Computing (2013) 95:567-610
DOI 10.1007/s00607-012-0237-5

A design methodology for verified web-service
mediators

Jing Cao - Albert Nymeyer

Received: 24 March 2012 / Accepted: 6 November 2012 / Published online: 23 November 2012
© Springer-Verlag Wien 2012

Abstract A new web service can be built by combining existing web services and
coordinating their actions by a ‘mediator’. This work presents a formal design method-
ology based on model checking that generates all the mediator designs that meet
requirements specified by a user. The methodology allows the user to explore the
designs in search of the mediator that offers the best theoretical performance. Markov
models of various measures of performance are considered. Each measure may result
in a different ranking of the mediator designs (from best to worst for example). From
these rankings the user can select the design that at least theoretically best fits the pur-
pose. The novelty of this work is the use of model checking and Markov analysis in a
single formal framework to generate, explore, and select from a set of provably-correct
mediators—while still in the design stage of development.

Mathematics Subject Classification 68N30 - 68U07 - 65C05

1 Introduction

Web services are distributed software components that solve specific tasks varying
from responding to simple requests to complex business processes [25,20]. They are
typically designed to interact with other web services. Large applications can be built
by composing existing component web services. This component-based approach to
software development can significantly impact the way commercial applications are

J. Cao (X)) - A. Nymeyer

School of Computer Science and Engineering, The University of New South Wales,
Sydney, Australia

e-mail: jcao@cse.unsw.edu.au

A. Nymeyer
e-mail: anymeyer @cse.unsw.edu.au

@ Springer

568 J. Cao, A. Nymeyer

developed [40]. Just as in all software development, when composing web services,
design (or architectural) decisions often need to be made early in the development
process. The consequences of these decisions in functional terms (i.e. whether the
requirements will be satisfied) and non-functional terms (e.g. Will the performance be
adequate?, Will the system be usable?) are often unknown at the time the decisions
are made. The design must first be implemented and tested. If bad decisions are made,
correcting the design after the implementation stage has been reached can be very
expensive, or even impossible. Clements and Northrop [17] put it succinctly: “whether
or not a system will be able to exhibit its desired (or required) quality attributes is
largely determined by the time the architecture is chosen”.

The analysis of a high-level specification of a web service is an attempt to anticipate
at an early stage in the software-development cycle the impact that design decisions
will have on the non-functional and functional requirements. Non-functional require-
ments may include factors such as speed, response time, size and power consumption.
The functional requirements define behavioural correctness, where ‘correctness’ not
only refers to the behaviour, but also refers to the system’s robustness, to whether the
system is deadlock-free and to more specific properties such as whether the system is
guaranteed to respond to every query. An even more fundamental question is, given a
set of component web services, does a mediator exist that meets the behavioural and
performance criteria set by the user.

Verifying behavioural correctness at the design stage requires the system to be
formal modelled [40]. This involves specifying the components mathematically, and
composing these specifications. If model checking is used, functional properties may
also be specified and these can be verified. However, if additionally the user wishes to
have some confidence that the design has the best possible performance, then there is no
technology available. Formal methods such as model checking allows qualitative, i.e.
functional, statements about the behaviour of a system to be made, but in general not
quantitative, i.e. non-functional, statements. These same issues face most developers
of complex, large-scale software systems that are built using component reuse. In
particular they are faced by computer engineers and hardware designers [34], where
the demands for both functional correctness and high performance can be ‘mission
critical’: a mistake can lead to financial disaster, and may cost lives. For example,
the aviation industry, the space industry and medical-equipment manufacturing use
technologies where there is simply no margin for error.

The underlying theory of the approach that we present here was originally developed
in the field of hardware design [8—10,12]. In hardware design (of VLSI circuits for
example), a protocol interface is synthesised from a formal specification. The role of
the interface is to match different, autonomous, off-the-shelf component protocols.
The interface that is synthesised interacts with the components to produce behaviour
that is specified by the user. In web services, a mediator is synthesised instead of a
protocol interface, and the components are existing or standard web services. While the
overall approach to synthesising a protocol interface and a mediator is similar, there
are significant differences. For example, a model of a mediator takes into account
both local web services, which are connected directly to the mediator, and remote
web services, which are connected to the local services but not the mediator itself.
There is no analogy to this in hardware design. The definition of performance is also

@ Springer

A design methodology for verified web-service mediators 569

Mediator

Remote
Service

Fig. 1 A model of a mediator for local and remote web services

different: we have chosen two commonly-used web-service performance measures
[42], response time and data throughput, but also a less-traditional measure, the energy
cost (it abstracts the electrical cost of providing a web service), which is a performance
consideration most often associated with portable devices and remote equipment. Each
measure of performance is analysed using Markov chains, and it is this analysis that
drives the process of selecting the best-possible theoretical mediator design.

In Fig. 1 we illustrate our model of a mediator for web services. The mediator
controls the communication between services that are directly connected to it. These
are called local services. For simplicity we show just two in this figure. Other services
that are not connected to the mediator but are connected to the local services are
referred to as remote services. Again, we show just two for simplicity. All interactions
are bi-directional. The solid arrows in the figure are called transactions and involve the
transfer of data and control signals. The dashed arrows do not involve data transfers:
they are a mechanism that enables the mediator to observe the communication between
the local and remote services. They play an important role in verification (only).

We differentiate in the figure between local input control transactions, denoted
L' and LIC/; local input data transactions, denoted L' and Llc/l; local output control
transactions, denoted L% and LOé; and local output data transactions, denoted 194
and L%. Similarly for the transactions between the local and remote services. Data
transactions are simply message transfers. The contents of these messages do not
change the flow of control in the mediator. Control transactions in contrast generally
cause the mediator and services to take actions. Examples are sending a request to a
travel agent for a flight or to a hotel for a room. The important issue here is that the
behaviour of the mediator is driven by control signals (or messages if you prefer),
and the data transfers play a subservient role. Note that the input/output direction of
the transaction is relative to the mediator: all input transactions are in the direction
towards the mediator, and all output transactions are in the direction away from the
mediator.

There are two buffers in the mediator in Fig. 1 that are connected to the data
channels. Intuitively, a buffer is just memory that may be used in a data channel to
store data. For example, a service may wish to send a request of length ten characters to
another service that is able to accept requests of length only five characters (the control
signals of the two services hence do not match). The mediator that acts as intermediary
between the services will send the first half of the request immediately, and store the

@ Springer

570 J. Cao, A. Nymeyer

Hotel 1 Bank
Travel Mediator Airline
User

Fig. 2 A mediator for local services Travel Agency and Airline, which are in turn connected to remote
services Hotel, User and Bank

Agency N

Service [r—

Composition Design Space Performance

} ‘Best’

specification o) !
r Verifier Builder r Estimator mediator
i - Non-functional
Functlo.n al Probabilities .
properties properties

Fig. 3 The architecture of the EVERESTdesign methodology for web-service mediators

second half in the buffer to be sent later. In general, every channel that involves the
transfer of data would be expected to have a buffer. In this work we formally describe
the transfer of data to and from the mediator through buffers, and we also formally
model the cost of these transfers in terms of performance. For example, we compute
formally the cost in energy of transferring data, which requires the amount of data that
is transferred to be modelled.

Example 1 In Fig. 2, we show an example of a mediator for local services Travel
Agency and Airline [25]. The Travel Agency is in turn connected to remote services
User and Hotel, and the Airline to remote service Bank. We have simplified the trans-
actions in the figure by not showing control and data separately and we have omitted
the connections that allow the mediator to observe the remote actions (the dashed
arrows in the previous figure) to keep the picture simple. It is understood that all the
interactions between the local and remote services can be observed by the mediator.
The purpose of the system is straightforward: the Travel Agency books airline flights
and hotels for users. The Airline is connected to a bank that must confirm that payment
has been received.

In essence, the aim of the mediator is to translate all control and data actions from
one local service into control and data actions that are understood by some other local
service. In this work, we present a design methodology for mediators, which we call
EVEREST.

The architecture of this design methodology is shown in Fig. 3.

The methodology consists of three phases:

Verifier This phase constructs a finite-state machine that represents all the behav-
iours. It does this using an ‘on-the-fly’ model checker. The resulting state machine
is not only provably correct, it is guaranteed to satisfy any functional properties
specified by the user.

@ Springer

A design methodology for verified web-service mediators 571

Builder In the second phase, a so-called design space of mediators is built from the
state machine generated by the first phase. Markov probabilities are introduced at
this stage. These probabilities reflect the range of behaviours in which the mediator
is expected to perform.

Estimator In the third phase, the non-functional properties that specify the desired
minimum performance and the Markov probabilities are used to select the theo-
retically best mediator in the design space. This may require the user to trade-off
competing performance measures: for example, the response time and the size of
the system.

1.1 On-the-fly model checking

In the Verifier phase, a state machine that is a composition of the component ser-
vices and the functional properties is constructed. This state machine describes all the
possible behaviours, all of which are guaranteed correct. The functional properties
that the user requires are specified using computational tree logic (CTL) by the user.
This CTL specification defines the ‘correctness’ properties for the model checker. The
model checker is based on the tableau method, which decomposes the given CTL
formulas into smaller formulae [5,16] and used to label the (verified) state machine.
In the process of generating the state machine, any state and transition that violates
a correctness condition is removed. If no state remains then no composition exists.
Otherwise, a formally-verified state machine is constructed.

1.2 A Markovian design space of mediators

The single, verified, state machine generated by the model checker is a superset of all
possible behaviours. For example, from some state, different transitions to new states
may be possible, which, while all correct, may result in different performance. To
generate a particular mediator, we need to split states. This process of splitting leads
to a set of all the possible individual mediators, which we call the design space of
mediators. Each design is modelled using Markov chains.

Markov chains have been widely used for about a century for performance and
dependability evaluation of computer systems. Characteristic of a Markov chain is,
given the current state, the future evolution of the Markov chain is totally described
by the current state, and independent of past states. This is called the Markov prop-
erty. To use Markov chains, so-called single-step probabilities are required. These are
used to compute the steady-state probability of each state, which is the probability
that the system will be in a particular state in the infinite limit of time (see [22] for
details). A classical method of computing the steady-state probabilities is to solve a set
of equations, called the Chapman-Kolmogorov equations. Based on these steady-state
probabilities, we can then compute the steady-transition probabilities (see [11] for cal-
culation details). These steady-state and steady-transition probabilities are computed
for every design.

@ Springer

572 J. Cao, A. Nymeyer

1.3 Selecting the ‘optimal’ design

Traditionally, design decisions are made in the early stages of a development. Towards
the end of a development, when the implementation is undergoing testing, the
consequences of these decisions may become evident. There is only one implemen-
tation of course; the engineer will never know whether implementing another design
would have resulted in a better system. In testing, an engineer executes the imple-
mentation to determine its performance. The test cases chosen ideally mimic real-life
scenarios, and large numbers of test cases would typically be used. Often this stage of
the development is the most time-consuming, error-prone, and mundane of the whole
software development, and of course, as we are dealing with the actual implementa-
tion, it is also a stage that comes very late in the development: generally too late to
correct earlier design decisions without substantial cost.

In our work, instead of an implementation we have a set of mediator designs. We
analyse the theoretical performance of each of these designs using a Markov analysis.
In essence, we make a prediction which designs would perform the best. We cannot
claim the predictions will be accurate in an absolute sense: the actual performance
of the web service will be affected by many implementation details that we cannot
anticipate. What we do claim is that there is likely a correlation between the ranking of
the designs in terms of theoretical performance and the rankings of the implemented
systems if each of the designs were to be implemented. One basis for this claim is the
evidence from the field of hardware design. The Markov analysis models typical user
behaviour, which is something rare in software design: user behaviour is generally
reflected in the test cases that are applied after the implementation have been com-
pleted. User behaviour is one of the inputs of the design process in this paper, and is used
to select the best theoretical design. There is no cost to abandon one design in favour of
another in our approach. In fact, the trade-off in the various measures of performance
between all the designs plays an important role in motivating our methodology.

The Markov model, while theoretical, is based on probabilities that reflect real-
world behaviour. Determining these probabilities is similar to determining which sim-
ulations or which test cases to use, but it has significant advantages:

Once the probabilities are set, the ranking of the designs is completely determined.
The Markov analysis occurs at high level, before any development has taken place.
So it is trivial to change the design.

Probabilities can be standardised to reflect ‘accepted practice’.

— If user behaviour is observed or predicted to change, it is straightforward to
re-analyse all the designs to see which offers the best theoretical performance.

1.4 Optimal performance

The functional properties are ‘hard and fast’ behavioural requirements that the media-
tor design should satisfy: they determine correctness. There is no notion of correctness
in the non-functional, performance requirements of the mediator. These requirements
are used to compare and rank the mediator designs. There are many ways to measure
the performance; in this work we use the following:

@ Springer

A design methodology for verified web-service mediators 573

Energy consumption This is the amount of energy required to carry out the set
of transactions necessary to carry out the service. For example, the service may be
the travel agent booking both a flight and a hotel for a user. The result of the service
will be the flight ticket, or an indication that no flight, or no hotel, is available.
Given a Markov model from the Builder phase, we can model the power ¢?°"
consumed by the system as [11,12]:

g7 o ZWi,jHi,j (1

8148

where the sum is over all adjacent pairs of states s; and s; of the Markov model,
Wi, is the weight of the transition between states s; and s;, and H; ; is the
Hamming distance between this pair of states. The state-encoding algorithm that
we applied here can be found in [11]. Using this definition of power, the energy
consumed by the service can be computed.

Data throughput Examples of data that must flow through the buffers are user
data (such as personal details), hotel details, flight details and dollar amounts. The
data throughput is the average amount of data that is transferred in a single time
unit. To compute the Data Transfer Rate (DTR), we use the formula [11, 13]:

DTR Z T;.iDij 2

Si,Sj

where 7T; ; is the steady-transition probability of a transition from state s; to s,
and D; ; is the amount of data that has been transferred in this transition.

Response time Services generally consist of some number of request-response
transaction pairs. Typically, the mediator receives a request from some local ser-
vice, which will require it to send requests to other local services, each of which
take time to respond to. Eventually the mediator will respond to the original request.
In this work we formally define the sum-total of transactions necessary to respond
to a request by a dialogue. The times it takes for the mediator to execute the dia-
logue is called the response time (denoted as R). The response time of a request
is calculated in this work using the formula:

Ro > Tijn 3)

8iy8j

where s; and s; are states in the dialogue, 7; ; is the steady-transition probability
of the transition from state s; to s, and # is the total number of transitions.

Any given request may lead to different responses (depending on circumstances
such as availability and cost for example) so to determine the response time the
average of all possible dialogues is calculated, as well as the standard deviation
to see the scattering. There are clearly many ways of computing the average that
could include for example the likelihood of particular responses.

@ Springer

574 J. Cao, A. Nymeyer

1.5 Outline

In the next section we describe related work. In Sect. 3, we explain the Verifier phase;
in Sect. 4 the Builder phase, and in Sect. 5, the Estimator phase. Fragments of the
travel-agency example shown in Fig. 2 will serve as a running example in this work.
This case study is considered in its entirety in Sect. 6. In Sects. 7 and 8 the contribution
of this work, future work and a perspective are provided.

2 Related work

Web-service composition has been studied extensively over the last decade [3,4,6,
18,25,28]. A recent survey can be found in [20]. Let us consider the specification of
the functional and non-functional requirements. Kumaran and Nandi [26] specify the
behaviour of a web service by defining policies for data formats, and sequence and
timing constraints. Specific languages such as the web services description language
(WSDL), which is XML-based, have been developed to express these policies. Our ser-
vice model also has time and sequence constraints, but unlike policies, we do not need
to define the format of the data because this is low-level detail, and our approach takes
a high-level view of service interaction. Instead, we use formal finite-state machines
and Markov models and web-service languages such as WSDL would be inappropri-
ate. Other work [4,27] also use finite-state machines to define web services. Although
there is other work [14] that uses a Markov model for performance measurement as
we do, in that work probabilities are used to model the rate of jobs leaving a server
and joining a queue in a network, which is different from our probabilities that model
the signal traffic between services.

In general, service composition can be carried out in two ways: referred to as orches-
tration and choreography. In orchestration, (component) web services are under the
control of a central web service generally called a coordinator. This service coordinates
the operations on the component services participating in the composition [31]. The
component services do not ‘know’ that they are involved in a composition. The coordi-
nator is the only service that has full knowledge of the composition, and orchestration
is hence considered a top-down approach. Choreography, in contrast, is not centralised,
and does not have a coordinator. Each web service that participates in the choreography
has to know when to execute each of its actions and with whom it is communicating.
In essence, choreography is a model of distributed knowledge where services work
cooperatively to realise particular functionality. Full functionality is attained only by
involving all services. This approach is hence considered to be bottom-up.

Orchestration is considered to be state-of-the-art because it is more flexible. Off-
the-shelf component services can easily be incorporate into a composition, without
the need for modification or reconfiguration: they do not need to know the identity of
the service with which they interact. This is a facility that is required by most current
service products [33], and it is indeed a facility that we take advantage of in our work.

A coordinator that is often encountered in daily life is a stock broker. It can be
said that one of the functions of a broker is to mediate between the stock market
and investors. Paolucci et al. [30] noted that ‘brokering’ involves both mediation and

@ Springer

A design methodology for verified web-service mediators 575

discovery, and that it is difficult to generate a broker automatically. If component ser-
vices need to communicate, and they do not share a common language, then mediation
involves providing a translation facility. Because a broker often connects a requester
to any one of a number of service providers, the broker often also has the task of
discovering the best (or most suitable) provider. So in principle a broker first must
discover a suitable provider, and then mediate between the provider and the requester.
We briefly survey research on these aspects below.

In [30,37], after discovering a suitable provider for a requester, a broker that medi-
ates between them is generated. In that work, the broker cannot deal with information
from one service that is not understood by the other service, which is one of the
focuses of our work. At the operational level, these ‘mismatches’ are called control
mismatches; at the data level, they are called data mismatches.

In [32], the broker translates user requests, expressed in an XML-formatted lan-
guage, to pre-defined web-service messages. Unlike the language translation that our
mediator carries out (which is happening at the operational level), mediators in other
work [30,32,37] often just convert between formats. In [7], the mediator provides data
flows and can resolve certain types of mismatches. Unfortunately, the method used to
generate the mediator is not revealed in that work. In [7,15], a broker is connected to
a so-called engine, which is a provider that connects with other services. These other
services can be compared to our remote services.

The majority of research on orchestration focuses on discovery [1,35,37,42]. We
do not separate the tasks of discovery and mediation: indeed, in our approach these
tasks are tightly integrated. Given a requester and some number of providers, we build
a mediator that composes the providers. Techniques generally used in discovery, such
as verification and performance estimation, are part of our mediator design method.
The non-functional requirements that are generally used to select the best provider in
‘discovery’ research are used in our research to identify the optimal mediator in the
design space.

For example, Paolucci et al. [37] employ the technique of semantic matching of web
services to find the most appropriate provider. Semantic matching focuses on ensuring
that all functional requirements are satisfied, but the provider is not guaranteed to
be correct. In discovery, verifying a form of correctness is studied in [35]. Unlike
the temporally-based formal verification used in our approach, however, [35] verify
the Quality-of-Service by running a set of test cases that check whether given QoS
properties are satisfied by each provider. The QoS properties in [35] include response
time (i.e. the time a provider takes to respond to a request), service cost and service
availability. Their response time is equivalent to our response time. We do not consider
service cost or availability because of the small number of services that are involved.
QoS properties are also used in [2,21,29,39,42] for service discovery. Ai-Masri and
Mahmoud [1] consider other performance measurements such as data throughput,
which is equivalent to our data throughput. Yu and Lin [41] measure system utility,
which is the total number of active requesters at each time, and reconfiguration, which
involves the reallocation of resources among existing and incoming requesters. Very
recently, Ivanovic et al. [23] formulate the computational cost of service networks by
considering not only the internal logic of service composition, but also the number and
behaviour of invoked services. They make assumptions about the services however,

@ Springer

576 J. Cao, A. Nymeyer

such as the number of the external services that will be involved in transactions.
Our performance model goes further: transition probabilities in the Markov analysis
account for the different individual response times by the external (remote) services
and result in expected performance. However, we do assume in the energy performance
model that the external services in each mediator in the design space consume the same
energy. This is clearly an over-simplification, and removing this assumption is future
work.

In research in mediator synthesis, formal methods have been used more exten-
sively [19,40]. For example, [19] specify correctness properties using Linear Tempo-
ral Logic, and [40] compare various formal methods (namely automata, Petri nets and
process algebras) for service composition. The work that is most closely related to our
work is [28], who develop a mediator synthesis method in an orchestration framework
(although in that work the mediator is called a choreographer, which conflicts with
our nomenclature). Just as in our model, they represent services using I/O automata,
but they go further and also define functional requirements using automata (instead of
the temporal logic that we use). Given these automata, they developed local on-the-fly
algorithms to explore all possible behaviours in so-called universal-service automata
(which can be compared to our parallel composition automaton). If a correct coor-
dinator is found amongst these behaviours, the exploration stops. This coordinator
may or may not be the best coordinator (in terms of the user-defined non-functional
requirements). The existence of a coordinator is ‘proven’ using a simulation rela-
tion. That approach is different to our formally-based on-the-fly algorithm, which, by
construction, generates all correct behaviours, and then chooses the best one.

3 The Verifier phase

In this phase, the local and remote services are specified using finite-state machines,
and the functional properties are specified using temporal logic formulae. From these
specifications we generate in this phase a finite-state machine called the verified par-
allel composition (VPC) of the services.

Given finite-state machine presentations of services ¢; and ¢ that transfer data
messages with size x and y (resp.), we first derive an Extended Parallel Composition
(EPC). The derivation process is shown in Fig. 4.

Fig. 4 The formal derivation of 13 3
the VPC ! z
x-bit y-bit
EPC
Counters I Temporal
91 e 5, formulae
VPC Correctness
Buffers ¢l ¢ conditions
1"V 22

@ Springer

A design methodology for verified web-service mediators 577

The EPC is the cross product of the input services that adds counters and temporal
formulae to each state. A counter sums the number of data units (e.g. characters) in
each buffer in a state, and the temporal formulae describe functional properties. The
EPC is further transformed by applying these properties and placing bounds on the
counters. This results in the verified parallel composition (VPC), which is the output
of this phase. The derivation of the VPC begins with the formal derivation of the input
services.

Definition 1 Service A service is represented as an extended finite-state machine
¢ =(S,L,R,3,s0), where:

— S is a finite set of states.

— L and R are finite sets of local and remote actions respectively. These actions are
either input/output control actions or data actions, denoted as L = Lc U L% U
L'4UL9% and R = RIeURO<UR!a U RO respectively. Control actions Ll [0c,
R’ and RO« are Booleans while data actions L¢, L% R'¢ and R correspond
to (real) data.

— 8 € 8 x 2L x 2R x §is a set of transitions. Each transition #; ; € § is written
tij= (si, Lij, Rij, Sj), where s;, s;j € S, LijCL and R;j € R labels tij with
local and remote actions.

— 5o € S is the initial and the final state.

Conventionally, when reactive systems are modelled the initial and final states are
defined to be the same. This is also an assumption that is required by the Markov
analysis, and is not a restriction in practice.

In Fig. 5 we show a fragment of a finite-state machine that represents an Airline
service. We see in this figure a state s; that reaches s, by receiving request denoted
as ‘req®?. In the figure, actions with suffix ‘?” are input actions, and actions with
suffix ‘!’ are output actions. The superscript ‘a’ denotes the Airline service. State s
has three outgoing transitions leading to state s», s3 and s4 resp. These transitions
are labelled by different output actions, e.g. ‘ava®!” means the service outputs the
flight is available, ‘avag’ means it outputs the flight is unavailable, and ‘search®!’
means it is searching for a flight. Note that this self-loop represents the possibility that
the service will need to wait for a response. During this waiting period, one or more
external services may be invoked. Including waiting time does not increase the size
of model. However, it does affect the transition probabilities, and this will impact the
performance of the mediators. We discuss this in more detail in 5. Notice that there

Fig. 5 A fragment of the @
Airline service

req??

@’ search®!

Q,
ava?d! \ava O!

@ Springer

578 J. Cao, A. Nymeyer

are no input actions specified in this fragment. This is important as it means that no
external entity can control this service if it is in state so: the service may in fact take any
one of these three transitions ‘spontaneously’. It may do so because there is no input
action to control its behaviour. A state that exhibits this (multitude of) behaviours is
said to be uncontrollable.

The notion of uncontrollability requires the input control actions labelling two
transitions from a state to be the same (or non-existent), and either input data actions,
or the local output actions, or the (input or output) remote actions to be different. Note
that transitions from a state must be unique, so if input actions are identical, then the
output actions must differ. Non-determinism occurs when two transitions have both
inputs and outputs identical. Non-determinism is rare in practice because one would
not expect or specify different behaviour for the same input and output actions. We
in fact do not allow non-determinism in this work. The concept of uncontrollability,
in contrast, allows services to ‘take the initiative’ in the sense that, given particular
input, the service may decide for itself what the appropriate output should be, and
hence show different behaviour.

We define ‘uncontrollability’ formally as follows.

Definition 2 Uncontrollable service A service ¢ = (S, L, R, 8, so) is uncontrollable
iff there exists at least one state s; € S and its child states s, s, € S, where s5; # sp,
such that Hti,j = (54, Li,j, Ri’j, Sj) € 6 and Hti’m = (si, Li,m, Ri,m, sm) € 6, and

(L = L) A ((Lij URi.j) # (Ligw U Ri))

States s; and s, are said to be rwins.

Twin states represent uncontrollable behaviours in which the mediator is not able
to select a single behaviour in a given state. If one of the behaviours violates any of the
correctness conditions however, then the mediator may be able to avoid reaching the
state where a choice needs to be made. Returning to the example in Fig. 5, the three
outgoing transitions of s; are labelled by the same input, namely the empty input. The
children of s, are s3, s4 and itself. Each pair of these states is a twin (so the three
states form a triplet). Twin states might cause a problem because the transition from
s to one of the twins may lead to correct behaviour, but another transition from s; to
another twin may be invalid. In practice, this means that one service may send control
or data messages that the other service cannot handle. Recognising the existence of
uncontrollable states is important in defining correct behaviours, as we shall see later.

In contrast to an uncontrollable state such as s, a controllable state has outgoing
transitions that are labelled by distinct input control actions. From a controllable state,
a mediator can decide and force the services to execute a particular behaviour by
sending an input control action that labels the transition that goes to a particular child
state.

A specification of a system comprises a specification of all the local and remote
services. This specification, together with the temporal properties, forms the input
of the Verifier. As we can see in Fig. 4, to synthesise a mediator, we need to define
the extended parallel composition (EPC) of all the local and remote services. In the

@ Springer

A design methodology for verified web-service mediators 579

following definition, we assume that the mediator requires just one buffer, but it can
be easily extended to involve more buffers.

Definition 3 Extended parallel composition (EPC) of services Given services ¢| =
(84, L*, R%, 84, sg) and ¢ = (Sb, L? RY, (Sb, sg), and a set of formulae ¥, an EPC
is defined by ¢1 [l. ¢2 = (8¢, £, L¢, R®, §°, 5(), where:

~ 8¢ C 8% S x K,and K C Nis the set of buffer sizes (which counts the number
of data elements in the buffer at a state). A state in S° is denoted as s; ¢ x, Where
5; € S s, € S and k € K.

— L is a state labelling function: §¢ — 2¥. For each state Sigk € 8% si o1 =
L(si g.x), then s; ¢ 1 is a valid state.

— L¢*=L*UL" and R®= R*URP’.

— 8¢ C 8¢ x (25 x 2R%) x §¢. For each transition #; ; = (s, L; j, Ri j, s;) € 8% in
grand tg p, = (sg, Lg p, Rg p, Sp) € 82 in ¢, there exists a set of transitions in §¢
of the form:

ti,jtgh = (Sigk» Li,j ULgp, Rij URg p,Sjni)

where s; ¢k, Sjn1 € S°
~ 56 = (@%b 0) e s

Notice that we define buffers to store data, and we define the set of properties that
the EPC is expected to satisfy. A counter is used to record the number of data units that
are stored in a buffer at each state. This counter is incremented when data is received
by the mediator, and decremented when data is sent. The properties W are expressed
as CTL formulae.

An EPC is uncontrollable iff 3s; 4, € S¢ such that s; is an uncontrollable state in
G1, Or Sg is uncontrollable in ¢;. Two states s; ¢ x and s; 5 are twins iff s; and s; are
twins in ¢y, or sg and s¢ are twinsin ¢2. If s; ¢ 1 = L£(s; 4 1) then the state is said to be a
valid twin; alternatively, if s; ¢ x ¥ L(s; ¢ r), then the state is said to be an invalid twin.
Analogously for s; 5 ;. Note that a safety issue may occur if we remove invalid twins.
Because the behaviours are uncontrollable, the invalid twin states may be unavoidable
in the sense that the service ¢ (or ¢2) may still send the signal that leads to one of
the removed states. Particular valid twin states hence need to be removed from the
mediator, so that the mediator can no longer be placed in this situation. The extra twin
states that need to be removed are called rwin-unsafe. The concept of twin-safe states
can be formally defined (see [10]). In this work, we will explain the twin-safe issue
by example later.

Given the EPC, the VPC can be defined as follows.

Definition 4 Verified parallel composition (VPC) Given an EPC defined by
(8¢, L, L¢, R®, 8%, s3) with the set of formulae W and buffer size k™, a VPC is defined
by st llv 2 =(S", L, L", R", 8", 5,) where:
— 8" C §¢is afinite set of states, and for each state s; ¢ x € S” wehave 0 < k < k™,
where k is the buffer size.
— LS — 2%, Vs, €S wehavesigx = L (5ig.k)
— L" C L and R" C Re, where L9 C L% is a set of output local actions,
L € L9 is a set of input local actions, and R C Rl is a set of input remote
actions, RO C RO is a set of output remote actions,

@ Springer

580 J. Cao, A. Nymeyer

Fig. 6 Fragments of the ¢
Travel-Agency service offer ?
S U Y offer'?

wait'?

— 8 TS x QY x 2Ry x §7
— sb =

For all s; ¢ x € 8¢, if 5; g,k = L(5i,¢,x) and s; ¢ ¢ has no invalid-twin, then:

— Sigk €8
- (si,g,k’ Ee(si,g,k)) el

— for all transitions (s; g . Lil,j U Léh, Li?j U Lgh, R jURg p,sjn) €8° then

o o 1 1
(Si,g,ka Li,j U Lg,h’ Li,j U Lg,h’ Ri,j U Rg,h, Sj,h,l) e

Note that the input and output actions in each transition in a VPC are the same as
those in the EPC, but the local actions are reversed. The remote actions in contrast
are not reversed because they are not involved in transactions with the VPC. The
basic algorithm that generates the VPC according to the above definition can be found
in [10], but remote actions need to be handled as well.

Example 2 In the original example shown in Fig. 2, let us consider fragments of
the Travel-Agency service shown in Fig. 6 and Airline service shown in Fig. 5 (the
complete specifications of these services will be presented in Sect. 6). The Travel-
Agency service receives requests for flights and hotels, denoted by ‘Rreg"’, from a
user, and then waits until a result from the Airline service is received. The result can
be either a possible flight offer, denoted by ‘of fer’’, or an indication that the flight is
not available, denoted by ‘of fer/’. In these two fragments, Rreg"? is a remote action
and all other actions are local.

The corresponding fragment of EPC of these two services can be seen in Fig. 7.
There is one data channel involved in the fragments, with its own buffer. A request for
a flight from the Travel Agency is relayed to the Airline (i.e. ‘req"’ is translated into
‘req®’). We record the number of data in this buffer in each state, e.g. s2,1,0 means
that no data is stored when Travel Agency visits state sp and Airline visits 5.

The functional properties that have been applied in this example are:

¢1. AG(s1,1,0 > AXAFs 1,0): from the initial state, the final state can always even-
tually be reached, which means every state is reachable and no deadlock occurs.
2. AG(s1.1.0 > AXA(—of fer' U ava®)): from the initial state, the mediator cannot
send ‘of fer'’ to the Agency until ‘ava®’ has been sent by the Airline service.
¢3. AG(s1,1,0 > AXA(—of f er(’) U ava(‘)’)): from the initial state, the mediator cannot
send ‘of fery’ to the Agency until ‘avag’ has been sent by the Airline service.
¢4. We let the maximum buffer size be zero. Formally, for each state 5; j x € S" we
have k = 0, where we assume the input/output data message sizes are the same.

These properties are input to the model checker, which, when applied to the EPC
shown in Fig. 7, will detect that (i) states s5 2 o and s5 4,0 violate ¢, (ii) states s4 2,0 and
54.3,0 violate ¢3 and (iii) states 12,1, 2.2,1, $3,1,—1 Vviolate ¢4, and hence are invalid.

@ Springer

A design methodology for verified web-service mediators 581

eq ?lreq??

offer} ?lava

Fig. 7 A fragment of the EPC of the services shown in Figs. 6 and 5

These states are hence removed, and as this occurs ‘on the fly’, no children will be
generated from any of these states.

Before removing invalid states, we need to consider the twin-unsafe issue. Let us
consider invalid state s5.4,0 and its twin state 553 ¢ for example. A potential prob-
lem is that when the mediator makes the transition to s5 3,9, it will expect to receive
ava® from the Airline, and send of fer’ to the Travel-Agency. However, the mediator
cannot control the Airline, so whether it receives ava® or avag from the Airline is
uncontrollable. If avag is received, and of f er' is sent, then the invalid state s5.4.0
will be reached. Reaching this invalid state can be avoided with the existence of valid
states s4.4,0 and 53 4.0 if the mediator sends of f er(’) (or wait’) after receiving ava(‘)’.
In that case s4,4,0 (or 53,4,0) Will be reached instead. Therefore, states s5 4,0 and 553 o
are twin-safe in this case, and the invalid state s5 4,0 can be removed safely. If 5440
and s3 4 ¢ are invalid in this example, then s5 4,0 and s5 3 0 Will become twin-unsafe.

The resulting fragment of the VPC is shown in Fig. 8. Note that in this process
the directions of local actions on each transition are reversed (receive actions become
send actions, and vice versa).

At the behaviour level, there is no need for the VPC to know the content of each
data message, but we do handle data and control behaviours. For example in Fig. 7,
when the Airline is searching, the Travel-Agency is waiting, as revealed by the self-
loop at state s32,¢. In this state, if the Airline responds with ‘not available’, i.e. the
Boolean control message ava = 0, then the Travel-Agency will receive ‘no offer’, i.e.
the Boolean control message offer = 0 as a notification from the mediator. This can
be seen on the transition label from 5320 to 54,4,0. SO 54,40 Will be selected as the
next state. Similarly for the other four cases that might happen at state 53 2 .

The existence of a VPC in this example means that a functionally correct mediator
can be synthesised. In fact, it may have been possible to generate a mediator using a

@ Springer

582 J. Cao, A. Nymeyer

Fig. 8 The VPC that results
from the EPC shown in Fig. 7

req' 2Ireq* ! a
wait'llsearch®?
offerllava®2(s offer §llaval?
8530 : 45320 ,@

. ot a
wait "lava™ wait !lavag?

ticket'?
Rticket"!

Fig. 9 Fragments of the Travel-Agency service (left) and Airline service (right)

simpler model that does not include remote services. However, in general, the incor-
poration of remote services in the model means that a mediator may exist in cases
where it will not if the remote services are excluded. The next example illustrates this.

Example 3 Consider other fragments of the Travel-Agency and Airline services shown
in Fig. 9. The EPC that is generated from these fragments is shown in Fig. 10. The
corresponding VPC is shown in Fig. 11. For the sake of argument, let us assume
that there is no buffer, or more precisely, the maximum buffer size is zero. In that
case, states s10,8,0 and s11,9,0 in the EPC are invalid because their respective children
s1.1,—1 and s1 1,1 are invalid because of buffer underflow and overflow respectively.
The VPC can avoid reaching these invalid states in the following way. If the remote
action ‘Rvalid®’ has been received by the Airline, then the mediator sends ‘succ’’ to
the Travel Agency and reaches state s19,9,0. Otherwise, if ‘Rvalid,;’ has been received
by the Airline, then the mediator sends ‘succé’ to the Travel Agency and reaches state
s11,8,0- The result is the invalid states cannot be reached. We can therefore remove the
invalid states from the VPC, and generate a valid mediator. Note that for simplicity, in
each state only one buffer that is relevant to this example is shown, and the self loops
in both services are ignored because they do not play any role in this case.

Let us now remove the remote services from the model. The remote actions in
Fig. 9 are the Bank’s actions ‘Rvalid(’)”, ‘Rvalid” and ‘Rwaitb’, and the User’s

@ Springer

A design methodology for verified web-service mediators 583

. . b
succ!?IRvalid? succ'?IRvalid o?

succto?l R

..b . b
alidg? sucsy?Rvalid’ ?

. . . a . . . p . t . u a
ticket'?, Rticket" lleticket ™_ Rfail "llerfor®! Rfail"lletickef' ! ticket?,Rticket" !lerror"!

Fig. 10 The EPC that results from the service fragments shown in Fig. 9

Fig. 11 The VPC that results
from the EPC shown in Fig. 10

ticket!?) a
eticket ! error !

Fig. 12 Fragments of the Travel-Agency service (left) and Airline service (right) without remote
transactions

actions ‘Rfail"’ and ‘Rticket"’. We remove these actions by changing them into
T-transitions. The resulting simplified fragments are shown in Fig. 12. The EPC that is
generated from these service fragments is shown in Fig. 13. No VPC can be synthesised
from this EPC because all the children from s9 7 o are twin-unsafe. Since the interaction
with the Airline is t, i.e. empty, it is impossible to control: the VPC can send either
‘succf)’ or ‘succ’’, but both cases will lead to one of the invalid states s11,9,0 Or 510.8.0-
If we cannot generate a VPC, there is no mediator.

@ Springer

584 J. Cao, A. Nymeyer

Fig. 13 The EPC that results from the service fragments that have no remote transactions, shown in Fig. 12

Only if the algorithm can guarantee that there will be no invalid behaviour will
the algorithm generate a mediator. The above example shows us that the knowledge
of remote services can enable a mediator to be synthesised in cases where it would
otherwise not be possible.

3.1 Generating the VPC

A flowchart of the VPC generator algorithm is shown in Fig. 14. The process of VPC
construction starts by generating the parallel composition. The VPC Generator Algo-
rithm then employs depth-first search to traverse each state in the parallel composition.
Once a new state is found, it is updated by adding buffer values and labelling formulae.
The updated state is then checked if it satisfies all its labelled formulae. If it violates
a formula then it will be removed immediately, hence the successive states will never
be generated. Otherwise, the construction continues. In this sense the construction is
on-the-fly. As aresult, we do not need to generate the complete state space of the EPC.

To check if an updated state s satisfies all its labelled formulae L£(s), the Tableau-
Construction Algorithm shown in Algorithm 1 is used. There are three possible return
values from the Tableau-Construction Algorithm:

1. if it returns true, then the state s is added to the VPC;

2. if it returns false, then s is invalid, and the Safety-Check Algorithm shown in
Algorithm 2 is used to check if all twins of s are twin-safe;

3. if it returns undecided, then we update the parent states. This means that the
validation of the current state is still unknown, which may depend on whether
some future state will be reached.

In the first case, if the return value is true then we do not need to call the Safety-Check
Algorithm. This is because, in the definition of a twin-safe state, the Safety-Check
Algorithm is required only when an invalid state has been found. In the second case,
an invalid state is found. If it is twin-unsafe according to the Safety-Check Algorithm,
then the state will be removed from the VPC, and its parent states are updated. In the
third case, the value is undecided. However, all the undecided states will return either
true or false by the end of the Algorithm.

@ Springer

A design methodology for verified web-service mediators 585

Fig. 14 The VPC generator l services
algorithm
depth first
search

l

add counters
toeachsinS

VPC reaches
the fix point?2

false
add s to VPC

Tableau-
Construction
Algorithm

undecided

Safety-Check
Algorithm

false

remove s from VPC

!

update parent state

Using a fixed-point calculation, states are verified and new states are added to the
VPC. If no more states can be found, then we say that the fixed point is reached by
the algorithm. When the fixed point is reached, we reverse the inputs and outputs of
all transitions between any two states in the VPC, and add the reversed transitions to
the VPC. Conceptually, given a parallel composition, we generate a VPC by checking
the correctness conditions at all the states and corresponding transitions.

@ Springer

586 J. Cao, A. Nymeyer

Shown in Algorithm 1, the Tableau-Construction Algorithm checks temporal for-
mulae using the tableau-method based model checker.

Algorithm 1 Tableau-Construction Algorithm

1: L(s) =¥

2: while ¥ is non-empty do

3: remove formula 1 in ¥

4: if ¢ = true then

5: continue

6: else if ¢ = false then

7: return s ¥ L(s)

8: else if ¢y = AGYy; then

9: add ¥ and AXAG 91 in &

10: else if ¢y = AXvy then

11: add 1 to W, set s as a AX_state

12: else if ¢ = A(y1U2) then

13: add 93 = 2 V (Y1 A AXY) in ¥

14: else if ¢ = 91 V 2 then

15: create states s1 = s, £(s1) = 1 UW4x;
16: create states so = s, L(s2) = 12 UW4x;
17: add (s1,£(s1)) and (s2,L(s2)) to £, and set s to an OR_state
18: return undecided

19: else if ¢ = 91 A Y2 then
20: add 1 and 92 in ¥
21: end if

22: end while
23: if W4 x is non-empty then

24: U« = {Y|AXyY € Uux}, s is AX _state
25: for all successor state s’ of s do

26: create states (s, L(s") = ¥/, y)

27: end for

28: return undecided

29: end if

30: return s = L(s)

Following [36], this algorithm provides a set of rules to decompose formulae into
sub-formulae. To illustrate, we apply the Tableau-Construction Algorithm to a frag-
ment of an EPC shown in Fig. 15 on the left. At initial state i, we are given a
property AG(sg — AXA(by U e1)) from W, which is the label L(i R) of the state.
We first apply the AG rule (at Line 8) and express implication as disjunction to get

Fig. 15 A fragment of an EPC
(left) and a fragment of the VPC

(right) a,llb 7 |

b, le. ?
agllh e, ?

Ne,! a?lc ! lle,? |allc,?b !
d%%,! e, dlle?/ \dylle? [a,lle,?b!

53
0y

a1, %! a,?lb;!c,%,?

@ Springer

A design methodology for verified web-service mediators 587

= -5 VAXA (b U ey). Since the first term of ¢ is false, we apply the AX rule (at Line
10) to the second term, and generate states 51,1 and s2 2 with ¢1 = ¢o = A (b U ey)
and Wx. Similarly we expand s; 1 by applying the AU rule (at Line 12) to generate
e1 V (bop NAXA(bo U e1)). Note that at s 1, the property ¢ is satisfied only if e = 1,
so s1,1 is conditionally valid. The VPC will generate e;! with the result that s 1 is
forced valid. Similarly, s5 4 is also forced valid. Note as well that states 52 2, 53,3 and
54,3 are valid. A fragment of the resulting VPC is shown in Fig. 15 on the right.

Algorithm 2 Safety-Check Algorithm

Input: 1) An invalid or twin-unsafe state s; 4, where s; is in service <1, and sg in service

G2; 2) a set C of siblings from the same parent state s;,,, and the transition from sz y
to each child sy, € C that is labelled by Altzu)-
Output: Each state in C' is safe or not.

1: for all s,,, € C do
2 if s; and s, are twins and sy and s, are not twins then > Case 1
3 Su,v is twin-unsafe
4: for all s; ,,, € C do
5: if s; = s; and sy, is not a twin of s, then
6 Su,v is twin-safe
7 if s4 # sy then
8 if A(tz,u) occurs in service ¢1, then the mediator sends A(ty,.) to ¢2
9: if A(t;,;) occurs in service <1, then the mediator sends A(ty,m) to ¢2
10: end if
11: break
12: end if
13: end for
14: else if s; and sy are not twins and sy and s, are twins then > Case 2
15: Su,v is twin-unsafe
16: for all 5; ,, € C do
17: if s;n = sg and s; is not twin of s, then
18: Su,v is twin-safe
19: if s; # sy, then
20: if A(ty,v) occurs in service g2, then the mediator sends A(tz,.) to <1
21: if A(ty,m) occurs in service g2, then the mediator sends A(t; ;) to <1
22: end if
23: end if
24: end for
25: else if s; and sy are twins and sy and s, are twins then > Case 3
26: Su,v is twin-unsafe
27: else > Case 4
28: Su,v is twin-safe
29: end if
30: if 54,0 is twin-unsafe then
31: remove Sy, y
32: call safety_check
33: end if
34: end for

Shown in Algorithm 2, the Safety-Check Algorithm checks the twin-safe prop-
erty defined in [10] by examining states in pairs. There are four cases to be con-
sidered, and each one can be identified by the corresponding labels on the right

@ Springer

588 J. Cao, A. Nymeyer

in the algorithm. As an example, let us revisit the EPC shown in Fig. 7. When
we apply the VPC Generator Algorithm, the Tableau-Construction Algorithm will
detect the invalid state s540. Following this, the Safety-Check Algorithm will
be applied. The input to this algorithm, state s; ,, will be 5540, whose parent
state Sy, iS 53.2,0. The rest of the children of the parent are contained in the set
C = {5330, 53.4,0, 54.2,0, 54,3,05 54.4.0, 55.2.0, 55.3,0, §3,2,0}, Which are called siblings
of 55 4,0. There are no twins among s3, s4 and s5 in Travel-Agency service, while states
s2, s3 and s4 are triples in Airline service. This belongs to Case 2 at Line 14 of the
Safety-Check Algorithm. To illustrate, we take the same example we discussed earlier
for instance: s, , = s§5.3,0. There is a state 57, = 54,40 that satisfies the condition
at Line 17 of Case 2. Therefore s5 30 is twin-safe, which is the same result as we
concluded earlier.

4 The Builder phase

In Fig. 4 we saw how the VPC was generated in the Verifier phase. In the Builder
phase, we split the VPC into all its possible component behaviours. There may in fact
be many behaviours, each of which corresponds to a different mediator that satisfies
the given functional properties.

Example 4 Consider the fragment of a VPC ¢ ||, ¢2 shown in Fig. 16. This VPC
contains a state s; with two outgoing transitions. At state s1, the VPC receives action
c1? from service ¢, and by sending a;! to service ¢y, the VPC will be in state s, or
by sending b1!, will be in state s3. As the inputs are the same, the VPC can decide
for itself which transition to take, and hence what the next state will be. Therefore
in state 51 two different behaviours are possible. We can ‘re-draw’ this VPC to make
the choice between the two component behaviours explicit. This is shown in Fig. 17.
Each of the component behaviours in this figure is a new VPC.

Detecting the component behaviours of a VPC requires identifying states that are
splittable. The state s1 in the example above is such a state. A splittable state in a
VPC has at least two outgoing transitions labelled by different output actions. These
outgoing transitions are said to be send-nonequivalent. By sending different outputs,
the component VPCs of course exhibit different behaviours. (Note that if the outgoing
transitions are labelled by identical output actions then, as we exclude non-determinism
in this work, these transitions must have different inputs.)

If a state is unsplittable, then there is no way for the mediator to influence which
transition the state will take. Alternatively, if a state is splittable, then it can be

Fig. 16 A small VPC ¢y ||y 52

Fig. 17 The component a,llc,? b,llc,?
behaviours of the VPC in Fig. 16 (: < @

@ Springer

A design methodology for verified web-service mediators 589

Fig. 18 A formal derivation of
UVPC VPC

cllys,

- UVPCs Reachability
Probabilities conditions
clls, }

controlled by the mediator. A mediator is free to choose any transition at a split-
table state. If we consider all the possible choices that can be made at every splittable
state, then we can generate a set of VPCs, each of which consists solely of unsplittable
states. Such a VPC is called an Unsplittable VPC (UVPC).

Splitting the states in the VPC to produce a set of UVPCs is the main task of
the Builder phase. We depict this in Fig. 18, where the probabilities and reachability
conditions are also required to generate the UVPCs. The probabilities are used by
the Estimator phase to estimate the performance of the service composition for each
individual UVPC.

To formally model performance, we represent a UVPC as a Markov chain. This
requires a formal definition of the splittable and unsplittable states in the VPC.

Definition 5 Splittable and unsplittable states in a VPC Given a state s € S" of
a VPC (S",L",L", R", 3", 53), if there are two outgoing transitions ¢ t{ with label
(LO(t) U LO(t)), L1 (t1) U L1(t]), R(t1) U R(}])), and t>t} with label (L9 (t2) U
LO(t}), L' (t2) U L' (1), R(t2) U R(t})) from state s, such that:

(L%(t)) = L% (1)) A (LT (11) # L' (1)) V (R(t1) # R(12))))

or
(LO%(t]) = L% (t5)) A (L7 (1}) # L) v (R(t}) # R(tH))))

where L%%(#;) is a set of output control actions that label 71, and similarly for
Loﬂ(t{), L9%(t;) and L% (t5); then transitions #¢; and 1ot} are said to be send-
equivalent. Otherwise t;7] and 1t} are said to be send-nonequivalent, and in that
case, the state s is said to be splittable. If any two outgoing transitions from s are
send-nonequivalent, then state s is said to be unsplittable.

Given a VPC, an algorithm to identify the splittable states in the VPC is shown
in Algorithm 3. The output of the algorithm is a set of splittable states and a set of
send-nonequivalent transitions of each transition in the VPC.

@ Springer

590 J. Cao, A. Nymeyer

Algorithm 3 Splittable States Identifier

Input: VPC: A verified parallel composition of mediators
Output: S%: A set of splittable states in VPC, ST (¢): A set of send-nonequivalent transi-
tions of each transition ¢

1: S5=190

2: for each state s in VPC do

3: for each outgoing transition ¢ of s do

4 ST() =0

5 for each outgoing transition ¢’ # t of s do
6: if ¢ and t/ are send-nonequivalent then
7 add ¢’ to ST (t)

8: add s to S*

9: end if

10: end for

11: end for

12: end for

Using Definition 5, we can define an unsplittable VPC as follows.

Definition 6 Unsplittable VPC (UVPC) Given a set of probabilities P and a VPC
(8", L",L",R", 8", s,), where each state is s;,x € S" and each transition is
(Sig k> Li,jULgp, Ri jURg p,s;p1) € 8", aUVPC can be represented by a Markov
chain (B, U, L*, R", P, 0, s0.0), Where:

— B C [0..k™] is a finite set of integers that represents buffer sizes, and B =
{k|5i,g,k € Sr}.

— U C §" is a set of unsplittable states. A state s; o x € SX that has k data units in
the buffer is represented by s, x € U in a UVPC, where x = (i, g).

— L*"CL"and R* C R"

— 0 C U x2 x 28" x[0,1] — U is a function that labels transitions between
states. Transitions are labelled by actions and probabilities P. The probabilities of
all the outgoing transitions of a state sum to one. Each transition in o is written
(Sx,k0 Ax,ys P oy, Sy,1), where sy = xjp1 € 8", Sy k, Sy 1 € U, Py iy, €
P, and Axy =(L;jULgp, RijURgp).

— 50,0 = s, is the initial and final state, which can reach any state in U and can be
reached by any state in U.

The one-step probabilities P generally come from historical simulation data (for
example [14]). Using this definition, a Design-Space Generation algorithm can be
written. This is shown in Algorithm 4.

Given the VPC, the one-step probabilities of each behaviour, and sT (t) that is
generated by Algorithm 3, the Design-Space generator commences in Line 1 by ini-
tialising the design space, represented by the variable SUM, with the input VPC. It
then iteratively adds unsplittable VPCs to this set until no more states can be split. A
state is split by separating its outgoing transition ¢ and its send-nonequivalent transi-
tions, if there are any. Once a ¢ that has one or more send-nonequivalent transitions
in S7(¢) is found, then it generates VPCiemp by removing ¢ from c¢ in Line 6. If
VPCiemp is not already in the design space (Line 8), then it is added. For each send-
nonequivalent transition#’ € ST (¢), atemporary VPC is generated by removing ¢’ from
¢, as shown on Line 13 and 14. Removing a transition may result in states becoming

@ Springer

A design methodology for verified web-service mediators 591

unreachable. The reachability condition in the definition of a UVPC can be divided
into two parts: first, all states should be reachable from the initial state, and second, the
final state should be reachable from all states (hence no livelock can occur). To satisfy
the reachability condition, we remove livelocks and unreachable states in Line 7 and
15. Algorithms to remove livelocks can be found in [38] (the algorithms are called the
Livelock_Test Algorithm and Starvation_Test Algorithm in that work). If the resulting
VPCiemp is not empty and not already in the design space (Line 8), then this VPC is
added (Line 17), and the loop over transitions terminates. If all possible unsplittable
VPCs have been added to SUM, then the original (splittable) VPC is removed (Line
26). Otherwise one-step probabilities are added to ¢ (Line 28). When all VPCs in SUM
have been split, and no new VPCs can be generated, the algorithm terminates.

Algorithm 4 Design-Space Generator

Input: VPC: A verified parallel composition, P: one-step probabilities, ST (t): a set of
send-nonequivalent transitions of each transition ¢ in the VPC
Output: SUM: A set of UVPCs
1: SUM = {VPC}
2: for each UVPC ¢ € SUM do

3 flag = false
4 for each transition ¢ in ¢ and ST(t) # 0 do
5: VPC_temp=c
6: remove ¢t from VPC_temp
7 remove livelocks, and unreachable states in VPC_temp
8 if VPC_temp is not empty and not in SUM then
9: add VPC_temp to SUM
10: flag = true
11: end if
12: for each t’ € ST(t) do
13: VPC_temp=c
14: remove t' from VPC_temp
15: remove livelocks, and unreachable states in VPC_temp
16: if VPC_temp is not empty and not in SUM then
17: add VPC_temp to SUM
18: flag = true
19: end if
20: end for
21: if flag then
22: BREAK
23: end if
24: end for
25: if flag then
26: remove ¢ from SUM
27: else
28: add probabilities in ¢
29: end if
30: end for

Example 5 Given the fragment VPC shown in Fig. 8, using Algorithm 3 we detect a
controllable state s3 2 0. For example, receiving ava® from the Airline, the VPC can
choose between sending of fer! or wait’ to the Travel Agency. Hence the transition
from 5320 to 5530 and the transition from s3 2,0 to 5330 are send-nonequivalent.
Similarly, the transition from s3 2,0 to 54,40 and the one from s3 3¢ t0 53 4,0 are send-
nonequivalent.

@ Springer

592 J. Cao, A. Nymeyer

Fig. 19 A fragment UVPC; 1It,0.1
derived from the VPC shown in
Fig. 8

offer g !lavaph?,0.3

44,0

Fig. 20 A formal derivation of
mediators UVPCs
glls,
mediator LDA
M RDA

Given the one-step probabilities of each behaviour in the VPC, we can apply Algo-
rithm 4. This algorithm splits the state 532 o, and results in four UVPC fragments.
These correspond to the four combinations of children of s32,0: (i) 53,2,0, 55,3,0 and
54,40, (ii) 53,2,0, 53,3,0 and s4.4.0, (iii) $3,2,0, 53,3,0 and 53 4,0 and (iv) 53,2,0, 55,3,0 and
53.4,0- Each of these four UVPC fragments have the same number of states and transi-
tions. As an example, we show in Fig. 19 the fragment corresponding to combination
(i) above, which we shall call UVPC;.

5 The Estimator phase

In Fig. 18 we saw that a design space of UVPCs are generated in the Builder phase.
In this section we describe how the user chooses the best mediator from the design
space, given a set of non-functional requirements. A UVPC may contain a very large
number of states because the buffer contents are included in state representations. To
reduce the number of states, states in the UVPC are merged by abstracting out the
contents of the buffers. We depict this in Fig. 20 where we see the result of merging
states in the UVPC is a mediator M, and also two models of its behaviour, referred
to as the LDA, which stands for Local data abstraction, and RDA, which stands for
Remote data abstractions. We saw in Definition 6 that local and remote data transfer
actions in a UVPC are separated, and both can use buffers, so the abstracted buffers
may correspond to either local or remote data transfers. The abstractions LDA and
RDA in fact partition the ‘buffered’ and ‘unbuffered’ behaviour of the mediator into
its local and remote components. A state in a data abstraction corresponds to a set of
states in the mediator that vary only in the buffer size. A mediator is defined formally
as follows.

Definition 7 Mediator Given a UVPC (B, U, L", R*, P, 0, 50.0), @ mediator is rep-
resented by a finite-state machine M = (S%, L%, R?, 4%, sé’), where:

@ Springer

A design methodology for verified web-service mediators 593

Fig. 21 A fragment of a
mediator derived from the
UVPC shown in Fig. 19

T

Rreq"?It

a
reqYlreq

T
.t a
wait !lsearch™ ?
a ‘ t a
5. \offer “tlava” ? s offerg !lavag 7

— 8% is generated from the states of U by removing the buffer sizes B. For each state
sy € S%, we have a set of states s, x € U.

— L* = L" and R* = R".

— 8% C §¢ x 21" x 2K 5 §%is a function that labels transitions between states. For
each transition (sy x, Ax,y, P(x,k)y(y,0)» Sy,1) € 0 we have (s, Ay y, sy) € 6.

- SS is the initial and final state so o without buffer size.

Definition 8 Local and remote data abstraction A local data abstraction is given by
LDA= (B, L}, 0, 0), where:

- LZ is a set of local data actions of the mediator.

— 0 C B x 2Li — B is a function that labels transitions between number of data
sizes. Each transition in o is written (k, D, [), where k,l € B, D = A, , N LZ
and (sx k, Ax,y, Pex.k)(y.0)» Sy,1) € @ in the mediator.

— 0 denotes the empty data size, and is the initial and the final value of the data size.

A remote data abstraction RDA= (B, Rg, o, 0) is defined analogously, but the remote
data actions Rg are used instead of the local data actions.

Example 6 After merging states, the corresponding mediator fragments that are
derived from our UVPCs in Example 5 will contain the same number of states. No
state can be merged in these fragments because for simplicity we have assumed that
no data needs to be stored during the communication. The (fragment of the) mediator
generated from the UVPC fragment shown in Fig. 19 can be seen in Fig. 21.

Note that the local data abstractions actually represent buffers in the mediator, and
the remote data abstractions represent the storage in remote communication. Given
the mediator model, we now present a performance model to estimate performance
for each mediator and corresponding data abstractions.

5.1 Performance model

In Fig. 22 we illustrate the steps involved to estimate performance. Given a Markov
model of services, we first calculate the steady-state and steady-transition probabilities.
Using these probabilities, we then compute the data throughput and the energy cost by
defining transition weights and determining the Hamming distances between states.
These quantities are then used to estimate the performance of each of the mediators
in the design space, and allow the user to select the best design.

@ Springer

594 J. Cao, A. Nymeyer

Markov Compute Compute Compute Select
analysis throughput energy cost response time best design

Fig. 22 The four steps involved in performance modelling

Markov model
of mediators

Intuitively, if we look at the VPC in Fig. 8, at state s3 2 o, after receiving message
ava® the mediator could choose to send message of fer’ or wait’, and reach state
§5.3,0 Or 53,30 respectively. Although both alternatives are correct, they will result in
different performance. With no wait, the first alternative will finish the transaction
using less states, and hence take shorter time. It also consumes less energy and results
in a shorter response time. Therefore the mediator design that takes the first alternative,
as shown in Fig. 21, will perform across the board better than the design that takes the
second (the figure is not shown here).

The first three steps in Fig. 22 are similar to those required in hardware design
[11,12], and hence the treatment here will be brief. The fourth step, which computes
the response time of the web service, is new to this work. We describe each of the steps
below. Once the system has generated the performance rankings, it is the engineer’s
responsibility to select the best mediator.

5.1.1 Step 1: Markov analysis

In this first step the probabilities in the UVPC are used to compute the steady-state prob-
abilities £" and steady-transition probabilities 7* of the UVPC. In turn, these prob-
abilities are used to calculate the steady-state probabilities £° and steady-transition
probabilities 7° of each of the mediators. They are also used to calculate the steady-
state probabilities of the corresponding local and remote data abstractions, £°2 and
L£P® | and similarly the steady-transition probabilities 7%- and 77%. This calculation
involves expressing the LDAand RDAas a set of equations, called the Chapman-
Kolmogorov equations.

Example 7 In Example 5 we showed how the UVPC fragment UVPC| was generated.
To compute the steady-state probability £“(s3,2,0) of state 320, we must solve the
(Chapman-Kolmogorov) equations:

L*(s2,1,0) = 0.9L"(s1,1,0)
L"(s3,2,0) = 0.3L£"(53,2,0) + L"(52,1,0)

and | Sijk L"(s;,j,x) = 1. (The complete set of equations for the system will be shown
in Sect. 6.) The result is £*(s3,2,0) = 0.203. Using this steady-state probability, the
steady-transition probabilities 7" of the transitions leaving this state can be computed.
For example, 7" (s3,2,0 = 55,3,0) = 0.203 x 0.4 = 0.081 and 7" (s3,2,0 = $4.4,0) =

0.203 x 0.3 = 0.061.

We use the results of the Markov analysis and consider three measures of perfor-
mance of a web service: the amount of data throughput, the energy consumption and
the response time.

@ Springer

A design methodology for verified web-service mediators 595

5.1.2 Step 2: compute the data throughput

The data throughput is the amount of data that is transferred through the mediator per
time unitand is given by > 5125 7, D; ;j, where T; ; is the steady-transition probability
of the transition from state s; to s, and D; ; is the number of data units that have been
transferred between these states. The abstraction LDA records the data transferred
as a result of local data actions, and hence we can compute the DTR of the local
communication using an LDA. This is called the Local data transfer rate, and denoted
LDTR. Similarly, the Remote data transfer rate is denoted RDTR, and is computed
using the abstraction RDA.

In a local data abstraction LDA=(B, LZ, o, 0), we have sets of input and output
local data actions, Ltli”, Lg” C LY resp., and a transition #; ; between buffer sizes k
and [/ with label Ly ;. The number of data units that are transferred in the transition
can be expressed by (d] x Lli,l +dy x L,gl), where d; and d; are the sizes of input
and output local data messages.

Given the steady-transition probability of the LDA, denoted by 7%~ the local data
transfer rate is defined as:

LDTR = > > T/H(dy x LL, +dy x L))
VLDA fk,1€0

Similarly, for a remote data abstraction RDA=(B, RZ, o, 0), we have sets of input

and output remote data actions R;f‘ , Rdo“ C RZ, which have data message sizes d3 and

dy resp. Given the steady-transition probability of the RDA, denoted 7, the remote
data transfer rate is defined as:

RDTR = z Z Z(bf (d3 x R,ﬁyl +dy x R,g,)
VRDA tk, €0

Given LDTR and RDTR, the total DTR of the mediator is defined as:
DTR = LDTR + RDTR)

(In Sect. 6 we will see an example of this computation.)

5.1.3 Step 3: compute the energy consumption

The energy consumption ¢¢"*¢"8” is the power ¢”°" consumed in a given time interval.
We assume that the time taken by a web service is proportional to the number of
transitions that have carried out, denoted by |5%|. We can therefore express the energy
consumption as:

@ Springer

596 J. Cao, A. Nymeyer

qenergy — qpow x |8Z|

Given amediator (S*, L*, R*, §%, sé) with local data abstractions LDA = (B, Lf]‘l, a, 0)
and remote data abstractions RDA = (B, Rg, o, 0), we compute the power consump-
tion using the formula [12,13]:

g"" = > W,%M;; +DTR + DSR)

1;, j€8%

Given a mediator (S%, L%, R%, §%, sé) with local and remote control actions L% C L*
and R: C R%, then:

!
W% =T,))(1 +|Li j N LY + | Ri j N R

is the transition weight from state s; to s; in 5%, and H; ; is the Hamming distance of
the transition between states s; and s;. DTR is calculated using Eq. (4), and DSR is
the data storage rate, which is defined as:

DSR= > > kx L)+ D D kx L%k

VLDA keB VRDA keB

where £ and LP is the steady-state probability of LDA and RDA resp. In fact,
the first term in Eq. (5) calculates the power consumed by the unbuffered part of a
mediator, and the second and third terms calculate the power consumed by the buffers
in the mediator.

Example 8 In Example 7 we computed the steady-transition probability 7°(#; ;) =
0.81 of the transition between state 53, and state s5 3 in the mediator fragment in
Fig. 21. There are two local control actions of fer'!and ava®? on this transition. Using
the formulation above, the weight W i of this transition is given by 0.081 x (1+2) =
0.243. (The weights of all the transitions in M will be shown in Sect. 6.)

5.1.4 Step 4: compute the response time

In the case study, the users of the web service send requests to the Travel Agency. We
define a request to be a member of a set L’z that consists of local input control and
data actions, which is a subset of all input actions. Corresponding to a request, there
is a reaction, which is a member of a set L (consisting of local output control and
data actions), which is a subset of all output actions. Corresponding to each request,
denoted by y; € L'z, there may be any number of possible reactions, given by the set
A € L% We denote each reaction a € A;.

We define the response time of a glven request as the time a mediator takes to send
a reaction in response to the request. The response time between a request y; € L%
and each possible reaction oc;. € A; is denoted by R(a;). If we have computed R(oz;.)

for each Ol;- € A;, then we can compute the total response time of the request y; by:

@ Springer

A design methodology for verified web-service mediators 597

R = Z R(eh) (6)

ozj. eA;

To compute the response time R(oej.), we need to introduce the concept of a

dialogue. A dialogue D' is a finite-state machine that starts from the state whose
incoming transition is labelled by y;, and ends at the transition whose incoming tran-
sition is labelled by a;.. It is formally defined as follows.

Definition 9 Dialogue We are given a mediator (S%, L%, R%, §%, s5), a request y; €
L%, and a set of corresponding reactions A4; C L9 where L=, L83 C L%is asetof
local input and output actions respectively. Request y; occurs on transition #; , € §°
between states s5; € S¢ and s, € S%, and a reaction o’ € A; occurs on transition
t,y € &% between states 5, € S° and 5, € S%. These states can be identical. A
dialogue, denoted by ZDS., is a finite-state machine (§¢, £¢, §¢, s(‘)l , s?) where:

— 89 C 8% is a set of states, where Sps Sus Sy € S9. and for each state s € S¢ where
s is reachable from s,, without visiting s,, and s, is reachable from s, we have
se s

- 2 CLFUR?

~ 89 84 % 2% x 59 and 87 C 87,

- sg = s, 1s the initial state

- s? = s, is the final state

Given a dialogue Z)i. = (Sd, Ed, Sd, sg , s?) and steady-transition probabilities 7,
the response time R(a?) between request y; and the corresponding reaction cx; € A,

is the time to execute the dialogue @;, which is computed by:

R = D T3 18 Q)

Iy, y€8d

where |§%] is the total number of transitions of the underlying mediator. We use |§%|
instead of |8¢| here because the calculation of the steady-transition probability 7 is
based on the underlying mediator. Note that if s; = s, and s, = s, then the dialogue
is empty, and the corresponding response time is zero.

Given R(aé) of each ozj. € A;, the response time R’ of the request y; can be
computed using Eq. (6). If we assume there are n requests in the mediator, after
calculating the response time R’ of all the requests y; € Lz, the average response
time, denoted by r, of all requests and hence of the mediator, is given by:

i
r= ZV}/,'ELIZ R
n

®)

To see the variation in the average response time, we calculate the standard deviation
o (r) of r as follows.

o) =

o (RE—71)2
\/ZVy,eL ’i r))

@ Springer

598 J. Cao, A. Nymeyer

Fig. 23 Two dialogues @} and @
’)Dé (left and right) for request @
i req' ZIreq” ! req" ?lreq? !
@, wait" llsearch® ? wait Yllsearch® ?
offer' tlava®? offerE) llava ‘g"
Rr >
Hotel R?gc‘li)

. p<-search —¢ <— Ruvalid
p<-wait —d Mediator p<-reset —e Rwait Bank
e<-offer —¢ p<-error —¢ —= Recall
p<-succ —e e<-ava —e Lo

Rticket @—<-ticket —e- — —bulfer'- - -e<-eticket —4 Airline
Rfail pP— req—e- - *E)uiﬂ'ei:‘* - —— req —¢
Rna p— pay —e- - —huffer'~- - qe— credit —4
User Rpay - e— ack =
Rreg ——= P— wait —e
Rwait

Fig. 24 The transaction interfaces for a mediator between a Travel Agency and an Airline

Example 9 In the fragment mediator in Fig. 21, a request y; = req’? with two cor-
responding reactions ozll = offer'! and oz% = of f er(’)! are involved. For request
y1 and reactions all and (xé, the corresponding dialogue ’Z){ and ’Dé are shown in
Fig. 23. Using dialogue @% and Eq. (7), the response time between y; and all is com-
puted by R(a}) = (0.061 + 0.081) x 18 = 2.556. Similarly for o}, we compute
R(oz%) = (0.061 4 0.061) x 18 = 2.196. Using Eq. (6), the response time of request
yiis R = R(a}) + R(e)) = 4.752.

6 The Travel Agency and Airline service case study

In this section we present the complete case study of the Travel-Agency and Airline
services shown in Fig. 2. The transaction interfaces between these services are shown
in Fig. 24. We remind the reader that transactions between the remote and local services
have the prefix ‘R’, and this differentiates them from local transactions. In the remote
services in the figure we cannot see which transactions are for data and which are for
control. This will be defined in the individual specification of these remote services.
We first define the Travel-Agency service.

Travel-Agency service the specification of the Travel-Agency service is represented
by ¢1 = (S, L, R, 8, so) where:

- 8 = {51, 52, 53, 54, 55, 56, 57, 58, 59, $10, S11}
— L=LluyLOyLlay[LO% where:

- Lle ={offer', wait', succ'}

- L% =9

- Ll = {ticket"}

- L% = {req', pay'}
— R = RIcURO U RIa U RO where:

@ Springer

A design methodology for verified web-service mediators 599

Fig. 25 A specification of the behaviour of the Travel-Agency service

- R’ = {Rava", Rwait*}
- R9% ={Rfail*, Rna"}

- R = {Rpay", Rreq"})

- R9 = {Rticket", Rreq"}

Rreq"? req'!
- 8= {S1 —> 52,82 —> §3, etc}

— S0 = 81

This specification is shown graphically in Fig. 25.
A full list of services and their denotation is as follows:

Travel-Agency

-

Airline a
Hotel h
User u
Bank b

For example, ‘Rreq"? is a remote input action for the User service, and ‘req’!” is
a local output action for the Travel-Agency service. In web services, actions generally
have Boolean value true. If a control action is false, this is indicated by the subscript
zero. Control actions that have no subscript are assumed to be true. For example, the
control action ‘succ(y?” corresponds to a false on the local ‘succ’ interface, whereas
the control action ‘succ'?” corresponds to a true and is equivalent to ‘succ|?’.

The Travel-Agency service receives requests for flights and hotels ‘Rreg”’ from a
user, and then waits until a result from the Airline service is received. The result can be
either a possible flight offer, denoted by ‘of fer’’, or an indication that the flight is not
available, denoted by ‘of fer{’ (as shown in Example 2). If the flight is not available,
then the Travel Agency will notify the user with remote signal ‘Rna"’. Otherwise, the
Travel Agency will continue with the hotel request by sending the request ‘Rreg”’ to
the hotel service. If the hotel service replies with ‘Rava(’)”. which says the room is

@ Springer

600 J. Cao, A. Nymeyer

Fig. 26 A specification of the
behaviour of the Airline service

unavailable, then the Travel Agency will notify the user and terminate. Otherwise, the
Travel Agency waits for the user to pay, and sends payment details ‘ pay’’ to the Airline
service. If payment is successful, the Travel Agency will receive a ticket ‘ticket!’ from
the Airline service and will then forward ‘Rticket"’ to the user.

Note that in Fig. 25, states s1, s¢ and sg are uncontrollable. Consider s¢ for example.
This state has two outgoing transitions labelled by different remote actions ‘Rava?’
and ‘Ra va{)’ ?’, but it has no local actions, so this state satisfies the conditions in
Definition 2 of an uncontrollable service.

We next consider the Airline service, and note that the fragment shown in Fig. 5 is
taken from this service.

Airline service the complete behaviour of the Airline service is shown graphically in
Fig. 26 and the specification is given by ¢ = (S, L, R, §, so) where:

- 8 = {s1, 2,3, 54, 55, 56, 57, 58, 59}
- L=L"uL%UL%ULY%, where
— L' = {ack®, wait*}
- L0 = {reset?, search®, ava®, error®}
- Ll = {req®, credit®)
— LY% = {eticket®}
- R =Rl UR% URM U R, where
— R = {Rvalid®, Rwair"}
— R9% = {rcall?}

- Rli =9
- R% =9
req®? ava®!
- 8 ={s1 — 82,85 —> s3,etc}
— S0 = 81

There are three data channels in the example shown in Fig. 24, each with its own
buffer. In one of the channels, a request for a flight from the Travel Agency is relayed
to the Airline (i.e. ‘req"’ is translated into ‘req®’). In another channel, the payment

@ Springer

A design methodology for verified web-service mediators 601

from the Travel Agency is sent to the Airline (‘pay"’ is translated into ‘credit®’).
In response, in the third channel, the flight ticket is sent back to the Travel Agency
(‘eticket® is translated into ‘ticket”’).

The functional requirements that we will use to synthesise a mediator in this case
study are shown below.

@1. AG(s1,1,000 = AXAFsy 1,000): from the initial state, the final state can always
eventually be reached, which means every state is reachable and no deadlock
occurs.

¢2. AG(s1.1.000 = AXA(—offer’ Uava®)): from the initial state, the mediator
cannot send ‘of fer! to the Agency until ‘ava®’ has been sent by the Airline
service.

¢3. AG(s1,1.000 — AXA(—off er(’) U avag)): from the initial state, the mediator
cannot send ‘of fer)’ to the Agency until ‘ava§’ has been sent by the Airline
service.

@4. AG(s1,1.000 > AXA(—ack* U Rava™)): from the initial state, the mediator can-
not send ‘ack®’ to the Airline service until the Agency receives remote action
‘Rava” . This is similar to ¢, but an acknowledgement replaces an offer.

¢s5. AG(s1,1,000 > AXA(—acki U Ravag)): from the initial state, the mediator can-
not send ‘ackg’ to the Airline service until the Agency receives remote action
‘Ravaé”.

6. AG(s1.1.000 —> AXA(—succ' U Rvalidb)): from the initial state, the mediator
cannot send ‘succ’’ to the Agency until the Airline service receives remote action
‘Rvalid”.

¢7. AG(s1,1,000 — AXA(—-succ(’) U Rvalidé’)): from the initial state, the mediator
cannot send ‘succé’ to the Agency until the Airline service receives remote action
‘Rvali dg .

¢s. The minimum value of k™ (which denotes the maximum buffer size) is 1. Formally,
for each state s; j g xk; € S" wehave 0 <ky < 1,0 <k; <land0 <k; < 1:
where we assume the input/output data message sizes are the same. This means
that there can be no buffer overflow and underflow.

The resulting VPC for the Travel-Agency and Airline services is shown in Fig. 27.
It has 30 states in total.

Building the design space given a VPC for the combined Travel-Agency and Airline
service shown in Fig. 27 and the one-step probabilities of behaviours, applying Algo-
rithm 4 results in a design space comprising 240 UVPCs. The UVPC in the design
space that has the minimum number of states (12 states), denoted UVPCyiy, is shown
in Fig. 28. The UVPC with the maximum number of states (25 states) UVPCaxis
shown in Fig. 29. Note that all states in UVPCyiphave an empty buffer, hence this
UVPC does not require a buffer. In contrast, UVPC,xuses all three buffers.

Merging the states in each of the 240 UVPCs in the design space results in 85
different mediators being generated, which we denote M| . .. Mgs, where the mediators
are ordered from smallest to largest in size (measured in terms of the number of
transitions).

@ Springer

J. Cao, A. Nymeyer

602

ney/invrpy

BPPRL NPT AN

S NN

e

000 6 0

\7|\z

ZoviowfinrRy

15 000 8 TS
—

piEa/in o0 40T QUPTIEAY/ 10 WIS 40 QuPIEAU/ iIAR

S ——
AR DI ﬂn [

QI AT

000 % &

IBAPII/ IR,

CTTT 58 mapsoranfed inbedy

QPN IR

BOPE/IIEM

001 & 6) ieor/uied gnkedy 000 & 8
initesyghed ‘gakedy
000 15 £5) indms/an 000 & 8
107 P/C0 Y eARY e RAT N.L_.Eslé\\\\sum
e T
000 & e 107 ewpo/ms
iearay b 5o 107 eR/GIboI)
000 & s GOS0 IRH]
(LR LBPSAYAR
@ AR Aeleuc|a|u evens/inpgo
neyn, 40 eurAB/iQ 1RPD Levear/pan 40 BuRAT/ A
e ——
CRAPTIS/TenY 000 & ©
DI DA /A
ceupsatfinyemy iwbayaabor neiaes (010 18 6
neygabar
/ I S
—

i0 epergnbas

10 e/ ne]

RUTRLRE o iR e |

Fig. 27 A VPC for a Travel Agency and Airline service

The smallest UVPC, which we called UVPCi,, and shown in Fig. 28, has three
buffers that are always empty, so no states can be merged. The mediator with the

UVPChrin. The largest

UVPC, UVPCax, which is shown in Fig. 29, has three buffers. Merging states in this

UVPC results in the mediator Mgs.

smallest number of transitions for this service therefore is M

pringer

as

A design methodology for verified web-service mediators 603

Rna"u?,/reset"a?, 1.0

licket"t!, Rticket™u! /eticket"a?, 1.0 Rfail™u! /errorta?, 1.0

2
B
3
H
2

5
g
5

succ't! /Rvalid*b?, 0.4

Fig. 28 An unsplittable VPC, called UVPCiy, for the Travel-Agency and Airline services

We now estimate the performance of each mediator using the design framework
shown in Fig. 22.

Step 1: to compute the steady-state probabilities £" and steady-transition probabilities
T" of the UVPCi,for example, we must solve the equations:

L% (s1,1) = L(s7,1) + L (s10,9) + L (s11,8) + 0.1L" (s1,1) + L" (54,4)
L"(s2,1) = 0.9L"(s1,1)

L"(s32) = L"(s2,1) +0.3L"(s3,2)
L"(s53) = 0.4L"(s32)

L"(s4.4) = 0.3L"(s32)

L"(s6,3) = L"(s5,3)

L"(s7,1) = 0.3L"(s6,3)

L"(sg,5) = 0.7L"(s6,3)

L"(s9,6) = L"(s8,5)

L"(s9,7) = 0.3L"(s9,7) + L"(s9,6)
L"(s10,9) = 0.4L" (59,7)

L"(s11,8) = 0.3L"(s9,7)

@ Springer

604 J. Cao, A. Nymeyer

517517070 au,/tau, 0.1

Rreq™u?,/tau, 0.9

2_sl__ 000

reqt? jreqtal, 1.0

ss_sz_o_o sttt /searcha?, 0.3

waitht!/avata?, 0.4 waithtl/avata_02,0.3 Rna‘u?/tau, 1.0
loffer! fwait"a!, 1.0 wait't!,freset"a?, 1.0 au,/ack”a_0!,0.1
Rreq h,/wait"a!, 1.0 na! /tau, 1.0

63000 si_sl__000

Ravarh?,/waital, 0.ARava’h_0?,/waithal, 0.3

8__$3__ 000> Rwaitwwaita,04 (7__$8__ 000 waithtt freqal, 1.0

Hicket t!, Rticket™u! /tau, 1.0 \Rpay"u?, payt?,/wait*at, 0.6

©O_$3_100

wait"t!,/ack"al, 1.0

Rna™ul,/wait*al, 1.0 Rfail™u!,/tau, 1.0

aitntl/Reall b, 1.0

s)_w_oﬁo aithRwaithb?, 0.3

waitht /ackha_01, 1.0

waitht!,/Rvalicdhb?, 0.4 vait™t, /Rvalid'b_0?, 0.3
9O © 000
aitnt! feticket™a?, 1.0 waithtl,/erorta?, 1.0
©_ sl 001
lsucc™t! /tau, 1.0 Succht_0t,/tau, 1.0

Fig. 29 An unsplittable VPC, called UVPCax, for the Travel-Agency and Airline services

and le_ ~L"(s;,j) = 1, where each of the three buffers in each state is empty, hence
are not shown here. This set of equations has solution:

L"(U) =1[0.157,0.141, 0.203, 0.081, 0.061, 0.081, 0.024, 0.057, 0.057, 0.081,
0.032,0.024]

where the order of states is the same as the equations’ order. The steady-transition
probability is computed as:

@ Springer

A design methodology for verified web-service mediators

605

T"(0) =

[0.016 0.141 0 0 0 0 0 0 0
0 0 0.141 0 0 0 0 0 0
0 0 0.061 0.081 0.061 0 0 0 0
0 0 0 0 0 0.081 0 0 0
0.061 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.024 0.057 0
0.024 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.057
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0.033 0 0 0 0 0 0 0 0

L0.024 0 0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0.057 0 0
0.024 0.033 0.024
0 0 0
0 0 0

where the rows and columns have the same order as £*(U). As M; = UVPCpn,
the mediator M ’s steady-state probabilities £* = £* and the mediator M’s steady-
transition probabilities 75 = 7.

Step 2: assuming the data message size of all data actions of the Travel-Agency and
Airline services is 8 units (e.g. characters), we compute DTR for the mediators M and
Mgs. Given the steady-transition probabilities 7% from the previous step, we compute
the DTR for M| by DTR = 0.141 x 8 4 0.141 x 16 4+ 0.081 x 8 4+ 0.057 x 24 4
0.033 x 24 = 6.06. The DTR for Mgs is 4.10.

Step 3: to compute the energy cost, the transition weight of M is:

Wlog —

0.016 0.141 O 0 0 0 0 0 0
0 0 0.141 0 0 0 0 0 0
0 0 0.183 0.243 0.183 0 0 0 0
0 0 0 0 0 0.162 0 0 0
0.183 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.072 0.171 0
0.048 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.057
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0.033 0 0 0 0 0 0 0 0
0.072 0 0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0.171 0 0
0.072 0.099 0.072
0 0 0
0 0 0

and buffered power is DTR 4+ DSR = 6.06, where DSR = 0. Hence the total power
qP°" = 2.17 + 6.06 = 8.23. Given |6*| = 18 (counting the transitions in Fig. 28),
the total energy of M| is therefore g"¢"8Y = gP°" x |§%| = 148.14.

Similarly, we compute the energy of Mgs. Its resulting power is g% = 2.85 +
4.10 + 0.40 = 7.35, and with |§%| = 33, the total energy ¢"“"8Y = gP°" x |8%| =
242.55.

Step 4: in mediator M1, the requests and corresponding reactions are listed as follows:

-V
- "
- V3

req'? with reactions o] = of fer'! and) = of ferf)!

ava®? with reactions o
pay'? with reactions «

2

1 Z

1=

ack®! and oc% = ackg!
succ'! and Olg = succ()

@ Springer

606 J. Cao, A. Nymeyer

Table 1 The performance of 20

different mediators for the mediator Ll e " DTR

Travel Agency and Airline M, 18 148.14 435 6.06
Mg 20 162.50 5.13 577
M7 20 163.34 5.22 5.80
Mg 21 163.09 5.10 5.52
Mg 21 164.16 5.19 5.50
Mjs 21 172.29 5.64 5.64
Myg 22 171.46 5.60 5.31
Mpy 22 171.91 5.61 5.31
Mjg 22 173.28 5.77 5.35
Mys 25 184.76 7.21 5.01
Mye 25 184.91 7.54 5.05
My 25 185.10 7.60 5.05
Myg 26 185.67 7.78 491
Ms 26 186.41 7.85 4.98
Ms, 26 188.52 7.97 5.10
Megg 30 219.33 10.13 4.48
Meo 30 224.26 10.24 4.52
M7 30 227.36 10.38 4.56
Mg3 33 238.14 10.71 4.10
Mgs 33 242.55 11.28 4.10

As shown in Example 9 the response time of request y; is R! = 4.752. Similarly,
the response time of request y» is computed by R? = R((x%) + R(a?) = (0.105 +
0.138) x 18 = 4.374, and of request y3 is computed by R3 = R(oﬁf) + R(ag) =
(0.1144-0.105) x 18 = 3.942. Therefore the average response time of M is computed

_ R'+R2+R3

by r = 4.35. Applying Eq. (9), we now calculate the standard deviation

ofr:o(r) = \/(731,,)2“7@2,,)2“7334)2 0.33.

We now compute the response time for Mgs. The request and corresponding reac-
tions (which are y; ...y3 and A; ... A3) are the same in Mgs, but the response time
of each request is different. Specifically, request y; is sent twice, and we compute
R! = 0.268 x 33 = 8.844 the first time, and RY = 0.296 x 33 = 9.768 the second
time. We compute it for the other two requests as R> = 0.429 x 33 = 14.157

and R? = 0.374 x 33 = 12.342. The average response time of Mgs is there-
R‘+R1/+R2+R3

fore r = 11.28. The standard deviation of this r is hence
\/ e R R _ g

o) =
This completes all the steps and results in estimates of the energy consumed, the
(average) response time and the data throughput. For reasons of space, we show the
results for just 20 mediators in Table 1.
In the first column we list the mediators; in the second column the number of
transitions (|6%]); and in the remaining columns the energy consumption (g¢"¢"8Y),
average response time (r) and the data throughput (DTR). The mediators are listed

@ Springer

A design methodology for verified web-service mediators 607

in increasing order of the number |§%| of transitions, and increasing order of ¢¢"¢"8Y
when |67| are the same. We make the following observations:

— Generally, as the size |§%| increases, the response time and energy also increase,
but the data throughput decreases. There are minor exceptions, which could be
attributable to computational errors.

— If we take two designs that have the same number of transitions, then the design
that consumes the most energy and has longest response time, also has the highest
throughput. The difference is small, but reasonably consistent.

— Overall, the best mediator design is M. It has the lowest energy consumption and
shortest response time, and the highest throughput. The worst mediator is Mgs,
which has the highest energy consumption and slowest response time, and the
lowest throughput.

— By selecting the best mediator, the web-service designer can save 39 % in energy,
65 % in average response time, and improve data throughput by 48 %, compared
to the worst mediator.

7 Contribution and future work

The work extends the earlier work of the authors in hardware design [9,10,12]. The
main extension is accounting for remote services. Using the Markov analysis, the
affect that these remote services can have on the performance of the mediator (they
may be slow to react because they need to access a large database for example) can
be modelled by choosing appropriate probabilities in the model. Normally the actions
of remote processes would be assumed to be constant, or out of scope, but in our
approach they play an important role. The ability of the system engineer to model
remote processes allows him to experiment with the design: and determine which
designs are most effective in dealing with remote servers under different conditions.

It is an open question how closely the performance of the model will match the
actual performance of a fully implemented system. In hardware design, an analogous
theoretical performance model has been used in [11]. This model was validated using
hardware simulation tools that are routinely used in hardware design. This validation
resulted in all the designs being ranked for each measure of theoretical performance.
The designs were then translated to a hardware description language and simulations
were carried out. The performance of the simulations of all the designs were then
ranked. The fidelity between the rankings of the theoretical performance and the actual
simulations, where the fidelity is a measure how well the two rankings are correlated,
were statistically analysed. This involved computing Spearman’s rank correlation
coefficients [24], and carrying out a linear regression analysis. In both cases, the
correlation was above 0.9 for each measure of performance, where a correlation of 1
is a perfect fit. It is not possible to use the same validation technique in web-service
design. Nor is it possible to know whether the theoretical model we use is equally
valid in both hardware and web-service design. That must remain future work.

The measures of performance that have been used in this research have been chosen
arbitrarily. Other kinds of performance such as delays, availability and reliability
could be modelled. It is an open question which measures of performance are the

@ Springer

608 J. Cao, A. Nymeyer

most predictable. Depending on the systems and user environment, some measures
of performance may be more sensitive to changes in the probabilities in the Markov
model than others. This is an issue worthy of research as a system engineer would
naturally want to know what the ‘sensitive’ areas of a design are. To test the predictions
of the performance model, a starting point could be to use the Standard Performance
Evaluation Corporation benchmark SPECweb2005 for evaluating the performance of
servers.

8 Summary and perspective

In this work, a model checker is used to synthesise a design space of mediators that
satisfy temporal properties that are set by an engineer. The engineer can then select the
best mediator based on a theoretical model of performance. By using model checking
we can guarantee that all the mediator designs behave correctly. The performance
model is based on Markov chains. A Markov analysis of various performance measures
allows the engineer to rank the mediator designs. Using these rankings, the user must
select the design he sees as most suitable for the environment in which the system
must function.

A case study involving two local services, namely a Travel Agency and an Air-
line, and three remote services, has been used to demonstrate the methodology. We
showed how to generate a mediator between the local services. In the first phase of
this methodology a verified parallel composition of the services is generated from
formal descriptions of the services. In the second phase, a design space consisting of
240 possible mediators is generated. All the mediator designs are ranked in terms of
the different measure of performance. In the third phase, a Markov analysis selects
the best mediator from the design space. This mediator design has substantially lower
energy consumption, faster response time, and higher data throughput than the worst
design. Placing this work in context, however, the reader should realise the following:

— The design rankings are theoretical: there is no guarantee that if each of the designs
were to be implemented that the actual performances would be consistent with the
design rankings.

— The experience with hardware design however is that the theoretical rankings are
consistent with the rankings of actual implementations.

— It is well known in software development that decisions made at design-time
(which often concern architectural issues) generally have a greater impact on the
performance than those made at implementation time (which concern low-level
details). This suggests that design-time performance estimation has validity.

— Being able to compare the (theoretical) performance of all possible designs is
a luxury rarely afforded to system engineers. Conventionally, a single design is
developed and carried through to implementation, and the design is revisited only
if errors are found during the development. There is no set of designs for the
engineer to compare. Our technology is focussed on design-space exploration and
selection.

— It is possible to experiment with different user behaviours in the performance
model by changing the probabilities. If the best design is carried through to imple-

@ Springer

A design methodology for verified web-service mediators 609

mentation, but at some later time, user behaviour changes, then the performance
model allows all the designs to be re-compared. With the existing implementation
acting as yardstick, it can be estimated whether the development effort is worth
the gain in performance offered by a new design.

The performance model provides the engineer with a tool to forecast the likely
behaviour of different designs under different conditions, and thereby make more
informed decisions.

References

10.

11.
12.
13.

14.

15.

16.
. Clements P, Northrop L (1996) Software architecture: an executive overview. Technical report

18.

19.

. Al-Masri E, Mahmoud Q (2007) QoS-based discovery and ranking of web services. In: Proceedings

of 16th IEEE international conference on computer communications and networks, Hawaii USA,
pp 529-534

Ardagna D, Tanelli M, Lovera M, Zhang L (2010) Black-box performance models for virtualized web
service applications. In: Proceedings of the ACM joint WOSP/SIPEW international conference on
performance engineering, pp 153-164

. Berardi D, Calvanese D, de Giacomo G, Hull R, Mecella M (2005) Automatic composition of transition-

based semantic web services with messaging. In: VLDB’05, proceedings of the 31st international
conference on very large databases, pp 613—-624 (VLDB Endowment)

Berardi D, Calvanese D, de Giacomo G, Lenzerini M, MecellaM (2005) Automatic service composition
based on behavioral descriptions. Int J Coop Inf Syst 14(4):333-376

. Bhat G, Cleaveland R, Grumberg O (1995) Efficient on-the-fly model checking for CTL*. In:

Proceedings of the 10th annual symposium on logic in computer science, Los Alamitos, pp 388-397
Bultan T, Fu X, Hull R, SuJ (2003) Conversation specification: a new approach to design and analysis
of e-service composition. In: WWW’03, proceedings of the 12th ACM international conference on
world wide web, Budapest, pp 403—410

Cabral L, Domingue J, Galizia S, Gugliotta A, Tanasescu V, Pedrinaci C, Norton B (2006) IRS-III:
a broker for semantic web services based applications. The semantic Web-ISWC, pp 201-214

Cao J (2011) A formal verification- and performance-driven design methodology for converters. Phd
thesis, Department of Computer Science and Engineering, UNSW, Sydney, Australia

Cao J, Nymeyer A (2009) Formal model of a protocol converter. In: CATS’09 15th computing, the
Australasian theory symposium, vol 94 of CRPIT, pp 107-117

Cao J, Nymeyer A (2010) The ‘best’ valid safe protocol converter. In: SSIRI’ 10, 4th IEEE Computer
Society international conference on secure software integration and reliability improvement, Singapore,
pp 237-243

Cao J, Nymeyer A (2010) High-fidelity Markovian power model for protocols. In: DATE’ 10, ACM
proceedings of the conference on design, automation and test in Europe, pp 267-270

Cao J, Nymeyer A (2010) A Markov model for low-power high-fidelity design-space exploration.
In: DSD’10, 13th Euromicro conference publication services on digital system design, pp 115-122
Cao J, Nymeyer A (2011) A Markov performance model for buffered protocol design. In: ISVLSI,
IEEE Computer Society annual symposium on VLSIL, pp 170-175

Casale G, Mi N, Smirni E (2008) Bound analysis of closed queueing networks with workload burstiness.
In: SIGMETRICS’08, the proceedings of the ACM international conference on measurement and
modeling of computer systems, pp 13-24

Casati F, Ilnicki S, Jin L, Krishnamoorthy V, Shan M (2000) Adaptive and dynamic service composition
in eFlow. In: Advanced information systems engineering. Springer, pp 13-31

Clarke EM, Grumberg O, Peled DA (2000) Model checking. MIT Press, Cambridge

CMUY/SEI-96-TR-003. Carnegie Mellon University, Pittsburgh, PA

de Giacomo G, de Leoni M, Mecella M, Patrizi F (2007) Automatic workflows composition of mobile
services. IEEE Computer Society, pp 823-830

Deutsch A, Sui L, Vianu V, Zhou D (2006) Verification of communicating data-driven web services.
In: Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART symposium on principles of database
systems, pp 90-99

@ Springer

610 J. Cao, A. Nymeyer

20. Dustdar S, Schreiner W (2005) A survey on web services composition. Int. J Web Grid Serv 1(1):1-30

21. Franks G, Woodside M (1998) Performance of multi-level client-server systems with parallel ser-
vice operations. In: WOSP 98, proceedings of the ACM 1st international workshop on software and
performance, pp 120-130

22. Hermanns H (2002) Interactive Markov chains. Springer, Berlin

23. Ivanovic D, Carro M, Hermenegildo M (2010) Towards data-aware QoS-driven adaptation for service
orchestrations. In: Proceedings of 2010 IEEE international conference on web services, ICWS *10.
IEEE Computer Society, pp 107-114

24. Javaid H, Ignjatvic A, Parameswaran S (2010) Fidelity metrics for estimation models. In: ICCAD’ 10,
proceedings of the IEEE/ACM international conference on computer-aided design, pp 1-8

25. Kazhamiakin R, Pistore M, Santuari L. (2006) Analysis of communication models in web service
compositions. In: WWW’06, proceedings of the 15th ACM international conference on world wide
web. pp 267-276

26. Kumaran S, Nandi P (2002) Conversational support for web services: the next stage of web services
abstraction. http://www.ibm.com/developerworks/webservices/library/ws-conver/.

27. Li L, Yang Y (2008) E-business process modelling with finite state machine based service agents.
In: CSCWD’08, computer supported cooperative work in design. Springer, pp 261-272

28. Mitra S, Kumar R, Basu S (July 2007) Automated choreographer synthesis for web services compo-
sition using I/O automata. In: ICWS’07, proceedings of the IEEE international conference on web
services. pp 364-371

29. Pacifici G, Spreitzer M, Tantawi A, Youssef A (2003) Performance management for cluster based web
services. IEEE J Sel Areas Commun 23:2333-2343

30. Paolucci M, Soudry J, Srinivasan N, Sycara K (2004) A broker for OWL-S web services. Extending
web services technologies, pp 79-98

31. Peltz C (2003) Web services orchestration and choreography. Computer 36:46-52

32. Petry F, Ladner R, Gupta KM, Moore P, Aha DW (2009) Design of an integrated web services brokering
system. Int J Inf Technol Web Eng 4:58-77

33. Rosen M (2008) Applied SOA: service-oriented architecture and design strategies. Wiley, Indianapolis

34. Sangiovanni-Vincentelli A (2007) Quo vadis, SLD? Reasoning about the trends and challenges of
system level design. Proc IEEE 95(3):467-506

35. Serhani MA, Dssouli R, Hafid A, Sahraoui H (2005) A QoS broker based architecture for efficient
web services selection. In: ICWS’05, proceedings of IEEE international conference on web services.
IEEE, pp 113-120

36. Sinha R, Roop PS, Basu S (2008) A model checking approach to protocol conversion. Electr Notes
Theor Comput Sci 203(4):81-94

37. Sycara K, Paolucci M, Soudry J, Srinivasan N (2004) Dynamic discovery and coordination of agent-
based semantic web services. IEEE Internet Comput 8:66—73

38. Tai K (1994) Definitions and detection of deadlock, livelock, and starvation in concurrent programs.
In: ICPP’94, IEEE international conference on parallel processing, vol 2. pp 69-72

39. Tanelli M, Ardagna D, Lovera M, Zhang L (2008) Model identification for energy-aware management
of web service systems. In: ICSOC’08, proceedings of the 6th international conferernce on service-
oriented computing. Springer, Berlin, pp 599-606

40. ter Beek MH, Bucchiarone A, Gnesi S (2008) Formal methods for service composition. Ann Math
Comput Teleinf 1(5):1-10

41. YuT, Lin K (2004) The design of QoS broker algorithms for QoS-capable web services. In: EEE’04,
proceedings of IEEE international conference on e-technology, e-commerce and e-service, pp 17-24

42. YuT, Lin K (2005) A broker-based framework for QoS-aware web service composition. In: EEE’05,
proceedings of IEEE international conferernce on e-technology, e-commerce and e-service. pp 22-29

@ Springer

http://www.ibm.com/developerworks/webservices/library/ws-conver/

Copyright of Computing is the property of Springer Science & Business MediaB.V. and its
content may not be copied or emailed to multiple sites or posted to alistserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individua use.

	A design methodology for verified web-service mediators
	Abstract
	1 Introduction
	1.1 On-the-fly model checking
	1.2 A Markovian design space of mediators
	1.3 Selecting the `optimal' design
	1.4 Optimal performance
	1.5 Outline

	2 Related work
	3 The Verifier phase
	3.1 Generating the VPC

	4 The Builder phase
	5 The Estimator phase
	5.1 Performance model
	5.1.1 Step 1: Markov analysis
	5.1.2 Step 2: compute the data throughput
	5.1.3 Step 3: compute the energy consumption
	5.1.4 Step 4: compute the response time

	6 The Travel Agency and Airline service case study
	7 Contribution and future work
	8 Summary and perspective
	References

