Int J Parallel Prog (2015) 43:339-358
DOI 10.1007/s10766-013-0279-0

Automatic Composition of Heterogeneous Models
Based on Semantic Web Services

Hui Huang - Ligang He - Xueguang Chen -
Minghui Yu - Zhiwu Wang

Received: 26 March 2013 / Accepted: 4 October 2013 / Published online: 13 October 2013
© Springer Science+Business Media New York 2013

Abstract As an important function of a distributed decision support system, model
composition aims to aggregate model functions to solve complex decision problems.
Most existing methods on model composition only apply to the models which have the
same type of input and output data so that they can be linked together directly. Those
methods are inadequate for the heterogeneous models, since a heterogeneous model
may have different types of input and output data that are represented in either qualita-
tive or quantitative manner. This paper aims to address the problem of heterogeneous
model composition by employing the techniques based on semantic web services and
artificial intelligence planning. In this paper, the heterogeneous model composition
problem is converted to the problem of planning in nondeterministic domains under
partial observability. An automatic composition method is presented to generate the
composite model based on the planning as model checking technique. The experiment
results are also presented in this paper to show the feasibility and capability of our
approach in dealing with the complex problems involving heterogeneous models.

Keywords Decision support systems - Model management - Distributed model
composition - Planning as model checking - Semantic web service

H. Huang (&)- X. Chen - M. Yu

Department of Control Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China

e-mail: shocking.easy @ 163.com

L. He
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Z. Wang

Department of Computer Science and Engineering, Henan Institute of Engineering,
Zhengzhou 451191, China

@ Springer

340 Int J Parallel Prog (2015) 43:339-358

1 Introduction

A decision support system (DSS), which assists users in decision making, normally
includes multiple decision models. The models encapsulate the knowledge about ana-
lyzing and solving the complex problems, and therefore should be managed, shared
and re-used efficiently. Currently, the models are typically distributed in different geo-
graphical locations with different supporting platforms interconnected through the
communication networks. Decision-making now demands remote access to these mod-
els/resources without any obstacles. Distributed model management systems (DMMS)
can be used as a solution to this problem. DMMS supports the model management
(MM) functionalities including representation, manipulation, integration, composition
and execution of models on the web (these models may be developed by the service
providers from different organizations). Therefore, the decision models can be fully
utilized remotely through DMMS.

One of the most important features of MM is model composition, which refers to
composing a sequence of models (i.e., create a composite model) in response to user
queries [1]. Composite models provide the aggregate functionalities which cannot be
offered by each individual model. However, only a few of research works attempt to
address model composition in distributed environments [2].

Web services are the loosely coupled, reusable software components that seman-
tically encapsulate discrete functionality. They are distributed and programmatically
accessible through the standard Internet protocols. The features of the web service tech-
nology, such as its support for the distributed application development and delivery,
reliance on syntactic standards for inter-service communication, support for dynamic
service discovery and the potential to support dynamic composability, make it an attrac-
tive alternative technology for developing a distributed model management framework
[3].

Over the past decade, researchers have developed many approaches on model/
service composition such as those presented in [4-9]. Most of the existing methods
on web service composition are aimed at homogeneous models/services, that is, they
assume that the inputs and outputs of each models/services being composed have the
same data type (e.g., numeric) so that the individual models can be linked together
directly. However, from the DSS perspective, the models can be either quantitative
or qualitative (termed heterogeneous models in this paper), and they populate in the
model base simultaneously. Heterogeneous models cannot be directly composed using
the existing methods because the inputs and outputs have different data types. It still
remains unresolved to compose heterogeneous models, especially in the distributed
settings. In this paper, we observed that the heterogeneous models may have the ties
among the heterogeneous models, for example, the ties may exist through the “pre-
condition” segment, i.e., the output of one model determines the satisfaction of the
precondition of another model. This insight will be utilized to compose the heteroge-
neous models.

A motivating example of earthquake prediction is presented below to illustrate the
challenges involved in heterogeneous model compositions.

Earthquake is a typical type of natural hazards. It usually occurs without an explicit
warning and may cause serious injuries or loss of human lives and properties. To effec-

@ Springer

Int J Parallel Prog (2015) 43:339-358 341

tively mitigate the damage from an earthquake, seismologists have spent many years
on predicting seismic events, although this problem remains a subject of numerous
controversial discussions and debates. Earthquake prediction, which aims to specify
three elements, namely, the occurrence time, the epicenter, and the seismic magnitude,
is one of the most important unsolved problems in the field of seismology.

Researchers have tried to predict an impending earthquake through different phe-
nomenon, such as seismicity patterns, electromagnetic fields, weather conditions and
unusual clouds, radon or hydrogen gas content of soil or ground water, water level
in wells, and animal behaviors, etc [10, 11]. Quantitative and qualitative models have
already been constructed to represent these connections.

An idea of performing rapid earthquake predictions in a specific region is to com-
pose and remotely access multiple prediction models and other auxiliary models
through web services, based on the observational phenomena and data we have gath-
ered. For example, Geng [12] proposed a empirical formula to calculate the magnitude
of an impending earthquake, taking as input the duration of the drought and the area
of the anomalous field of interest. The empirical formula is listed below:

Ms = 1.5log T + 3.5log S 4+ 0.5 (1)

Where Ms is the magnitude, T is the duration of the drought and S is the area of the
studied field. This empirical formula is a quantitative model. Formula (1) is called the
Magnitude-Compute model in this paper.

Moreover, according to [12], a precondition must be satisfied before the Magnitude-
Compute model is invoked, i.e., the drought degree of the anomalous field must be
serious. This means that in order to apply the model to calculate the magnitude, the
drought level must be determined first using a method on meteorology. According
to [12], the drought degrees can be determined using another model, which is called
the Drought-Degree model in this paper. The model consists of three rules which are
composed using the if-then structure. The model is described in detail in Table 1.
Different from Formula (1), this is a qualitative model, which takes a numeric number
as input (i.e., the value of PAAP) and outputs a text (i.e., “mild”, “moderate” and
“serious”).

Therefore, predicting the earthquake magnitude can be converted to composing the
qualitative Drought-Degree model and the quantitative Magnitude-Compute model in
sequence. The composite model will require three input date: PAAP for the Drought-
Degree model, and duration and area for the Magnitude-Compute model. However,
the composition cannot be carried out by linking these two methods directly, since
the data type of the output of the Drought-Degree model is string, while the data type

Table 1 The Drought-Degree model

If the percentage of average annual precipitation (PAAP) is larger than 89 %, then the drought degree is
mild

If the PAAP is larger than 79 % and not more than 89 %, then the drought degree is moderate

If the PAAP is not more than 79 %, then the drought degree is serious

@ Springer

342 Int J Parallel Prog (2015) 43:339-358

of the input of the Magnitude-Compute model is numeric. To date, composing such
heterogeneous models remains an unsolved problem.

Therefore, this paper aims to address the composition problem for heterogeneous
models. This paper proposes a method to represent and enable the composition of
heterogeneous models in response to complex user requests. Moreover, the service-
oriented techniques, which are based on semantic web and artificial intelligence plan-
ning, are employed to perform actual model composition. A set of experiments have
been conducted in this paper to verify the effectiveness of the proposed method in
terms of the composition speed.

The rest of this paper is organized as follows: Sect. 2 reviews the existing research
work in the areas of distributed model composition and the Al planning, which are the
main techniques used in this paper. Section 3 proposes the representation of qualitative
and quantitative models, respectively. Section 4 presents the composition of model
services. Experiments are conducted in Sect. 5 to evaluate the performance of the
proposed composition method in terms of the composition speed. Finally, this paper
is concluded and the future work is discussed in Sect. 6.

2 Background and Related Work

This section discusses the related work in the following four areas: distributed model
composition, semantic Web and Al planning Business rule engine.

2.1 Distributed Model Composition

Model composition is an important component of model management, and it is invoked
when the user requests cannot be fulfilled by a single model from the model base. An
example of model composition is to link together a demand forecasting model and a
production scheduling model, i.e., the demand forecast generated by the former model
is used as a parameter in the latter model [1].

Due to the inherent complexity of model composition, there are only a few research
works attempting to address the problem, especially in distributed settings. Chari [4]
addressed the problem of model composition when data sources (models and data) are
distributed among multiple sites. Their work focuses on managing the search space
of model composition by using logical constraints called filter spaces. Madhusudan
and Uttamsingh [5] presented a novel declarative approach to facilitating dynamic and
scalable web service composition [called Integrated Service Planning and Execution
(ISP&E)] based on Al planning techniques. Madhusuda [3] then proposed a framework
for model management based on the previously proposed ISP&E to support various
activities in the life cycle of model management. Deokar and El-Gayar [2] presented
an architecture based on semantic web services for model management, and solved
the problem of model composition using Al planning and semantic web technologies.

However, the main drawback of the work in the literature is the implicit assump-
tion that the elementary models/services in the distributed model/service library are
homogeneous, meaning that the output of the preceding model/service can be directly
accepted by the subsequent model/service. However, a DMMS often contains both

@ Springer

Int J Parallel Prog (2015) 43:339-358 343

quantitative and qualitative models. The aforementioned methods cannot be directly
employed to compose such heterogeneous models.

2.2 Semantic Web Standards

The vision of Semantic Web services is to describe Web services’ properties, capa-
bilities, interfaces, and effects in an unambiguous, computer-interpretable language
[13,14] and promote the realization of web service discovery and composition.

Ontologies are the content theories about the sorts of objects, properties of objects,
and the possible relations between objects in a specified domain of knowledge. They
provide potential terms for describing our knowledge about the domain [15]. The Web
Ontology Language (OWL) is a semantic markup language for publishing and sharing
ontologies on the World Wide Web [16]. Protégé! is one of the most popular ontology
modeling tools.

OWL-S is an ontology built on top of OWL by the DARPA DAML program. It
replaces the former DAML-S ontology. OWL-S is an ontology, within the OWL-based
framework of the Semantic Web, for describing Semantic Web Services. It will enable
users and software agents to automatically discover, invoke, compose, and monitor
Web resources that offer services, subject to specified constraints [17].

2.3 Planning as Model Checking

Planning as model checking offers a formal method of planning under uncertainty,
which can manage nondeterminism and partial observability. It was first introduced in
[18,19]. The nondeterminism may result from the incomplete information about the
initial condition or the uncertain effects of actions. For example, in the example of
earthquake prediction discussed in Sect. 1, the internal logic of prediction model may
not always be visible, or may be changed occasionally. Therefore the output of the
model is non-deterministic (which may take one of the three possible results), even
if we know the input of the drought-Degree model. Partial observability concerns the
limits on information available at run-time. That is, some applications may involve
variables that are only observable in certain states, or only after some sensing actions
have been executed.

At an early stage of the studies on Planning as model checking, researchers for-
mally characterize different planning problems into three types: weak planning, strong
planning, and strong cyclic planning. Strong plans are guaranteed to achieve the goal
for all possible executions. Weak plans have a chance of success, in that some of
its executions achieve the goal. Strong cyclic plans are guaranteed to reach the goal
under the supposition that executions will eventually exit any loops in the system.
Strong cyclic plans reach the goal with an iterative trial-and-error strategy: executions
always have a possibility of being terminated. When they were, it means that they
have achieved the goal [20]. Another type of planning problems is conformant plan-

! The Protégé Ontology Editor and Knowledge Acquisition System: http://protege.stanford.edu/.

@ Springer

http://protege.stanford.edu/

344 Int J Parallel Prog (2015) 43:339-358

ning (or called planning under null observability), which is the problem of finding a
sequence of actions that is guaranteed to achieve the goal for any possible initial state
and nondeterministic behavior of the planning domain [21], that is, in the case of null
observability where no observations are available at all at run-time.

A system called the model based planner (MBP) [22] is developed for planning
in non-deterministic domains. It can generate plans automatically to solve various
planning problems, like conformant planning, planning under partial observability,
and planning for temporally extended goals.

Indeed, researchers have conducted considerable studies on the characteristics of
Web service composition. They found that this problem can be adequately solved
by the Planning as model checking technology [23-25]. However, the web service
compositions in these works still need much manual intervention.

3 Representing Heterogeneous Models as Semantic Web Services

In terms of the analysis mode, models for decision making can be generally divided
into quantitative and qualitative models. As mentioned in Sect. 1, a model of loosely
coupled components delivering specific functionality can be conceptualized as a ser-
vice [2]. However, different types of models have different representations. Although
a number of model representation approaches have been proposed, in this paper we
view a “model” as a computer-executable procedure that may require data inputs and
produce outputs. This section discusses the syntax and semantic representation of the
quantitative and qualitative models.

Generally speaking, models may be represented at different levels of abstraction:
modeling paradigm, model schema and model instance [2], as shown in Fig. 1. Level
1 is the highest level of abstraction that provides the concepts and relationship that can
be used to represent both the model schema and the model instance, which can be seen
as the ontology of the modeling domain, as discussed in section 0. Level 2 is a class of
model schema, whose parameters are known but not yet instantiated (such as a com-
puter program). This level is represented as a model service that receives user inputs
and is instantiated as an executable model (such as the running of a computer program
after giving a set of input) to solve a particular decision problem in an organization.

Level 1
Model Ontology

Modeling Paradigm
- J

2

E

z

g D

§ Level 2 Model Services &

3 Model Schema " OWL-S specifications

? Ny

s Level 3 AN Executable Model

Model Instance g Services

VAN J

Fig. 1 Model representation abstractions

@ Springer

Int J Parallel Prog (2015) 43:339-358 345

public class Magnitude Compute
{
public double
magnitude compute (double duration, double area)

{
return 1.5*Math.logl0 (duration)+3.5*Math.logl0 (area)+0.5;

}}
Fig. 2 The Java code of the Magnitude-Compute model

The executable model is the model instance in Level 3. Besides, the semantic markup
of every model service must be encoded to declare the constraints (“preconditions”
and “effects”) under which the service are invoked. Level 2 will be further discussed
in section 0 and 0.

3.1 Representation of Quantitative Models

Most DSS models are mathematical models which have a target output, a set of inputs,
and operations for converting inputs to outputs [26].

Generally, the quantitative models such as mathematical models can be directly
encoded by the advanced programming languages, such as C# and Java, and then
exposed as web services (called model services) using the third-party tools. The
advanced programming languages themselves embed abundant mathematical func-
tions, which can represent sophisticated mathematical formulas.

Recall the formula of calculating My in Sect. 1 in the example of earthquake pre-
diction. It can be encoded in JAVA as in Fig. 2.

The code listed in Fig. 2 implements the program function corresponding to
the Magnitude-Compute model in Formula (1). In the code, the function “Magni-
tude_Compute” has specified the data types of its inputs and outputs (model schema),
but the inputs and output can take different data values when the function is running
(model instance).

With the assistance of Eclipse’ Integrated Development Environment (IDE),
Apache Tomcat®, and the Apache Axis2,* we can easily encode the web service
description of the Magnitude_Compute model, which is shown in Fig. 3.

Figure 3 presents the WSDL specification for the Magnitude-Compute model ser-
vice, omitting technical details irrelevant to our discussion. The input and output
parameters (“drought_duration”, “drought_area” and “magnitude”) of the WSDL are
defined in the ontology shown in Fig. 5, which will be discussed in section 0.

In addition to describing a model service using WSDL, we also need to describe the
way in which a client may interact with the model service, especially the preconditions
under which the model service can be invoked and also the effect after running the
service. These are typically represented as a process model through semantic repre-
sentations, usually in the form of OWL-S specifications. This capability of the OWL-S

2 Eclipse platform: http://www.eclipse.org/.
3 Apache Tomcat: http://tomcat.apache.org/.
4 Apache Axis2: http://axis.apache.org/axis2/java/core/.

@ Springer

http://www.eclipse.org/
http://tomcat.apache.org/
http://axis.apache.org/axis2/java/core/

346 Int J Parallel Prog (2015) 43:339-358

<xs:element name="magnitude compute">

<xs:complexType>

<xXs:sequence>

<xs:element minOccurs="0" name="drought duration" type="xs:double"/>
<xs:element minOccurs="0" name="drought area" type="xs:double"/>
</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="magnitude computeResponse">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" name="magnitude" type="xs:double"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</wsdl:types>

<process:hasPrecondition>

<process:Condition>

<drs:Atomic_ Formula>

<rdf:subject rdf:resource="http://www.hust.edu.cn/

earthquake.owl#drought degree"/>

<rdf:predicate rdf:resource="http://www.hust.edu.cn/
earthquake.owl#is serious drought"/>

</drs: Atomic_ Formula>

</process: Condition>

</process: hasPrecondition>

Fig. 4 The process model for the Magnitude-Compute model service

specification is extremely useful for heterogeneous model compositions, as we will
discuss in the Sect. 4.

The process model of the exemplar Magnitude-Compute model service is shown
in Fig. 4, where the “hasPrecondition” segment represents the precondition that must
be satisfied first before the Magnitude-Compute model service is invoked, and there
is no effect after running the service. Again, the code in Fig. 4 omits technical details
(such as the “message” and “binding” definition) irrelevant to our discussion.

3.1.1 Representation of Qualitative Models

Qualitative models are typically represented using a descriptive language, usually in
the form of if-then, like the Drought-Degree model in Table 1.

In this paper, we use business rules to represent the qualitative models. The reason
for this is because of their support for if-then statements, although they are not designed
for representing qualitative models.

@ Springer

Int J Parallel Prog (2015) 43:339-358 347

Table 2 The decision table for

Drought-Degree model The avg precipitation percentage The drought degree
Min Max
1 0 0.79 Serious
2 0.79 0.89 Moderate
3 0.89 1 Mild

Several rule engines has been developed by academic and business communities.
To the best of our knowledge, the WebSphere ILOG JRules” is the only rule engine to
date that provides support for Service-Oriented Architectures. Rules can be expressed
using business rules, decision tables, decision trees and technical rules in JRules. In this
paper, we use JRules to represent the Drought-Degree model in the form of decision
table (shown in Table 2), which provides a concise view of a set of business rules in
the form of a spreadsheet. Decision tables are composed of rows and columns. Each
row corresponds to a single rule, while the columns define the conditions and actions
of the rules.

The condition column is on the left, while the action column is on the right. The
actions of a given rule are performed when its conditions are met. For example, the
rule corresponding to the second row in Table 2 reads as follows:

If the avg precipitation percentage (i.e., PAAP) is between 0.79 and 0.89, then the
drought degree is set to be moderate.

Three rules in the decision table in Table 2 are the assertions about the value of
“drought degree” depending on the value of PAAP. In other words, the actual value of
“drought degree” is unknown until the PAAP is determined explicitly.

Taking advantage of the Hosted Transparent Decision Service (HTDS) function in
JRules, the decision table for the Drought-Degree model can be conveniently exposed
as adecision service without detailed programming. HTDS is technically a Web service
with management capabilities that use JMX MBeans. It drives rule execution and
enables users to access Rule Execution Server through a Web service using HTTP and
XML data formats (SOAP). It is referred to as a transparent decision service because
the users do not need to know how the service is implemented.

The WSDL document and process model of OWL-S specification for the Drought-
Degree model service are similar to that of the Magnitude-Compute model service
as shown in Fig. 4, apart from the “hasPrecondition” segment. Therefore, its code
segment is omitted in this paper.

3.2 Semantic Representation of Elementary Model Services

The benefit of building the model ontology is to avoid the ambiguity between concepts,
e.g., the same words that have different meanings, or different words that have the same
meanings.

5 WebSphere ILOG JRules: http://www-01.ibm.com/software/integration/business-rule-management/
jrules/.

@ Springer

http://www-01.ibm.com/software/integration/business-rule-management/jrules/
http://www-01.ibm.com/software/integration/business-rule-management/jrules/

348 Int J Parallel Prog (2015) 43:339-358

V- @ Thing
V- OArea
©Area_of _the_Drought = Drought_Area
v O Disaster
) Drought
'Earthquake
V@ Meteorology
'Percentage_of_Average_Annual_Precipitation
V- @ Predicates
©is_Serious_Drought = Serious
V- ©Property
V- ©Property_of Drought
<~ Drought_Area = Area_of_the_Drought
V- ©Drought_Degree
Mild
Moderate
& Serious = is_Serious_Drought
& Drought_Duration = Duration_of_the_Drought
“Property_of_Earthquake
v O Time
V- @ Duration
© Duration_of_the_Drought = Drought_Duration

Fig. 5 The model ontology for the two model services

As an example, a model ontology using OWL is built to capture the concepts and
relationships of the terminologies used in the WSDL and OWL-S specification of the
two model services in the section 0 and 0.

Figure 5 presents the model ontology of our example scenario. It should be noted that
the “Predicates” class in the model ontology involves the “precondition” fragment in
the OWL-S specification of the Magnitude-Compute model service. Another thing that
needs to be noted is the subclasses of the “Drought-Degree” class: Serious, Moderate,
and Mild, which can be seen as the range of the output value of the Drought-Degree
model service.

4 Composition of Model Services

In this paper, the heterogeneous model composition is modeled as the problem of plan-
ning under partial observability. This is because at the execution time of the composed
model services, (a) the satisfaction of the preconditions in some model services cannot
be fully observed, and (b) some model services may have several possible outcomes.
The uncertainties above can be uniquely determined by performing some ‘“‘sense”
operations, e.g., capturing and analyzing the return value of some model services.
The problem of planning under partial observability has been shown to be difficult,
both theoretically and experimentally. Compared to planning under full observability,

@ Springer

Int J Parallel Prog (2015) 43:339-358 349

Elementary model

services User requests
i \ %
Model Ontolo | J
e R Declaratively Declaratively g |
| encoding encoding 5] |
OWL-S / ¢ E
specifications | q; |
Planning Problem Z
o . 2
| domain file requests file 3 |
in NuPDDL in NuPDDL e
[e]
| ~_ . £
(2]
z.
| E
MBP planner |

Service Plan

Fig. 6 The process of generating the service plan

planning under partial observability must deal with uncertainty of the states in which
the actions will be executed. This makes the search space no longer the set of states of
the domain, but its powerset. Compared to the case of null observability, which aims
to find a sequence of satisfactory actions for any possible initial state and nondeter-
ministic behavior of the planning domain, planning under partial observability are no
longer sequential (i.e., actions in a plan are executed in sequence), but conditional (e.g.,
using the “switch-case” statement), in order to represent a conditional course depend-
ing on the observations performed at execution time [27]. An Al planning technique,
called planning as model checking, is employed in this paper to solve the problem of
planning under partial observability, because the model checking technique proves to
have prominent performance on partial observability and nondeterministic planning
problems [27].

A composite model service can be represented as a service plan, which is a
sequence of interleaved model services in a particular decision-making situation.
It typically involves three key steps to utilize the Al planning techniques such as
planning as model checking to generate a service plan: (1) declaratively encoding
elementary model services, (2) modeling problem requests, and (3) generating the
service plan with the aid of MBP. Figure 6 shows the process of generating the service
plan.

As shown in the dashed box in Fig. 6, the elementary model services (together with
the Model Ontology and the OWL-S specification associated with these elementary
model services) are first encoded declaratively (corresponding to Step 1 discussed
above). The user requests are also declaratively encoded (Step 2). The generated files
in these two steps are composed in Nupddl (which will be discussed in Sects. 4.1,
4.2). The MBP planner will then take these two Nupddl files as input to generate the
service plan (Step 3). The rest of this section describes all these three steps in detail
and illustrates how to generate a service plan for heterogeneous models.

@ Springer

350 Int J Parallel Prog (2015) 43:339-358

Table 3 Mapping between the

main elements in Elements in WSDL and OWL-S Elements in Nupddl
WSDL/OWL-S and Nupdd wsdl: input predicates
wsdl: output predicates
process: hasPrecondition (:types constraint)
wsdl: service (:action XX)

Table 4 Mapping between input and output parameters in WSDL and the predicates in Nupddl

Input and output parameters in WSDL Predicates in Nupddl

drought_duration (agentKnowTheValueOf_drought_duration)
drought_area (agentKnowTheValueOf_drought_area)
drought_degree (agentKnowTheValueOf_drought_degree)

Magnitude (agentKnowTheValueOf_magnitude)
avg_precipitation_percentage (agentKnowTheValueOf_avg_precipitation_percentage)
epicenter_area (agentKnowTheValueOf_epicenter_area)

4.1 Declaratively Encoding of Elementary Model Services

MBP supports an extension of PDDL2.1 [28] named NuPDDLO that allows to model
uncertainty in the initial situation, nondeterministic action effects, and partial observ-
ability in the domain. The declarative language helps describe elementary model ser-
vices using the methods and operations that fit into MBP. Before giving the com-
prehensive declarative descriptions of the two models, we first discuss the mappings
among the elements in WDSL, OWL-S and NuPDDL descriptions.

In WSDL and OWL-S documents, the main elements we will use are the inputs,
outputs and preconditions. As shown in the last row in Table 3, the fundamental idea
is to map model services to actions in the planning domain, which is necessary when
utilizing the planning as model checking technique in service composition. The inputs
and outputs are mapped to the “predicates”, while preconditions are mapped to the
“types”. The “predicates” are the assertions about a domain and can be judged by true
or false, and the “types” are the classes of the parameters that appear in actions. In our
example, input and output parameters in WSDL are mapped to different “predicates”
as shown in Table 4.

In our example, the precondition of invoking the Magnitude-Compute model service
is that “the drought_degree” must be “serious”, in other words, the precondition is the
constraint on the “value” of “the drought_degree”. So the “constraint” segment in the
4th row (i.e., process:hasPrecondition) in Table 3 can be instantiated as a constraint
on “value”. The value of “the drought_degree” can be mild, moderate or serious, and
the “functions” element in NuPDDL can be used to determine the final value of a
variable. In this paper, therefore, the preconditions in the OWL-S specifications of the

6 NuPDDL: http://mbp.fbk.ew/NuPDDL.html.

@ Springer

http://mbp.fbk.eu/NuPDDL.html

Int J Parallel Prog (2015) 43:339-358 351

Table 5 Mapping of the

- Preconditions in OWL-S Functions in Nupddl

preconditions

drought_degree (= (valueof_drought_degree)
is_serious_drought serious)

Table 6 Mapping the auxiliary Auxiliary elements Element in Nupddl

elements
error handling (:types faultType)
precondition_unsatisfied (:action precondition_unsatisfied)

Magnitude-Compute model service are mapped to the functions in Nupddl, as shown
in Table 5.

Due to the characteristics of service composition and planning as model check-
ing, the heterogeneous model composition can be seen as a planning domain with
nondeterministic and partial observability. This is because the following reasons:

(a) Inrealistic cases, the state of the world cannot be completely observed during exe-
cutions, that is, the availability of elementary model services cannot be determined
a priori.

(b) The actions may have several possible outcomes. For example, the output of the
Drought-Degree model may be mild, moderate or serious.

The MBP provides the capability to solve these problems. However, the MBP also
has the following limitation. The planner can only deal with strong planning under
partial observability in nondeterministic domains [29], which means that the system
requires finding a conditional plan that will result in a successful state, regardless of
multiple initial states, the nondeterministic effects of actions, and partial observability.
However, the system cannot determine in advance whether the “preconditions” of
some “actions” can be satisfied, and there always exists the possibility that some
“preconditions” are not met. Therefore, the MBP planner cannot guarantee to achieve
the goal for all possible executions of the plan. The consequence of this is that the
MBP will fail to generate the plan, due to the fact that the MBP can only deal with
strong planning.

Because of this limitation, additional programming is needed in the case where the
precondition of the Magnitude-Compute model is not satisfied, or it goes beyond its
capacity and fails to find the service plan. Therefore, several auxiliary elements have
to be introduced to guarantee obtaining the plan successfully, and these elements have
also to be mapped to the elements in Nupddl. These additional elements and their
mapping are shown in Table 6.

Now, we can list the whole declarative encoding of elementary model services in a
single domain description file:

In Fig. 7, the “oneof” element in the “drought_degree” action is the embodiment of
the uncertainty, indicating that the “drought_degree” can take the value from serious,
mild and moderate. The value of “drought_degree” must be determined at runtime.
Therefore, an “observation” element has to be added, as shown at the bottom of Fig. 7.

@ Springer

352

Int J Parallel Prog (2015) 43:339-358

(define (domain model composition)
(:types value faulttype)
(:constants

serious mild moderate - value
hasFault noFault - faulttype
)

(:predicates
(agentKnowTheValueOf drought degree)
(agentKnowTheValueOf drought duration)
(agentKnowTheValueOf drought area)
(agentKnowTheValueOf magnitude degree)
(agentKnowTheValueOf epicenter area)
(agentKnowTheValueOf ave precipitation percentage)

)

(:functions
(valueof drought degree) - value
(fault) - faulttype

)
(:action magnitude compute
:precondition

(and (agentKnowTheValueOf drought degree)
= (valueof drought degree) serious)
agentKnowTheValueOf drought duration)
agentKnowTheValueOf drought area)
not (agentKnowTheValueOf magnitude degree)))
:effect (agentKnowTheValueOf magnitude degree)

(
(
(
(

)
(raction epicenter compute
:precondition
(and (agentKnowTheValueOf magnitude degree)
(not (agentKnowTheValueOf epicenter area)))
:effect (agentKnowTheValueOf epicenter area)
)
(:action drought degree
:precondition
(and
(agentKnowTheValueOf ave precipitation percentage)
(not (agentKnowTheValueOf drought degree)))
ceffect
(and (agentKnowTheValueOf drought degree)
(oneof
(assign (valueof drought degree) serious)
(assign (valueof drought degree) mild)
(assign (valueof drought degree) moderate)
))
)
(raction fault process
:precondition
(and (not (= (valueof drought degree) serious))
(= (fault) noFault))
ceffect (assign (fault) hasFault)
)
(:observation output of drought degree equal serious
- boolean
(imply (= output of drought degree equal serious 1)
(= (valueof drought degree) serious))

(imply (= output of drought degree equal serious 0)
(not (= (valueof drought degree) serious)))))

Fig. 7 The planning domain

@ Springer

Int J Parallel Prog (2015) 43:339-358 353

(define (problem model composition pb)

(:domain model composition)

(:init
(agentKnowTheValueOf drought duration)
(agentKnowTheValueOf drought area)
(agentKnowTheValueOf ave precipitation percentage)
(not (agentKnowTheValueOf epicenter area))
(not (agentKnowTheValueOf magnitude degree))
(not (agentKnowTheValueOf drought degree))
(= (fault) noFault))

(:postronggoal (or (agentKnowTheValueOf epicenter area)

(= (fault) hasFault))))

Fig. 8 Problem request

In order to show the compatibility of our method in composing homogeneous
models, we added one more quantitative model service, called “epicenter_compute”,
in Fig. 7. The “epicenter_compute” service receives the magnitude value and computes
the epicenter area, and it is a successor of the “magnitude_compute” model.

4.2 Modeling Problem Requests

The problem requests define the initial states and goals, i.e., what we have already
known about every elementary model services and what we want to obtain. The initial
states are the assignments to the “predicates” and “functions” declared in the Nupddl
domain description file, reflecting both the known and unknown information from user
inputs. The goal statements are the type of the problem (in this paper, the problem
is strong planning under partial observability, termed as “postronggoal”), and the
information we want to know through the agent.

In our example, suppose that a user wants to know the epicenter area of the impend-
ing earthquake with the knowledge of PAAP, drought_duration and drought_area. Then
the problem request can be formulated as in Fig. 8.

Note in Fig. 8 that the user request is either satisfied (the expression “(agen-
tKnowTheValueOf_epicenter_area)”) or not (has no solution, i.e., the expression
(=(fault) hasFault)). By doing so, it is guaranteed to reach the strong planning goal.

4.3 Generating the Service Plan

Now we can feed the domain description and problem requests to the MBP planner.
The generated plan of our example is shown in Fig. 9. As one can see from the figure,
the action “drought_degree” executes first, followed by a “switch” statement to test
the actual output of the former: if the “drought_degree” equals “serious” then the
“magnitude_compute” and “epicenter_compute” actions are executed in sequence;
or reach the “fault_process” stage. This logic flow is consistent with the description
discussed in Sect. 1.

It is worth mentioning that the “switch” fragment in Fig. 9 is used to test the
output of Drought-Degree model, which is equivalent to testing the precondition of
the successor Magnitude-Compute model.

@ Springer

354 Int J Parallel Prog (2015) 43:339-358

define (plan undefined)
:problem model composition pb)
:domain model composition)

(
(
(
(

:body
(sequence
(action (drought degree))
(switch
(case (output of drought degree equal serious)
(sequence
(action (magnitude compute))
(action (epicenter compute))
(done)))
(case (not (output of drought degree equal serious))
(sequence
(action (fault process))
(done)))))))

Fig. 9 The exemplar service plan

5 Experimental Studies

This section presents the experimental results to show the feasibility of the proposed
approach. The experiments were conducted to identify the factors affecting the gen-
eration time of the service plan. We assume that the semantic representation and
declarative encoding of elementary model services have already been provided, and
the user request is the same as that in Sect. 4.2. All experiments were run on a 1.0 GHz
Pentium machine, equipped with 1 GByte memory, running Linux. All WSDL, OWL
and OWL-S files are stored, and a distributed library of model services is simulated
in this machine. The experimental data were averaged over five independent runs.

5.1 The Number of Elementary Model Services

This set of experiments tests the performance of the proposed approach over the
increasing number of elementary model services. We use the model composition exam-
ple introduced in Sect. 1, but gradually increase the total number of the available model
services. Suppose these model services are developed by multiple organizations and
irrelevant to our composite model. Intuitively, more models have to be explored, and
more time has to be spent to generate the service plan.

As shown in Fig. 10a, the generation time of the service plan increases as the
number of elementary model services increases, which is to be expected. A closer
observation shows that when the total number of elementary model services is less
than 175, the generation time increases at a relatively slow pace. But when it exceeds
175, the time grows rapidly. This result suggests that when a distributed model library
has relatively small scale (e.g., less than 175), the developed method can complete the
search and composition of model services efficiently. When it comes to a larger-scale
composition problem, much longer time are needed.

Existing research work has proved that the plan existence problem of proposi-
tional non-probabilistic planning with partial observability is 2-EXP-complete [29].
This is why the time grows rapidly when the number of services becomes big in the

@ Springer

Int J Parallel Prog (2015) 43:339-358 355

= % ;(5)2 = ’_g :gg —— predicates —8— functions
L S o=
E 3 S
£ g 200 £3
g 150 £z
g5 S$E
& & 100 S5
St o =~
g2 50 2e
>
CE ole S g
] 25 50 75 100 125 150 175 200 225 @ 25 50 75 100 125 150 175 200 225
Number of elementary model services Number of elementary model services
(a) (b)

Fig. 10 The generation time of service plans (a) under different number of elementary model services and
(b) with different mapping styles

experiments. Our future studies will investigate efficient heuristic algorithms to find a
sub-optimal solution with relatively low time complexity for large scale heterogeneous
model compositions.

5.2 Different Ways of Encoding

The mapping between model service descriptions and the Nupddl encoding is not
unique. The declarative encoding of the input and output of the model services can be
“functions” rather than “predicates” as shown in Sect. 4.1. The “functions” are assigned
with “has value” or “no value” to represent the presence of the inputs, outputs and
intermediate variables of each elementary model services. In this set of experiments
the performance of the two types of mapping are tested as the number of elementary
model services increases. The results are shown in Fig. 10b.

We can see from Fig. 10b that the performance of the two types of mapping is very
similar when the number of model services is less than 125, and that the performance
begins to deviate visibly when the number of model services becomes bigger. It can
be seen that the “predicate” mapping style, which is the one used in this paper, is
more efficient than the “functions” mapping. The reason for this is because each
“function” has two possible states, “has value” or “no value”, which can be seen as
two “predicates”. This is equivalent to increasing the total number of propositions,
and therefore the planner needs more time to find the satisfactory solutions.

5.3 The Complexity of Composite Model

Intuitively, more complex the composite model structure is, more time it takes to gener-
ate the service plan. In this subsection the service plan is abstracted into a “sequential”
pattern of a number of blocks. We then increase the model complexity by increasing
the number of blocks, aiming to test its impact on the generation time of the service
plan.

The entire service plan generated in Fig. 9 can be abstracted as a “cell”” as a whole, as
shown in the dashed box in Fig. 11a. The black dots represent actions and observations
(the “switch” fragments) in the service plan, while the white dots refer to the internal

@ Springer

356 Int J Parallel Prog (2015) 43:339-358

Generation time of
service plan (seconds)
o
[e2]

0 1 2 3 4 5
Number of "cells"

(b)

Fig. 11 a The construction of complex composite model and b the performances

state (the “case” fragments). So model complexity will be increased by linking more
cells in sequence.

The experiment results are shown in Fig. 11b. In order to exclude the impact of the
number of elementary services discussed in section 0, the total number of model ser-
vices is fixed at 50. As seen in the figure, the generation time increases approximately
in linear with the increase in the number of “cells”. It is noteworthy that the increase of
the number of “cells” also implies the increase in the total number of “preconditions”.
Therefore this experiment also shows the impact of the number of “preconditions” on
the generation time of the service plan.

6 Conclusions and Future Works

This paper proposes an approach to solving the heterogeneous model composition
in DSS field. The heterogeneous model composition is converted to an Al planning
problem with nondeterministic and partial observability, and eventually solved by
using the planning as model checking technique. We conducted a series of experiments
to identify the key factors affecting the time needed to generate the service plan. The
experimental results show the feasibility of our method and its capability in dealing
with complex requests.

Our current method has the following limitations and therefore future research
work has been planned to address them. First, it needs to spend considerable time in
handling the large-scale model service composition. In the future, we plan to develop
a heuristic approach to composing the models with a low time overhead. Second,
the service plan generated in this paper is just a logical structure of the composite
model, and the data flow must be added manually to form an executable program
(such as BPEL). In order to address this issue, the work has been planned in our future
research agenda to investigate the possible approaches to achieving fully automated
model compositions. Finally, our current composition method lacks the QoS (quality of
service) support. We also plan to incorporate QoS demands into the model composition
process.

@ Springer

Int J Parallel Prog (2015) 43:339-358 357

Acknowledgments This work is jointly supported by National Natural Science Foundations of China (No.
60903174, 61142010), the Fundamental Research Funds for the Central Universities, HUST: 2012QN087,
2012QN088, the Fund of Key Lab for Image Processing and Intelligent Control (20093) and the Leverhulme
Trust (Grant No. RPG-101).

References

10.

12.
13.

14.

16.

17.

18.

19.

20.

21.

Krishnan, R., Chari, K.: Model management: survey, future research directions and a bibliography.
Interact. Trans. OR/MS 3(1) (2000). http://www.informs.org/Pubs/ITORMS/Archive/Volume-3/No.
-1-Krishnan-and-Chari

Deokar, A.V., El-Gayar, O.F.: Enabling distributed model management using semantic Web technolo-
gies. In: 42nd Hawaii International Conference on System Sciences, 2009 (HICSS ’09), 5-8 Jan. 2009,
pp. 1-9

Madhusudan, T.: A web services framework for distributed model management. Inf, Syst. Frontiers
9(1), 9-27 (2006). doi:10.1007/s10796-006-9015-2

Chari, K.: Model composition in a distributed environment. Decis. Support Syst. 35(3), 399413
(2003). doi:10.1016/s0167-9236(02)00116- 1

. Madhusudan, T., Uttamsingh, N.: A declarative approach to composing web services in dynamic

environments. Decis. Support Syst. 41(2), 325-357 (2006). doi:10.1016/j.dss.2004.07.003

Karakoc, E., Senkul, P.: Composing semantic Web services under constraints. Expert Syst. Appl. 36(8),
11021-11029 (2009). doi:10.1016/j.eswa.2009.02.098

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web service composition using
SHOP2. Web Semant.: Sci. Serv. Agents World Wide Web 1(4), 377-396 (2004). doi:10.1016/j.
websem.2004.06.005

Tang, X., Jiang, C., Zhou, M.: Automatic Web service composition based on Horn clauses and Petri
nets. Expert Syst. Appl. 38(10), 13024-13031 (2011). doi:10.1016/j.eswa.2011.04.102

Yeung, W.L.: A formal and visual modeling approach to choreography based web services composition
and conformance verification. Expert Syst. Appl. 38(10), 12772-12785 (2011). doi:10.1016/j.eswa.
2011.04.068

Panakkat, A., Adeli, H.: Recent efforts in earthquake prediction (1990-2007). Nat. Hazards Rev. 9(2),
70-80 (2008)

. Cicerone, R.D., Ebel, J.E., Britton, J.: A systematic compilation of earthquake precursors. Tectono-

physics 476(3-4), 371-396 (2009). doi:10.1016/j.tecto.2009.06.008

Geng, Q.: The “seismic drought” Connection in China. Ocean Press, Beijing (1985)

Mcllraith, S.A., Son, T.C., Honglei, Z.: Semantic Web services. IEEE Intell. Syst. 16(2), 46-53 (2001).
doi:10.1109/5254.920599

Mcllraith, S.A., Martin, D.L.: Bringing semantics to Web services. IEEE Intell. Syst. 18(1), 90-93
(2003). doi:10.1109/mis.2003.1179199

. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we need

them? IEEE Intell. Syst. Their Appl. 14(1), 20-26 (1999)

Bechhofer, S., Harmelen, F.v., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
PF., Stein, L.A.: OWL Web Ontology Language Reference (2004). http://www.w3.org/TR/2004/
REC-owl-ref-20040210/

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan, S., Paolucci,
M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic Markup for Web
Services (2004). http://www.w3.org/Submission/OWL-S/

Cimatti, A., Giunchiglia, E., Giunchiglia, F., Traverso, P.: Planning via model checking: a decision
procedure for AR. In: Steel, S., Alami, R. (eds.) vol. 1348. Lecture Notes in Computer Science, pp.
130-142. Springer, Berlin (1997)

Cimatti, A., Roveri, M., Traverso, P.: Automatic OBDD-based generation of universal plans in non-
deterministic domains. Paper Presented at the Proceedings of the Fifteenth National/Tenth Conference
on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, WI, USA
Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell. 147(1-2), 35-84 (2003). doi:10.1016/s0004-3702(02)00374-0
Cimatti, A., Roveri, M.: Conformant planning via model checking. In: Biundo, S., Fox, M. (eds.) vol.
1809. Lecture Notes in Computer Science, pp. 21-34. Springer, Berlin (2000)

@ Springer

http://www.informs.org/Pubs/ITORMS/Archive/Volume-3/No.-1-Krishnan-and-Chari
http://www.informs.org/Pubs/ITORMS/Archive/Volume-3/No.-1-Krishnan-and-Chari
http://dx.doi.org/10.1007/s10796-006-9015-2
http://dx.doi.org/10.1016/s0167-9236(02)00116-1
http://dx.doi.org/10.1016/j.dss.2004.07.003
http://dx.doi.org/10.1016/j.eswa.2009.02.098
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/j.eswa.2011.04.102
http://dx.doi.org/10.1016/j.eswa.2011.04.068
http://dx.doi.org/10.1016/j.eswa.2011.04.068
http://dx.doi.org/10.1016/j.tecto.2009.06.008
http://dx.doi.org/10.1109/5254.920599
http://dx.doi.org/10.1109/mis.2003.1179199
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1016/s0004-3702(02)00374-0

358

Int J Parallel Prog (2015) 43:339-358

22.

23.

24.

25.

26.

27.

28.

29.

Bertoli, P, Cimatti, A., Pistore, M., Roveri, M., Traverso, P.. MBP: a model based planner. In: IJCAI-
2001 Workshop on Planning Under Uncertainty and Incomplete Information, pp. 93-97 (2001)
Traverso, P., Pistore, M.: Automated composition of semantic Web services into executable processes.
In: Mcllraith, S., Plexousakis, D., van Harmelen, F. (eds.) vol. 3298. Lecture Notes in Computer
Science, pp. 380-394. Springer, Berlin (2004)

Marconi, A., Pistore, M., Poccianti, P.: Automated Web service composition at work: the Amazon/MPS
case study. In: IEEE International Conference on Web Services, 2007 (ICWS 2007), 9-13 July 2007,
pp. 767-774 (2007)

Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in asyn-
chronous domains. Artif. Intell. 174(3-4), 316-361 (2010). doi:10.1016/j.artint.2009.12.002

Liang, T-p: Development of a knowledge-based model management system. Oper. Res. 36(6), 849-863
(1988). doi: 10.1287/opre.36.6.849

Bertoli, P, Cimatti, A., Roveri, M., Traverso, P.: Strong planning under partial observability. Artif.
Intell. 170(4-5), 337-384 (2006). doi:10.1016/j.artint.2006.01.004

Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. J.
Artif. Int. Res. 20(1), 61-124 (2003)

Rintanen, J.: Complexity of planning with partial observability. Paper Presented at the Proceedings of
ICAPS 2004

@ Springer

http://dx.doi.org/10.1016/j.artint.2009.12.002
http://dx.doi.org/10.1287/opre.36.6.849
http://dx.doi.org/10.1016/j.artint.2006.01.004

Copyright of International Journal of Parallel Programming is the property of Springer
Science & Business MediaB.V. and its content may not be copied or emailed to multiple sites
or posted to alistserv without the copyright holder's express written permission. However,
users may print, download, or email articles for individual use.

	Automatic Composition of Heterogeneous Models Based on Semantic Web Services
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Distributed Model Composition
	2.2 Semantic Web Standards
	2.3 Planning as Model Checking

	3 Representing Heterogeneous Models as Semantic Web Services
	3.1 Representation of Quantitative Models
	3.1.1 Representation of Qualitative Models

	3.2 Semantic Representation of Elementary Model Services

	4 Composition of Model Services
	4.1 Declaratively Encoding of Elementary Model Services
	4.2 Modeling Problem Requests
	4.3 Generating the Service Plan

	5 Experimental Studies
	5.1 The Number of Elementary Model Services
	5.2 Different Ways of Encoding
	5.3 The Complexity of Composite Model

	6 Conclusions and Future Works
	Acknowledgments
	References

