞ for the initial and ¯nal iteration for

the states EEE, MECH and BME are depicted in Fig. 6.

In Fig. 6, initial iteration of the ~�nðiÞ values for the states EEE, MECH and BME

are given in the left-hand side (LHS) and ¯nal iteration values of ~�nðiÞ for the

corresponding states are given in the right-hand side (RHS). By comparing both

sides of the ¯gure one can easily notice that the TFN values for the state EEE and

MECH are improved from [0.25, 0.72] to [0.83, 1.00] and for the BME it is improved

from [0.14, 0.63] to [0.467, 1.00] which shows that our model has performed well. In

particular the states EEE and MECH in the RHS of the ¯gure converge to the

possibility value of (1.00, 1.00, 1.00) for the same 12 time steps.

In Fig. 7, backward possibility ~�nðiÞ for the initial iteration of the states EEE;

MECH and BME are given in the LHS and in the RHS, ¯nal iteration of the ~�nðiÞ for
the corresponding states has given. Here also we can notice that for the state EEE,

BME BME BME BME MECH EEE EEE EEE

X16
X X X X X X X X15 14 5 4 3 2 1 0

MECH

* * * * * * * * *

Fig. 5. A schematic representation of optimal state sequence.
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Fig. 6. A schematic representation of initial and ¯nal iteration values of ~�nðiÞ for the states EEE, MECH
and BME.

Fig. 7. A schematic representation of initial and ¯nal iteration values of ~�nðiÞ for the states EEE, MECH

and BME.
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the possibility values are improved from [0.25, 1] into [0.83, 1], and for the states

MECH and BME the values are improved from [0.3, 1] into 1.

From the simulation results, we have obtained the maximum likelihood value of

the model as ~P
� ¼ ð1:00; 1:00; 1:00Þ i.e., the possibility of given observation sequence

is maximized from ð0:30; 0:45; 0:60Þ to ð1:00; 1:00; 1:00Þ which shows that the

departments are more authentic among the users. Using Eqs. (3.16)�(3.18) the

reestimated values are obtained which is given below and calculations are given in

appendices A, B and C.

~pð0Þ ¼ ½ð1:00; 1:00; 1:00Þ ð1:00; 1:00; 1:00Þ ð0:93; 0:95; 1:00Þ�;

~bðAÞ ~bðFÞ ~bðNÞ
~BEEE ¼ ½ ð1:00; 1:00; 1:00Þ ð1:00; 1:00; 1:00Þ ð0:83; 0:84; 0:90Þ �;

~BMECH ¼ ½ ð1:00; 1:00; 1:00Þ ð1:00; 1:00; 1:00Þ ð0:83; 0:88; 0:93Þ �;
~BBME ¼ ½ ð0:47; 0:60; 0:66Þ ð1:00; 1:00; 1:00Þ ð1:00; 1:00; 1:00Þ �:

5. Conclusion

Real-world applications have uncertainty in it due to the imprecision in the data.

Fuzzy numbers have the capability to overcome this situation consequently the

mathematical apparatus of the theory of fuzzy sets provides a natural basis for the

theory of possibility, hence we have proposed fuzzy hidden Markov chain on possi-

bility space and solved three basic problems of classical HMM to our proposed model.

The algorithm which we have adapted namely modi¯ed Viterbi algorithm itself gives

the solution for evaluation problem and optimization problem, this shows that the

algorithm reduces our time consumption. Finally we have trained the problem to

maximize the model parameter. We applied our proposed model to our institution

website and also performed simulation. The simulation results shows that our model

is more authentic and more user friendly.

Appendix A. Calculation of Evaluation Problem and to Find

the Optimal Path

~	0ðEEEÞ ¼ �ðEEE; o0j~�Þ
¼ min½~p ð0Þ

EEE ;
~bEEEðo0Þ ¼ F �

¼ min½ð0:58; 0:65; 0:72Þ; ð1:00; 1:00; 1:00Þ�
¼ ð0:58; 0:65; 0:72Þ; ðby comparison of TFNÞ; ðA:1Þ
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~	0ðMECHÞ ¼ �ðMECH ; o0j~�Þ
¼ min½~p ð0Þ

MECH ;
~bMECH ðo0Þ ¼ F �

¼ min½ð0:39; 0:48; 0:57Þ; ð0:32; 0:47; 0:63Þ�
¼ ð0:32; 0:47; 0:63Þ; ðA:2Þ

~	0ðBMEÞ ¼ �ðBME; o0j~�Þ
¼ min½ ~p ð0Þ

BME ;
~bBMEðo0Þ ¼ F �

¼ min½ð1:00; 1:00; 1:00Þ; ð0:30; 0:43; 0:56Þ�
¼ ð0:30; 0:43; 0:56Þ; ðA:3Þ

~	1ðjÞ ¼ min fmax
i2S

½minð~	0ðiÞ; ~pijÞ�; ~bjðo1Þg
� �

;

~	1ðEEEÞ

¼ min max

minð~	0ðEEEÞ; ~pEEE EEEÞ
minð~	0ðMECHÞ; ~pMECH EEEÞ
minð~	0ðBMEÞ; ~pBME EEEÞ

8><
>:

9>=
>;

2
64

3
75; ~bEEEðo1Þ ¼ A

8><
>:

9>=
>;

¼ min max

minðð0:58; 0:65; 0:72Þ; ð1:00; 1:00; 1:00ÞÞ
minðð0:32; 0:47; 0:63Þ; ð0:28; 0:39; 0:48ÞÞ
minðð0:30; 0:43; 0:56Þ; ð0:38; 0:52; 0:65ÞÞ

8><
>:

9>=
>;

2
64

3
75; ð0:32; 0:46; 0:60Þ

8><
>:

9>=
>;

¼ min max

0:58; 0:65; 0:72ð Þ
0:28; 0:39; 0:48ð Þ
0:30; 0:43; 0:56ð Þ

8><
>:

9>=
>;

2
64

3
75; ð0:32; 0:46; 0:60Þ

8><
>:

9>=
>;

¼ ð0:30; 0:46; 0:60Þ; ðA:4Þ

’1ðEEEÞ ¼ EEE; Similarly for other states; ðA:5Þ

~	1ðMECHÞ ¼ min max

minð~	0ðEEEÞ; ~pEEE MECH Þ
minð~	0ðMECHÞ; ~pMECH MECH Þ
minð~	0ðBMEÞ; ~pBME MECH Þ

8><
>:

9>=
>;

2
64

3
75; ~bMECH ðo1Þ

8><
>:

9>=
>;

¼ ð0:35; 0:49; 0:61Þ; ðA:6Þ
’1ðMECHÞ ¼ EEE; ðA:7Þ
~	1ðBMEÞ ¼ ð0:14; 0:27; 0:40Þ; ðA:8Þ
’1ðBMEÞ ¼ MECH : ðA:9Þ
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Appendix B. Finding Values for Backward Variable

~�16ðEEEÞ ¼ ð1; 1; 1Þ; ðB:1Þ
~�16ðMECHÞ ¼ ð1; 1; 1Þ; ðB:2Þ
~�16ðBMEÞ ¼ ð1; 1; 1Þ: ðB:3Þ

~�nðiÞ ¼ maxfminð~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞÞg; ðB:4Þ
i.e.,

~�15ðEEEÞ ¼ max

min½~pEEE EEE ; ~bEEEðo16Þ; ~�16ðEEEÞ�;
min½~pEEE MECH ; ~bMECH ðo16Þ; ~�16ðMECH Þ�;

min½~pEEE BME ; ~bBMEðo16Þ; ~�16ðBMEÞ�

8>><
>>:

9>>=
>>;
; ðB:5Þ

~�15ðEEEÞ ¼ �ðo16jEEE;EEE; ~�Þ
¼ minf~pEEE EEE ; ~bEEEðo16Þ; ~�16ðEEEÞg
¼ minfð1:00; 1:00; 1:00Þ; ð1:00; 1:00; 1:00Þ; ð1:00; 1:00; 1:00Þg
¼ ð1:00; 1:00; 1:00Þ ðB:6Þ

or

¼ �ðo16jEEE;MECH ; ~�Þ
¼ minf~pEEE MECH ; ~bMECH ðo16Þ; ~�16ðMECHÞg
¼ minfð0:35; 0:49; 0:61Þ; ð0:32; 0:47; 0:63Þ; ð1:00; 1:00; 1:00Þg
¼ ð0:32; 0:47; 0:63Þ ðB:7Þ

or

¼ �ðo16jEEE;BME ; ~�Þ
¼ minf~pEEE BME ; ~bBMEðo16Þ; ~�16ðBMEÞg
¼ minfð0:24; 0:35; 0:46Þ; ð0:30; 0:43; 0:56Þ; ð1:00; 1:00; 1:00Þg
¼ ð0:24; 0:35; 0:46Þ; ðB:8Þ

max½ðB:6Þ; ðB:7Þ; ðB:8Þ� ¼ ð1:00; 1:00; 1:00Þ;
) ~�15ðEEEÞ ¼ ð1:00; 1:00; 1:00Þ: ðB:9Þ

Similarly for other states,

~�15ðMECH Þ ¼ ð0:32; 0:47; 0:63Þ; ðB:10Þ
~�15ðBMEÞ ¼ ð0:38; 0:52; 0:65Þ: ðB:11Þ

By induction,

~�0ðEEEÞ ¼ ð0:30; 0:45; 0:60Þ; ðB:12Þ
~�0ðMECHÞ ¼ ð0:30; 0:45; 0:60Þ; ðB:13Þ
~�0ðBMEÞ ¼ ð0:30; 0:45; 0:60Þ: ðB:14Þ
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Appendix C. Calculations of ~
n(i, j), ~�n(i)

~
nði; jÞ ¼
minf~�nðiÞ; ~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞg

max1�i�sfmax1�j�s½minð~�nðiÞ; ~pij ; ~bjðonþ1Þ; ~�nþ1ðjÞÞ�g
;

~
0ðE;EÞ ¼ minf~�0ðEÞ; ~pEE ; ~bEðo1 ¼ AÞ; ~�1ðEÞg

max

max

minð~�0ðEÞ; ~pEE ; ~bEðo1Þ; ~�1ðEÞÞ
minð~�0ðEÞ; ~pEM ; ~bM ðo1Þ; ~�1ðMÞÞ
minð~�0ðEÞ; ~pEB; ~bBðo1Þ; ~�1ðBÞÞ

2
64

3
75

max

minð~�0ðM Þ; ~pME ; ~bEðo1Þ; ~�1ðEÞÞ
minð~�0ðMÞ; ~pMM ; ~bM ðo1Þ; ~�1ðM ÞÞ
minð~�0ðMÞ; ~pMB; ~bBðo1Þ; ~�1ðBÞÞ

2
64

3
75

max

minð~�0ðBÞ; ~pBE ; ~bEðo1Þ; ~�1ðEÞÞ
minð~�0ðBÞ; ~pBM ; ~bM ðo1Þ; ~�1ðM ÞÞ
minð~�0ðBÞ; ~pBB ; ~bBðo1Þ; ~�1ðBÞÞ

2
64

3
75

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

;

where E;M and B are EEE;MECH and BME , respectively.

Numerator:

minfð0:58; 0:65; 0:72Þ; ð1:00; 1:00; 1:00Þ; ð0:32; 0:46; 0:60Þ; ð0:30; 0:45; 0:60Þg
¼ ð0:30; 0:45; 0:60Þ: ðC:1Þ

Denominator:

maxfð0:30; 0:45; 0:60Þ; ð0:30; 0:45; 0:60Þ; ð0:30; 0:43; 0:56Þg
¼ ð0:30; 0:45; 0:60Þ: ðC:2Þ

) ~
0ðEEE;EEEÞ ¼ ð1:00; 1:00; 1:00Þ: ðC:3Þ
Let us see the calculation for ~
0ðEEE;BMEÞ
Numerator:

minfð0:58; 0:65; 0:72Þ; ð0:24; 0:35; 0:46Þ; ð0:14; 0:27; 0:40Þ; ð0:30; 0:45; 0:60Þg;
¼ ð0:14; 0:27; 0:40Þ ¼ AðsayÞ: ðC:4Þ

Denominator:

maxfð0:30; 0:45; 0:60Þ; ð0:30; 0:45; 0:60Þ; ð0:30; 0:43; 0:56Þg;
¼ ð0:30; 0:45; 0:60Þ ¼ BðsayÞ: ðC:5Þ

The 0 � cut is given by Eq. (2.1) and therefore ~A0 ¼ ½0:14; 0:40�, ~B0 ¼ ½0:30; 0:60�
and a�bþ ¼ 0:084 and aþb� ¼ 0:12. This clearly shows, that a�bþ < aþb�. Hence by

the generalized division of TFN c� ¼ a�
b� ¼ 0:46, cþ ¼ aþ

bþ ¼ 0:66 and the 1� cut is

given by ~A1 ¼ ½0:27; 0:27�; ~B1 ¼ ½0:45; 0:45� and a�bþ ¼ 0:1215 ¼ aþb� therefore the
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resultant triangular fuzzy number is ~
0ðEEE;BMEÞ ¼ ð0:46; 0:60; 0:66Þ. Similarly

we can compute remaining ~
nði; jÞ using the generalized division of TFN and ~�nðiÞ
can be calculated using ~�nðiÞ ¼ max1�j�s

~
nði; jÞ.
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