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Hidden Markov model (HMM) has become increasingly popular in the last several years. Real-
world problems such as prediction of web navigation are uncertain in nature; in this case, HMM
is less appropriate i.e., we cannot assign certain probability values while in fuzzy set theory
everything has elasticity. In addition to that, a theory of possibility on fuzzy sets has been
developed to handle uncertainity. Thus, we propose a fuzzy hidden Markov chain (FHMC) on
possibility space and solve three basic problems of classical HMM in our proposed model to
overcome the ambiguous situation. Client’s browsing behavior is an interesting aspect in web
access. Analysis of this issue can be of great benefit in discovering user’s behavior in this way we
have applied our proposed model to our institution’s website (www.ssn.edu.in) to identify how
well a given model matches a given observation sequence, next to find the corresponding state
sequence which is the best to explain the given observation sequence and then to attempt to
optimize the model parameters so as to describe best how a given observation sequence comes
about. The solution of these problems help us to know the authenticity of the website.

Keywords: Triangular fuzzy number (TFN); generalized division of TFN; possibility space;
conditional possibility; fuzzy Markov chain; hidden Markov model.

1. Introduction

Hidden Markov model (HMM) is a doubly stochastic process with an underlying
stochastic process that is not observable (it is hidden), but can only be observed
through another set of stochastic processes that produce the sequence of observed
symbols in such a way that the HMM constitutes of a initial probability, the tran-
sition probability and the output symbol observation probability. In HMM, there are
three basic problems of interest that must be solved for the model. These problems
are namely Evaluation problem, Optimization problem and Training problem.
Nowadays fuzzy approach HMM is developing extensively and widely applied in
many areas. New smoothing method based on fuzzy vector quantization (FVQ) is
used to avoid more training data in speech recognition.?? Fuzzy Q functions of
observed data for discrete HMMs and continuous HMMs are exploited in the field of
Speech and Speaker Recognition.*® Fuzzy-C-means HMM is used to decide the
status of the traffic with the assumption that the observable events are uncertain.®
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Detection of intrusion of a website using fuzzy similarity measure instead of the
probability measure is discussed in Ref. 7. In Ref. 8, fuzzy clustering function for the
emission and transition matrices to analyze the human wrist motion is discussed.
Classification of disease for transcranial doppler (TCD) study of the adult intra-
cerebral circulation using fuzzy discrete hidden Markov model (FDHMM) is given in
Ref. 9. Breast Cancer identification employing HMM-fuzzy rule approach is dis-
cussed in Ref. 10. Classification (hard class and fuzzy class) of satellite image seg-
mentation using hidden fuzzy Markov random fields is given in Ref. 11.
Dempster—Shafer fusion in the context of different multisensor Markov models to
show that the posterior distribution remains calculable in different general situations
and the applications in remote sensing area is discussed in Ref. 12. In Ref. 13, the
authors discussed that fuzzy Markov random chains for image segmentation in one
hand and on the other hand, they modeled the uncertainty on the observed data
using Markovian Bayesian scheme models. It follows that, some authors assumed
observations are uncertain, %9713
the hidden states and observations are uncertain.® On the basis of their assumption
they used fuzzy concepts on HMM.

Our aim is to solve three basic problems of classical HMM to HMM on possibility
space, because this space is used to model the incomplete information in a flexible
way hence we named HMM on possibility space as fuzzy hidden Markov chain
(FHMC) by the existence theorem of possibility space. The word chain is due to the
assumption that the states and the time steps are discrete.'* To capture the real-

and some authors assumed transition between

world fuzziness we have converted the elements of initial possibility distribution,
transition possibility between the hidden states and observation possibility of each
state in to a special type of fuzzy number called triangular fuzzy number. The
operations in the possibility theory is minimum and maximum whereas in the
probability theory it is multiplication and addition. The advantage of our proposed
model is that it solves the two problems namely Evaluation problem and Optimiz-
ation problem in a single algorithm, this is due to the operations we have handled
which shows that our time consumption is saved. Real-world problems such as web
navigation are very challenging to solve. Surfing the website involves traversing the
connections among hyperlinked documents. In the literature survey for analyzing the
collection of data, questionnaire survey is commonly used to collect opinions and
views in the analytic hierarchy process (AHP) but in the AHP, the score items for a
comparison matrix in a questionnaire increase drastically if there are more com-
parisons, which result in longer survey. Therefore, induced bias matrix model
(IBMM) is proposed to estimate the missing item scores of the reciprocal pairwise
comparison matrix.!> A Multiple factor hierarchical clustering algorithm for large
scale text collection that combines user browsing and retrieval history is given in
Ref. 16. Co-word analysis technique is also used to collect the data with the software
named CoPalRed.'” Extracting the web log files using web log analyzer to analyze
the user’s navigated path obviously creates ambiguity. Hence, classical HMM is less
appropriate and to overcome this uncertainty, we have applied our proposed model
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to our institution website www.ssn.edu.in and we have performed the simulation to
analyze the accessibility of the website among the users.

In Sec. 2, we have discussed the preliminaries and HMM, FHMC and three pro-
blems of FHMC have explained in Sec. 3, in Sec. 4 illustration and simulation has
presented and finally concluded.

2. Basic Concepts and Preliminaries

Fuzzy sets, as its name implies, basically, a theory of graded concepts. Let I" be the
universe of discourse whose generic element is denoted by w. A fuzzy set A defined on
I' is a mapping from I' to the unit interval [0,1], u;(w) is referred to as the mem-
bership function whose value at w signifies the grade of membership of w of the fuzzy
set A and may vary from 0 to 1. A normalized convex fuzzy set A on T’ whose
membership function p; is piecewise continuous is called the fuzzy number. The
concept of a fuzzy number was introduced by Mizumoto and Tanaka in 1979.'® The
importance of the concept of fuzzy number is still growing due to its application in
the frame work of expert systems; roughly speaking a fuzzy number can be con-
sidered as a representation for an ill known quantity. A triangular fuzzy number
A= (a1, as, a3) where a; < ay < ag is a special type of fuzzy number and it satisfies,'”

(1) the membership function p;(z) =1 at z = ay;

(2) the graph of y = pu;(x) on [ay, ay] is a straight line from (a;,0) to (as, 1) and also
on [ay, ag] the graph is a straight line from (ay, 1) to (as,0);

(3) pj(z) =0for z < a; or z > as.

An a-cut of a fuzzy set A denoted by /Ia is defined as
/ia: [a'l+a(a’2_a1)7a3_a(a3_a"2)] = [a77a+]? OSOKS 1. (21)

0.5 cut of the fuzzy set A is depicted in Fig. 1.
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Fig. 1. 0.5 cut.
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It is worth noting that contrary to what holds in set theory, AUA® # 1T and
AN A° # ¢ because it is not certain where A ends and A° begins. This is the fun-
damental reason that places probability and fuzzy sets apart and mathematical
apparatus of the theory of fuzzy sets provides a natural basis for the theory of
possibility. This theory was coined by Zadeh in the late 1970s as an approach to
model flexible restrictions constructed from vague pieces of information described by
means of fuzzy sets.?’ Possibility theory is maxitive and not additive, i.e., the
possibility of a disjunction of events is the maximum of the possibilities of each event

A possibility space is a triple (', 3, o) where?!:

(i) Sisaclassof all subsets of T', i.e., elements of  represent the collection of events
of interest in that experiment.

(ii) For every A € S, the non-negative number o(A) is the possibility that the event
A occurs. The map A — o(A), called a possibility, if o: S — [0,1], with the
following properties:

(a) o(¢) =0and o(T") = 1.
(b) For an arbitrary collection of sets A; € S, o(U;crA;) = sup;e;o(4;).

In the possibility space (T', ¥, o), given B occurring, we consider the possibility of
A, ie., o(A|B). Suppose o(B) and 0(AB) where 0(AB) = o(A N B) are known. They
represent possibilities of B and AB, respectively. We note B = (B — AB)U AB. If
o(B) = 0(AB), then it can be said that B achieves its realization on AB. If
o(B) > 0(AB), then it can be said that B achieves its realization on B — AB rather
than on AB. So, given B occurring, if B achieves its realization on AB, then A also
occurs. In this way there should be o(A|B) = 1. If B achieves its realization on
B — AB, then the occurrence of B makes no difference on occurrence of AB. Thus
0(A|B) = 0(AB|B) = o(AB). The conditional possibility of A € & given B denoted
by o(A|B) is defined by,*!
o(A|B) = {1, if o(AB) = o(B),

o(AB), if o(AB) < o(B). (2.2)

A possibilistic variable X is a mapping from I" to an arbitrary universe U and the
possibility distribution function is given by ¢g(z) = (X = z)V z € U, the possibilistic
variable X determines a normalized fuzzy set defined on U.*! A fuzzy Markov chain
on the possibility space has the finite number of states S = {1,2,...,s};S € Uand a
possibilistic variables X = {X,;n € N} an S valued stochastic process on possibility
space and whose possibility measure is ¢ such that the chain satisfies the Markov
property,?? i.e., for all j € S and for each time step n > 0 we have,

U(Xn+1 = j|X()7 X17 RN} Xn) = U(XnJrl = ]|Xn) (23)

The transition possibility p;; of the system from state i to state j is defined as for each
,jES

ﬁz’j = G(Xn+1 = .7|Xn = Z) (24)
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In the case if p;; is independent of time then we can say that the chain is an homo-
geneous fuzzy Markov chain. Let P = (p;;) is an s x s matrix of transition possibi-
lities and since the possibility theory is maxitive and not additive consequently
maximum element of a each row vector of transition matrix is 1 while in probability
theory the row sum is 1 (stochastic matrix). Initial possibility vector of the system is
denoted by pl0) = (13(10)725?), . ,ﬁ§°>), where ;550) = o(Xy = 1) is the possibility of
being in the state i initially. To capture the vagueness involved in the system, tri-
angular fuzzy number has been used to the elements of initial, transition possibilities
of each state.

2.1. Hidden Markov model

A classical HMM is a doubly embedded stochastic process with an underlying process
which is a discrete time finite state homogeneous Markov chain that is not observable
(it is hidden), but can only be observed through another set of stochastic processes
that is a discrete time memory less invariant observations.!

Elements of HMM:

(i) s the number of states in the chain, we have denoted the state at time step n

as X,;;
(ii) m the number of distinct observation symbols per state, i.e., the discrete output
of system. We have denoted the individual symbols as V = {v, v,..., v, };

(iii) the state transition probability distribution matrix, denoted by P = (p;);
(iv) the observation symbol probability distribution in state j, denoted by B =
(bj(k)) where b;(k) = P(v; at n|X, = j);

j
(v) the initial state distribution p(®) = (pgo)), where 1 <4,j<sand 1<k <m.

Given appropriate values of s, m, P, B and p(®), the HMM can be used as a gen-
erator to give an observation sequence

0= {007 015+, ONfl}

(where each observation o, is one of the symbol from V, and N — 1 is the number
of observations in the sequence). We need five elements to specify HMM. A
compact notation to indicate the complete parameter set of the model is denoted
by A= (P, B,p"). Given the HMM, there are three basic problems of interest
namely:

(1) Ewaluation Problem: Given the observation sequence O = {0y, 0y, ..., oy_1}, and
amodel A = (P, B, p\¥)) how do we efficiently compute P(O|])), the probability of
the observation sequence, for the given model?

(2) Uncover the hidden part of the model: Given the observation sequence O =
{09, 01,...,0y_1}, and the model A how do we choose a corresponding state
sequence X = Xg, ..., Xy_; which is optimal in some meaningful sense (i.e., best
“explains” the observations)?
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(3) Training of the Model: How do we adjust the model parameters A = (P, B, p0))
to maximize P(O[\)?

3. Fuzzy Hidden Markov Chain

In this section, we build a FHMC on possibility space in such a way that the initial
possibility, transition possibility and observation possibility values are constructed
as the Triangular Fuzzy Number to capture the imprecision and solved three basic
problems of classical HMM to our proposed model.

FHMC is similar to the HMM where the underlying unobservable process is the
fuzzy Markov chain and the observable process is the sequence of outcomes where the
observation o, is independently generated by the state X,,. A formal definition of
FHMC is a bivariate discrete process {X,,, 0,},>0, where {X,,} is a fuzzy Markov
chain on possibility space (I', S, o), {0,} is the sequence of observation such that the
conditional distribution of o,, only depends on X,,. We have denoted the set in which
{0,} takes its value from V.

By Eq. (2.2), the observation symbol possibility distribution in state j, B =
{I;j(k)},where l;](k) =o(v, at n|X, =7),1 <j<s1<k<m, is the possibility of
individual symbol v, given that the state is 7 at step n.

(8 = {1, if o(vef) = o(j), (3.1)

o(vg), if o(vg) < o(j).

Thus fuzzy theory replaces probability theory and this leads to a new definition of
hidden Markov model parameters denoted by A = (P,B,p©), where P = (py) the
state transition possibility distribution; B = {b;(k)}, the possibility distribution
of observation and 0 = (;550)), 1<4,7<s1<k<m, the initial possibility
distribution.

We have solved the evaluation problem of FHMC using forward system; the main
difference between this forward system and classical one is the operation. Here we
have used min—max operation instead of multiplication and addition, respectively.
We have computed the optimization path of FHMC by modified Viterbi algorithm.
The beauty of FHMC is it solves the evaluation problem and computation of optimal
path in a single modified Viterbi algorithm itself and this saves our time consump-
tion. Finally we have trained the model parameters of FHMC with the help of
backward system and with the generalized division of triangular fuzzy number.?* To
demonstrate how the FHMC works, let us consider an example.

3.1. Simple demonstration

Consider the state space as S = { CSE, IT} and assume the outcomes as Faculty (F),
News (N), therefore the set of all outcomes V = {vy, v} = {F, N}. We are interested
to find the user’s accessibility and the most likely state sequence, hence it is necessary
to know the possibilities of using each state in user’s navigation, as well as the
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conditional possibilities of hitting Faculty and News of each state. Mathematically,

(1) States: S ={CSE,IT} = {1,2}.

(2) The set of all outcomes of each state: V = {v, 1w} = {F,N}.

(3) The sequence of the navigation: X = (z,z,) and z;,z, € S. We have noticed
that there are 22 = 4 possible sequences: X; = (1,1); X = (1,2); X3 = (2,1) and
X, = (2,2).

(4) The sequence of outcomes: O = (0, 0;). We have noticed that each observation
would take one of the outcomes, i.e., 0, € V (0o, = F or N), n=0,1.

(5) By Eq. (2.4), the possibilities of using Departments CSE and IT in the sequence
is given by

p— {?11 ?12],
D21 P22

where p;; represents the possibility that state i is used first followed by state j.

(6) The possibility of hitting a Faculty and a News for CSE: p,(F) =5, and
P1(N) = py. Similarly for IT: py(F) = p5 and p(N) = p4. This information can
be put into a vector:

B=[b)(F) bi(N) by(F) by(N)=[p1 po p3 pal,
which we can get from Eq. (3.1).
(7) The possibilities of CSE and IT being used at initially: 5© = [5\*, 5.

If the model parameters, A = {P, B, 50}, are known, we can find the conditional
possibility of the outcome given the observation sequences. For example, assuming
that the observation is O = (N, F'),

U(O|X115‘) = min{l;l(N), gl(F)} = min{py, po},
0(0|Xz, A) = min{by (N), by(F)} = min{ps, 5y },
0( 01 X3, X) = min{by(N), b, (F)} = min{py, 31},
U(O|X455‘) = min{52(N)a 52(F)} = min{py, p3}.

On the other hand, the conditional possibility of the user navigation sequence given
the model parameter A is given by

o(X,|A) = min{p{”, pu },
o(X|A) = min{p\”, p1o},
o(X3|A) = min{py”, por },
U(X4|5\) = min{ﬁéo)»ﬁm}

By Hisdal inequality,>® the possibilities of the observation sequences and state
sequences occur simultaneously is given by,

o(0, X|\) = min{o(O0|X, \), o(X|\)}
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or
(0, X,1A) = min{o(0|X;, ), 0(X,[A)} = min{5\”, 51, 511, o},
(0, Xo|A) = min{o(0| Xy, ), 0(X|A)} = min{5\”, 5y, 1, s},
‘7(0 X3|/\) mln{o(O|X3,5\),cr(X3|5\)} = min{ﬁéo),ﬁ4,ﬁ21,p~1},
U(O X4|>‘) m1n{0(0|X4,5\),o(X4| )}=min{ﬁ§°>,ﬁ47ﬁm,ﬁg}~

Clearly, the most likelihood sequence of navigation is the one that has the maximum
value, which is not difficult to find now. For example, see Table 1, given observation
sequence O = (N, F'). The most likelihood sequence of navigation is X; = (2,2) =
(IT, IT), maximum TFN value among these can be done by comparison of TFN.*
This number gives the exact approximation of lower and upper range of the value
rather than the single probability value in HMM and hence HMM is less suited for
this example. If the model parameters, ), are unknown, then we can find them by
maximizing the total possibility formula of the observation,?!

o(O|\) = m?x{min[a(O|Xi,X),J(Xi|5\)]}

max a( 0, X;|\). (3.2)

In general, we need to compute o(O|\) the possibility of the observation sequence
O ={oy,01,...,0y5_1}, given the model A. The most easy technique of doing this is
by enumerating each likely state sequence of length N — 1 as in the previous dem-
onstration. Consider one such fixed state sequence X = X, Xi,..., Xy_; where X is
the initial state. The possibility of the observation sequence O for the above state

Table 1. Example of FHMC.

FHMC

Initial possibility vector
[(1,1,1) (0.8,0.85,0.9)].

Transition possibility matrix
< (1,1,1) (0.5,0.55,0.6)
(0.6,0.67,0.79) (1,1,1) '
Output symbol observation possibility
[(0.4,0.5,0.65), (1,1,1), (0.6,0.7,0.79), (1,1,1)].
(0, X;|2) (0.4,0.5,0.65),
(0, X,|A) (0.5,0.55,0.6),
(0, X3|A) (0.4,0.5,0.65),
(0, X,|A) (0.6,0.7,0.79).
Most navigated path
IT - IT
a(O|A) = (0.6,0.7,0.79)
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sequence is

o(O|X,A) = 0;%271 o(0n| Xy A), (3.3)

where we have assumed statistical independence of observations. Thus we get
o(0|X,X) = min{by,(0p), bx, (01), -, bx,  (on-1)}- (3.4)
The possibility of such a state sequence X can be written as
o(X|\) = min{7 x , Px, x,> DX, Xy» -+ > DXy Xy_y } 5 (3.5)
by Hisdal inequality,
o(0, X|A) = min{c( 0| X, \), o(X|)\)}. (3.6)

The possibility of observation given the model is obtained by maximizing this joint
possibility over all likely state sequences X giving

(0N = %a%{U(O,X|5\)}

= max {min[7Ty, EXO(OO)u DX, X, gxl (01)s -+ s DXy y Xy EXN,I(ONA)H“
Xy X X o1

The calculation of o(O[\) involves on the order of 2(N — 1)sN-1 calculations,
because there are s possible states which can be reached at every n=0,1,..., N — 1
and for each such state sequence about 2(N — 1) calculations are required. This
calculation is computationally unfeasible, even for small values of s and N — 1.
Clearly a more efficient algorithm is required.

3.2. Solution for evaluation problem

Forward system
Consider the forward variable a,(7) as

G, (1) = o(og, 01y - -+ 0py X, = z|5\), (3.7)

i.e., the possibility of the partial observation sequence, oy, 01, ..., 0, (until step n)
and state i at step n, given the model A\. We have solved &,,(¢) inductively as follows:

(1) Initialization

(2) Induction

api1(j) = mm{ [maX[min(dn(i)ym)]} j(07z+1)}a 0<n<N-2 1<j<s5,

1<i<s

see Fig. 2.
(3) Termination

‘7(0|5\) = max[day (9)].

1<i<s
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n n+1

@ () B2 ()

Fig. 2. A schematic representation of forward system.

Since @&, (1) is the possibility of the joint event that og, o1, ..., 0, are observed and
the state i at time step 7, the expression min(&,,(4), p;) is then the possibility of the
joint event that oy, oy, ..., 0, are observed and state j is reached at step n+ 1 via
state ¢ at step n. Maximizing this expression over all s possible states ¢,1 < ¢ < s at
step m results in the possibility of j at step m + 1 with all accompanying previous
partial observation. Once this is done and j is known it is easy to calculate &, (j).
This shows that the computation involved for &,(5),0 < n< N—-1,1<j<sison
the order of s>(N — 1).

Backward system

Backward possibilities of the system can be used to reestimate the parameters of the
system. Backward variable 3,,(7) on possibility space is defined as

Bn(Z) :0(0n+150n+2a"'7oN71|Xn: i,j\), (38)

i.e., the possibility of the partial observation sequence from n + 1 to the end, given
state i at step n and the model A. We can solve for §,(7) inductively, as follows:

(1) Initialization:
Byoa(i)=(1,1,1) 1<i<s.
(2) Induction:

ﬁn(l) = max{min[ﬁija 5j(0n+1),5n+1(j)}}, N-2 S n S 01 S { S S,

1<j<s
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n n+1
B (D) Brs1()

Fig. 3. A schematic representation of backward system.

Step (2) shows that in order to have been in state ¢ at time step n and to account
for the observation sequence from time step n + 1 on, we have to consider all possible
states j at step n + 1 accounting for the transition from i to j (the p; term) as well
as the observation o,; in state j (the b;(0,.1) term) and then account for the
remaining partial observation sequence from state j (the §,.1(j) term). Again, the
computation of Bn(i),O <n<N-1,1<i<s requires the order of s?(N —1)
calculations.

3.3. Solution to find the optimal path

There are several ways to solve this problem, namely to find the ‘optimal’ state
sequence associated with the given observation sequence. Solution to the above
problem is to maximize o(X|0, \) which is equivalent to maximizing o(X, O|)). To
find the single best state sequence, X = { Xy, X, ..., Xy_; } for the given observation
sequence O = {0y, 01,...,0y_1} and the model, we need to define the quantity,

Fuli) =  max  o(Xp, Xp,..., X, =i 001, 0nN), (3.9)
051509 An-1

i.e., ¥,(%) is the highest possibility along a single path, at time step n, which accounts
for the first n observations and ends in state i. By induction we have

osa) = i [mainin3, 0, )] 50n.0) .
ij€ES, 0<n<N-2, (3.10)
Jo(i) = o(Xy = 14, 0| \)
min{o(oy| Xy = i, ), (X, = i|A)} (by Hisdal inequality)
= min{B;(00), 5"}

=2
S
—~
~
N
|
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To retrieve the state sequence, we need to keep track of the argument which maxi-
mized Eq. (3.10),%° for each n and j. We have done this via the array ¢,(j). The
complete procedure for finding the best state sequence can now be stated as follows:

Modified Viterbi Algorithm

(1) Initialization:

’?O(Z) = mln[ﬁ7(0>v bi(OO)]7 1 S 1 S S,
po(7) =
(2) Recursion:

’?nJrl(j) = mln{ [max[mln(’?nu%ﬁzj)]} ’ gj(onJrl)}? 0 <n< N — 27 1 < .7 < S,

1<i<s

@nJrl(j) = arg {Eagc[mln(’?n(l)aﬁq)]v 0<n<N-1, 1<j5<s

(3) Termination

P* = max[yy_,(i)],

1<i<s
X§y = arg max[yy-1(4)]-
(4) Path (state sequence) backtracking:
X =0p1(Xr1), n=N-2, N-3,...,0.

We can note that the modified Viterbi algorithm is same as the forward system
except for the backtracking. Hence one can easily find P* = ¢(O|\) and the optimal
path in this algorithm itself.

3.4. Solution of parameter reestimation

The third problem of FHMC of the model is to determine a technique to adjust the
model parameters A= (]5, B, 7)) such that it maximize the possibility of the
observation sequence given the model. We have obtained the solution for this pro-
blem using iterative procedure.

In order to describe the procedure for reestimation of FHMC parameters, we have
to define gn(i,j), the possibility of being in state i at step n, and state j at step n + 1,
given the model and the observation sequence, i.e.,

It is clear that, from the definitions of the forward and backward variables, we can
write £,(%,7) in the form
s min{dn(i)vf)ija gj(0n+1)7ﬁ~n+l(j)}

&lbd) = max; <<, { max; ;< [min(a,(7), p;, gj(0n+1)76~n+l(j))]}

(3.12)
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Here we have employed the generalized division of triangular fuzzy number where
the denominator gives the desired possibility measure and we have defined ¢ 2(1) as
the possibility of being in state ¢ at step n, given the observation sequence and the
model; hence we can relate ,(i) to &,(i,j) by maximizing over j, giving

Cul(d) = max £,(i, 7). (3.13)
If we take the max of C~ »(1) over the step index n, we obtain a quantity which can be
interpreted as the expected number of times that state i is visited, or equivalently,
the expected number of transitions made from state i by excluding the step n =
N — 1 from the maximization. Likewise, maximization of gn(u j) over n, ie., from
n =0 to n= N — 2 can be interpreted as the expected number of transitions from
state 7 to state j. Explicitly

max (,(i) : Expected number of transitions from state i, (3.14)
0<n<N-2

[ nax 2gn(i,j) : Expected number of transitions from state i to state j.  (3.15)
<n<N-—

By means of the above formulas we have given a system of reestimation of the
parameters of a FHMC. A set of reasonable reestimation formulas for 5*), P and B
are

55‘” = expected number of times in state i at step(n = 0) = {,(4), (3.16)

expected number of transitions from state i to state j

Py = expected number of transitions from state i

_ mangngN—an(iv.ﬁ (3 17)

maX0§n§N725n(i)

= expected number of times in state j and observing symbol v

expected number of times in state j

maXp<p<N-2,5 0, =1y, 571 (])

_ = . (3.18)
maxg<p<y—2Cn(J)

By using the current model X = (P, B, ) to compute the right-hand sides of
Eqs. (3.16)—(3.18) then we get the reestimated model as A = (P, b, 5").

On the basis of the above procedure, if we iteratively use X in a place of A and
repeat the reestimation calculation, we then can improve the possibility of O
being observed from the model until some limiting point is reached. The final
result of this reestimation procedure is called a maximum likelihood estimate of

FHMC.
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4. TIllustration

World Wide Web is a large, distributed hypertext repository of information, whose
users navigate through links and view through browsers. These links again have some
other new links. User hits the particulars of their own interest.

Web log files contains the data regarding user’s navigation of the website.
Extracting the log files using web log analyzer even for one day can have the enor-
mous user’s navigated path and this path also contains the meaningless path which
obviously creates the uncertainty. For this reason we cannot assign a certain prob-
ability values to the model. Hence in this situation our model suits well and in this
section we have illustrated our proposed model to our institution website (www.ssn.
edu.in) by assuming that the hidden states are the departments and observations are
the department attributes. Solution of the evaluation problem reveals that for a
given observation sequence how much possibility that the website is accessed by the
users on that particular day help us to know the familiarity of the department among
the users. Optimization of the users navigated path enables that the corresponding
state sequence is the best to explain the given observation. Finally, we trained the
model parameter to maximize the possibility of given observation sequence.

The style of our institution website is depicted in Fig. 4.

Let the state space S be the set of all departments

S ={EFE, MECH, BME}, (4.1)
and the attributes of each department is

V = {About the Department, Faculty, News} = {vy, vp, vy} (4.2)

When we sketched out the data, we have experienced the sample observation
sequence as

0= OOFa 0{17 0517 031?7 0411\77 0?7 Oéva 07F7 057 051;11 0{\67 0{\;7 0%7 014?)’ Oib 0557 Ofﬁ' (43)
The above sequence shows that the observation is the faculty (F') at time step 0, and
the observation is the About the Department (A) at time step 1, etc. From the path
by extracting the web log files using web log analyzer we have computed the initial
possibility vector p©), transition possibility P between the hidden states and the
observation possibility B for each state and finally we have converted all the

Wv Department EEE About the department

Faculty

News

Fig. 4. Style of the website.
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possibility values into the triangular fuzzy number. The values are given below

7 = [(0.58,0.65,0.72) (0.39,0.48,0.57) (1.00,1.00,1.00)],

FEEFE MECH BME
N EEE [(1.00,1.00,1.00) (0.35,0.49,0.61) (0.24,0.35,0.46)
P= MECH | (0.28,0.39,0.48) (1.00,1.00,1.00) (0.36,0.50,0.63) |,
BME |(0.38,0.52,0.65) (0.30,0.45,0.60) (1.00,1.00,1.00)
b(A) b(F) b(N)
Bygr = [(0.32,0.46,0.60) (1.00,1.00,1.00) (0.27,0.38,0.50) ],
Bupen = [(1.00,1.00,1.00) (0.32,0.47,0.63) (0.25,0.40,0.56)],
Bpyr = [(0.14,0.27,0.40)  (0.30,0.43,0.56) (1.00,1.00,1.00)].
Enhancing the modified Viterbi algorithm we obtained the result as follows:
Yo(EEE) = (0.58,0.65,0.72) by (A.1),
Jo(MECH) = (0.32,0.47,0.63) by (A.2),
Yo(BME) = (0.30,0.43,0.56) by (A.3),
)-

©o(EEE) = 0,00(MECH) = 0,00(BME) =0 (by definition
step from n =0 to n = 1 we get,

4, (EEE) = (0.32,0.46,0.60) by (A.4),
©1(EEE) = EEE (by the definition of Argmax) by (A.5),
similarly for MECH,

Changing the time

Y1(MECH) = (0.35,0.49,0.61) by (A.6),
©1(MECH) = EEE by (A.7),
and for BME,

5,(BME) = (0.14,0.27,0.40) by (A.8),
©1(BME) = MECH by (A.9).

Then by Induction

%16(EEE) = (0.30,0.45,0.60),
¢16( EEE) = BME,
Y16(MECH) = (0.30,0.45,0.60),
¢16(MECH) = BME,
F16(BME) = (0.30,0.43,0.56),
¢16(BME) = BME.

P* = max[§.4(EEE), 516( MECH), 715(BME)] = (0.30,0.45,0.60) = o(O|).
(4.4)
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Possibility of given observation sequence and the model is obtained as (0.30, 0.45,
0.60). State sequence which is the best to explain the given observation sequence is
computed as follows:

X{s = BME,

Xis = p1s(BME) = BME,

X{y = ¢15(BME) = BME,

X: = ps(BME) = BME,
X; = ¢5(BME) = MECH,
X; = ¢, (MECH) = MECH,
X; = ¢3(MECH) = EEE,
X} = ¢o(EEE) = EEE,

X; = ¢(EEE) = EEE.

The optimal path is depicted in Fig. 5.

Simulation

To evaluate the performance of parameter estimation on FHMC, we have executed
the experiment on iterative use of A in the place of \. Triangular fuzzy number
(lower, middle and upper) values of &, (i),3,(i) for the initial and final iteration for
the states EEE, MECH and BMFE are depicted in Fig. 6.

In Fig. 6, initial iteration of the &, (%) values for the states FEE, MECH and BME
are given in the left-hand side (LHS) and final iteration values of &,(i) for the
corresponding states are given in the right-hand side (RHS). By comparing both
sides of the figure one can easily notice that the TFN values for the state FEE and
MECH are improved from [0.25, 0.72] to [0.83, 1.00] and for the BME it is improved
from [0.14, 0.63] to [0.467, 1.00] which shows that our model has performed well. In
particular the states EEE and MECH in the RHS of the figure converge to the
possibility value of (1.00, 1.00, 1.00) for the same 12 time steps.

In Fig. 7, backward possibility Bn(z) for the initial iteration of the states EFE,
MECH and BME are given in the LHS and in the RHS, final iteration of the 3 (1) for
the corresponding states has given. Here also we can notice that for the state FEF,

X7 X5

X} Xis X5 X3 X} Xt Xy

Fig. 5. A schematic representation of optimal state sequence.
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the possibility values are improved from [0.25, 1] into [0.83, 1], and for the states
MECH and BME the values are improved from [0.3, 1] into 1.

From the simulation results, we have obtained the maximum likelihood value of
the model as P~ = (1.00,1.00, 1.00) i.e., the possibility of given observation sequence
is maximized from (0.30,0.45,0.60) to (1.00,1.00,1.00) which shows that the
departments are more authentic among the users. Using Egs. (3.16)—(3.18) the
reestimated values are obtained which is given below and calculations are given in
appendices A, B and C.

7% = [(1.00,1.00,1.00) (1.00,1.00,1.00) (0.93,0.95,1.00)],

EEE MECH BME

_ EEE [(1.00,1.00,1.00) (1.00,1.00,1.00) (0.77,0.78,0.80)
P = MECH | (0.80,0.87,0.93) (1.00,1.00,1.00) (1.00,1.00,1.00) |,
BME [ (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00)

B b(4) b(F) b(N)

Bppp = [(1.00,1.00,1.00) (1.00,1.00,1.00) (0.83,0.84,0.90)],
Bpon = [(1.00,1.00,1.00) (1.00,1.00,1.00) (0.83,0.88,0.93)],
[(0.47,0.60,0.66) (1.00,1.00,1.00) (1.00,1.00,1.00)].

BBME

5. Conclusion

Real-world applications have uncertainty in it due to the imprecision in the data.
Fuzzy numbers have the capability to overcome this situation consequently the
mathematical apparatus of the theory of fuzzy sets provides a natural basis for the
theory of possibility, hence we have proposed fuzzy hidden Markov chain on possi-
bility space and solved three basic problems of classical HMM to our proposed model.
The algorithm which we have adapted namely modified Viterbi algorithm itself gives
the solution for evaluation problem and optimization problem, this shows that the
algorithm reduces our time consumption. Finally we have trained the problem to
maximize the model parameter. We applied our proposed model to our institution
website and also performed simulation. The simulation results shows that our model
is more authentic and more user friendly.

Appendix A. Calculation of Evaluation Problem and to Find
the Optimal Path
Yo(EEE) = o(EEE, 0y|\)

= min[f )y, bppr(op) = F)
— min[(0.58,0.65,0.72), (1.00, 1.00, 1.00)]
= (0.58,0.65,0.72), (by comparison of TFN), (A1)
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Fo(MECH) = o(MECH, 0y|\)

= min[ﬁﬁ%gm bymor(00) = F)
min[(0.39,0.48,0.57), (0.32, 0.47, 0.63)]

— (0.32,0.47,0.63), (A.2)
Yo(BME) = o(BME, 0y|)\)
= min[§ 55, bpup(0p) = F]
= min[(1.00,1.00, 1.00), (0.30, 0.43, 0.56)]
— (0.30,0.43,0.56), (A.3)
10) = mind {macninGio(0). 7)) B, (00)} .
5,(EEE)
[ min(Yo(EEE), Prrr rre)
= min{ maxq min(§o(MECH), pypcn ep) ¢ | bpee(or) = A
L min(Yo(BME), ppue pep)
- min((0.58, 0.65,0.72), (1.00, 1.00, 1.00))
= min{ max] min((0.32,0.47,0.63), (0.28,0.39,0.48)) ,(0.32,0.46,0.60)
i min((0.30,0.43,0.56), (0.38,0.52, 0.65))
- (0.58,0.65,0.72)
= min{ |max{ (0.28,0.39,0.48) ,(0.32,0.46, 0.60)}
i (0.30,0.43,0.56)

= (0.30,0.46,0.60), (A.4)
¢1(EEE) = EEE, Similarly for other states, (A.5)
min(yo(EEE), prr mech)
71(MECH) = minq | max{ min(Jo(MECH), pymen vecn) ¢ | > bupon(01)
min(yo(BME), ppyue vpcr)

= (0.35,0.49, 0.61),
©(MECH) = EEE,

(
(
71(BME) = (0.14,0.27,0.40), (
©(BME) = MECH. (
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Appendix B. Finding Values for Backward Variable

Blﬁ(EEE) = (17171)7 (Bl)
Bn(z) = maX{min(ﬁiﬁ gj(0n+1)7§n+1 (.7))}’ (B'4)
ie.,
min[ﬁEEE EEE> EEEE(Olﬁ)aBHS(EEE)]a
$15(EEE) = max min(p prg peoms dyusor(016),B16(MECH)), ¢, (B.5)
min{pgpg pye, I;BME(Olﬁ),Blﬁ(BME)}
G15(EEE) = o(0,4| EEE, EEE, \)
= min{f)EEE EEE> BEEE(OIG)an(EEE)}
= min{(1.00,1.00, 1.00), (1.00, 1.00, 1.00), (1.00, 1.00, 1.00)}
= (1.00,1.00, 1.00) (B.6)
or
= o(04| EEE, MECH, \)
= min{f?EEE MECH > BMECH(016)7316<MECH)}
= min{(0.35,0.49,0.61), (0.32,0.47,0.63), (1.00, 1.00,1.00) }
= (0.32,0.47,0.63) (B.7)
or
= o(0y4| EEE, BME, \)
= min{Pgpr puE, EBME(016)7B16(BME)}
= min{(0.24,0.35,0.46), (0.30, 0.43,0.56), (1.00, 1.00,1.00) }
= (0.24,0.35,0.46), (B.8)
max|[(B.6), (B.7), (B.8)] = (1.00,1.00,1.00),
. By5(EEE) = (1.00,1.00, 1.00). (B.9)
Similarly for other states,
B15(MECH) = (0.32,0.47,0.63), (B.10)
B15(BME) = (0.38,0.52,0.65). (B.11)
By induction,
Bo(EEE) = (0.30,0.45,0.60), (B.12)
Bo(MECH) = (0.30,0.45, 0.60), (B.13)

Bo(BME) = (0.30,0.45,0.60). (B.14)
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Appendix C. Calculations of &, (i, 5), (%)

. min{&n(i),ﬁij7Bj(0n+1)75n+1(j)}

&) = ma}qgigs{maX1§j§s[min(dn(i)’f’iJ"EJ'(O"“)’B”“U))]}

&(E, E) = min{&o(E), pgg, bp(o) = A),5,(E)}

)

max{ max | min(ao(M), pamr

2
—
S
S
SN~—
o))
oy
— o~

min(&o(B), g, bg(01),501(E))
max | min(éo(B), fpar, bar(01),81(M
min(&o(B), g, bp(01),51(B))

where E, M and B are EEE, MECH and BME, respectively.
Numerator:

~—
~—

min{(0.58,0.65,0.72), (1.00, 1.00, 1.00), (0.32, 0.46, 0.60), (0.30, 0.45, 0.60)}
= (0.30,0.45, 0.60). (C.1)

Denominator:

max{(0.30, 0.45,0.60), (0.30, 0.45, 0.60), (0.30,0.43, 0.56)}

= (0.30,0.45,0.60). (C.2)

-.&(EEE, EEE) = (1.00,1.00, 1.00). (C.3)

Let us see the calculation for £y( EEE, BME)
Numerator:

min{(0.58,0.65,0.72), (0.24, 0.35, 0.46), (0.14, 0.27, 0.40), (0.30, 0.45, 0.60) },
= (0.14,0.27,0.40) = A(say). (C.4)

Denominator:

max{(0.30, 0.45,0.60), (0.30, 0.45, 0.60), (0.30, 0.43, 0.56)},
= (0.30,0.45,0.60) = B(say). (C.5)

The 0 — cut is given by Eq. (2.1) and therefore A, = [0.14,0.40], B, = [0.30,0.60]
and a~ b = 0.084 and a*b~ = 0.12. This clearly shows, that a=b" < a™b~. Hence by
the generalized division of TFN ¢~ = 4= = 0.46, ¢ = ‘g—T = 0.66 and the 1 — cut is
given by A; = [0.27,0.27],B; = [0.45,0.45] and a~b" = 0.1215 = a™b~ therefore the
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resultant triangular fuzzy number is & (EEE, BME) = (0.46,0.60,0.66). Similarly
we can compute remaining £, (4, j) using the generalized division of TFN and (,(7)
can be calculated using (,,(7) = max;<;<.&,(4, 7).
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