
4

Dichotomies for Queries with Negation in Probabilistic Databases

ROBERT FINK and DAN OLTEANU, University of Oxford

This article charts the tractability frontier of two classes of relational algebra queries in tuple-independent
probabilistic databases. The first class consists of queries with join, projection, selection, and negation but
without repeating relation symbols and union. The second class consists of quantified queries that express
the following binary relationships among sets of entities: set division, set inclusion, set equivalence, and
set incomparability. Quantified queries are expressible in relational algebra using join, projection, nested
negation, and repeating relation symbols.

Each query in the two classes has either polynomial-time or #P-hard data complexity and the tractable
queries can be recognised efficiently. Our result for the first query class extends a known dichotomy for con-
junctive queries without self-joins to such queries with negation. For quantified queries, their tractability is
sensitive to their outermost projection operator: They are tractable if no attribute representing set identifiers
is projected away and #P-hard otherwise.

Categories and Subject Descriptors: H.2.4 [Database Management]: Query Processing; G.2.1 [Combina-
torics]: Counting Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Complexity dichotomy, knowledge compilation, probabilistic databases

ACM Reference Format:
Robert Fink and Dan Olteanu. 2016. Dichotomies for queries with negation in probabilistic databases. ACM
Trans. Database Syst. 41, 1, Article 4 (February 2016), 47 pages.
DOI: http://dx.doi.org/10.1145/2877203

1. INTRODUCTION

Charting the tractability frontier of query evaluation lies at the foundation of proba-
bilistic databases. The probabilistic database systems MystiQ [Dalvi and Suciu 2007a]
and MayBMS/SPROUT [Huang et al. 2009] distinguish between tractable and in-
tractable queries at compile time and provide exact evaluation techniques for tractable
queries at the speed of relational databases and approximate techniques for intractable
queries. The relevance of such tractability results goes beyond probabilistic databases:
The problems of tractable query evaluation in probabilistic databases and of domain-
lifted inference for weighted first-order model counting [den Broeck 2011], which is
actively investigated by the artificial intelligence (AI) community, essentially coin-
cide [Gribkoff et al. 2014b].

Complexity dichotomies have been established for several classes of relational
queries in probabilistic databases: Any query in such a class is either tractable or
intractable, that is, its data complexity is either polynomial time or #P-hard. Such di-
chotomies are known for conjunctive queries without repeating relation symbols [Dalvi
and Suciu 2007a] and their extension to ranking [Olteanu and Wen 2012] and for unions

Authors’ addresses: R. Fink and D. Olteanu, Department of Computer Science, University of Oxford, Parks
Road, Oxford, OX1 3QD, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/02-ART4 $15.00
DOI: http://dx.doi.org/10.1145/2877203

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

http://dx.doi.org/10.1145/2877203
http://dx.doi.org/10.1145/2877203

4:2 R. Fink and D. Olteanu

Fig. 1. Query pattern P5.3 (left) matched by the 1RA− query Qhard (right).

of conjunctive queries [Dalvi and Suciu 2012]. This article complements these results
with dichotomies for two classes of queries with negation. These dichotomies has been
announced previously in extended abstracts [Fink et al. 2011; Fink and Olteanu 2014].

The two query classes considered in this article are fragments of relational algebra
without union. The first class is denoted 1RA− and consists of queries with equi-join,
projection, selection, and negation, which is expressed using the difference operator but
without repeating relation symbols. Examples of 1RA− queries are given in Figures 1
and 3. The second class consists of the set-division, set-inclusion, set-equivalence, and
set-incomparability quantified queries. In contrast to 1RA− queries, quantified queries
can only be expressed in relational algebra using repeating relation symbols, cf. Fig-
ures 5 and 15. The two classes can also be mixed by allowing 1RA− queries in place of
relations in quantified queries.

The tractable queries from both classes admit efficient syntactic recognition. This
is convenient for practical reasons: By just inspecting the query, the query optimiser
of a probabilistic database management system can quickly decide whether to employ
efficient exact inference in case of tractable queries or approximate inference otherwise.

The probabilistic database model considered in this article is that of tuple-
independent databases, where each tuple in the database is an independent proba-
bilistic event. Prime examples of tuple-independent probabilistic databases are the
knowledge bases from Google Knowledge Vault [Dong et al. 2014] and Never-Ending
Language Learning (NELL) [Carlson et al. 2010]. For more complex probabilistic mod-
els, query tractability is quickly lost: For block-independent disjoint tables consisting
of independent groups of mutually exclusive tuples, tractability essentially falls back
to that for tuple-independent databases by restricting joins to attributes representing
group keys, while for the general model of probabilistic c-tables, simple selection and
projection queries can be #P-hard [Suciu et al. 2011].

The following theorem states our first dichotomy result:

THEOREM 1.1. The data complexity of any 1RA− query Q on tuple-independent
databases is polynomial time if Q is hierarchical and #P-hard otherwise.

We next define the hierarchical property for a 1RA− query Q. We denote by [A] the
equivalence class of attribute A in Q, as enforced by join and difference operators; for
instance, given relations over schemas X(A1) and Y (A2), both the join X �A1=A2 Y and
the difference X−A1↔A2 Y under the attribute mapping A1 ↔ A2 enforce that [A1] = [A2].

Definition 1.2. A 1RA− query Q is hierarchical if for every pair of attribute classes
[A] and [B] without attributes in Q’s result or in selections with equality conditions,
there is no triple of relation symbols R, S, and T in Q such that R has attributes in [A]
and not in [B], S has attributes in both [A] and [B], and T has attributes in [B] and
not in [A].

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:3

Example 1.3. Figure 1 depicts the nonhierarchical query π∅[X � (R − πA(T � S))]
over schema (X(A), R(A), T (B), S(A, B)). The query π∅(R � S � T) over the same
schema is the classical example of a nonhierarchical query without negation [Suciu
et al. 2011]. Non-Boolean versions of these queries are hierarchical. Figure 3 depicts
the hierarchical query π∅[R × T − U × V] over schema (R(A),U (A), T (B), V (B)).

Hierarchical 1RA− queries can be recognised in LOGSPACE. The hierarchical prop-
erty plays a central role in studies with seemingly disparate focus. All join queries that
admit parallel evaluation with one broadcast step in the Massively Parallel Communi-
cation model are hierarchical [Koutris and Suciu 2011]. The results of any hierarchical
conjunctive query in relational databases admit lossless factorised representations
that are at most linear in the size of the input databases [Olteanu and Závodný 2015].
In the finite cursor model, the hierarchical queries are exactly those semi-join alge-
bra queries with one-step streaming evaluation [Grohe et al. 2009]. In provenance
databases, the hierarchical queries are exactly those conjunctive queries with prove-
nance polynomials of bounded readability [Olteanu and Závodný 2012]. The hierar-
chical queries are exactly those nonrepeating conjunctive queries that are tractable in
probabilistic databases [Dalvi and Suciu 2007a]. A key contribution of this article is
to understand the connection between the hierarchical property and negation in prob-
abilistic databases. Theorem 1.1 states that the hierarchical property partitions the
query language 1RA− into tractable and hard queries, thereby lifting the dichotomy
for nonrepeating conjunctive queries [Dalvi and Suciu 2007a] to queries with negation.
In Section 7, we discuss difficulties of extending this result to nonrepeating relational
calculus with negation and to nonrepeating relational algebra with union.

The tractability and hardness proofs for 1RA− are nontrivial generalisations of those
for queries without negation. Careful treatment is needed for the interaction of projec-
tion and difference operators, which can encode universal quantification and can lead
to hardness already for cases where one input relation is probabilistic and all other
relations are deterministic. A further source of complexity is the lack of commutativity
and associativity of the difference operator, which leads to many incomparable minimal
hard query patterns defined by the interaction between difference and join operators.
In contrast, for queries without negation there is a single minimal hard pattern and it
requires two probabilistic relations. We next exemplify techniques used in the hardness
and tractability proofs.

#P-Hardness of Nonhierarchical Queries

We prove that every nonhierarchical 1RA− query Q has #P-hard data complexity by re-
duction from the #P-hard model-counting problem for positive bipartite DNF formulas:
Given such a formula � and the query Q, for most reductions used in this article we
construct an input database whose input tuples are annotated with variables in � such
that the result of Q becomes annotated with � or ¬�. To count the models of �, we
call an oracle that computes the probability PQ of the query Q on a tuple-independent
database where each variable has probability 1/2. The number of models #� is then
2nPQ or 2n(1− PQ), where n is the number of variables in �. The query evaluation prob-
lem is not technically in #P since it is not a counting problem, cf. Suciu et al. [2011]
(page 47) for a detailed discussion.

The starting point of our analysis is an alternative characterisation of the hierar-
chical property via minimal hard patterns: A query is not hierarchical exactly when
it matches such a pattern [Fink and Olteanu 2014]. There is a pattern for each pos-
sible binary tree with leaves A, AB, and B, and with inner nodes join and difference
operators (48 in total). A query matches a pattern if there is a total mapping of the
nodes of the pattern to nodes in the parse tree of the query such that: (1) The join

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:4 R. Fink and D. Olteanu

Fig. 2. Hardness reduction for query Qhard in Figure 1 and formula x1 y1 ∨ x1 y2. To avoid clutter (and in
contrast to Section 5’s naming convention), relations may share attribute names and all joins are natural.

and difference operators in the pattern are mapped to join and respectively difference
operators in the query; (2) the leaves A, AB, and B are mapped to relations R, S,
and, respectively, T as in Definition 1.2; and (3) parent-child edges in the pattern are
mapped to ancestor-descendant edges in the query.

Example 1.4. For each query, we craft a specific reduction depending on which
pattern is matched. For example, the query Qhard in Figure 1 (right) is not hierarchical
as it matches the pattern in Figure 1 (left). We exemplify the reduction for formula
� = x1y1 ∨ x1y2, where we consider each variable random and with probability 1/2.

We populate the relations R, S, T , and X as shown in Figure 2. The relations R and
X consist of tuples representing the indices 1 and 2 of the clauses in � and annotated
by the Boolean constant true (�). The relation S lists all pairs of the index of a clause
and variable in that clause; these tuples are also annotated by �. Finally, the relation
T lists all variables occurring in �, where each tuple for variable z is annotated by ¬z.
In our encoding, we may use variable names as constants, for example, the values of
the attribute B in relations R and T .

The probabilistic database (R, X, S, T) represents a finite set of possible database
instances, with each instance defined by a total assignment of the variables in the
annotation columns � [Suciu et al. 2011]. The instance defined by a variable assignment
consists of those tuples whose annotations are satisfied by the assignment. For instance,
the assignment mapping all variables x1, y1, and y2 to � defines the following database
instance: R, S, and X retain all their tuples, since their annotation � is always satisfied;
and T becomes empty, since the assignment falsifies the annotation of each tuple in T .

Figure 2 also depicts the intermediate results during the computation of Qhard.
Whereas the input relations are tuple independent, the intermediate results exhibit
correlated annotations. These annotations are Boolean formulas over the annotations
of the input relations [Green et al. 2007]: A join (projection) of tuples is annotated by
the conjunction (respectively, disjunction) of their annotations, and a difference of two
tuples is the conjunction of the annotation of the first tuple and the negation of the
second tuple. The query result is the projection on the empty set of the bottom-right
relation; the annotation associated with this nullary result tuple is �.

Example 1.4 shows the power of negation: Our query Qhard can compute #� for any
positive 2DNF formula � and is thus #P-hard already when one of its relations is
probabilistic (here, T) while all other relations are deterministic. In contrast, hardness
can only be achieved for queries without negation when at least two input relations
are probabilistic.

The key challenge in the hardness reductions from Section 5 is to identify three
relations (R, S, T) that establish the match of a nonhierarchical query with one of
the minimal hard patterns and to populate them such that the annotation of the
query result is the input positive 2DNF formula �. The remaining relations (X in
Example 1.4) are populated such that they do not influence the interaction between the
annotations of R, S, and T . The reductions put forward in this article vary substantially
and there is no one unifying reduction for all the minimal hard patterns. Indeed,

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:5

Fig. 3. Hierarchical 1RA− Boolean query Qeasy and a database D = (R, T ,U, V). The tables R � T and
R � T − U � V show how the annotations of R, T ,U, V are propagated by Qeasy.

some reductions require a single relation to be probabilistic, while others require two.
Furthermore, some reductions populate a single probabilistic database (such as in the
above example), while others require to populate a number of databases linear in the
size of the input formula �.

Efficient Evaluation Algorithm for Hierarchical Queries

We evaluate a hierarchical 1RA− query Q in five steps: (1) We translate Q into an
equivalent relational calculus expression QRC that is further rewritten into a disjunc-
tion of disjunction-free existential relational calculus expressions by pushing down
negation and existential quantifiers; (2) we compute the formulas representing the
annotations of the results of QRC ’s disjuncts; (3) we compile each such formula into an
ordered binary decision diagram (OBDD); (4) we compute an OBDD representing the
disjunction of the OBDDs from step (3); (5) and, finally, we compute the probability
of the OBDD from step (4). Resorting to OBDDs for query evaluation in probabilistic
databases is not new [Olteanu and Huang 2008; Jha and Suciu 2013]. While for arbi-
trary queries the OBDDs may be exponential in the size of their annotations and thus
of the input database, we show in Section 3 that those from step (5) can be computed
in time polynomial in the input database. Since OBDDs admit linear-time probability
computation [Wegener 2004], we obtain an overall query evaluation algorithm with
polynomial-time data complexity. While the OBDD sizes are independent of the query
size and linear in the database size for hierarchical nonrepeating conjunctive queries
[Olteanu and Huang 2008], they remain linear in the database size but may depend
exponentially on the query size, for hierarchical 1RA− queries. The exponential depen-
dency on the query size arises due to the query rewriting and the OBDD construction
steps.

Example 1.5. Consider the hierarchical query Qeasy and the database D from
Figure 3. The formula annotating Qeasy’s result is

� = r1
[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

] ∨ r2
[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

The difference operator entangles the annotations of the participating relations in such
a way that the resulting annotation � is not a read-once formula, that is, a formula
where each variable appears once; this entanglement is the pivotal intricacy introduced
by the difference operator.

We show in Section 3 that for every tuple-independent database D, the annotation
of the result of Qeasy on D admits an OBDD of size O(|D| · f (Qeasy)), where f (Qeasy)
is the OBDD width (cf. Section 2.3) and only depends on the query size |Qeasy|. The
underlying idea is to translate Qeasy into an equivalent disjunction of disjunction-free
existential relational calculus queries such that each of the disjuncts gives rise to a
compact OBDD and all OBDDs have compatible variable orders and can be combined
efficiently into a single OBDD. We denote the language of such queries by RC∃. For

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:6 R. Fink and D. Olteanu

Fig. 4. From left to right: OBDDs for �1, �2, and � = �1 ∨�2 in Example 1.5. The inner nodes of the OBDD
are variables in � and the leaves are the Boolean constants � and ⊥. For an inner node n, the outgoing
dotted edge is for n = ⊥, while the outgoing solid edge is for n = �. The three OBDDs share the same order
of variables on any root-to-leaf path.

Qeasy, this translation yields the query

QRC = ∃A
(
R(A) ∧ ¬U (A)

) ∧ ∃BT (B)︸ ︷︷ ︸
Q1

∨ ∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

The formulas annotating the results of Q1 and Q2 on the database D from Figure 3 are

�1 = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2) �2 = (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2),

and clearly �1 ∨ �2 ≡ �. The queries Q1 and Q2 can be written such that (i) for
each quantifier ∃X(Q) every relation symbol in Q contains the variable X and (ii) the
nesting order of the quantifiers is the same in both Q1 and Q2. Property (i) ensures
that the formulas �1 and �2 admit OBDDs of size O(|D|), as exemplified in the di-
agrams of Figure 4. Property (ii) implies that these OBDDs have the same global
variable order, which enables efficient computation of their conjunctions, disjunctions,
and negation [Wegener 2004].

Quantified Queries for Reasoning About Sets

The study of tractability for queries with repeating relation symbols raises additional
challenges due to the interaction between copies of the same relation and to query
containment. The language of unions of conjunctive queries (with repeating relation
symbols) admits a complexity dichotomy, though there is no syntactic characterisa-
tion of tractable queries in this language; instead, there is an algorithm that runs in
polynomial time for all tractable unions of conjunctive queries [Dalvi and Suciu 2012].

In Section 6 we investigate the class of so-called quantified queries that are express-
ible in an extension of 1RA− queries with repeating relation symbols. They express
binary relationships among sets of items encoded in relations. We consider set division,
set inclusion, set equality, set difference, and set incomparability. Their definitions in
relational algebra are given in Figures 5 and 15. Each quantified query stands for a set
of queries if we allow the input relations to be replaced by hierarchical 1RA− queries
whose results are tuple-independent probabilistic relations.

Given a relation S(sid, item) encoding an arbitrary number of sets and their items,
the set inclusion query S⊆ returns the pairs of set identifiers sid1 and sid2 such that
all items of sid1 are also items of sid2; the result of the set equality query S= consists of
those pairs of sets that consist of the same items; the result of the set incomparability

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:7

Fig. 5. Supplier S, Item I, Set division S ÷ I = πsid(S) − πsid(πsid(S) � I − S).

query S<> consists of those pairs of sets such that none is contained in the other. Given
the above relation S(sid, item) and a second relation I(item) consisting of items, the
set division query S ÷ I returns those sets that contain all items in I. Such queries
are used in decision support applications, such as insurance and healthcare [Rao et al.
1996] or data mining applications [Rantzau 2004].

Similarly to 1RA− queries, the tractable quantified queries admit efficient syntactic
recognition. In particular, the queries are tractable if they retain in the result the
attributes for set identifiers. If some of these attributes are projected away, then they
become #P-hard.

Example 1.6. Consider a tuple-independent database consisting of a supplier rela-
tion S with two columns sid for supplier key and pid for product key and a product
relation I with only a product item key pid that contains keys of all product items of
a given brand (cf. Figure 5). Then the set division query S ÷ P returns suppliers that
supply all products of this brand. The query can be expressed as shown in Figure 5. In
a deterministic setting, the result would only consist of the tuple with sid 1, since this
is the only sid paired in S with all pids in I. In a probabilistic setting, the third tuple
from I can be absent with probability 1 − Py3 , where Py3 is the probability that this
tuple is present. In that case, sid 2 can be in the result of S ÷ I, since sid 2 is paired in
S with pids 1 and 2 but not with 3. The set of instances that witness sid ∈ {1, 2} in the
result is defined by the annotation expressions over the input random variables given
in column �.

We explain the annotation for sid 1 by following the structure of the query. The
projection πsid(S) corresponds to the formula x1 ∨ · · · ∨ x4: Indeed, sid 1 can be part
of the result if at least one of these variables is true. The subsequent cross product
with I generates the tuple (1, i) with annotation (x1 ∨ · · · ∨ x4)yi for 1 ≤ i ≤ 3. The
difference with S keeps all tuples in the product and their annotations are extended by
the negation of the annotation of the corresponding tuples in S: In case of tuple (1, i),
its annotation becomes (x1 ∨ · · · ∨ x4)yi¬xi. The next projection yields the disjunction of
all annotations for tuples (1, 1), (1, 2), and (1, 3): (x1 ∨ · · · ∨ x4)[y1¬x1 ∨ y2¬x2 ∨ y3¬x3].
The outermost difference produces the annotation in Figure 5. The final annotation
reads as follows: sid 1 is in the result provided at least one of the tuples with sid 1 is
present in S, and if pid = i is present in I, then the tuple (1, i) must be present in S.
We show in Section 6 that the probability of this annotation can be computed in time
linear in the size of the input database. However, the Boolean version of the division
query, namely π∅(S ÷ I), is #P-hard.

Organisation of the Article

The remainder of the article is organised as follows. Section 2 recalls background on
propositional formulas and probabilistic databases. Section 3 presents the polynomial-
time procedure for computing probabilities of hierarchical 1RA− queries. Section 4
introduces techniques necessary in the hardness proofs for nonhierarchical queries,

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:8 R. Fink and D. Olteanu

and Section 5 details the #P-hardness reductions. The case of quantified queries is
discussed in Section 6. The article closes with a discussion of related work and open
research directions in Section 7.

2. PRELIMINARIES

We introduce necessary vocabulary for the 1RA− query language, the RC∃ relational cal-
culus to which we translate 1RA− queries for query evaluation, probabilistic databases,
propositional formulas annotating results of queries in probabilistic databases, and
their compilation into ordered binary decision diagrams as used for efficient query
evaluation.

2.1. The Relational Algebra Subset 1RA−

We assume database schemas with unique attribute names. The set of attributes of a
relation R is sch(R). A query Q is nonrepeating if each relation symbol occurs at most
once in Q.

The relational algebra subset 1RA− consists of queries composed of:

—Nonrepeating relation symbols;
—Equi-join: Q1 �ρ Q2, where ρ is a conjunction of equality conditions ρ = (A1 =

B1) ∧ · · · ∧ (An = Bn) such that all Ai are attributes of Q1 and all Bi are attributes of
Q2;

—Projection: πA1,...,An for attributes A1, . . . , An. We also use π−B1,...,−Bm(Q) = π−[B](Q) as
shorthand for discarding the attributes in the class [B] = {B1, . . . , Bm};

—Difference: Q1 −ρ Q2, where Q1 and Q2’s results are over schemas {A1, . . . , An} and
{B1, . . . , Bn}, respectively, and ρ is the attribute mapping (A1 ↔ B1)∧· · ·∧ (An ↔ Bn);

—Selection: σAθc, where A is an attribute, c a constant, and θ an arithmetic comparison.

Without loss of generality, we only consider in the sequel 1RA− queries without selec-
tions: Selections can be resolved prior to the development put forward in this article,
since their results on tuple-independent relations are also tuple independent. We recall
from Definition 1.2 that in case of an equality condition A = c, we can safely ignore the
attribute class [A] when checking the hierarchical property since A can only take one
value.

In Q1 �ρ Q2 and Q1 −ρ Q2, we write A ∈ ρ to express that ρ contains an equality
or mapping on A, and (A = A′) ∈ ρ or (A ↔ A′) ∈ ρ to express that ρ contains the
equality A = A′ or mapping A ↔ A′, respectively. When no confusion arises, we choose
a schema with suggestive unique attribute names like R(Ar), S(As, Bs), T (Bt) and then
write the queries R �Ar=As S and (R � T) −Ar↔As∧Bt↔Bs S more concisely as R � S and
(R � T) − S.

We interchangeably use algebraic expressions and their ordered parse trees when
referring to queries; in the latter case, the leaves are relations and inner nodes are
algebra operators. Given a query Q and an operator Op in Q, Op has even polarity if
the number of “−” operators between Op (exclusive) and the root of Q (inclusive), for
which Op is a right descendant, is even and has odd polarity otherwise. The pol function
captures this notion: pol(Q, Op) is 1 if Op has odd polarity in Q, and 0 otherwise. The
bottom join operator in Qhard from Figure 1 has polarity 1; for query Q in Figure 7, the
joins on the leftmost path in have polarity 0, the join of V and X has polarity 1, and
relation S has polarity 2.

The equivalence class [A] of an attribute A in Q consists of A and all attributes made
equal or mapped to A in Q.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:9

The attributes exported by a query Q, denoted E(Q), are defined on the query
structure:

E(Q1 �ρ Q2) = E(Q1) ∪ E(Q2) E(Q1 −ρ Q2) = E(Q1)

E(πA1,...,An(Q)) = {A1, . . . , An} E(π−[B](Q)) = E(Q) − [B] E(R) = sch(R).

A query Q exports [A] if there exists A′ ∈ [A] such that A′ ∈ E(Q). Conversely, Q does
not export [A] if for all A′ ∈ [A] it holds that A′ �∈ E(Q). By Q[A], Q[¬B], and Q[A][¬B] we
denote a query Q that exports [A], does not export [B], and respectively exports [A]
and not [B]. Using this notation, the triple of relations used to disprove the hierar-
chical property in Definition 1.2 is (R[A][¬B], T [B][¬A], S[A][B]) for distinct attributes A
and B.

2.2. The Relational Calculus Subset RC∃

Our query tractability results in Section 3 make use of standard translation between
the relational algebra subset 1RA− and the relational calculus subset called RC∃.
The latter consists of queries {H | F}, where the query head H is the set of query
variables that occur unquantified in the query body F and F is a formula defined by
the following grammar:

F ::= R(X1, . . . , Xn) | ∃X(F1) | F1 ∧ F2 | F1 ∨ F2 | ¬(F1),

The size |Q| of a query Q is the number of its relation symbols.

2.3. Propositional Formulas and Their Compilation into Decision Diagrams

Propositional formulas are essential to the probabilistic database formalism used in
this article. We next review the necessary vocabulary from their syntax to (prob-
abilistic) semantics and conclude with their compilation to ordered binary decision
diagrams.

Syntax. Let X be a finite set of variable symbols. A literal is a variable or its negation.
A clause is a conjunction of literals. A formula can be constructed using variables and
constants � (true) and ⊥ (false) using the logical connectives ∨ (or), ∧ (and), and ¬
(not). We denote by B(X) the set of propositional formulas over variables X. A formula
is positive if it contains only positive literals. A formula is in disjunctive normal form
(DNF) if it is a disjunction of clauses. Given two disjoint sets of variables, X and
Y, a DNF formula is bipartite over X and Y if each clause has the form x ∧ y with
variables x ∈ Y and y ∈ Y. The set of positive bipartite DNF formulas is denoted by
2DNF. A convenient way of representing a 2DNF formula is by labelling the variables
by natural numbers, that is, x1, x2, . . . and y1, y2, . . . , and representing each clause
by a pair (i, j) ∈ N × N. A set E ⊆ N × N of such pairs then defines the formula
� = ∨

(i, j)∈E xi yj .

Semantics. Given the set X of variables, we denote by I the set of possible as-
signments of all variables from X to constants � and ⊥. For a formula �, its set
of assignments is denoted by I(�) = {I : vars(�) → {�,⊥}}. A model of � is a
satisfying assignment, that is, an assignment I that maps � to �, also denoted by
I |= �. The set of models of � is denoted by M(�). Counting the number of models
(determining the number #� = |M(�)|) is already #P-hard for 2DNF [Provan and Ball
1983].

Probabilistic interpretation. Let now X be a set of independent random and vari-
ables. For each variable x ∈ X, let Px be the probability of x being true; we

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:10 R. Fink and D. Olteanu

assume Px > 0 without loss of generality. The probability mass function Pr(I) =
[
∏I(x)=�

x∈X Px] · [
∏I(x)=⊥

x∈X (1 − Px)] for each assignment I ∈ I and the probability
measure Pr(E) = ∑

I∈E Pr(I) for all E ⊆ I define the probability space (I, 2I , Pr) that
we call the probability space induced by X.

A formula � over random variables is itself a random variable � : I → {�,⊥} over
(I, 2I , Pr) by letting � : I �→ I(�) and with probability distribution defined as

Pr(� = �) =
∑

I∈I,I|=�

Pr(I). (1)

We write P� or P(�) for Pr(� = �) and P¬� or P(¬�) for Pr(� = ⊥) = 1 − Pr(� = �).
If Px = 1/2 for each variable x, then the model counting problem reduces to the prob-
ability computation problem: P� = 2−|vars(�)|#�, and the latter problem is #P-hard for
2DNF.

Binary Decision Diagrams (BDDs). BDDs form a representation system for Boolean
propositional formulas. A BDD over a set X of variables is a directed acyclic graph
where inner nodes are labeled with variables from X and terminal nodes are � (true)
and ⊥ (false). Each inner node has two outgoing edges, and for the case its variable
is set to true (solid edge) and false (dotted edge), respectively. Each root-to-leaf path
in a BDD is a (possibly partial) assignment of variables. A BDD is ordered (OBDD) if
there is a total order � on its variables such that the variables visited by each path
are in �-order. A level in an OBDD corresponds to all nodes labeled with the same
variable. The width1 of a BDD is the maximum number of edges crossing the section
of the OBDD between the nodes of any two consecutive levels, where edges incident to
the same node are counted as one.

In this article, we use the following results on OBDDs:

LEMMA 2.1 ([WEGENER 2004]). Given an OBDD for a formula �, the probability P�

can be computed in time linear in the size of the OBDD.
Let �1, �2 be two formulas, � be a fixed variable order on their variables, and O1

and O2 be �-OBDDs of width w1 and w2 for �1 and �2, respectively. Then �-OBDDs
for �1 ∧�2 and �1 ∨�2 can be constructed in time O(|O1| · |O2|) and have width at most
w1 · w2.

Example 2.2. Figure 4 shows three OBDDs with the same variable order
(r1, u1, r2, u2, t1, v1, t2, v2). The path r1

�−→ ¬u1
⊥−→ r2

⊥−→ ⊥ encodes that under any
truth assignment ν with ν(r1) = � and ν(¬u1) = ν(r2) = ⊥, the expression �1 =
(r1¬u1 ∨r2¬u2)∧ (t1 ∨ t2) becomes false. The width of the left two OBDDs is three: There
are three edges with different sinks crossing from level of r2 to ¬u2 and respectively
from t1 to ¬v1.

The rightmost OBDD in Figure 4 represents the disjunction of the two leftmost
OBDDs and has width five. Intuitively, a disjunction of two OBBDs is computed in
a top-down lockstep traversal of the input OBDDs using, for example, the APPLY
algorithm [Wegener 2004]. For each node of a variable x in both or one of the OBDDs,
there is a node x in the output OBDD with children computed recursively as the
disjunctions of the OBDDs rooted at the children of the input OBDDs accessed by
following the solid and respectively dotted edges. We choose the next node for the
output OBDD following the common global variable order.

1A different notion of BDD width refers to the maximum number of nodes in any level.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:11

ALGORITHM 1: Computing Annotated Result Tuples for RA Queries on pc-Tables
[[R]] = R

[[δA→B(Q)]] = select R.∗, R.A as B, R.� from ([[Q]]) R
[[σρ(Q)]] = select R.∗ from ([[Q]]) R where ρ

[[πA1,...,An(Q)]] = select R.A1, . . . , R.An,
∨

(R.�) as � from ([[Q]]) R group by R.A1, . . . , R.An

[[Q1 �ρ Q2]] = select R.∗, S.∗, R.� ∧ S.� as � from ([[Q1]]) R, ([[Q2]]) S where ρ

[[Q1 − Q2]] = select R.∗, R.� ∧ ¬S.� as � from ([[Q1]]) R left out join ([[Q2]]) S on R.∗ = S.∗

We can compute the probability of a BDD in one bottom-up pass. We exemplify for
the OBDD of �1, where by P(@x) we denote the probability at node x:

P(@t2) = Pt2 · P� + P¬t2 · P⊥ = Pt2

P(@t1) = Pt1 · P� + P¬t1 · P(@t2) = Pt1 + (1 − Pt1) · P(@t2)
P(@¬u2) = P¬u2 · P(@t1) + (1 − P¬u2) · P⊥ = (1 − Pu2) · P(@t1)

P(@r2) = Pr2 · P(@¬u2) + (1 − Pr2) · P⊥ = Pr2 · P(@¬u2)
P(@¬u1) = P¬u1 · P(@t1) + (1 − P¬u1) · P(@r2)

P(@r1) = Pr1 · P(@¬u1) + (1 − Pr1) · P(@r2).

The probability of �1 is the probability of the OBDD, which is P(@r1).

2.4. Probabilistic Databases

Syntax and Semantics. Probabilistic c-tables (pc-tables) are relational databases where
each tuple is annotated with a formula over a set X of independent Boolean random
variables [Imielinski and Lipski 1984; Suciu et al. 2011]. In its simplest form, each an-
notation formula is a distinct variable: This is the tuple-independent model considered
in this article.

Under the possible worlds semantics, a pc-table D represents a finite set of possible
worlds: Each total assignment I of the variables in X defines a possible world repre-
senting a relational database consisting of exactly those tuples in D whose annotations
are satisfied by I. The probability of each world is the product of probabilities of the
variable assignments in I, that is, Pr(I) as defined above. This representation formal-
ism is complete in the sense that it can represent arbitrary probability distributions
over any finite set of possible worlds.

Query Evaluation. Given a query Q and a pc-table D, the query evaluation problem
is to compute the distinct tuples in the results of Q in the worlds of D together with
their probabilities. The probability P(t ∈ Q(D)) of a tuple t is the probability that t
is in the result of Q in a world randomly drawn from D. We adopt the intensional
approach to query evaluation [Suciu et al. 2011]: For each result tuple t, first construct
a propositional formula �t∈Q(D) that annotates t such that P(t ∈ Q(D)) = P(�t∈Q(D)),
then compute P(�t∈Q(D)) as per Equation (1). The annotation of a Boolean query Q
is denoted by �Q(D); when the context is clear, we often omit the explicit reference to
the database D and simply write �Q. We next explain how to annotate the results of
relational algebra queries on pc-tables.

The tuples together with their annotation in the result of a relational algebra query
Q can be computed directly from the input pc-table D. This is achieved by rewrit-
ing Q into a query Qa such that standard relational evaluation of Qa on D yields a
pc-table representing the results of Q in the worlds of D. Algorithm 1 specifies such a
rewriting function [[·]]. It assumes that the formulas annotating the tuples in the input

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:12 R. Fink and D. Olteanu

pc-table are stored in a distinguished column called �; for a relation R, we consider
that this column is not selected by the selector R.*. The rewriting is expressed here in
SQL and—besides a straightforward encoding of the relational operators in SQL—it
constructs formulas annotating result tuples based on the formulas of input tuples as
follows. In case of identity, selection, and renaming operators, the input annotations
are just copied to the result. For projection, the formula of each distinct result tuple
is constructed as the disjunction of all input tuples with the same restriction to the
attributes in the projection list. For the join operator, the formula of a result tuple is
the conjunction of the formulas of the contributing input tuples; to avoid cluttering, we
slightly abuse notation in stating the attributes of the select clause: R.*, S.* means
here the set-union of the attributes in R and S. A tuple t in the result of Q1 − Q2 has
annotation �1 if t is in Q1 with annotation �1 and t is not in Q2 and has annotation
�1 ∧ ¬�2 if t is in Q1 with annotation �1 and in Q2 with annotation �2. These two
cases are implemented in [[·]] by a left outer join.

Example 2.3. Figure 2 shows pc-tables, where each tuple is annotated by a distinct
Boolean random variable stored in column � and how annotations are propagated
through the subqueries of the depicted relational algebra query. The query result is the
empty tuple annotated with the formula � = x1y1 ∨ x1y2.

3. HIERARCHICAL 1RA− QUERIES ARE TRACTABLE

In this section we show the following result:

LEMMA 3.1. Any hierarchical 1RA− query Q on tuple-independent databases has
polynomial-time data complexity.

PROOF. We assume without loss of generality that Q is Boolean; if Q is non-Boolean,
we define a hierarchical Boolean 1RA− query for each tuple t in the result of Q, where
the tuple of attributes exported by Q is set to t. We prove the lemma via a sequence of
steps:

Q is a hierarchical (Boolean) 1RA− query.
Lemma 3.5⇒ Q is equivalent to a relational calculus query QRC

that is RC-hierarchical (Definition 3.2) and ∃-consistent (Definition 3.3).
Lemma 3.8⇒ For any tuple-independent database D, we compute an OBDD o for the for-

mula annotating the query result QRC(D) in time and of size O(|D| · 2|QRC |).
Corollary 3.9⇒ The probability of � can be computed in one bottom-up pass over

the OBDD

o, so in time O(|D| · 2|QRC |).

The reason for translating 1RA− queries to relational calculus in the first step of
the proof is that relational calculus is more flexible and allows to unfold negated ex-
pressions as per ¬(Q1 ∧ Q2) ≡ ¬Q1 ∨ ¬Q2. The obtained rewritings are not arbitrary
relational calculus queries. They are disjunctions of disjunction-free existential rela-
tional calculus queries that are expressible in the language RC∃ and thus have no
universal quantifiers. They are safe, that is, every query variable appears in at least
one positive relation symbol. They use negation solely to capture the difference oper-
ator in relational algebra, which means that in an expression Q1 ∧ ¬Q2, the results
of Q1 and Q2 have the same arity. They are canonicalised in the sense that every oc-
currence of a relation symbol R(Y1, . . . , Ym) in a query rewriting has the same query

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:13

variables Y1, . . . , Ym. In contrast to the original 1RA− queries, the RC∃ rewritings may
have repeating relation symbols.

The RC∃ rewritings enjoy two properties that are key to our query evaluation algo-
rithm introduced later in this section. First, they are hierarchical in a more syntacti-
cally restricted sense than the 1RA− queries.

Definition 3.2. An RC∃ query Q is RC-hierarchical if for every subquery ∃X(F) in Q,
the variable X occurs in every relation symbol in F. We say that X is root in F.

Second, RC∃ rewritings allow for a total nesting order of its existential quantifiers
for all their disjuncts.

Definition 3.3. A canonicalised RC∃ query Q is ∃-consistent if there exists a total order
>∃ of the variable symbols in Q such that X >∃ Y implies that there is no subquery
∃Y F(∃X) in Q, where F(∃X) denotes an expression that contains the quantifier ∃X.

Intuitively, ∃-consistency for an RC∃ query that is a conjunction or disjunction of
subqueries means that these subqueries have compatible join orders, that is, noncon-
tradicting >∃ orders. This also means that their annotations, as well as the conjunction,
disjunction, and negation of their annotations, can be compiled into OBDDs over the
same variable order. In addition, the RC-hierarchical property effectively helps infer-
ring from the order of the existential quantifiers an OBDD variable order under which
the OBDD has size linear in the number of variables and thus in the database size but
possibly exponential in the query size. We next illustrate these concepts via an example.

Example 3.4. Consider the following three disjunction-free RC∃ queries:

Q1 =∃A
(
M(A) ∧ ¬R(A)

) ∧ ∃BN(B)

Q2 =∃AM(A) ∧ ∃B
(
N(B) ∧ ¬T (B)

)
Q3 =∃A

(
M(A) ∧ U (A)

) ∧ ∃B
(
N(B) ∧ V (B)

)
.

All three queries are RC-hierarchical since for each occurrence of ∃A and ∃B, A and
B, respectively, are root variables. Let us evaluate the queries over the database D, viz:

M

A �

1 m1

2 m2

N

B �

1 n1

2 n2

R

A �

1 r1

2 r2

T

B �

1 t1
2 t2

U

A �

1 u1

2 u2

V

B �

1 v1

2 v2

The annotations of the results for our queries evaluated on D are the read-once
formulas

�1 = (m1r̄1 ∨ m2r̄2) ∧ (n1 ∨ n2)
�2 = (m1 ∨ m2) ∧ (n1t̄1 ∨ n2t̄2)
�3 = (m1u1 ∨ m2u2) ∧ (n1v1 ∨ n2v2)

and, similarly to the first two OBDDs in Figure 4, can be represented by OBDDs with
one node per variable and width 2 under the following variable orders:

�1 : m1, r1, m2, r2, n1, n2

�2 : m1, m2, n1, t1, n2, t2
�3 : m1, u1, m2, u2, n1, v1, n2, v2.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:14 R. Fink and D. Olteanu

ALGORITHM 2: Translation Function [[·]] from 1RA− to RC∃.

[[R]] = {{sch(R)} | R(sch(R))}
[[π−X(Q)]] = {H[[Q]] \ {x} | PUSH

∃X(F[[Q]])}
[[Q1 �∧i (Xi=Yi) Q2]] = {H[[Q1]] ∪ H[[Q2]] | EXPAND(F[[Q1]] ∧ F[[Q2]][∀i : Xi/Yi])}
[[Q1 −∧i (Xi↔Yi) Q2]] = {H[[Q1]] | EXPAND(F[[Q1]] ∧ PUSH

¬(F[[Q2]][∀i : Xi/Yi]))}
PUSH∃X (Query Q)

if X does not occur in Q then
return Q

if Q = ∃Y (Q′) then
return ∃Y (PUSH

∃X(Q′))
else if Q = ∨

i Qi then
return

∨
i PUSH

∃X(Qi)
else if Q = ¬Q′ such that X is a root variable in Q′ then

return ∃X(¬Q′)
else if Q = (∧

i Qi
) ∧ (∧

j Q′
j

)
such that Xis a root vari-

able in all Qi and X does not appear in any Q′
j then

�˜Note that the second conjunct may be empty.
return ∃X

(∧
i Qi

) ∧ (∧
j Q′

j

)
else

fail

PUSH¬(Query Q)
if Q = ∃X(Q′) then

return ¬∃X(Q′)
else if Q = ¬Q′ then

return Q′

else if Q = ∨
i Qi then

return
∧

i PUSH
¬(Qi)

else if Q = ∧
i Qi then

return
∨

i PUSH
¬(Qi)

else if Q = R(sch(R)) then
return ¬R(sch(R))

EXPAND(Query Q)
if Q = ∃XQ′ or Q = ¬Q′ or Q = R(sch(R)) then return Q
else if Q = (∨

i Qi
) ∧ (∨

j Q′
j

)
then return

∨
i, j EXPAND(Qi) ∧ EXPAND(Q′

j)
else if Q= (∧

i Qi ∨ ∧
j Q′

j

)
then return

(∧
i EXPAND(Qi)

) ∨ (∧
j EXPAND(Q′

j)
)

Now consider the query Q123 = Q1 ∨ Q2 ∨ Q3. As we show in Example 3.6 in the
next section, this is obtained via translation of a hierarchical 1RA− query to relational
calculus. It is RC-hierarchical and ∃-consistent. The variable orders �1, �2, and �3 are
compatible in the sense that they can be extended into an order �123 over all variables:

�123 : m1, r1, u1, m2, r2, u2, n1, t1, v1, n2, t2, v2.

Following Lemma 2.1, the disjunction of the OBDDs of �1, �2, and �3 can be rep-
resented by an OBDD of width at most 23 for the annotation �1 ∨ �2 ∨ �3 of query
Q123.

3.1. From 1RA− to RC∃

Our evaluation algorithm for hierarchical 1RA− queries relies on a translation of 1RA−

queries into equivalent RC∃ queries. The translation function [[·]], which is given in
Algorithm 2, is the standard recursive inside-out translation from relational algebra to
safe relational calculus (Lemma 5.3.11, Abiteboul et al. [1995]), with the addition that
after each recursive translation step we “flatten” the resulting RC∃ query as follows:

—Every ∃ quantifier is pushed as deep as possible in the RC∃ query without pushing it
past negation: ∃X distributes over disjunctions and is pushed past conjuncts in which
X does not appear. Lemma 3.5 shows that every ∃X quantifier can be pushed until X
becomes root, that is, X occurs in all relation symbols in its scope.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:15

—Every negation symbol is pushed as deep as possible in the RC∃ query (as per ¬(A∧
B) → ¬A∨ ¬B and its dual) without pushing it past an existential quantifier.

—Conjunctions of disjunctions are eagerly expanded into disjunctions of conjunctions.

We may also apply the following two equivalence-preserving simplification rules,
which are not necessary for the properties described in this article but useful for a
practical implementation: Given RC∃ expressions Q1 and Q2,

Q1 ∨ Q1 ∧ Q2 → Q1 and ¬∃X(Q1) ∧ ¬∃X(Q1 ∧ Q2) → ¬∃X(Q1).

The second rewriting is essentially a special case of the first rewriting, though our
translation function can generate instances of left-hand sides of both rules.

Our translation has several desirable properties:

LEMMA 3.5. For any hierarchical 1RA− query QRA, the RC∃ rewriting QRC = [[QRA]]
satisfies the following properties:

(a) QRC is equivalent to QRA.
(b) QRC is canonicalised.
(c) QRC is a disjunction of disjunction-free RC∃ queries.
(d) For every variable X occurring in QRC, QRC has no subquery of the form ∃X(Q) ∧

F(∃X), where F is an expression that contains the quantifier ∃X.
(e) QRC is RC-hierarchical.
(f) The quantifiers in QRC can be ordered such that QRC is ∃-consistent.

PROOF. Property (a) holds since every rewriting step preserves equivalence.

Property (b) The attributes that are transitively joined in QRA translate to the same
variable name in QRC . This is indeed achieved in [[Q1 � Q2]] and [[Q1 − Q2]] by renaming
all attributes in Q2 to the corresponding variable name in Q1. When a quantifier ∃X
is introduced via [[π−X(Q)]], then all occurrences of X in Q are in the scope of ∃X;
furthermore, the PUSH

∃X procedure never pushes ∃X past a relation symbol containing
X and hence every occurrence of X is in the scope of a quantifier ∃X.

Property (c) The combination of pushing down negation (PUSH
¬) and expanding con-

junctions of disjunctions (EXPAND) is standard and yields an expression with disjunc-
tions only at the top level.

Property (d) Let us assume that QRC contains an expression E = ∃X(Q)∧ F(∃X). Then
the parse tree of QRC contains a subtree of the following form:

By construction using Algorithm 2, E occurs positively in QRC , otherwise the algorithm
would push the negation past the conjunction and yield ¬∃X(Q) ∨ ¬F.

Let us consider the possible transformation sequences that could have led to E. Since
QRA is nonrepeating and since QRC is canonicalised, the two ∃X quantifiers originate
from one ∃X quantifier that has been applied to the entire subquery as a result of the
translation of [[π−X(Q)]]. The ∃X quantifier must subsequently have been “duplicated”

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:16 R. Fink and D. Olteanu

as a result of distributing it through disjunctions in PUSH
∃X. Since PUSH

∃X does not
distribute ∃X over a conjunction, the conjunction operator on top of this subquery
must have been flipped by a negation operator into a disjunction through which ∃X
was distributed; in order to get back to a conjunction operator, there must have been
an odd number of ¬ operators on top of the ∃X quantifier. This is a contradiction to
the assumption that QRC contains the expression E, where the ∃X quantifier appears
positively.

Property (e). We show this property by induction on the different cases in the trans-
lation function [[·]] in Algorithm 2.

Base case: QRA = R. Since [[R]] = {{sch(R)} | R(sch(R))} does not contain existential
quantifiers, [[R]] is vacuously RC-hierarchical.

Hypothesis: The RC∃ expressions obtained by translating subqueries of QRA are RC-
hierarchical.

Inductive step: Any step taken by the translation preserves the RC-hierarchical
property.

The only translation step that may introduce a nonroot ∃X quantifier is the case
for [[π−X(QRA)]]. By the induction hypothesis, let QRC = [[QRA]] be the RC-hierarchical
RC∃ query resulting from the translation of QRA. Following properties (a)–(d), QRC is
canonicalised with respect to QRA, it is a disjunction of disjunction-free RC∃ queries, and
it does not contain an expression of the form ∃X(Q)∧ F(∃X). We show that if PUSH

∃X(QRC)
fails, then QRA is nonhierarchical. Conversely, for any hierarchical query QRA, PUSH

∃X

always succeeds in pushing ∃X so X becomes a root variable in the scope of ∃X.
The rule for QRC = ∨

j Qj pushes ∃X through the top-level disjunction and applies
∃X to each of the disjunction-free queries Qj . Each Qj is a conjunction

∧
i qi where

each expression qi has the form ∃Y (q), ¬∃Y (q), R, or ¬R. We analyse different cases
separately:

(1) Variable X occurs in exactly one expression qi:
(i) qi = ∃Y (q). Then, by induction hypothesis, Y is root in q and this remains true

after commuting ∃X and ∃Y : ∃Y (PUSH
∃X(q)). We next analyse PUSH

∃X(q).
(ii) qi = R or qi = ¬R. Then PUSH

∃X returns ∃XR or ∃X¬R, respectively, and X is
root in the scope of ∃X in both cases.

(iii) qi = ¬∃Y (q). If X is root in q, then the rule for QRC = ¬Q′ applies and we return
∃X¬∃Y (q), in which X is root. If X were not root in q, then q must contain two
relations symbols such that by induction hypothesis Y occurs in both relation
symbols and X occurs in one but not the other. Without loss of generality, let us
assume that these relations are T (Y) and S(X, Y). Since [[·]] does not commute
¬ and ∃, QRA must contain a subquery of the form π−X(Q1 − π−Y Q2, where
Q2 refers to relations S and T and Q1 exports [X]; furthermore, since QRC is
canonicalised, no variable in [Y] can occur in any relation symbol in Q1. This
means that QRA contains three relation symbols R[X][¬Y], S[X][Y], T [¬X][Y] and is
thus nonhierarchical.

(2) Variable X occurs in more than one of the expressions qi:
(i) X is root in all expressions qi. Then the case QRC = (∧

i Qi
) ∧ (∧

j Q′
j

)
applies

in PUSH
∃X and X becomes root in the scope of ∃X.

(ii) X is not root in all expressions qi. Then X occurs in one of them, say, ql, and
there is a second expression, say, qk, that contains two relation symbols S(X, Y)
and T (Y) such that X occurs in one of them but not in the other. Thus qk has the
form ∃Y Q(S, T) or ¬∃Y Q(S, T) where by induction hypothesis Y occurs in both
S and T . The latter case is equivalent to the above case (1iii). In the former
case, if ql is a single relation R (or its negation) in which X occurs without a

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:17

quantifier, then this relation cannot have variable Y because all occurrences of
Y are in the scope of a quantifier, cf. Property (b). The relations R, S, T thus
render QRA nonhierarchical. On the other hand, ql may have the form ∃Z(Q),
where Z is a variable different from Y and Q does not contain a quantifier ∃Y ,
cf. Property (b). Then the relation in ql in which X occurs, together with S and
T , render QRA nonhierarchical.

Property (f). Assume QRC contains two subqueries Qa = ∃XQ(∃Y) and Qb = ∃Y Q(∃X)
in which the order of the quantifiers ∃X and ∃Y is inconsistent. If one of the two
subqueries has the form ∃X∃Y (Q′), then the order of the quantifiers may be switched
to obtain ∃-consistent queries; conversely, there are two structurally different cases
in which the order of the quantifiers cannot be switched: (i) ∃XQ(¬∃Y) and (ii)
∃X[Q(X)∧Q′(∃Y)]. We consider the four combinations of these cases for the subqueries Qa
and Qb:

(1) They are of type (i): Qa = ∃XQ1(¬∃Y) and Qb = ∃Y Q2(¬∃X). Then, since QRC is
canonicalised and since the order of ∃ and ¬ is never swapped by the function [[·]], the
structure of Qa implies that QRC has a subquery of the form π−X(Q′

1 −π−Y (Q′′
1)) and

the structure of Qb implies that QRC has a subquery of the form π−Y (Q′
2 −π−X(Q′′

2)).
This is a contradiction.

(2) They are of type (ii): Qa = ∃X[Q1(X) ∧ Q′
1(∃Y)] and Qb = ∃Y [Q2(Y) ∧ Q′

2(∃X)]. Then
Q1 contains a relation R[X][¬Y], Q2 contains a relation T [¬X][Y], and, since QRC
and all its subqueries are hierarchical, Q′

1 contains a relation S[X][Y]. QRA is thus
nonhierarchical since it contains the relations R[X][¬Y], S[X][Y], T [¬X][Y]. This is a
contradiction.

(3) Qa is of type (i) and Qb is of type (ii): Qa = ∃XQ1(¬∃Y) and Qb = ∃Y [Q2(Y) ∧ Q′
2(∃X)].

Since there is no negation between ∃Y and ∃X in Qb, there is also no difference
operator between π−X and π−Y in QRA. Conversely, the negation between ∃X and
∃Y in Qa requires a difference operator between π−X and π−Y in QRA. This is a
contradiction.

(4) Qa is of type (ii) and Qb is of type (i): This is symmetric to the previous case.

Property (d) disallows subqueries of the form ∃X(Q1) ∧ ∃X(Q2), ∃X(Q1) ∧ ¬∃X(Q2),
∃X(Q1) ∧ ¬∃Y (Q2 ∧ ¬∃X(Q3)) but does not forbid ¬∃X(Q1) ∧ ¬∃X(Q2) or ∃X(Q1) ∨ ∃X(Q2).

Example 3.6. Consider the following two 1RA− queries over the database schema
(M(A), N(B), R(A1), T (B1),U (A2), V (B2)):

Qa = π∅
[
M × N −A↔A1,B↔B1

[
R × T −A1↔A2,B1↔B2 U × V

]]
Qb = π∅

[
πA(M × N) −A↔A1 πA1

[
R × T −A1↔A2,B1↔B2 U × V

]]
.

Query Qa translates to Q123 from Example 3.4, where subsumed subqueries are
removed:

[[Qa]] = ∃A∃B
(
M(A) ∧ N(B) ∧ ¬[R(A) ∧ T (B) ∧ ¬(U (A) ∧ V (B))]

)
= ∃A∃B

(
M(A) ∧ N(B) ∧ ¬[R(A) ∧ T (B) ∧ (¬U (A) ∨ ¬V (B))]

)
= ∃A∃B

(
M(A) ∧ N(B) ∧ ¬[R(A) ∧ T (B) ∧ ¬U (A) ∨ R(A) ∧ T (B) ∧ ¬V (B)]

)
= ∃A∃B

(
M(A) ∧ N(B) ∧ (¬R(A) ∨ ¬T (B) ∨ U (A)) ∧ (¬R(A) ∨ ¬T (B) ∨ V (B))

)
= ∃A∃B

(
M(A) ∧ N(B) ∧ (¬R(A) ∨ ¬T (B) ∨ U (A) ∧ V (B))

)
= ∃A

(
M(A) ∧ ¬R(A)

) ∧ ∃BN(B) ∨ ∃AM(A) ∧ ∃B
(
N(B) ∧ ¬T (B)

)
∨ ∃A

(
M(A) ∧ U (A)

) ∧ ∃B
(
N(B) ∧ V (B)

) = Q123.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:18 R. Fink and D. Olteanu

Query Qb is similar to Qa but with additional projections on A on both sides of the
top-most difference operator (and hence B is not in the equivalence class of B1 and B2):

[[Qb]] = ∃A
[
M(A) ∧ ∃B(N(B)) ∧ ¬∃B1

(
R(A) ∧ T (B1) ∧ ¬(U (A) ∧ V (B1))

)]
= ∃A

[
M(A) ∧ ∃B(N(B)) ∧ ¬∃B1

(
R(A) ∧ T (B1) ∧ ¬U (A) ∨ R(A) ∧ T (B1) ∧ ¬V (B1))

)]
= ∃A

[
M(A) ∧ ∃B(N(B)) ∧ (¬R(A) ∨ ¬∃B1 (T (B1)) ∨ U (A)

)
∧ (¬R(A) ∨ ¬∃B1 (T (B1) ∧ ¬V (B1))

)]
= ∃A

[
M(A) ∧ ∃B(N(B)) ∧ (¬R(A) ∨ ¬∃B1 (T (B1)) ∨ U (A) ∧ ¬∃B1 (T (B1) ∧ ¬V (B1))

)]
= ∃A

(
M(A) ∧ ¬R(A)

) ∧ ∃BN(B) ∨ ∃AM(A) ∧ ∃BN(B) ∧ ¬∃B1 T (B1)

∨ ∃A
(
M(A) ∧ U (A)

) ∧ ∃BN(B) ∧ ¬∃B1

(
T (B1) ∧ ¬V (B1)

)
.

Both RC∃ queries [[Qa]] and [[Qb]] satisfy Lemma 3.5: for every quantifier ∃A (∃B or
∃B1), A (B or B1) is a root variable in its scope (Property (e)), and the nesting orders of
these operators are consistent in all subqueries (Property (f)).

The query translation can lead to large RC∃ queries: A conservative upper bound
on their sizes would be a nonelementary function of the size of the input 1RA− query,
explained by the rapid increase in the size and number of disjuncts when pushing
down negation, quantifiers, and conjunctions. A singly exponential upper bound holds
for 1RA− queries where for all projections π−X(Q) that are right descendants of a
difference operator, attributes in the equivalence class [X] occur in all relation symbols
of Q (that is, X is root in Q). The query Qa in Example 3.6 satisfies this condition
trivially, since it has no projection that is a right descendant of a difference operator.
This conservative upper bound suffices for the data-complexity argument in Lemma 3.1
since the blowup is only in the query size. A practical implementation of Algorithm 2
would eagerly apply the simplification rules after each expansion step.

3.2. OBDD Construction

The penultimate step in the proof of Lemma 3.1 is the OBDD compilation of the
annotation � of the RC∃ query QRC , which is the rewriting of an input hierarchical
1RA− query QRA as per Lemma 3.5. This OBDD has a total order � over the Boolean
variables annotating the input tuples that can be derived from the structure of QRC .
Let us first exemplify the construction of this order.

Example 3.7. The Boolean hierarchical 1RA− query π∅[R � πX(S − T)], over a prob-
abilistic database with schema (R(X), S(X, Y), T (X, Y)), translates to the RC∃ query

QRC = ∃X[R(X) ∧ ∃Y (S(X, Y) ∧ ¬T (X, Y))].

Since X is root in QRC , the OBDDs for QRC ’s annotations for different values of X
share no Boolean variables (that is, are independent) and can be concatenated. For
each value x in the active domain of X, we construct an OBDD for the annotation of
the query R(x) ∧ ∃Y (S(x, Y) ∧ ¬T (x, Y)); a good variable order for this OBDD is the
sequence formed by the annotation of R(x) and all annotations of S(x, y) and T (x, y)
for all values y in the active domain of Y . If we write R(xi) for the annotation of tuple
(xi) in R, and similarly for S and T , then the overall variable order is (e.g., for tuples
with X = x1 and X = x2):

R(x1), S(x1, y1), T (x1, y1), S(x1, y2), T (x1, y2), S(x1, y3), T (x1, y3) . . . ,

R(x2), S(x2, y1), T (x2, y1), S(x2, y2), T (x2, y2), S(x2, y3), T (x2, y3)

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:19

The annotations can be concatenated in lexicographically ascending order of the values
xi (any order of values xi for root variables leads to the same worst-case OBDD size):
We first consider all annotations for X = x1 and then all annotations with X = x2,
and so on. For all annotations for X = x1, we first consider those for Y = y1 and then
those for Y = y2, and so on. This variable order leads to a compact OBDD because the
order of random variables annotating bindings of query variables X, Y in the relations
R, S, T is compatible with the nesting order of the quantifiers ∃X and ∃Y .

The RC∃ query Q1 = ∃A
(
R(A)∧¬U (A)

)∧∃BT (B) from Example 1.5 is the conjunction
of two RC-hierarchical and ∃-consistent subqueries: QA = ∃A

(
R(A) ∧ ¬U (A)

)
and QB =

∃BT (B). Similarly, Q1’s annotation �1 = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2) is the conjunction
of two formulas: ϕA = r1¬u1 ∨ r2¬u2 annotating QA and ϕB = t1 ∨ t2 annotating QB.
The query variables A and B are root in QA and, respectively, QB. We independently
construct OBDD variable orders for ϕA and ϕB and then concatenate them to obtain
the overall variable order for the OBDD of �1 = ϕA ∧ ϕB. Since A is root, the OBDD
variable order for ϕA is a sequence of annotations R(a1), S(a1), . . . , R(an), S(an) for the
domain {a1, . . . , an} of A: This is r1, u1, r2, u2. Similarly, we obtain the OBDD variable
order t1, t2 for ϕB.

This variable order derived from the structure of the RC∃ query rewritings leads
to polysize OBDDs for query annotations. In general, however, finding an optimal
OBDD variable order, that is, one that minimizes the size of the OBDD, is NP-complete
[Wegener 2004].

LEMMA 3.8. For any RC∃ query QRC that satisfies the properties of Lemma 3.5, the
annotation � of QRC on a tuple-independent database D can be represented by an OBDD
of size O(|D| · 2|QRC |).

PROOF. We prove the lemma for Boolean queries QRC ; the non-Boolean case fol-
lows as per discussion in the proof of Lemma 3.1. Let the relation symbols in QRC
be R1, . . . , Rn, let the query variables be X1, . . . , Xm, and let ADom(Xi) be the active
domain of variable Xi. The annotation of tuple t of relation Ri is denoted by Ri(t),
for example, the annotation of tuple (a, b) in relation R1 is R1(a, b). We assume with-
out loss of generality that the order of the query variables X1, . . . , Xm is such that
Xi >∃ Xj ⇔ i < j with respect to the nesting order >∃ defined by the ∃-consistency of
QRC ; that is, i < j allows for the quantifier nesting ∃Xi Q(∃Xj) but not ∃Xj Q(∃Xi). Since
QRC is canonicalised and ∃-consistent (Lemma 3.5), we can assume without loss of
generality that the query variables in each relation symbol R occur in >∃ order (we
can always relabel the query and database schema such that the query variables occur
in >∃-order). For example, QRC may contain R(X1, X5, X7) but not R(X7, X1, X5). Fur-
thermore, we assume a total order over the active domain of the database such that
for any xi ∈ ADom(Xi) and xj ∈ ADom(Xj) it holds that xi < xj ⇔ i < j; similarly, for
relation names R1 < R2 < · · · < Rn, where in addition the relation names are not part
of the active domains of query variables and occur before the domain constants in this
order.

We define a total order � on the annotations of the tuples in D as follows. We
first associate with every annotation R(t) the string string(R(t)) = tR, for example,
annotation R2(A7, B2, C7) is associated with the string A7 B2C7 R2. The order � is then
defined as

R(t) <� R′(t′) ⇔ string(R(t)) <lex string(R(t′)),
where <lex is the lexicographic order on strings as defined by the total order of the
active domain of the database and the relation names. The order � is uniquely defined
by the order of the relation symbols and the order on the active domain of D.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:20 R. Fink and D. Olteanu

We show by structural induction over the annotation � that � has a �-OBDD of
width 2|QRC |, where |QRC | denotes the number of relation symbols in QRC :

—The base case is a Boolean variable R(t) which corresponds to a trivial �-OBDD with
one variable R(t) and width 2 (there are two edges between the level of the root node
R(t) and the next level of leaf nodes � and ⊥).

—If QRC = Q1 ∧ Q2 or QRC = Q1 ∨ Q2, then, by induction hypothesis, the annotations of
Q1 and Q2 have �-OBDDs of width 2|Q1| and 2|Q2|, respectively. Then, by Lemma 2.1,
the annotation of QRC has a �-OBDD of width 2|Q1| · 2|Q2| = 2|Q1|+|Q2| = 2|QRC |.

—If QRC = ¬Q, then, by induction hypothesis, Qhas a �-OBDD of width 2|Q|. Swapping
the leaf nodes � and ⊥ in this OBDD yields the required �-OBDD for QRC .

—If QRC = ∃Xi Q, then for every xl ∈ ADom(Xi) the annotations �l of queries Q[xl/Xi]
are over disjoint sets of variables because QRC is RC-hierarchical by Lemma 3.5 and
Xi is root in Q. Moreover, each annotation �l has a �-OBDD of width 2|Q| by induction
hypothesis. Let ADom(Xi) = {x1, . . . , xh} such that xk <lex xl if and only if k < l. The
annotation � of QRC is the disjunction

∨
xl∈ADom(Xi) �l. Since the formulas �l are

over disjoint sets of variables for distinct values of l, an OBDD for their disjunction
is obtained by their concatenation in which the leaf node ⊥ of the OBDD for �l is
replaced by the root node of the OBDD for �l+1.

It remains to show that this construction yields an OBDD over order �. First,
the OBDD for each annotation �l is over order � by induction hypothesis; we show
that for any two annotations R(tk) in �k and R′(tl) in �l with k < l, it holds that
R′(tk) <� R′(tl); by the definition of <�, this is equivalent to showing tkR <lex tl R′.
The strings tk and tl are identical in the first i − 1 places since, by construction,
the occurrences of each variable Xj with j < i are set to the same constant. The
lexicographic order of tk and tl—and hence the � order of R(tk) in �k and of R′(tl)
in �l—is determined by the values of Xi in tk and in tl; this value is xl in tl and
xk in tk. Since we concatenate the OBDDs in the order �1 → · · · → �h and since
x1 <lex · · · <lex xh, it follows that tk <lex tl and thus R(tk) <� R′(tl). The constructed
OBDD has width 2|QRC | = 2|Q|, because the OBDD concatenation leaves the width
unchanged.

The OBDD construction in the above proof shows that conjunction, disjunction,
negation, and existential quantification of RC∃ queries representing rewritings of hi-
erarchical 1RA− queries correspond to analogous operations on OBDDs representing
the annotations of such queries. In particular, the width of the resulting OBDD is
bounded above by the product of the widths of the input OBDDs. This is a conserva-
tive upper bound that allows a uniform and simple treatment of RC∃ constructs in
the proof. A tighter bound can be obtained via a more specific analysis: Any nonre-
peating RC-hierarchical RC∃ query Q admits an OBDD of width of at most |Q| and
size linear in the input database size and independent of the query size [Olteanu and
Huang 2008]. This tighter bound on the OBDD width can be immediately extended
to ∃-consistent conjunction and disjunction of such queries Q1, . . . , Qn: The result-
ing OBDD has width |Q1| · . . . · |Qn|, which is smaller than 2|Q1|+···+|Qn| as used in the
proof.

We can now use both Lemmata 2.1 and 3.8 to obtain the polynomial-time com-
putation of query probability or, equivalently, of the formula annotating the query
result:

COROLLARY 3.9 (LEMMATA 2.1, 3.8). Let QRC be a RC∃ query satisfying the properties of
Lemma 3.5, D a tuple-independent database, and ϕ the formula annotating the query
result QRC(D). Then the probability of ϕ can be computed in time O(|D| · 2|QRC |).

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:21

4. DATABASE CONSTRUCTION SCHEME USED IN HARDNESS REDUCTIONS

We next present a database construction scheme that prescribes how to populate rela-
tions used in a nonhierarchical query such that the query result is annotated with a
desired 2DNF formula. It focuses on two distinguished attribute classes [A] and [B] that
witness the nonhierarchical property of the query. The construction scheme populates
the attributes that are not in [A] and [B] such that the input values for the attributes in
[A] and [B] along with their annotations are propagated through the query operators
to the result. This scheme is used in Section 5 to construct hardness reductions for
nonhierarchical queries.

We use two finite sets of constants, KA and KB, and a constant � distinct from those
in KA and KB. In this section, the projection operator π�

A retains both the attribute A
and the annotation column �; in contrast, πA only selects the attribute A without the
annotation column �. The notation (a1, . . . , an|�(a1, . . . , an)) denotes a tuple (a1, . . . , an)
annotated with formula �(a1, . . . , an).

4.1. Preserving the Data of One Attribute

We first consider the case of one distinguished attribute A. Let � be a total function
on KA. A query Q (and its particular case of a relation) is A-reducible to (KA,�) if the
[A]-attributes of Q are filled with all values from KA, all attributes not in [A] are filled
with �, and the annotation of a tuple identified by a ∈ KA is �(a):

π�
A (Q) = {(a|�(a)) | a ∈ KA} for any attribute A ∈ [A]

πC(Q) = {(�)} for any attribute C �∈ [A].

By redA(Q) = KA|� we denote that Q is A-reducible to (KA,�). A query Q that does
not export [A] is ∅-reducible to (�|�), and we denote it by red∅(Q) = �|�, where

π�
∅ (Q) = {(�)}

πC(Q) = {(�)} for any attribute C.

We next define three classes of relations QA, Qfill, and Q∅ that are characterised by
their A-reductions; let �� be the constant function ��(.) = �.

Q[A] ∈ QA if redA(Q) = KA|� or redA(Q) = KA|¬�, (2)
Q[A] ∈ Qfill if redA(Q) = KA|��, (3)

Q[¬A] ∈ Qfill if red∅(Q) = �|��, (4)
Q ∈ Q∅ if Q = ∅. (5)

Queries in QA are relations in which the values of [A]-attributes are populated
with values from KA, and values for attributes not in [A] are set to �. There is a
functional dependency [A] → � such that every tuple is represented by its A value a
and has a corresponding annotation �(a) or ¬�(a). Queries in Qfill are like QA queries
with the difference that every tuple is annotated with �. Queries in Q∅ are empty
relations.

Example 4.1. Given the domain KA = {a1, a2, a3}, the following relation X over
the distinguished attribute A and two attributes B, C with B, C �∈ [A] satisfies the
properties of a QA query, and relation Y is a Qfill query.

QA-relation X

Ax Bx Cx �

a1 � � x1

a2 � � x2

a3 � � x3

Qfill-relation Y

Ay By Cy �

a1 � � �
a2 � � �
a3 � � �

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:22 R. Fink and D. Olteanu

Fig. 6. Class membership of queries connecting classes QA, Qfill, and Q∅ with operators �, −.

The functional dependency Ax → � is trivially satisfied by �(ai) = xi.

Figure 6 shows how QA, Qfill, and Q∅ queries are propagated through query operators:
For query classes Q1 and Q2, the rightmost column in the table shows the query class
Q1 Op Q2 for an operator Op that is join or difference.

Example 4.2. Continuing Example 4.1, the join X � Y on the corresponding A, B, C
attributes of QA query X and Qfill query Y yields the following relation:

QA query X � Y

Ax Ay Bx By Cx Cy �

a1 a1 � � � � x1

a2 a2 � � � � x2

a3 a3 � � � � x3

This join satisfies the conditions of a QA query as suggested by the rule QA � Qfill →
QA in Figure 6. Similarly, the difference Y − X is also a QA query:

QA query Y − X

Ay By Cy �

x1 � � ¬x1

x2 � � ¬x2

x3 � � ¬x3

For a query containing a QA relation X[A], we can populate its relations such that it
becomes a QA query and thus satisfies Equation (2):

LEMMA 4.3. Given an attribute A, a relation X exporting A, and a query Q containing
X and exporting A. If X ∈ QA, then the relations in Q can be filled such that Q ∈ QA.

PROOF. Let OP− be the set of difference operators in Q that do not have X as a right
descendant. We partition the relations of Q into three sets:

relsX = {X}
rels∅ = relations that are right descendants of a OP− operator

relsfill = all other relations

We populate every relsfill relation as a Qfill query and every rels∅ relation as a Q∅-
query. The following inductive argument shows that every operator on the path in Q

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:23

Fig. 7. A query Q (top) and the corresponding partitioning of its relations into relsX, rels∅, and relsfill
relations (bottom-left), assuming that relation X and its annotations are to be preserved by the filling.
The bottom-right figure shows how the query classes of the subqueries of Q are propagated through query
operators for two cases: (left) we preserve values and annotations for attributes in [A], and then all subqueries
rooted in operators on the path from X to the root of Q are QA queries; (right) we preserve for attributes in
[A] and [B] and then these subqueries become QAB-queries. Since X has odd polarity in Q, the annotations
of tuples in Q are the negated annotations of the corresponding tuples in X.

between X and the root of Q is a QA query: First, this trivially holds at X itself. Now
let Op be an operator on the path between X and the root of Q. We have the cases:

—QL � QR, where without loss of generality QL contains X. Then, QL is a QA query, QR
contains a relation from relsfill and is a Qfill query. Hence, QL � QR is a QA query.

—QL − QR, where QL contains X. Then the difference operator is in OP− and QR is a
Q∅-query, QL is a QA query. Hence, QL − QR is a QA query.

—QL − QR, where QR contains X. Then, QR is a QA query, QL contains a relation from
relsfill and is a Qfill query. Hence, QL − QR is a QA query.

If X has even polarity in Q, then the annotation �Q(a) of a tuple (a) in πA(Q) is the
same as the corresponding annotation �X(a) of a tuple (a) in πA(X); if X has odd polarity
in Q, then �Q(a) = ¬�X(a).

Example 4.4. Consider the query in Figure 7 (top). We would like to preserve
the attribute Ax in relation X, where we use KA = {a1, a2, a3} as domain for [A] and
annotations �(ai) = xi. The bottom-left graph shows the partition of Q’s relations into
relsX = {X}, relsfill = {R, W, T , V }, and rels∅ = {U, S}. We set U = S = ∅, and for
relations in relsfill we fill all attributes in [A] = {Ar, Au, Av} with KA and all other

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:24 R. Fink and D. Olteanu

attributes with �. The bottom-right graph shows how the QA, Qfill, and Q∅ subqueries
are propagated through Q’s operators. The children of the top difference operator are
the following relations:

Left subquery of root(Q)
Ar Bt Dt �

a1 � � �
a2 � � �
a3 � � �

Right subquery of root(Q)
Av Bx Dv �

a1 � � x1

a2 � � x2

a3 � � x3

Then the relation represented by Q is
Q

Ar Bt Dt �

a1 � � ¬x1

a2 � � ¬x2

a3 � � ¬x3

Q preserves [A] and the annotations of relation X: The annotations of tuples in Q are
the negation of the corresponding annotations in X since X has odd polarity in Q.

4.2. Preserving the Data of Two Attributes

We can extend the previous construction scheme to the case of two attributes A and B
from distinct classes. We first generalise the notation of A-reducible queries.

Let �AB be a total function on KA×KB, and let �A be a total function on KA ∪ KA×KB
such that �A(a) = ∨

b∈KB
�A(a, b) for all a ∈ KA; �� is the constant function ��(.) = �.

As before, a query (or relation) Q is A-reducible to (KA,�A), if

π�
A (Q) = {(a|�A(a)) | a ∈ KA} for any attribute A ∈ [A]

πC(Q) = {(�)} for any attribute C �∈ [A]

Similarly, Q is AB-reducible to (KA × KB,�AB) if

π�
AB(Q) = {(a, b|�AB(a, b)) | a ∈ KA, b ∈ KB} for attributes A ∈ [A], B ∈ [B]
πC(Q) = {(�)} for any attribute C �∈ [A] ∪ [B]

By redAB(Q) = KA × KB|�AB we denote that Q is AB-reducible to (KA × KB,�AB).
We next define the following classes of queries:

Q[A][¬B] ∈ QA if redA(Q) = KA|�A or redA(Q) = KA|¬�A, (6)
Q[A][B] ∈ QA if redAB(Q) = KA × KB|�A or redAB(Q) = KA × KB|¬�A, (7)

Q[A][B] ∈ QAB if redAB(Q) = KA × KB|�AB or redAB(Q) = KA × KB|¬�AB, (8)
Q[A][¬B] ∈ Qfill if redA(Q) = KA|��, (9)
Q[A][B] ∈ Qfill if redAB(Q) = KA × KB|��, (10)

Q[¬A][¬B] ∈ Qfill if red∅(Q) = �|��, (11)
Q ∈ Q∅ if Q = ∅. (12)

Queries from these classes are propagated by query operators as depicted in Figure 6.
We now extend Lemma 4.3 to the case of one or two attributes:

LEMMA 4.5. Given a query Q, attributes A and B from distinct classes in Q and a
relation X in Q. If X ∈ QA and exports A and not B, then the relations in Q can be filled
such that Q ∈ QA regardless whether Q exports A and not B, cf. Equation (6), or exports

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:25

Fig. 8. Relations used in Example 4.6.

both A and B, cf. Equation (7). If X ∈ QAB and Q exports A and B, then the relations in
Q can be filled such that Q ∈ QAB, cf. Equation (8).

PROOF. Let OP− be the set of operators that do not have X as a right descendant.
We partition the relations of Q into three sets:

relsX = {X}
rels∅ = set of relations that are right descendants of an operator in OP−

relsfill = all other relations

We first show Q[A][B] ∈ QA given an A-reducible relation X ∈ QA, cf. Equation (7).
The relations in Q are populated depending on their types. Every relsfill relation is
populated as a Qfill query: Each attribute in [A] ([B]) with constants in KA (respectively,
KB) and the other attributes with �. Each relation in relsfill that exports attributes in
both [A] and [B] is populated such that its projection on any attribute in [A] ([B]) is
KA (respectively, KB); its projection on any pair (A, B) of attributes with A ∈ [A] and
B ∈ [B] is KA × KB; and all attributes not in [A] and [B] take the value �. Every rels∅
relation is a Q∅-query and thus kept empty.

We use a similar inductive argument as in the proof of Lemma 4.3 and show that
every operator on the path in Q between X and the root of Q is a QA query. Note,
however, that the lowest �-operator on the path from X to the root of Q that introduces
a [B]-attribute marks the transition from aQA subquery of type Q[A][¬B] (Equation (6)) to
Q[A][B] (Equation (7)). That is, the tuples (a|�(a)) in X are expanded to tuples (a, b|�(a))
by means of the cross product between the QA-relation that does not export [B] and the
Qfill-relation that does export [B].

Finally, the case of a query Q[A][B] that contains a QAB-relation X[A][B] follows as above
and Q ∈ QAB, that is, Q is equivalent to X with respect to attributes [A] and [B] and
the annotations of the (a, b)-tuples.

The remark following Lemma 4.3 regarding the polarity and the sign of the annota-
tions in X and Q carries over to our generalisation in Lemma 4.5.

Example 4.6. Referring again to the query in Figure 7, we would now like to preserve
relation X with respect to [A] and [B]. We take the domains KA = {a1, a2, a3} and
KB = {b1, b2} and the relation X ∈ QAB as depicted in Figure 8.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:26 R. Fink and D. Olteanu

The sets of relations relsX, relsfill, and rels∅ are identical to those in Example 4.4 and
are depicted in the bottom-left graph in Figure 7. The QAB and Qfill classes through the
query is depicted in the bottom-right graph. However, the relations represented by the
different subqueries may now be of different types.

Let us first consider the subquery QRWU consisting of relations R, W,U . Attribute
Ar is filled with KA, and attributes Cr, Cw, Dw are set to �; relation U is set to ∅; all
annotations are �. Then QRWU ∈ Qfill query by Equation (9). The relation QRWU is
shown in Figure 8.

In relation T , attribute Bt is filled with KB and Dt is filled with �; its annotations
are �. The join between QRWU and T enforces an equality condition Dw = Dt and
yields the relation QRWU T as depicted in Figure 8. QRWU T is a Qfill query by virtue of
Equation (10).

On the right side of the topmost operator in Q, the subquery QV XS consisting of
relations V, X, S is in QAB; it is depicted in Figure 8. This leads to the QAB-query
Q = QRWU T − QV XS as depicted in the figure.

5. NONHIERARCHICAL 1RA− QUERIES ARE #P-HARD

In this section we show the following result:

LEMMA 5.1. The data complexity of any nonhierarchical 1RA− query is #P-hard.

PROOF. Given a 1RA− query Q and any 2DNF formula �, we use a reduction from the
model-counting problem #� by means of a construction of a database D such that � and
the query result Q(D) have the same probability. The reduction depends on structural
properties of Q. We show that the nonhierarchical property is equivalent to matching a
pattern (Definition 5.3) from the list of all possible patterns made up of inner nodes that
are difference or join operators and leaves that correspond to three relations R[A][¬B],
S[A][B], and T [B][¬A] for two distinct attribute classes [A] and [B]. The notion of a match
is then refined to that of an annotation-preserving match (Definition 5.7), for which a
database construction scheme is possible such that the query result becomes annotated
by �.

The proof steps are summarised as follows:

Q is nonhierarchical
⇔

Proposition 5.4

Q has a match with a pattern in Figure 9
⇔

Lemma 5.8
Q has an annotation-preserving match with a pattern in Figure 9

⇒
Lemma 5.10

Q is #P-hard.

5.1. Patterns and Matches

We next define hard minimal query patterns and matches.

Definition 5.2. A pattern P over attributes A, B and relational operators Op1, Op2 ∈
{�,−} is a binary tree with leaves A, B, and AB, root node Op1, and inner node Op2.

There are 48 different patterns: There are two distinct unlabeled binary trees with
three leaves, the two operators can each be either join (�) or difference (−), and there
are 6 possible orders of the labels A, AB, and B. Figure 9 shows 24 of the 48 patterns
and omits for each pattern the symmetric pattern obtained by swapping leaves A and
B. By exploiting symmetries of the join operator in queries and patterns, it suffices to

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:27

Fig. 9. The 24 query patterns P1.1, . . . , P6.4. The 10 grey patterns can by reduced to other patterns as
indicated by the arrows, since the labels A and B are symmetric and can be swapped, and the join (�)
operator is commutative and its subqueries can also be swapped. Further 24 patterns can be obtained by
swapping A and B in the above patterns.

only consider 14 patterns (those shown in dark colour and not the source of directed
arrows).

Definition 5.3. A 1RA− query Q matches a pattern P if there is mapping from
the nodes of P to nodes in the parse tree of Q that preserves ancestor-descendant
relationships: A �→ R[A][¬B], B �→ T [¬A][B], AB �→ S[A][B], Op1 �→ Op1, and Op2 �→ Op2.
We also say that Q is an (R, S, T)-match of P to emphasise which relations establish
the match.

Figures 1 and 10 show examples of queries matching patterns. Pattern matching is
intimately linked to the nonhierarchical property:

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:28 R. Fink and D. Olteanu

Fig. 10. Patterns P2.2 and P4.3 and parse trees of queries Q1, Q2, Q3 over the schema M(Am), N(An), T (Bt, Ct),
U (Bu), V (Bv, Cv), X(Ax, Bx), Y (Ay, By), Z(Az, Bz). Q1 is an (M, X, T)-match of pattern P2.2; it also matches
other patterns and is an annotation-preserving (M, X, T)-match of P2.2, since Op2 (the least common ancestor
of M and X) is left-deep. Although Q2 is an (M, X, T)-match of P2.2, it is not an annotation-preserving match
of P2.2, since Op2 is a right descendant of the topmost difference operator. However, Q2 is an annotation-
preserving (M, Z,U)-match of pattern P4.3. Query Q3 is an annotation-preserving (M, X, T)-match of pattern
P4.3.

PROPOSITION 5.4. A 1RA− query is nonhierarchical if and only if it matches one of the
patterns in Figure 9.

PROOF. ⇒: Let Q be a nonhierarchical query. By Definition 1.2, there are two at-
tributes A and B such that Q contains relations R[A][¬B], S[A][B], and T [¬A][B]. Q matches
exactly the pattern P whose two operators correspond to the operators Op1 and Op2
in Q. The patterns are exhaustive in the sense that there is exactly one pattern per
possible combination of the operators �,−.

⇐: Every query Q that matches a pattern contains three distinct relation symbols
R, S, T that render Q nonhierarchical by Definition 1.2.

The notion of a match is further specialised to that of an annotation-preserving
match. Whereas the database construction scheme detailed in Section 4 does not work
for general matches, it does work for annotation-preserving matches. We first define
left-deep operators.

Definition 5.5. An operator Op is left-deep in a 1RA− query Q if Op is a left descendant
of every difference operator on the path between the root of Q and Op.

Example 5.6. In Figure 10, the bottom-most difference operator in Q1 is left-deep,
while the bottom-most difference operator in Q2 is not left-deep.

Definition 5.7. A 1RA− query Q is an annotation-preserving (R, S, T)-match of a
pattern P over attributes A and B and operators Op1 and Op2 if: (1) Q is an (R, S, T)-
match of P; (2) For every difference operator Op− in Q, if Op1 is a right descendant of
Op−, then Op− does not export [A] or [B]; (3) If Op2 is a left descendant of Op1 in Q,
then Op2 is left-deep in the subquery rooted at Op1. We say that Q is an annotation-
preserving (R, S, T)-match of P to emphasise the relations establishing the match.

Figure 10 shows examples of annotation-preserving matches. We next look closer
at the connection between matches and annotation-preserving matches. Lemma 5.8
establishes that any query that matches a pattern necessarily has an annotation-
preserving match with a possibly different pattern. The relation symbols that establish
the annotation-preserving match can be found by exploring the query tree in left-to-
right depth-first in-order.

LEMMA 5.8. Let Q be a 1RA− query and o1, . . . , on be the sequence of its parse tree
nodes in left-to-right depth-first in-order, and Q1, . . . , Qn be the corresponding sequence
of subqueries rooted at o1, . . . , on. If Qi is the first subquery in the above order that
matches a pattern in Figure 9, then Qi is an annotation-preserving match of a pattern.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:29

PROOF. We show that Q is an annotation-preserving match of a pattern P ′, that is, Q
satisfies the three properties from Definition 5.7. Let Op1 and Op2 be the two operators
in Q as established by a match with a pattern P.

Property 1. This is already satisfied by definition: Qi already matches a pattern P.
Without loss of generality, we assume that Qi is an (R[A][¬B], S[A][B], T [¬A][B])-match of
P; the patterns are exhaustive in the sense that any arrangement of three relations
(R[A][¬B], S[A][B], T [¬A][B]) and two operators corresponds to exactly one pattern. Note
that oi = Op1 by construction.

Property 2. Proof by contradiction. Assume that there is an operator o j = − that is
an ancestor of oi = Op1 such that Op1 is a right descendant of o j . It holds that j < i
due to the in-order of the query operators. Assume that o j exports [A] or [B]. Then the
left subquery of o j contains at least one relation that exports [A] or [B]. This relation
together with a subset of R, S, T would establish a match of Qj with some pattern;
this is a contradiction to the assumption that Qi is the first subquery (in the in-order
sequence of subqueries) to establish a match. Hence o j cannot export [A] or [B].

Property 3. Proof by contradiction. We are given that Op2 is a left descendant of Op1.
Now assume that Op2 is not left-deep in the left subquery QL of Op1. Then there is
a topmost difference operator in QL, say, Op−, such that Op2 is its right descendant.
There are the following cases:

—Case 1: R and T are descendants of Op2. Then S is a right descendant of Op1.
Furthermore, Op− exports [A] and [B] since every operator on the path between R
(T , respectively) must export [A] ([B], respectively) in order for Op1 to establish an
equality or mapping for the attributes in [A] and [B] in R, T , and S. Thus the left
subquery of Op− contains relations X[A][¬B] and Z[¬A][B] or it contains a relation Y [A][B].
In the former case, the three relations X, S, Z establish an annotation-preserving
match, with Op2 = Op− and Op1 as before. The latter case is a contradiction to the
assumption that Qi is the first subquery in the in-order sequence of subqueries of
Q that matches a pattern, because the subquery rooted at Op− precedes Qi in Q’s
in-order and matches a pattern via R, Y, T .

—Case 2: R and S are descendants of Op2. Then T is a right descendant of Op1,
and Op− exports [B]. Thus the left subquery of Op− contains a relation Y [A][B], or it
contains a relation X[¬A][B]. In the former case, the three relations R, Y, T establish
a lineage-preserving match, with Op2 = Op− and Op1 as before. The latter case
is a contradiction to the assumption that Qi is the first subquery in the in-order
sequence of subqueries of Q that matches a pattern, because the subquery rooted at
Op− precedes Qi in Q’s in-order and matches a pattern via X, S, T .

—Case 3: T and S are descendants of Op2. Symmetric to case 2.

Example 5.9. Consider the query Q2 in Figure 10. The subquery rooted at the top-
most difference operator is the first one to match a pattern and also has an annotation-
preserving (M, Z,U)-match with P4.3.

5.2. Hardness Reductions

The 24 patterns in Figure 9 are the smallest hard patterns for 1RA−, and any query
that is an annotation-preserving match of one of them is hard for #P.

LEMMA 5.10. The data complexity of any 1RA− query that is an annotation-preserving
match of one of the patterns in Figure 9 is #P-hard.

Putting together Proposition 5.4 and Lemmata 5.8 and 5.10, we obtain that the data
complexity of all nonhierarchical 1RA− queries is #P-hard.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:30 R. Fink and D. Olteanu

Fig. 11. Schematic illustrations of queries that are annotation-preserving matches for pattern P1.1 (left)
and P2.2 (right). A curly edge indicates that further operators may occur on this path. By Definition 5.7, the
operator Op2 is left-deep in the left subquery QRT , or QRS respectively, of the operator Op1, that is, it is the
left descendant of any difference operator on the path between Op1 and Op2.

The proof of Lemma 5.10 goes over each pattern case and shows hardness via a
reduction from the #2DNF problem; we only need to consider 14 distinct patterns,
since, as shown in Figure 9, 10 patterns are equivalent to other ones.

Let Q be a query that is an annotation-preserving (R, S, T)-match for a pattern P,
and let � = ∨

(i, j)∈E xi yj be a 2DNF formula with |E| clauses over disjoint variable sets
X and Y. We construct in polynomial time a tuple-independent database D using the
database construction scheme in Section 4 such that the annotation of the query result
Q(D) is either � and hence PQ(D) = P� = #� · 2−|vars(�)| or ¬� and then PQ(D) = 1 − P� .

In the following reductions, we use K(X) to denote the set of constants defined by
the set X of Boolean variables, similarly for Y and the union X ∪ Y. While these
constants are used for attributes in relations, their corresponding variables are used
in propositional formulas for the special annotation column �.

By Definition 5.7, the query Q contains two distinct operators Op1 and Op2 and
relations R[A][¬B], S[A][B], T [¬A][B]. In the following, subqueries QR, QS, QT , of Q are
defined to be the left or right subqueries of Op1 or Op2 that contain exactly one of R,
S, or T , respectively, cf. Figure 11. Additionally, if Op2 has subqueries QR, QS, then
QRS is the subquery of Op1 that contains QR and QS. Subqueries QRT and QST are
defined similarly for matches in which R and T or S and T are descendants of Op2,
respectively.

The remainder of the proof treats the case of each pattern separately.
Among the patterns, P1.1 is the only one needed to show hardness of nonhierarchical

1RA− queries without negation, that is, of nonrepeating conjunctive queries studied
in prior work [Dalvi and Suciu 2007a]. Interestingly, the reduction for some patterns
such as P5.3 establishes that a query matching the pattern can be already hard for
databases in which one relation is probabilistic and all other relations are certain.

5.2.1. Reductions for Patterns P1.1, P1.2, P1.3, and P1.4.

Pattern P1.1. Let Q be a query that is an annotation-preserving match of P1.1.
Figure 11 (left) depicts such a query Q, where QR, QS, QT , QRT , QRST denote sub-
queries of Q. By Definition 5.7, Q contains operators Op1 = � and Op2 = � and
relations R[A][¬B], S[A][B], T [¬A][B]. Every operator on the path R – Op2 – Op1 – S exports
[A], and every operator on the path T – Op2 – Op1 – S exports [B]. Moreover, the
operator Op1 expresses a join on both [A] and [B].

Since Q is an annotation-preserving match, it satisfies the following additional struc-
tural properties: (1) If Op1 is a right descendant of a difference operator, then this
operator does not export [A] or [B]. (2) Operator Op2 is left-deep in QRT , that is, it is
the left descendant of any difference operator on the path between Op1 and Op2.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:31

Fig. 12. Relations R, S, T for the hardness reduction of a query with an annotation-preserving match for
pattern P1.1. The filling of S assumes that the formula � is x1 y1 ∨ x1 y2 and thus tuples (x1, y1) and (x1, y2)
are the only S-tuples annotated with � (assuming even polarity of S in QS). To avoid clutter, the full polarity
function is omitted from the annotation columns; for relation R, ¬pol stands for ¬pol(QR,R), for T the polarity
is ¬pol(QT ,T), and for S it is ¬pol(QS,S).

We populate the relations R, S, T as QA, QB, and QAB-relations following Equa-
tions (6) and (8). We thus fill the relation R with constants from K(X) for [A]-attributes
and annotations �R, the relation T with constants from K(Y) for [B]-attributes and
annotations �T , and the relation S with the Cartesian product of the two sets of con-
stants for attributes [A] and [B], and annotations �S. All other attributes are set to �.
The annotation functions are defined as follows:

�R : K(X) ∪ K(X) × K(Y) → X ∪ Y �R(xi) = �R(xi, yj) = xi

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{� if (i, j) ∈ E
⊥ if (i, j) �∈ E

�T : K(Y) ∪ K(Y) × K(X) → X ∪ Y �T (yj) = �T (yj, xi) = yj .

This database construction can be given more concisely using the notation from
Section 4:

redA(R) = K(X)|¬pol(QR,R)�R

redAB(S) = K(X) × K(Y)|¬pol(QS,S)�S

redB(T) = K(Y)|¬pol(QT ,T)�T .

Recall that the function pol(Q, R) defines the even (0) and odd (1) polarity of a
relation symbol R in the query Q. We use the convention ¬1� ≡ ¬� and ¬0� ≡ �.

Figure 12 depicts the relations R, S, and T . By applying the results of Section 4
and Lemma 4.5, the remaining relations in QR, QS, and QT can be filled such that
QR ∈ QA, QT ∈ QB, and QS ∈ QAB, that is, the values and annotations of R, S, and T
are preserved in QR, QS, and respectively QT . Since the filling of R, S, T accounts for
their polarity in their subqueries QR, QS, QT , the latter relations take the following
simple form2:

redA(QR) = K(X)|�R redAB(QS) = K(X) × K(Y)|�S redB(QT) = K(Y)|�T .

Let us now define the following annotations:

�RT : K(X) × K(Y) → X ∪ Y �RT (xi, yj) = xi yj

�RST : K(X) × K(Y) → X ∪ Y �RST (xi, yj) =
{

xi yj if (i, j) ∈ E
⊥ if (i, j) �∈ E .

2The match of Q with pattern P1.1 does not prohibit Op2 from expressing a join on [B]. In that case,
the subqueries of Op2 are Q[A][B]

R and Q[A][B]
T and satisfy redAB(QR) = K(X) × K(Y)|�R and redAB(QT) =

K(Y) × K(X)|�T in addition to the given reductions. Both the case of Op2 carrying a join [B] and the case of
Op2 not carrying this join are covered by the definition of QA in Equations (6) and (7).

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:32 R. Fink and D. Olteanu

The subquery QR � QT is populated as follows:

redAB(QR � QT) = K(X) × K(Y)|�RT .

By applying Lemma 4.5 to QRT , the annotations in the subquery QR � QT can be
preserved by QRT . Since Op2 is left-deep in QRT , Op2 has even polarity in QRT and
hence the annotations of tuples in QRT carry the same sign as in QR � QT . This yields

redAB(QRT) = K(X) × K(Y)|�RT redAB(QRT � QS) = K(X) × K(Y)|�RST .

The subquery QRST = QRT � QS rooted at Op1 thus has exactly one tuple (xi, yj)
annotated with xi yj for each such clause in �, and one tuple (xi, yj) annotated with ⊥
for each clause xi yj not in �.

Since by Definition 5.7 there does not exist a difference operator above Op1 that
exports [A] or [B], we can use the techniques of Lemma 4.5 to fill the relations rep-
resenting subqueries of Q that are not descendants of Op1 such that the annotations
of QRST are preserved by any operator above Op1. Finally, since by Definition 5.3 Q
does not export [A] or [B], those attributes are eventually projected out above Op1,
yielding as a result a single tuple annotated with the disjunction of the annotations of
QRST . If this projection is followed by difference operators (that do not export [A] or
[B]), then each of these difference operators will flip the sign of the annotation, that
is, the annotation of Q is ¬pol(Q,Op1)�. The probability PQ(D) of query Q on the database
constructed above is then P� or 1 − P� .

Pattern P1.2. A query that is an annotation-preserving match for P1.2 has the same
form as depicted in Figure 11 (left), except that Op2 = −. The annotation functions �R,
�S, �RT , and �RST are as in the case of pattern P1.1, and the annotation function �T
carries an additional negation to account for the flipped polarity of T (when compared
to pattern P1.1) due to the difference operator Op2:

�T : K(Y) ∪ K(Y) × K(X) → X ∪ Y �T (yj) = �T (yj, xi) = ¬yj .

We fill the relations R, S, and T using redA(R), redAB(S), and redB(T) as for P1.1.
The operator Op2 exports [A] and [B] and thus the queries QR and QT export both

[A] and [B]. These queries represent the following relations:

redA(QR) = K(X) × K(Y)|�R redAB(QS) = K(X) × K(Y)|�S

redB(QT) = K(Y) × K(X)|�T .

The subquery QR − QT is thus populated following redAB(QR − QT) = K(X) ×
K(Y)|�RT . The remainder of the reduction is identical to the case of pattern P1.1.

Patterns P1.3 and P1.4. The reductions are identical to the cases of patterns P1.1 and
respectively P1.2, except for the definition of �S which carries an extra negation to
account for the swapped polarity of S:

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{⊥ if (i, j) ∈ E
� if (i, j) �∈ E

5.2.2. Reduction for Patterns P2.2, P2.3, and P2.4. Let Q be a query that is annotation-
preserving match for one of these patterns. Such a query is depicted in Figure 11
(right) for the case of P2.2. The query Q satisfies these structural constraints:

—Any operator on the path R – Op2 – S exports [A], and every operator on the path
S – Op2 – Op1 – T exports [B]. The operator Op2 expresses an equality condition on
[A], and the operator Op1 expresses an join condition (for patterns P2.1 and P2.2) or a
difference mapping (for patterns P2.3 and P2.4) on [B].

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:33

—If Op1 is a right descendant of a difference operator, then this operator does not
export [A] or [B].

—The operator Op2 is left-deep in QRS, that is, it is the left descendant of any difference
operator on the path between Op1 and Op2.

Pattern P2.2. Relations R, S, T are filled using �R, �S, and �T exactly as in the case
of pattern P1.3. Additionally, define the following annotation functions:

�RS : K(Y) ∪ K(Y) × K(X) → X ∪ Y �RS(yj, xi) =
{

xi if (i, j) ∈ E
⊥ if (i, j) �∈ E

�RS(yj) =
∨

(i, j)∈E

xi

�RST : K(Y) ∪ K(Y) × K(X) → X ∪ Y �RST (yj, xi) =
{

xi yj if (i, j) ∈ E
⊥ if (i, j) �∈ E

�RST (yj) = yj ∧
∨

(i, j)∈E

xi.

Then QR − QS and QRS are QB-queries that satisfy

redB(QR − QS) = K(Y)|�RS redB(QRS) = K(Y)|�RS

and QT is a QB-query with

redB(QT) = K(Y)|�T .

Finally, the join QRS � QT satisfies

redB(QRS � QT) = K(Y)|�RST

and the reasoning about operators above Op1 is as in the case of pattern P1.1. The
eventual projection π−[B] yields the nullary relation with one tuple annotated with
¬pol(Q,Op1)�.

Pattern P2.3 We fill the relations R, S, and T as in the case of pattern P1.2. The
analysis is identical to P2.2.

Pattern P2.4. This case is identical to P2.2, where the relation T annotation uses the
following function:

�T : K(Y) ∪ K(Y) × K(X) → X ∪ Y �T (yj) = �T (yj, xi) = ¬yj .

5.2.3. Reduction for Patterns P3.2 and P3.4. The structure of queries matching any of
these patterns is equivalent to those matching a pattern P2.x with relations R and S
swapped. The structural constraints remain the same and hence the reductions are very
similar.

Pattern P3.2. This case is similar to P2.2 where �R and �S are negated:

�R : K(X) ∪ K(X) × K(Y) → X ∪ Y �R(xi) = �R(xi, yj) = ¬xi

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{� if (i, j) ∈ E
⊥ if (i, j) �∈ E.

Then, with �RS as for P2.2, subqueries QS − QR and QRS are QB-queries and satisfy

redB(QS − QR) = K(Y)|�RS redB(QRS) = K(Y)|�RS.

The remainder of this reduction is identical to the case of P2.2.

Pattern P3.4. This case is identical to the case of P2.4 where we use the annotation
functions �R and �S for the pattern P3.2.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:34 R. Fink and D. Olteanu

5.2.4. Reduction for Patterns P4.3 and P4.4. For queries matching the patterns P4.3 or P4.4,
it is only possible to directly encode the 2DNF formula � as a database D such that
the annotation of Q(D) is exactly �, if the polarity of Op2 is odd in QRT . In the case
of even polarity, we show that we can derive a database D and another formula ϒ
from � such that PQ(D) = Pϒ and linearly many calls to an oracle for Pϒ suffice to
determine #�.

Let � = ∨
(i, j)∈E xi yj = ψ1 ∨· · ·∨ψ|E| be a 2DNF formula with |E| clauses over disjoint

variable sets X and Y. Let � be the set of assignments of variables X ∪ Y. Then the
number of models of � is defined by #� = ∑

θ∈�:θ |=� 1. If we partition � into disjoint
sets �0 ∪ · · · ∪ �|E|, such that θ ∈ �i if and only if θ satisfies exactly i clauses of �, then
this sum can be equivalently written as

#� =
∑

θ∈�1:θ |=�

1 + · · · +
∑

θ∈�|E|:θ |=�

1 = |�1| + · · · + |�|E||.

We next show how to compute |�i| using an oracle for Pϒ , with ϒ defined below. Let
Z = {z1, . . . , z|E|} be a set of variables disjoint from X ∪ Y and define ϒ as

ϒ =
|E|∨
i=1

¬zi ∧ ¬ψi or, equivalently, ¬ϒ =
|E|∧
i=1

(zi ∨ ψi). (13)

We fix the probabilities of variables in X and Y to 1/2 and of variables in Z to
pz ∈ [0, 1]. The probability 1 − Pϒ = P¬ϒ can be expressed by conditioning on the
number of satisfied clauses of �:

P¬ϒ =
|E|∑
k=0

P
(

¬ϒ

∣∣∣∣ exactly k clauses
of � are satisfied

)
︸ ︷︷ ︸

p|E|−k
z

· P
(

exactly k clauses
of � are satisfied

)
︸ ︷︷ ︸

1
2

|X|+|Y|
· |�k|

= 1
2

|X|+|Y| |E|∑
k=0

p|E|−k
z |�k|.

Intuitively, the first term simplifies to p|E|−k
z , because if exactly k clauses ψi are

satisfied in ¬ϒ , then in order to satisfy the remaining |E| − k clauses (zi ∨ ψi) at least
|E| − k of the zi must be satisfied, and this occurs with probability p|E|−k

z . This is a
polynomial in pz of degree |E|, with coefficients |�0|, . . . , |�|E||. The |E| + 1 coefficients
can be derived from |E| + 1 pairs (pz, Pϒ) using Lagrange’s polynomial interpolation
formula. We conclude that |E|+1 oracle calls to Pϒ suffice to determine #� = ∑|E|

i=0 |�i|.
It remains to show how ϒ can be encoded as the annotation of a query that is an

annotation-preserving match of one of the patterns P4.3 and P4.4; given this encoding,
any algorithm that evaluates PQ(D) constitutes the above oracle. We give encodings for
the two patterns P4.3 and P4.4 separately.

Pattern P4.3. We use the illustration of a query matching P4.3 in Figure 13 (left). By
Definition 5.7, a query Q that is an annotation-preserving match of P4.3 satisfies the
following structural constraint: If Op1 is a right descendant of a difference operator,
then this operator does not export [A] or [B]. Furthermore, attributes [A] and [B] are
exported by every operator on the paths from S to R and from S to T , respectively.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:35

Fig. 13. Schematic illustration of a query that is an annotation-preserving match of pattern P4.3 (left) or
P5.3 (right). A curly path indicates that other operators may occur on it.

We distinguish two cases depending on the polarity of Op2 in the subquery QRT : If
the polarity is odd, then we can use a filling similar to that of pattern P1.1; if it is even,
then we fill to obtain formula ϒ as outlined above.

Case 1: Odd polarity (pol(QRT , Op2) = 1). We fill R, S, T like in the case of pattern
P1.1 such that QR is a QA query, QT is a QB-query, and QS is a QAB-query, and the
annotation functions are as follows:

�R : K(X) ∪ K(X) × K(Y) → X ∪ Y �R(xi) = �R(xi, yj) = xi

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{� if (i, j) ∈ E
⊥ if (i, j) �∈ E

�T : K(Y) ∪ K(Y) × K(X) → X ∪ Y �T (yj) = �T (yj, xi) = yj

�RT : K(X) × K(Y) → X ∪ Y �RT (xi, yj) = xi yj

�RST : K(X) × K(Y) → X ∪ Y �RST (xi, yj) =
{

xi yj if (i, j) ∈ E
⊥ if (i, j) �∈ E.

In other words, R consists of a tuple with A-value xi and annotation xi for each
variable xi ∈ X that occurs in �; T consists of a tuple with B-value yj and annotation
yj for each variable yj ∈ Y that occurs in �; S consists of a tuple with (A, B)-values
(xi, yj) and annotation � for each clause xi yj in �. Recall that we turn variables
to constants when used for attributes in relations. For the remaining relations, we
distinguish two cases: (1) Any relation that appears on the right side of a difference
operator differing from Op1 and Op2 is set to ∅. (2) Any relation with an attribute in [A]
and no attribute in [B] is filled like Rbut with annotation �. Symmetrically, any relation
with an attribute in [B] and no attribute in [A] is filled like T but with annotation �.
Relations with attributes in both [A] and [B] become the Cartesian product of K(X) and
Y and annotation �. Any attribute that is neither in [A] nor in [B] is filled with the
constant �.

Since the operator Op2 has odd polarity in QRT , and since both [A] and [B] are
exported by every operator on the path between Op1 and Op2, QRT is a QAB-query with
annotations

redAB(QRT) = K(X) × K(Y)|¬�RT .

Then QS − QRT is a QAB query populated as follows:

redAB(QS − QRT) = K(X) × K(Y)|�RST .

�RST (xi, yj) =
{

xi yj if (i, j) ∈ E
⊥ if (i, j) �∈ E.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:36 R. Fink and D. Olteanu

The final projection π−[A]−[B] yields one answer tuple, whose annotation is the disjunc-
tion of all clauses in �.

Case 2: Even polarity (pol(QRT , Op2) = 0). We encode the formula ϒ from Equa-
tion (13) using the above annotation functions adjusted as follows:

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{¬zk if xi yj is a clause ψk in �
⊥ else

�RST : K(X) × K(Y) → X ∪ Y �RST (xi, yj) =
{¬zk ∧ ¬ψk if xi yj is a clause ψk in �
⊥ else.

The subqueries QRT and QS − QRT are then populated as follows:

redAB(QRT) = K(X) × K(Y)|�RT

redAB(QS − QRT) = K(X) × K(Y)|�RST ,

since Op1 has even polarity in QRT . As before, the final projection π−[A]−[B] yields one
answer tuple whose annotation is the disjunction of the annotation of QS − QRT which
is exactly ϒ , cf. Equation (13).

Pattern P4.4. The reduction is equivalent to the case of pattern P4.3 when the sign of
the annotation functions �T is flipped regardless of the polarity pol(QRT , Op2) of Op2
in QRT .

5.2.5. Reduction for Patterns P5.3 and P5.4. By Definition 5.7, a query Q that has an
annotation-preserving match with one of P5.3 and P5.4 if Op1 is a right descendant
of a difference operator; then this operator does not export [A] or [B].

Pattern P5.3. Figure 13 (right) gives a schematic illustration of a query matching P5.3.
We distinguish two cases depending on whether [B] is or is not exported by Op1.

[B] is exported by Op1. Without loss of generality, assume that Op1 is the first operator
that allows for a match by virtue of Lemma 5.8. Then QR contains a relation X that
exports [B] and is joined with R in QR. If this relation is X[A][B], then Q is an annotation-
preserving (R, X, T)-match of one of the patterns P2.∗ or P3.∗; if this relation is X[¬A][B],
then Q is an annotation-preserving (R, S, X)-match of one of the patterns P1.∗.

[B] is not exported by Op1. The subquery QST contains a projection operator Opπ =
π−[B] such that every operator between Opπ and Op1 exports [A] but not [B], and every
operator between Opπ and Op2 exports [A] and [B]. Let Qπ be the subquery rooted at
Opπ . We first show that one may assume without loss of generality that Op2 is left-deep
in Qπ . Assume to the contrary that there is a difference operator Op− between Opπ and
Op2 that has Op2 as a right descendant; clearly, Op− exports [A] and [B] and hence
its left subquery contains relations X[A][¬B] and Y [¬A][B] or it contains a relation Z[A][B].
In the former case, Q is an annotation-preserving (R, S, Y)-match of pattern P5.4; in
the latter case, Q is an annotation-preserving (R, Z, T)-match of pattern P6.4. In both
cases, the new operator Op2 is left-deep in Qπ . Within this second case, we analyse two
subcases depending on the polarity of Opπ in QST :

Case 1: Even polarity (pol(QST , Opπ) = 0). Let V = X ∪ Y and N = {1, . . . , |E|} be
the set of indices of � ′s clauses: � = ψ1 ∨ · · · ∨ ψ|E|. We use the following annotation

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:37

Fig. 14. Relations R, S, T for the hardness reduction of a query that is an annotation-preserving match of
pattern P5.3 where (1) Op1 does not export [B] and (2) the projection operator π−[B] on the path between Op1
and Op2 has even polarity in QST (the subquery containing both relations S and T). Only attributes [A] and
[B] are depicted, and it is assumed that R, S, T have even polarity in their respective subqueries QR, QS,
and QT . The database is with respect to the formula � = ψ1 ∨ ψ2 = x1 y1 ∨ x1 y2.

functions:

�R : N → V �R(i) = �
�S : N × K(V) → V �S(i, v) =

{� if clause ψi contains variable v
⊥ else

�T : K(V) ∪ K(V) × N → V �T (v) = �T (v, i) = ¬v

�ST : N × K(V) → V �ST (i, v) =
{¬v if clause ψi contains variable v
⊥ else

�πST : N → V �πST (i) = ¬ψi

�RST : N → V �RST (i) = ψi.

That is, we set relation R to contain a tuple (n) annotated with � for every clause with
index n ∈ N. Relation S contains all tuples (n, v) where n ∈ N is a clause index and
v ∈ K(V) is the constant corresponding to the variable v ∈ V; (n, v) is annotated with
� if clause with index n contains variable v and with ⊥ otherwise. Relation T has a
tuple (v) annotated with ¬v for each variable v in �. The annotations of relations R,
S, T account for their respective polarity in QR, QS, QT . The subquery QT � QS is a
QAB-relation:

redAB(QT � QS) = N × K(V)|�ST

The operator Opπ turns the QAB-relation QT � QS into a QA-relation Qπ . Since Opπ

has even polarity in QST , this annotation can be preserved for QST :

redA(Qπ) = N|�πST redA(QST) = N|�πST .

Finally, the annotations of R can be preserved in QR. The subquery QR − QST flips the
sign of the annotations of QST . This yields

redA(QR) = N|�R redA(QRST) = N|�RST .

As in the previous cases, the final projection π−[A] yields a nullary relation whose only
tuple is annotated with ¬pol(Q,Op1)�.

Example 5.11. Figure 14 shows how R, S, and T are filled for the formula � =
x1y1 ∨ x1y2 and a query matching the pattern P5.3 and how these annotations are
propagated through the query operators.

Case 2: Odd polarity (pol(QST , Opπ) = 1). The number of difference operators be-
tween the root of the query and the relations S and T is even. For the annotation of
the query, these operators act equivalently to a sequence of join operators: We fill the
relations such that QT is a QB-query, QS is a QAB-query, QR is a QA query, and then QST

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:38 R. Fink and D. Olteanu

is a QA query, where the annotation functions for R, S, and T are as for the pattern
P1.1, that is:

�R : K(X) ∪ K(X) × K(Y) → X ∪ Y �R(xi) = �R(xi, yj) = xi

�S : K(X) × K(Y) → X ∪ Y �S(xi, yj) =
{� if (i, j) ∈ E
⊥ if (i, j) �∈ E

�T : K(Y) ∪ K(Y) × K(X) → X ∪ Y �T (yi) = �T (yj, xi) = yi

�ST : K(X) × K(Y) → X ∪ Y �ST (xi, yj) =
{

yj if (i, j) ∈ E
⊥ if (i, j) �∈ E

�πST : K(X) → X ∪ Y �πST (xi) =
∨

(i, j)∈E

yj

�RST : K(X) → X ∪ Y �RST (xi) = xi ∧
∨

(i, j)∈E

yj .

and obtain the following reductions:

redA(QR) = K(X)|�R redAB(QT � QS) = K(X) × K(Y)|�ST

redAB(QS) = K(X) × K(Y)|�S redA(Qπ) = K(X)|�πST

redB(QT) = K(Y)|�T redA(QST) = K(X)|¬�πST ,

where the sign of the annotations of redA(Qπ) and redA(QST) is flipped because Opπ

has odd polarity in QST . This yields

redA(QRST) = K(X)|�RST

for the subquery rooted at Op1 = − and the annotation ¬pol(Q,Op1)� for the query Q.

Pattern P5.4. The analysis of the pattern P5.4 is analogous to the case of the pattern
P5.3, where the sign of the annotation function �S is flipped.

5.2.6. Reduction for the Pattern P6.4. The analysis of pattern P6.4 is analogous to the case
of pattern P5.3, where the sign of the annotation function �T is flipped.

6. THE TRACTABILITY FRONTIER FOR QUANTIFIED QUERIES

This section investigates the data complexity of the probabilistic query evaluation
problem for quantified queries that express binary relationships among sets of enti-
ties: set division, set inclusion, set equality, set difference, and set incomparability.
For example, a set-inclusion query could find noncritical overseas suppliers, that is,
overseas suppliers for parts that also have domestic suppliers. A set-division query
could find all suppliers for a given set of items. These queries can be expressed in
relational algebra using nested negation and repeated relation symbols, as shown in
Figures 15 and 5. We analyse the data complexity of their exact computation on tuple-
independent databases: For tractable queries, we give an explicit O(|D|)-algorithm for
computing the probability of the query annotation based on Shannon expansion and
the inclusion-exclusion principle; for intractable queries, we give a hardness reduction
from #2DNF.

Although we only discuss a handful of quantified queries, each of them can in fact
represent an entire class by taking as input relations independent hierarchical 1RA−

queries, such that for each such query Q all of its exported attributes are root in Q (that
is, for a root attribute A, each relation in Q has an attribute in the class [A]). This holds
since the result of Q on a tuple-independent database is again a tuple-independent
database.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:39

Fig. 15. Definition of queries for computing set inclusion, equality, and incomparability. The tables show an
example database (S) and the result of the set inclusion (S⊆) and equality (S=) queries. In the table for S=,
�(si ⊆ sj) is the annotation of the tuple (i, j) in relation S⊆.

6.1. Tractable Quantified Queries

Assume we are given a tuple-independent relation S with schema S(sid, item) that
specifies pairs of set identifiers and items in these sets. We would like to compute the
pairs of set identifiers (s1, s2) and their probabilities, such that s1 is included in/strictly
included in/equal to/incomparable with s2. The corresponding queries are denoted by
S⊆, S⊂, S=, and S<>, respectively, and defined in Figure 15; the queries Sd= and Sd⊆
are the restrictions of S= and S⊆ to pairs of different set identifiers. The set-division
quantified query is given in Figure 5.

Example 6.1. Relation S from Figure 15 defines three uncertain subsets of {a, b, c}:
s1 = {a, b, c}, s2 = {a, b}, and s3 = {a, c}. In the absence of uncertainty, we have that
s2 ⊂ s1 and s3 ⊂ s1, and s2 and s3 are incomparable. Under the possible worlds semantics,
however, further relationships may hold between the sets. For instance, the set s1 is
included in s2 for those assignments of the random variables that satisfy the annotation
associated with (1, 2) in S⊆. This annotation reads as follows. If a or b are in s1, then
they must also be in s2; this is expressed by the term ¬(x1¬y1 ∨ x2¬y2). If c is in s1, then
(1, 2) may not be in S⊆; this is expressed by ¬x3. The disjunctions x1 ∨ x2 ∨ x3 and y1 ∨ y2
ensure that the two sets have at least one item and are thus recorded in S. The direct
application of the translation [[S⊆]] according to Algorithm 1 yields an equivalent yet
syntactically slightly different annotation than that depicted in Figure 15.

Remark 6.2. Since a set is equal to itself, one would expect that (i, i) occurs in S=
with probability 1 for all sets i from S. However, as shown in Figure 15, the annotation
of (1, 1) ∈ S= is x1 ∨ x2 ∨ x3, whose probability is not always 1. This is correct due
to the closed world assumption in relational databases: In the worlds in which the
annotation is false, there is no set 1 and hence the set-inclusion query cannot produce
pairs involving this set.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:40 R. Fink and D. Olteanu

The probability that a pair of set identifiers is in the answer to any of our quantified
queries can be computed efficiently.

THEOREM 6.3. Let S be a tuple-independent relation over schema S(sid, item) that
defines sets and their items, and S⊆, Sd⊆, S⊂, S=, Sd=, and S<> be the quantified queries
defined in Figure 15. Any tuple in the answer to these queries has an annotation of size
O(|S|) and its probability can be computed in time O(|S|).

PROOF. We compute the probabilities of the annotations for the query S⊆ using
recurrences and Shannon expansion. The annotations associated with tuples in S⊆
(cf. Example 6.1) have the general form

(x1 ∨ . . . ∨ xm)(y1 ∨ . . . ∨ yn)¬(x1¬y1 ∨ . . . ∨ xk¬yk ∨ xk+1 ∨ . . . ∨ xm),

where k represents the number of items the two sets have in common, and m − k
is the number of items in the first set and not in the second. This is equivalent to
(x1 ∨ . . .∨ xk)(y1 ∨ . . .∨ yn)¬(x1¬y1 ∨ . . .∨ xk¬yk)¬(xk+1 ∨ . . .∨ xm), and since the variables
in the last negated disjunction occur only once, we can compute the probability of this
disjunction efficiently and separately from the rest. We are thus left with (x1 ∨ . . . ∨
xk)(y1 ∨ . . . ∨ yn)¬(x1¬y1 ∨ . . . ∨ xk¬yk). Let

�
xy
i = ¬(xi¬yi ∨ . . . ∨ xk¬yk),

�
x,xy
i = (xi ∨ . . . ∨ xk)�xy

i ,

�
x,y,xy
i = (yi ∨ . . . ∨ yn)�x,xy

i .

We then have the following for any i with 1 ≤ i < k:

�
xy
i = (xi yi ∨ ¬xi)�

xy
i+1

�
x,xy
i = xi yi�

xy
i+1 ∨ ¬xi�

x,xy
i+1

�
x,y,xy
i = xi yi�

xy
i+1 ∨ ¬xi[yi�

x,xy
i+1 ∨ ¬yi�

x,y,xy
i+1]

Each of the above three formulas has a constant number of variables and refers recur-
sively to at most three subformulas where one pair of variables (xi, yi) is removed. The
recursion depth is thus bounded by the number of variables in S. Given the probabili-
ties for the referred formulas, the probability of each referring formula can be computed
efficiently, since all terms in the sums are pairwise mutually exclusive. We thus have
O(|S|) time complexity for probability computation of �

x,y,xy
1 and of annotations in S⊆.

Similar recurrences can be obtained for S= and S<> under the same variable order
elimination.

We next discuss the case of relational division. In the TPC-H scenario, a useful query
with division would find the most likely suppliers for all parts of a given brand, cf.
Figure 5 for a query evaluation example. Similarly to set-relation queries, we can use
recurrence formulas to obtain a linear-time algorithm for computing the probabilities
of tuples in the result of a set-division query.

THEOREM 6.4. Let T = R ÷ S, where R and S are any tuple-independent relations.
Then any tuple in T has an annotation of size O(|R| + |S|) and its probability can be
computed in time O(|R| + |S|).

PROOF. Let R(Ā, B̄) and S(B̄) be the schemas of R and S, respectively. The schema of
T is thus T (Ā). The following analysis applies separately to each value ā in R.

Let {y1, . . . , yn} and {x1, . . . , xm} be the variables associated with tuples in S and
with tuples (ā, b̄) in R for a value ā, respectively. The annotation of ā in T has the
form (x1 ∨ . . . ∨ xm)¬(y1¬x1 ∨ . . . ∨ yk¬xk ∨ yk+1 ∨ . . . ∨ yn), where k ≤ m is such that
x1, . . . , xk are those variables associated with tuples (ā, b̄) in R where b̄ is in S. The

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:41

term ¬(yk+1 ∨ . . .∨ yn) can be factored out and its probability computed efficiently since
it is a sum of independent variables that do not occur elsewhere in the annotation. We
are left with (x1 ∨ . . . ∨ xm)¬(y1¬x1 ∨ . . . ∨ yk¬xk). Let

�x
i = (xi ∨ . . . ∨ xm)

�
xy
i = ¬(yi¬xi ∨ . . . ∨ yk¬xk)

�
x,xy
i = �x

i �
xy
i .

Using Shannon expansion, we can decompose them as follows:

�x
i = xi ∨ ¬xi�

x
i+1

�
xy
i = [xi ∨ ¬xi¬yi]�

xy
i+1

�
x,xy
i = xi�

xy
i+1 ∨ ¬xi¬yi�

x,xy
i+1 .

These recurrence formulas share the properties of those for set-relation queries: Given
the probabilities for the referred formulas, the probability of each referring formula can
be computed efficiently, since all terms in the sums are pairwise mutually exclusive.
Moreover, the referred formulas have at least one variable less than the referring
one.

All recurrence formulas for our quantified queries use the same variable order for
Shannon expansion: x1, y1, . . . , xk, yk.

6.2. Intractable Quantified Queries

Some of the queries discussed in Section 6.1 become #P-hard when one or more of their
attributes are projected out.

THEOREM 6.5. For any x ⊂ {s1, s2}, the data complexity of the queries π∅(S÷ I), πx(Sd=),
πx(Sd⊆), πx(S⊂), and πx(S<>) is #P-hard.

PROOF. The proof is by direct reduction from the model counting problem for 2DNF
formulas. We detail the reduction for the case of π∅(S ÷ I), cf. Figure 5 for its definition
and an example; the reductions for the remaining queries are analogous.

Let � = c1 ∨ · · · ∨ cn be an input 2DNF formula with n clauses. Without loss of
generality, we assume that the relation I, which specifies set items, is unary and the
relation S, which specifies sets and their items, is binary. We construct the relation
I such that for each variable v in � there is exactly one tuple, or item, v in I with
annotation ¬v. We construct the relation S such that there is one distinct set i for each
clause ci in � and this set consists of the items corresponding in I to the variables
not in ci. That is, for each clause ci, S consists of as many tuples as variables that are
in � and not in ci; one such tuple is a pair of the set i and a constant representing a
variable in � but not in ci. All tuples in S are annotated with �, that is, the relation S
is deterministic. By construction, the annotation of the query result becomes �.

Although Boolean relational division π∅(S ÷ I) is hard in general, its tractability
depends on the input probability distribution in case each item value in I is paired with
each set in S, as we discuss next. Assume without loss of generality that there are n item
values 1, . . . , n in I annotated with distinct variables y1, . . . , yn, and there are m sets
1, . . . , min S, such that each set i has n+ ki possible tuples (i, 1), . . . , (i, n+ ki) annotated
by ¬xi

1, . . . , xi
n+ki

. Following the annotation pattern in Figure 5, the annotation of the
query becomes

� =
m∨

i=1

(¬xi
1 ∨ . . . ∨ ¬xi

n+ki

)¬(
y1xi

1 ∨ . . . ∨ ynxi
n

)
.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:42 R. Fink and D. Olteanu

By negating � and removing redundant terms, we obtain:

¬� =
⎡
⎣ m∧

i=1

n+ki∧
j=1

xi
j

⎤
⎦ ∨

[
m∧

i=1

y1xi
1 ∨ . . . ∨ ynxi

n

]
.

By applying the inclusion-exclusion principle and simplifying, the probability of ¬� is
then:

P(¬�) = P

⎡
⎣ m∧

i=1

n+ki∧
j=1

xi
j

⎤
⎦ + P

[
m∧

i=1

y1xi
1 ∨ . . . ∨ ynxi

n

]
− P

⎡
⎣ m∧

i=1

n+ki∧
j=1

xi
j

⎤
⎦ · P [y1 ∨ · · · ∨ yn] .

The first and the third terms in the sum can be computed trivially regardless of the
probability distribution. The second term can be computed efficiently in case of uniform
distribution:

PROPOSITION 6.6. The number of models of the propositional formula
m∧

i=1

y1xi
1 ∨ . . . ∨ ynxi

n is
n∑

j=1

(
n
j

)
(2n − 2n− j)m.

The proof exploits the combinatorial structure of the formula. The formula of Propo-
sition 6.6 admits efficient model counting—and thus probability computation under
uniform probability distribution for the variables—due to its symmetry: For any choice
of k of n variables yj set to true, the number of satisfying assignments is the same
and only depends on k, n, and m. In case of arbitrary input probability distributions,
however, the formula is no longer symmetric and setting different k variables yj to true
can lead to different probabilities. In fact, arbitrary positive bipartite 2CNF formulas
can be obtained by appropriately setting variables xi

j to true or false.

7. BEYOND 1RA− QUERIES

In this section we discuss the effect of various extensions of 1RA− on query tractability.
A dichotomy for full relational algebra seems unattainable since key reasoning tasks

for such queries, such as equivalence, emptiness, or subsumption, are undecidable:
Given two equivalent queries, one hard and one tractable, we cannot have an effective
procedure that tells us that their union is a tractable query. Restrictions on the use
of negation, for example, guarded negation [Bárány et al. 2012], enable decidability
of query equivalence and can pave the way to a complexity dichotomy for (possibly
repeating) relational queries with guarded negation in probabilistic databases.

7.1. Nonrepeating Relational Algebra

If we add the union operator to the language 1RA−, we need a different syntactic char-
acterisation of the tractable queries, since the hierarchical property is not defined for
queries with union. An immediate attempt would consider all (union-free) subqueries
obtained by choosing one term at each union and checking whether all of them are hier-
archical. This approach fails since such subqueries are not necessarily ∃-consistent. For
instance, the nonrepeating relational algebra query Q = π∅[S− (R � S1 ∪T � S2)] over
database schema (S(A, B), R(A), S1(A, B), T (B), S2(A, B)) has two hierarchical union-
free subqueries under π∅: π∅(S − (R � S1)) and π∅(S − (T � S2)). However, these
subqueries cannot be rewritten to ∃-consistent RC∃ queries, since they have roots A
and B, respectively; it can be further shown that Q is #P-hard.

An alternative characterisation would be to check ∃-consistency and the RC∃-
hierarchical property of the RC∃ expression Qr representing the rewriting of a

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:43

nonrepeating relational algebra query Q described in Section 3.1. Then Q is tractable
when Qr is ∃-consistent and RC-hierarchical. Checking these properties can be done
efficiently in the size of the input RC∃ query, yet Qr may be much larger than Q (as
per discussion at the end of Section 3.1). It is open whether the characterisation of
tractable nonrepeating relational algebra queries can be done more efficiently than fol-
lowing this procedure via RC-hierarchical ∃-consistency, which incurs an exponential
blowup in the size of the query.

7.2. Nonrepeating RC∃

There are subtle differences between nonrepeating relational algebra and nonrepeat-
ing RC∃ that revolve around RC∃’s flexibility to allow disjunction and negation on sub-
queries of different schemas. For instance, the nonrepeating RC∃ queries S(x, y)∧¬R(x)
and S(x, y) ∧ (R(x) ∨ T (y)) cannot be expressed in nonrepeating relational alge-
bra. Whereas the former query is tractable, the latter is #P-hard: This means that
nonrepeating relational algebra cannot express both tractable and hard nonrepeating
RC∃ queries.

For nonrepeating RC∃, the RC-hierarchical property alone does not characterise the
tractable queries, even when we take away disjunction. Indeed, the RC∃ query equiva-
lent to the 1RA− query from Figure 3, that is, Q = ∃A∃B[R(A) ∧ S(B) ∧ ¬(U (A) ∧ V (B))],
does not satisfy the RC-hierarchical property since neither A nor B are root in the
expression and they cannot be pushed further down. However, as for 1RA− queries,
we can rewrite a nonrepeating RC∃ query Q into an RC∃ query Qr as outlined in Sec-
tion 3.1: Qr = ∃A[R(A) ∧ ¬U (A)] ∧ ∃BS(B) ∨ ∃AR(A) ∧ ∃B[S(B) ∧ ¬V (B)] for the above
query Q, and then again Q is tractable when Qr is RC-hierarchical and ∃-consistent.

8. RELATED WORK

Negation is a source of complexity already for databases with incomplete information
and without probabilities [Abiteboul et al. 1991]. In probabilistic databases, the MystiQ
system supports a limited class of NOT EXISTS queries [Wang et al. 2008]. A frame-
work for the exact and approximate evaluation of full relational algebra queries (thus
including negation) in probabilistic databases is part of SPROUT [Fink et al. 2011,
2013]. Further work looks at approximating queries with negation [Khanna et al. 2011].

The dichotomy results of this article contribute to a succession of complexity re-
sults for queries on probabilistic databases: Starting from a first example of a #P-hard
query [Grädel et al. 1998], polynomial-time/#P-hard dichotomies have been established
for nonrepeating conjunctive queries [Dalvi and Suciu 2004] and their ranking ver-
sions [Olteanu and Wen 2012] and for unions of conjunctive queries (UCQs) [Dalvi
and Suciu 2012]. Our result for 1RA− strictly generalises the dichotomy for nonrepeat-
ing conjunctive queries. Whereas tractable 1RA− queries can be recognised efficiently
via the hierarchical syntactic property, no such syntactic characterisation of tractable
UCQs is known. Further tractability results are known for inequality joins [Olteanu
and Huang 2008, 2009; Jha and Suciu 2012], and queries with aggregates and group-by
clauses [Ré and Suciu 2009; Fink et al. 2012].

The closest in spirit to the proof techniques in this article are those connecting OBDDs
with query tractability [Olteanu and Huang 2008; Jha and Suciu 2013] and for the
UCQ dichotomy result [Dalvi and Suciu 2012]. The algorithm for tractable UCQ queries
translates them into relational calculus expressions that have root variables and satisfy
properties similar to what we call canonicalised. Similarly to root variables in our
algorithm, the existence of separator variables for UCQs ensures that the annotations of
the query expression are independent for different valuations of the separator variable.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:44 R. Fink and D. Olteanu

Our notion of ∃-consistency for queries with negation is inspired by the notion of
inversion-freeness for UCQ queries.

Further related work, which has been developed independently of this work, is a
dichotomy for a class of so-called Type-1 relational calculus queries with negation, that
is, CNF formulas where each clause has at most two variables and each relational sym-
bol is unary or binary [Gribkoff et al. 2014a]. The query languages considered in this
article are incomparable with the Type-1 class. This work builds on the UCQ dichotomy
[Dalvi and Suciu 2012] and as such it does not provide a syntactic characterisation of
tractable queries.

The first connection between polysize OBDDs and tractable queries has been shown
for hierarchical nonrepeating conjunctive queries [Olteanu and Huang 2008]. For UCQ
queries, the inversion-freenes property corresponds to polysize OBDDs [Jha and Suciu
2013]. Queries with inequalities have been characterised in terms of their correspond-
ing OBDDs [Olteanu and Huang 2008, 2009; Jha and Suciu 2012].

The problems of tractable query evaluation in probabilistic databases and of domain-
lifted inference for weighted first-order model counting [den Broeck 2011] essentially
coincide [Gribkoff et al. 2014b]. A common assumption in much existing work in prob-
abilistic databases is that the probabilities of two tuples of a same relation may differ;
this is referred to as the asymmetric probability case. The symmetric case, where all tu-
ples of a relation have the same probability, is more common in lifted inference in AI. A
number of complexity results have been recently shown for symmetric first-order model
counting [Beame et al. 2015]. A promising direction of future research is combining the
asymmetric and symmetric cases.

The vast majority of hardness reductions in the above works are from the #P-hard
model-counting problem for positive (2)DNF formulas [Valiant 1979; Provan and Ball
1983]. The complexity class #P was originally defined by Valiant [1979]. An overview of
various topics in probabilistic databases has been compiled recently [Suciu et al. 2011].

9. CONCLUSION

This article discusses a fundamental computational aspect of query processing in prob-
abilistic databases, namely the classification of nonrepeating conjunctive queries with
negation and of quantified queries into tractable (polynomial-time) and intractable
(#P-hard) ones. The existence of an efficient recognition procedure for tractable queries
allows a probabilistic query engine to switch between exact evaluation for tractable
queries and approximate evaluation for intractable queries. A future challenge is un-
derstanding which extensions of the considered languages, for example, with restricted
union or repeating relation symbols, would still admit an efficient characterisation of
tractable queries.

A. RECOGNITION ALGORITHM FOR THE HIERARCHICAL PROPERTY

The hierarchical property for 1RA−is given in Definition 1.2. The membership problem

.Problem IsHierarchical: Input: 1RA− query Q
Output: “Yes” if Q is hierarchical, “No” else

is the same problem as for conjunctive queries without negation [Dalvi and Suciu
2007b], with the exception that IsHierarchical requires the computation of transitively
joined attributes, while they are explicitly given in the case of conjunctive queries.
Since the hierarchical property can be decided in AC0 [Dalvi and Suciu 2007b] and
since deciding whether two attributes are transitively joined is in LOGSPACE, we may
expect that IsHierarchical is in LOGSPACE.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:45

Algorithm 3 gives an alternative, explicit LOGSPACE algorithm for deciding IsHier-
archical. For each pair of variables A, B, the algorithm iterates over the relation symbols
in Q and indicates by three Boolean flags whenever one of the relations R[A][¬B], S[A][B],
or T [¬A][B] has been found. This amounts to checking whether two attributes are tran-
sitively joined in Q, that is, whether A′ ∈ [A]. The LOGSPACE complexity is due to the
following argument. It uses a constant number of Boolean flags and a constant number
of iterators over Q. Moreover, the transitive join condition A′ ∈ [A] can be cast as the
LOGSPACE-problem [Reingold 2008] of checking whether A and A′ are connected in
the undirected graph whose vertices are the attributes of Q and which has an edge
between X and Y if and only if Q contains an operator �ρ with (X = Y) ∈ ρ or an
operator −ρ with (X ↔ Y) ∈ ρ.

ALGORITHM 3: Algorithm to Decide the Hierarchical Property for 1RA−Queries
ISHIERARCHICAL(Query Q)

foreach pair of attributes A,B occurring in Q do
HasA, HasB, HasAB ← false
foreach relation symbol X in Q do

if X exports [A] and not [B] then
HasA ← true

if X exports [A] and [B] then
HasAB ← true

if X exports [B] and not [A] then
HasB ← true

if HasA and HasB and HasAB then return “No”
return “Yes”

COROLLARY A.1 ([DALVI AND SUCIU 2007B; REINGOLD 2008]). The decision problem
IsHierarchical is in LOGSPACE.

ACKNOWLEDGMENTS

The authors are indebted to Dan Suciu for insightful discussions and to the anonymous reviewers for useful
feedback on earlier drafts.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley, Reading,
MA.

Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. 1991. On the representation and querying of sets of
possible worlds. Theor. Comput. Sci. 78, 1 (1991), 158–187.

Vince Bárány, Balder ten Cate, and Martin Otto. 2012. Queries with guarded negation. Proc. VLDB 5, 11
(2012), 1328–1339.

Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan Suciu. 2015. Symmetric weighted first-order model
counting. In Proc. PODS. 313–328.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Junior Hruschka, and Tom Mitchell.
2010. Toward an architecture for never-ending language learning. In AAAI.

Nilesh Dalvi and Dan Suciu. 2004. Efficient query evaluation on probabilistic databases. In VLDB 864–875.
Nilesh Dalvi and Dan Suciu. 2007a. Efficient query evaluation on probabilistic databases. VLDB J. 16, 4

(2007), 523–544.
Nilesh Dalvi and Dan Suciu. 2007b. Management of probabilistic data: Foundations and challenges. In Proc.

PODS. 1–12.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

4:46 R. Fink and D. Olteanu

Nilesh N. Dalvi and Dan Suciu. 2012. The dichotomy of probabilistic inference for unions of conjunctive
queries. J. ACM 59, 6 (2012), 30.

Guy Van den Broeck. 2011. On the completeness of first-order knowledge compilation for lifted probabilistic
inference. In NIPS. 1386–1394.

Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge vault: A web-scale approach to probabilistic knowledge
fusion. In SIGKDD. 601–610.

Robert Fink, Larisa Han, and Dan Olteanu. 2012. Aggregation in probabilistic databases via knowledge
compilation. Proc. VLDB 5, 5 (2012), 490–501.

Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in probabilistic databases.
VLDB J. 22, 6 (2013), 823–848.

Robert Fink and Dan Olteanu. 2014. A dichotomy for non-repeating queries with negation in probabilistic
databases. In PODS. 144–155.

Robert Fink, Dan Olteanu, and Swaroop Rath. 2011. Providing support for full relational algebra queries in
probabilistic databases. In ICDE. 315–326.

Erich Grädel, Yuri Gurevich, and Colin Hirsch. 1998. The complexity of query reliability. In Proc. PODS.
227–234.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. 31–40.
Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. 2014a. Understanding the complexity of lifted inference

and asymmetric weighted model counting. In UAI. 280–289.
Eric Gribkoff, Dan Suciu, and Guy Van den Broeck. 2014b. Lifted probabilistic inference: A guide for the

database researcher. IEEE Data Eng. Bull. 37, 3 (2014), 6–17.
M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt, J. Tyszkiewicz, and J. V. den Bussche. 2009. Database

query processing using finite cursor machines. Theor. Comput. Syst. 44, 4 (2009), 533–560.
Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. 2009. MayBMS: A probabilistic

database management system. In Proc. SIGMOD. 1071–1074.
T. Imielinski and W. Lipski. 1984. Incomplete information in relational databases. J. ACM 31, 4 (1984),

761–791.
Abhay Kumar Jha and Dan Suciu. 2012. On the tractability of query compilation and bounded treewidth. In

Proc. ICDT. 249–261.
Abhay Kumar Jha and Dan Suciu. 2013. Knowledge compilation meets database theory: Compiling queries

to decision diagrams. Theor. Comput. Syst. 52, 3 (2013), 403–440.
Sanjeev Khanna, Sudeepa Roy, and Val Tannen. 2011. Queries with difference on probabilistic databases.

Proc. VLDB 4, 11 (2011), 1051–1062.
Paraschos Koutris and Dan Suciu. 2011. Parallel evaluation of conjunctive queries. In Proc. PODS. 223–234.
Dan Olteanu and Jiewen Huang. 2008. Using OBDDs for efficient query evaluation on probabilistic

databases. In Proc. SUM. 326–340.
Dan Olteanu and Jiewen Huang. 2009. Secondary-storage confidence computation for conjunctive queries

with inequalities. In Proc. SIGMOD. 389–402.
Dan Olteanu and Hongkai Wen. 2012. Ranking query answers in probabilistic databases: Complexity and

efficient algorithms. In ICDE. 282–293.
Dan Olteanu and Jakub Závodný. 2012. Factorised representations of query results: Size bounds and read-

ability. In Proc. ICDT. 285–298.
Dan Olteanu and Jakub Závodný. 2015. Size bounds for factorised representations of query results. ACM

Trans. Database Syst. 40, 1 (2015), 2.
J. Scott Provan and Michael O. Ball. 1983. The complexity of counting cuts and of computing the probability

that a graph is connected. SIAM J. Comput. 12, 4 (1983), 777–788.
Ralf Rantzau. 2004. Frequent itemset discovery with SQL using universal quantification. In Database

Support Data Mining Appl. 194–213.
Sudhir Rao, Antonio Badia, and Dirk Van Gucht. 1996. Providing better support for a class of decision

support queries. In Proc. SIGMOD. 217–227.
Christopher Ré and Dan Suciu. 2009. The trichotomy of HAVING queries on a probabilistic database. VLDB

J. 18, 5 (2009), 1091–1116.
Omer Reingold. 2008. Undirected connectivity in log-space. J. ACM 55, 4 (2008), 17.
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan &

Claypool Publishers.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Dichotomies for Queries with Negation in Probabilistic Databases 4:47

Leslie Valiant. 1979. The complexity of enumeration and reliability problems. SIAM J. Comput. 8 (1979),
410–421.

Ting-You Wang, Christopher Ré, and Dan Suciu. 2008. Implementing NOT EXISTS predicates over a prob-
abilistic database. In QDB/MUD. 73–86.

Ingo Wegener. 2004. BDDs–design, analysis, complexity, and applications. Discrete Appl. Math. 138, 1–2
(2004), 229–251.

Received November 2014; revised June 2015; accepted October 2015

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 4, Publication date: February 2016.

Copyright of ACM Transactions on Database Systems is the property of Association for
Computing Machinery and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

