
25

Static Analysis and Optimization of Semantic Web Queries

ANDRÉS LETELIER, PUC Chile
JORGE PÉREZ, Universidad de Chile
REINHARD PICHLER and SEBASTIAN SKRITEK, Technische Universität Wien

Static analysis is a fundamental task in query optimization. In this article we study static analysis and
optimization techniques for SPARQL, which is the standard language for querying Semantic Web data.
Of particular interest for us is the optionality feature in SPARQL. It is crucial in Semantic Web data
management, where data sources are inherently incomplete and the user is usually interested in partial
answers to queries. This feature is one of the most complicated constructors in SPARQL and also the one that
makes this language depart from classical query languages such as relational conjunctive queries. We focus
on the class of well-designed SPARQL queries, which has been proposed in the literature as a fragment of the
language with good properties regarding query evaluation. We first propose a tree representation for SPARQL
queries, called pattern trees, which captures the class of well-designed SPARQL graph patterns. Among other
results, we propose several rules that can be used to transform pattern trees into a simple normal form, and
study equivalence and containment. We also study the evaluation and enumeration problems for this class
of queries.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages

General Terms: Theory

Additional Key Words and Phrases: Optimization, query containment, RDF, Semantic Web, SPARQL

ACM Reference Format:
Letelier, A., Pérez, J., Pichler, R., and Skritek, S. 2013. Static analysis and optimization of semantic web
queries. ACM Trans. Datab. Syst. 38, 4, Article 25 (November 2013), 45 pages.
DOI: http://dx.doi.org/10.1145/2500130

1. INTRODUCTION
The Semantic Web is the initiative of the World Wide Web Consortium (W3C) to make
information on the Web readable not only by humans but also by machines. The Re-
source Description Framework (RDF) is the standard data model for the Semantic Web,
and since its release as a W3C Recommendation in 1999 [Lassila and Swick 1999], the
problem of managing RDF data has been in the focus of the Semantic Web commu-
nity. As a result, the language SPARQL was proposed as a query language for RDF,
and became a W3C Recommendation in 2008 [Prud′hommeaux and Seaborne 2008].
Since the appearance of these standards, the Web has witnessed a constant growth

This work was funded in part by Marie Curie action IRSES under grant no. 24761 (Net2), by the Vienna
Science and Technology Fund (WWTF) through project ICT08-032 and ICT12-15, and by the Austrian Science
Fund (FWF): P25207-N23. J. Pérez was supported by Fondecyt grant 11110404 and by VID grant U-Inicia
11/04 Universidad de Chile.
Authors’ addresses: A. Letelier, Department of Computer Science, Pontificia Universidad Catolica de Chile,
Chile; J. Pérez, Department of Computer Science, Universidad de Chile, Chile; R. Pichler and S. Skritek
(corresponding author), Faculty of Informatics, Technische Universitat Wien, Austria; email: skritek@dbai.
tuwien.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0362-5915/2013/11-ART25 $15.00

DOI: http://dx.doi.org/10.1145/2500130

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:2 A. Letelier et al.

in the amount of RDF data published online. Moreover, the advent of huge initiatives
like Open Linked Data [Berners-Lee 2006; Bizer et al. 2009] and Open Government
Data [HM Government 2012; US Government 2012] that use RDF as a core technology,
and the use of RDF in several diverse areas such as bio-informatics, social networks,
and data integration, have increased the attention of the research community to study
RDF and SPARQL from a database perspective.

Several particular issues of RDF and SPARQL pose new and interesting challenges
for the database community [Arenas and Pérez 2011]. In fact, several research efforts
have been pursued towards understanding their fundamental properties and develop-
ing specific techniques to efficiently deal with these technologies [Pérez et al. 2006a,
2009; Abadi et al. 2007; Polleres 2007; Weiss et al. 2008; Sidirourgos et al. 2008; Angles
and Gutierrez 2008; Schmidt et al. 2008, 2010; Neumann and Weikum 2010; Arenas
and Pérez 2011]. Nevertheless, and despite the importance of static query analysis, and
in particular of query containment and equivalence for optimization purposes, research
on the static analysis of SPARQL queries has received little attention so far (notable
exceptions are Serfiotis et al. [2005] and Chekol et al. [2012]). The study of static anal-
ysis considering the peculiarities of SPARQL and, in particular, query optimization,
containment, and equivalence, constitute the main focus of this article.

Let us briefly recall that the data model underlying RDF data is a (directed, arc-
labeled) graph. An RDF graph is composed of RDF triples of the form (s, p, o). Regarding
SPARQL, its basic constructor is the triple pattern, which is essentially an RDF triple
that can have variables. The most basic fragment of the language are conjunctions of
triple patterns, realized in SPARQL by using the AND operator (see Section 2 for a
formal introduction of the language). Thus, if one thinks of RDF graphs as sets of tuples,
a triple pattern is essentially a ternary relational atom, and basic SPARQL queries are
essentially relational Conjunctive Queries (CQs). In view of this connection, the rich
body of work on static analysis and query optimization on relational CQs including
the study of equivalence and containment can be immediately carried over to the
conjunctive fragment of SPARQL. Moreover, most of the research focused on statistics,
indices, and storage optimization has been concentrated on this fragment [Abadi et al.
2007; Stocker et al. 2008; Weiss et al. 2008; Sidirourgos et al. 2008; Neumann and
Weikum 2010].

However, when one goes beyond the SPARQL conjunctive fragment, the whole picture
changes and the language becomes considerably more complicated. Of particular inter-
est is the optional matching feature, which has been the focus of most of the theoretical
work regarding this language [Angles and Gutierrez 2008; Pérez et al. 2009; Schmidt
et al. 2010; Arenas and Pérez 2011]. The idea behind optional matching, realized in
SPARQL by the OPT operator, is to allow information to be added if the information
is available in the data source, leaving unbounded some variables if no matching for
them exists. Thus when evaluating a SPARQL query containing the OPT operator only
a subset of the variables may be bound in answers. This feature is crucial in Semantic
Web data management, where data sources are inherently incomplete and have only
partial knowledge about the resources that they are modeling. Recent experimental
works [Gallego et al. 2011; Picalausa and Vansummeren 2011] show that the use of the
OPT operator in practice is substantial. For instance, in a query log obtained from the
DBPedia SPARQL endpoint [DBPedia 2012], after duplicate query elimination, more
than 45% of the analyzed queries use the OPT operator [Picalausa and Vansummeren
2011].

The importance of the OPT operator has also been recognized from a database theory
point of view. It has been shown that the combined complexity of SPARQL query
evaluation (i.e., checking whether some set of variable bindings is a solution) raises
from PTIME-membership for the conjunctive fragment to PSPACE-completeness when

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:3

OPT is considered [Pérez et al. 2009; Schmidt et al. 2010]. In Pérez et al. [2009], the class
of well-designed SPARQL graph patterns was introduced as a fundamental fragment
of OPT queries with good behavior for query evaluation (for a formal definition, see
Section 2). In particular, it was shown that the complexity of the evaluation problem
for the well-designed fragment is coNP-complete [Pérez et al. 2009].

In this article we embark on the static analysis of SPARQL queries containing the
OPT operator. We focus on the class of well-designed SPARQL graph patterns men-
tioned before. As our first contribution we introduce a tree representation of SPARQL
queries called SPARQL pattern trees. We also introduce two particular classes of pat-
tern trees, the class of well-designed pattern trees and a relaxation that we call quasi
well-designed pattern trees (QWDPTs, for short). We focus on QWDPTs since they are
simpler to work with, enjoy several desirable properties, among others, the existence
of normal forms, and more importantly, although QWPDTs are a strict syntactic relax-
ation they capture the complete class of well-designed SPARQL queries. We introduce a
procedure to evaluate QWDPTs in a top-down way that resembles a top-down evalua-
tion of graph patterns proposed in Pérez et al. [2006a]. We also incorporate projection
as a top-level operator for QWDPTs thus covering an important fragment of SPARQL.

Notice that previous works on optimization of SPARQL have mainly focused on
rewriting queries based on properties of particular operators [Pérez et al. 2009; Schmidt
et al. 2010]. We propose transformation rules for QWDPTs that work at the level of
the structure of the trees (and thus, the structure of queries). These rules are, for
example, capable of eliminating several sources of redundancy in queries, and thus
can be used for query optimization purposes. Moreover, most of the theoretical work
regarding SPARQL optimization has considered only graph patterns (that is, without
including projection) [Pérez et al. 2009; Arenas and Pérez 2011]. We develop some rules
that are specifically applicable when projection over QWDPTs is considered.

Based on our work on the structure of pattern trees, we study the fundamental
problems of checking equivalence and containment of SPARQL queries. It is known
that full-SPARQL and first-order logic have the same expressive power [Angles and
Gutierrez 2008]. From this result it is not difficult to prove that equivalence and con-
tainment for SPARQL in general are undecidable problems. We show that the equiva-
lence problem for QWDPTs (and therefore, for well-designed SPARQL graph patterns)
is NP-complete. The difficult part of the proof is the NP-membership. Recall from the
relational world that equivalence and containment are closely related to the search for
homomorphisms. The key to our NP-membership result is an appropriate extension
of homomorphisms to QWDPTs—leading to the notion of strong homomorphisms (for
details, see Section 5) and a normal form via the transformation rules for QWDPTs
mentioned earlier. When projection is considered, the problem becomes harder. More
specifically, we show that equivalence of QWDPTs with projection is �P

2 -hard.
For the containment of queries we consider the subsumption relation [Arenas and

Pérez 2011]. As detailed previously, solutions for queries containing the OPT operator
are essentially incomplete and may possibly bind only a subset of the variables in the
query [Prud′hommeaux and Seaborne 2008; Pérez et al. 2009]. This naturally leads to
the notion of subsumption between solutions: a solution μ1 subsumes another solution
μ2, if μ1 extends μ2 with more variable bindings. More generally, a SPARQL query
T1 subsumes another SPARQL query T2 if, for every RDF graph G, every solution
of T2 is subsumed by some solution of T1. It has been argued that subsumption is
a meaningful way of comparing the result of SPARQL queries containing the OPT
operator [Arenas and Pérez 2011]. Moreover, subsumption has also been used in the
past as a meaningful way of testing containment of queries with incomplete answers
over semistructured data [Kanza et al. 2002]. For QWDPTs, subsumption can also be
used to test equivalence. However, it is not advisable to do so since we prove that

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:4 A. Letelier et al.

subsumption is presumably harder than equivalence by showing the �P
2 -completeness

of subsumption for QWDPTs. Interestingly, the complexity of subsumption remains
unchanged even if we allow projection.

Finally, we study the relationship between tractable fragments of CQ answering and
tractable fragments of well-designed SPARQL queries containing the OPT operator.
For the classical evaluation problem mentioned before, results on tractable fragments
of CQs smoothly carry over to well-designed SPARQL graph patterns. Indeed, the
evaluation problem of well-designed SPARQL graph patterns which was shown to be
coNP-complete in Pérez et al. [2009] becomes tractable if all its conjunctive parts (i.e.,
subexpressions built by the AND-operator only) are from tractable fragments of CQs. If
projection is allowed, the evaluation problem of well-designed SPARQL will be shown
to be �P

2 . The complexity drops to NP-completeness in case of a restriction to tractable
fragments of CQs.

The analysis becomes more intricate when we study the enumeration problem (that
is, actually computing the set of solutions) of well-designed SPARQL graph patterns.
Our main result in this respect states that, for a SPARQL query in which all its
conjunctive parts belong to a class of conjunctive queries that admit enumeration of all
solutions with polynomial delay, also the the enumeration of solutions of the SPARQL
query is feasible with polynomial delay. When projection comes into play, the picture
changes: the enumeration of solutions is no longer feasible with polynomial delay even
if the conjunctive parts belong to tractable CQ classes.

Structure of the Article. The rest of the article is organized as follows. In Section 2,
we recall some basic notions and results. In particular, we formally introduce RDF and
SPARQL. The crucial data structure of quasi well-designed pattern trees is introduced
in Section 3 together with a SPARQL evaluation method based on this data structure
and some equivalence-preserving transformation rules. The evaluation problem and
the enumeration problem are studied in Section 4. The subsumption and equivalence
problems are studied in Section 5. In Section 6, we extend the fundamental notions
and results from the previous sections to well-designed SPARQL with projection. A
conclusion and an outlook to future work are given in Section 7.

Several proof details in this article are relegated to the electronic appendix.

Related Work. As we have described, our work is heavily based on the formalization
of SPARQL presented in Pérez et al. [2006a, 2009] and in particular on the notion of
well-designed SPARQL patterns introduced in these papers. In Pérez et al. [2009] the
authors also study the complexity of query evaluation. Schmidt et al. [2010] considered
several aspects of SPARQL query optimization focused on rewriting queries based on
properties of operators [Schmidt et al. 2010]. Neither of these works [Pérez et al. 2009;
Schmidt et al. 2010] considered the complexity of equivalence and containment, nor
the search for tractable fragments for query evaluation and enumeration which are
the main problems touched in this article. The OPT operator in SPARQL resembles a
left-outer join in SQL. Compared with the huge amount of research on static analysis
of CQs, fragments of SQL containing left-outer join have almost been disregarded with
respect to these problems with Larson and Zhou [2005] being one notable exception.
Nevertheless, to the best of our knowledge, research on fundamental questions such
as the complexity of query equivalence and tractable fragments for query evaluation
has not been carried out to date for queries containing left-outer joins.

Outside the SPARQL context, Kanza et al. [2002] studied containment and equiv-
alence for queries over a general semistructured data model. The query language
considered in Kanza et al. [2002] allows for partial answers, nevertheless, as opposed to
SPARQL, it does not allow one to explicitly state optional parts in a query, and partial

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:5

answers are generated by considering a different semantics for query evaluation. This
makes our approach to partial answers, equivalence, and containment orthogonal to
Kanza et al. [2002]. Gutierrez et al. [2011] studied similar problems for an abstract
RDF query language. The difficulties in Gutierrez et al. [2011] arise from considering
blank nodes and RDFS (features that we do not consider here), but they only consider
conjunctive queries without optional parts, thus making their approach also orthogonal
to ours. Cohen et al. [2006] define a polynomial delay iterator for computing full disjunc-
tions. Full disjunctions are designed to obtain partial answers from relational sources
but, in contrast to the OPT operator in SPARQL, full disjunctions are associative and
commutative. Thus, the source of difficulties in devising an enumerator for full disjunc-
tions departs from the difficulties that one encounters when enumerating SPARQL
queries.

This article is a substantially extended version of Letelier et al. [2012b]. Besides
containing the complete proofs of all the results stated in Letelier et al. [2012b], this
version includes several new results and examples. In particular, all the results re-
garding projection over QWDPTs are new. In Section 6 we formalize projection over
QWDPTs and provide transformation rules. These results are not presented in Letelier
et al. [2012b]. Moreover, the results in Section 6.3 regarding the evaluation of QWDPTs
with projection and Section 6.4 regarding the enumeration of solutions for QWDPTs
with projection are all new.

2. BASIC DEFINITIONS, NOTATIONS, AND RESULTS
2.1. Basics of RDF and SPARQL
In this article we focus on ground RDF graphs, that is, RDF graphs that do not contain
blank nodes.1 Moreover, we do not make an explicit distinction between URIs (Uniform
Resource Identifiers) and literals when defining RDF graphs, and thus we assume that
RDF graphs are composed only of URIs. Hence, let U be an infinite set of URIs. An RDF
triple is a tuple in U × U × U, and an RDF graph (graph for short) is a finite set of RDF
triples. The active domain of an RDF graph G, denoted by dom(G) with dom(G) ⊆ U, is
the set of URIs actually appearing in G.

SPARQL [Prud′hommeaux and Seaborne 2008] is the standard query language for
RDF. We next formalize its graph pattern matching facility which forms the core of
the language. Assume the existence of an infinite set V of variables (disjoint from
U). We denote variables in V by using a question mark, as with ?X. Then a SPARQL
triple pattern is a tuple t ∈ (U ∪ V) × (U ∪ V) × (U ∪ V). Complex graph patterns are
constructed from triple patterns by using operators AND, OPT, UNION, and FILTER.
In this article we focus on the SPARQL fragment composed of the operators AND and
OPT. Formally, SPARQL graph patterns are recursively defined as follows:

(1) a triple pattern t is a graph pattern, and
(2) if P1 and P2 are graph patterns, then (P1 AND P2) and (P1 OPT P2) are graph

patterns.

For a triple pattern t, we write vars(t) to denote the set of variables occurring in t,
and for a graph pattern P we write vars(P) for the set of variables that occur in the
triples that compose P.

1There is still no clear consensus on the way in which blank nodes should be treated when querying RDF
[Mallea et al. 2011]. On the one hand, the SPARQL specification implies that blank nodes should be treated
just as constants, and on the other hand the RDF specification defines blank nodes as existentially quantified
variables. Thus, as in previous theoretical works about SPARQL [Pérez et al. 2009; Schmidt et al. 2010], we
prefer to consider only ground RDF graphs.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:6 A. Letelier et al.

To define the semantics of SPARQL graph patterns, we follow closely the definitions
proposed in Pérez et al. [2009]. A mapping μ is a partial function μ : V → U. The
domain of μ, denoted by dom(μ), is the set of all variables from V for which μ is
defined. Given a triple pattern t and a mapping μ such that vars(t) ⊆ dom(μ), we
denote by μ(t) the RDF triple obtained by replacing the variables in t according to μ.
Given two mappings μ1 and μ2, we say that μ1 and μ2 are compatible, denoted by
μ1 ∼ μ2, if for every ?X ∈ dom(μ1) ∩ dom(μ2) it holds that μ1(?X) = μ2(?X). Notice that,
for compatible mappings μ1 and μ2, we have that μ1 ∪μ2 is also a mapping and is such
that (μ1 ∪ μ2)(?X) is μ1(?X) if ?X ∈ dom(μ1), or μ2(?X) otherwise. Also notice that the
mapping with empty domain, denoted by μ∅, is compatible with any mapping. Before
defining the semantics of SPARQL graph patterns, we define some operations between
sets of mappings that resemble relational operators over sets of tuples. Let M1 and M2
be sets of mappings. We define the join and the left-outer join between M1 and M2 as
follows.

M1 � M2 = {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2 and μ1 ∼ μ2}
M1 M2 = (M1 � M2) ∪ {μ ∈ M1 | ∀μ′ ∈ M2 : μ �∼ μ′}

We now have all the necessary prerequisites to formalize the evaluation of a SPARQL
graph pattern over an RDF graph G as a function � · �G that, given a pattern, returns a
set of mappings. Formally, �P�G is defined recursively as follows [Pérez et al. 2009].

(1) If P is a triple pattern t, then �P�G = {μ | dom(μ) = vars(t) and μ(t) ∈ G}.
(2) If P = (P1 AND P2), then �P�G = �P1�G � �P2�G.
(3) If P = (P1 OPT P2), then �P�G = �P1�G �P2�G.

We say that two patterns P1 and P2 are equivalent, denoted by P1 ≡ P2, if for every
RDF graph G, it holds that �P1�G = �P2�G. Notice that mappings explicitly refer to the
variable names. Hence, unlike for Conjunctive Queries (CQs), the actual names of the
variables matter, since two graph patterns containing different sets of variables can
never be equivalent. In Pérez et al. [2009] the authors show several algebraic properties
for graph patterns. In particular they show that AND is commutative and associative
which allows us to drop parentheses from sequences of AND-operators.

Note that we described the set-semantics of SPARQL, while the W3C Recommen-
dation defines a bag-semantics for query answering [Prud′hommeaux and Seaborne
2008]. Nevertheless, for the fragment described earlier and considered in the first
part of this article (allowing only AND and OPT) both semantics coincide [Pérez et al.
2006b]. Only for the second part of the article where we consider the effect of allowing
projection, the two semantics differ. However, in this article we only concentrate on the
set-semantics.

Example 2.1 [Pérez et al. 2009]. Consider an RDF graph G storing information
about professors in a university with the following triples, and the pattern P1:

(R1, name, paul), (R1, phone, 777-3426),
(R2, name, john), (R2, email, john@acd.edu),
(R3, name, george), (R3, webPage, www.george.edu),
(R4, name, ringo), (R4, email, ringo@acd.edu),
(R4, webPage, www.starr.edu), (R4, phone, 888-4537)

P1 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W)).
If we evaluate P1 over G, then intuitively we are retrieving the name of the resources

in G and, optionally, for the resources that have an email we retrieve the email, and,

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:7

optionally, for the resources that have a Web page we retrieve the Web page. When
evaluating P1 over G we obtain the set of mappings �P1�G = {μ1, μ2, μ3, μ4} where

μ1 = {?A → R1, ?N → paul},
μ2 = {?A → R2, ?N → john, ?E → john@acd.edu},
μ3 = {?A → R3, ?N → george, ?W → www.george.edu},
μ4 = {?A → R4, ?N → ringo, ?E → ringo@acd.edu, ?W → www.starr.edu}.

Also, consider now pattern P2 given by the following expression.

P2 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W)))

In this case the evaluation of P2 over G is the set of mappings �P2�G = {μ1, μ2, μ3, μ4}
where

μ1 = {?A → R1, ?N → paul},
μ2 = {?A → R2, ?N → john, ?E → john@acd.edu},
μ3 = {?A → R3, ?N → george},
μ4 = {?A → R4, ?N → ringo, ?E → ringo@acd.edu, ?W → www.starr.edu}.

Notice that we obtain no information for the Web page of george, since in P2 that
information is retrieved only for the resources that have an email (and george does not
have an email address in G).

Well-designed graph patterns. An important class of SPARQL graph patterns iden-
tified in Pérez et al. [2009] that also plays a central role in this article is the class
of well-designed graph patterns. A pattern P is well designed if for every subpattern
P ′ = (P1 OPT P2) of P and every variable ?X occurring in P, it holds that

if ?X occurs inside P2 and outside P ′, then ?X also occurs inside P1.

Notice that patterns P1 and P2 in Example 2.1 are well designed. In Pérez et al.
[2009] the authors studied several properties of well-designed patterns. Among others,
they showed that the complexity of the evaluation problem is lower for well-designed
patterns compared with the general language: they showed that for well-designed
SPARQL, the following problem is coNP-complete, while it is complete for PSPACE
when allowing arbitrary SPARQL graph patterns.

Definition 2.2. Let EVALUATION be the following problem.
INPUT: An RDF graph G, a SPARQL graph pattern P, and a mapping μ.
QUESTION: Is μ ∈ �P�G?

Moreover, Perez et al. suggested that well-designed patterns are suitable for optimiza-
tion procedures, proposing a set of rewriting rules. In this article we go an important
step further in this direction by proposing a tree representation for well-designed
SPARQL (so-called pattern trees) and equivalence-preserving transformation rules.

2.2. Graphs, Trees, and Graph Colorings
Let G = (V, E) be an undirected graph, where V is the set of nodes or vertices of G
and E is the set of undirected edges. We write (vi, v j) for the edges e ∈ E connecting
node vi and v j . Note that the order in (vi, v j) does not matter, that is, for our purposes
(vi, v j) = (v j, vi). For some undirected graph G we may also write V (G) to denote
the set of nodes and E(G) to denote the set of edges. For N ⊆ V , we write G[N]
to denote the subgraph of V induced by N, that is, the graph G′ = (N, E′) where
E′ = {e ∈ E | e = (vi, v j) and vi, v j ∈ N}.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:8 A. Letelier et al.

A tree T is a connected, acyclic graph. As usual, let a rooted tree be defined as a tuple
T = (V, E, r), where r ∈ V is the designated root of T . We define the notions of parent,
ancestor, child, and descendant of a node t ∈ V as usual. We further assume trees to
be undirected and unordered.

We assume the reader to be familiar with the well-known NP-complete problem
3COL—the 3-colorability problem of graphs.

3. PATTERN TREES
In this section we propose a novel representation of SPARQL graph patterns based
on trees, together with an evaluation method for these trees. This tree representation
of patterns plays a central role when we study optimization, query equivalence, and
containment, and also tractable fragments of SPARQL queries. The basic concept of
this representation is a pattern tree.

Definition 3.1 (Pattern Tree). A pattern tree T is a pair T = (T ,P), where T =
(V, E, r) is a rooted tree, and P = (

Pn
)

n∈V is a labeling of the nodes of T such that Pn
is a nonempty set of triple patterns, for every n ∈ V .

Given a pattern tree T = ((V, E, r), (Pn)n∈V) and a node n ∈ V , a subtree of T rooted at
n is a pattern tree composed of n and a connected subset of its descendants. Moreover,
the complete subtree of T rooted at n, that we usually denote by Tn, is the pattern tree
composed of n and all its descendants. We further denote by vars(Pn) the set of variables
that occur in the triples of Pn, and by vars(T) the set

⋃
n∈V vars(Pn). Also, we may use

V (T) to denote the set V of vertices of T in order to avoid providing an explicit name
for it. In the following, for pattern trees, usually the tree structure is depicted with the
corresponding labels in every node

The idea of using pattern trees to describe well-designed SPARQL patterns is that
the tree structure represents the structure of the nested OPT-operators of the pattern,
while the conjunctions of triple patterns are contained at the nodes.

Example 3.2. The following are pattern trees that intuitively correspond to the
queries introduced in Example 2.1.

T1: {(?A, name, ?N)}

{(?A, email, ?E)} {(?A, webPage, ?W)}

T2: {(?A, name, ?N)}

{(?A, email, ?E)}

{(?A, webPage, ?W)}

Next, we give a meaning to pattern trees by transforming them into SPARQL graph
patterns. Towards this goal, we need the following definition of a transformation func-
tion TR(·, ·, ·). Consider a pattern tree T = ((V, E, r),P) and a set � of functions
{σn | n ∈ V } such that for every n ∈ V , function σn defines an ordering on the chil-
dren of n (that is, σn(1) is the first child in the order, σn(2) is the second one, and so on).
As last definition before presenting the transformation, given a set P = {t1, . . . , t�} of
triple patterns, we denote by and(P) the graph pattern (t1 AND t2 AND · · · AND t�).
For T and n ∈ V , we are now ready to define the transformation TR(T , n, �) of Tn, the
complete subtree of T rooted at n, given the order �. Assume that n has k children in

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:9

T , then TR(T , n, �) is defined as the graph pattern expression

(· · · ((and(Pn) OPT TR(T , σn(1), �))
OPT TR(T , σn(2), �))

· · · OPT TR(T , σn(k), �)),

and if n has no children, then TR(T , n, �) = and(Pn). Finally, given a pattern tree
T = ((V, E, r),P) and an ordering � for T , we define TR(T , �) as TR(T , r, �).

Example 3.3. Consider the tree T1 in Example 3.2, and let � be the order induced
by the picture in the example. Then TR(T1, �) is pattern P1 in Example 2.1.

3.1. Semantics of Well-Designed Pattern Trees
We have established a syntactic relationship between pattern trees and SPARQL graph
patterns. We now want to establish a semantic relationship between these representa-
tions. In particular, we are interested in defining the evaluation of a pattern tree over
an RDF graph. Notice that several (different) SPARQL patterns can be obtained from
a pattern tree depending on the ordering functions used in the transformation. Thus,
we cannot directly define the evaluation of a pattern tree T by using the evaluation
of an arbitrary transformation of T . In this section we introduce a well-designedness
condition for pattern trees that will be crucial in defining a semantics for pattern trees.
In particular it will allow us to choose an arbitrary transformation of a pattern tree in
order to evaluate it. We begin with the definition of the well-designedness condition for
pattern trees.

Definition 3.4. A pattern tree T = ((V, E, r),P) is well designed if for every variable
?X occurring in T , the set {n ∈ V | ?X ∈ vars(Pn)} induces a connected subgraph of T .

Example 3.5. The pattern trees in Example 3.2 are well designed, while the fol-
lowing pattern trees are not.

{(?A, name, ?N)}

{(?A, email, ?I)} {(?A, webPage, ?I)}

{(?A, name, ?N)}

{(?B, email, ?E)}

{(?A, webPage, ?W)}
Variable ?I in the tree on the left, and variable ?A in the tree on the right, induce
disconnected subgraphs.

As expected, this well-designedness condition over trees is tightly connected to the
well-designedness condition for graph patterns. In particular, the following holds.

PROPOSITION 3.6. Let T be a well-designed pattern tree, and � an arbitrary set of
ordering functions for T . Then TR(T , �) is a well-designed graph pattern.

A proof of this proposition is provided in the electronic appendix. Although it is pos-
sible to give a semantics directly for well-designed pattern trees, we first introduce
a relaxation of this notion that we call quasi well-designed pattern trees that plays a
fundamental role in our study, and give a semantics for this class of pattern trees. With
this relaxed notion we will also be able (see Section 3.3) to get rid of some redundancy
in pattern trees. In particular, we will be able to eliminate unnecessary repeated triples
in graph patterns whose deletion may violate the well-designed condition.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:10 A. Letelier et al.

Definition 3.7. A pattern tree T = ((V, E, r), (Pn)n∈V) is a quasi well-designed
pattern tree (QWDPT for short) if for every pair of nodes u, v ∈ V and each vari-
able ?X ∈ vars(Pu) ∩ vars(Pv) there exists a node n that is a common ancestor of u and
v in T , such that ?X ∈ vars(Pn).

The pattern tree on the right in Example 3.5 is a QWDPT, while the pattern on the
left is not (notice that the common ancestor of u and v in Definition 3.7 may be u or v, as
in Example 3.5). Another notion that we need to introduce is that of duplicating triples
to children. Formally, we say that a pattern tree T ′ = ((V ′, E′, r′), (P ′

n)n∈V ′) was derived
from a pattern tree T = ((V, E, r), (Pn)n∈V) by duplicating a triple to a child, denoted
by T ↪→ T ′, if (V ′, E′, r′) = (V, E, r) (that is, the underlying trees are the same), and
there exist a node u ∈ V , a triple t ∈ Pu, and a child v of u, such that P ′

v = Pv ∪ {t},
and Pn = P ′

n for all n �= v. We denote by ↪→∗ the reflexive and transitive closure of
↪→, that is, T ↪→∗ T ′ if T = T ′ or there exists a sequence T1 ↪→ T2 ↪→ · · · ↪→ Tm with
T1 = T and Tm = T ′. It is easy to observe that every QWDPT can be converted into a
well-designed pattern tree by duplicating triples along branches. Formally, for every
QWDPT T , there exists a well-designed pattern tree T ′ such that T ↪→∗ T ′. It is also
easy to observe that the (quasi) well-designed property is invariant under ↪→∗. We now
have all the necessary ingredients to define a semantics of pattern trees. Towards this
goal, we first identify a set of SPARQL graph patterns with a QWDPT.

Definition 3.8. The set of SPARQL graph patterns defined by a QWDPT T is

SEM(T) = {TR(T ′, �) | � is an ordering for T ′, T ↪→∗ T ′ and T ′ is well designed}.

We would like to define the result of evaluating a QWDPT T over an RDF graph G
to be exactly the same as that of an arbitrarily chosen query from SEM(T). However,
in order to do so we first have to show that all queries in SEM(T) are equivalent. The
following two results are thus the basis for our definition. The first one shows that
the ordering of the child nodes in a well-designed pattern tree does not influence its
semantics, but that for any two orderings the results of the transformation to SPARQL
graph patterns are equivalent. Similarly, the second result shows that the semantics
is also independent of the concrete sequence T ↪→∗ T ′: all well-designed pattern trees
that can be derived from T by duplicating triples to children are equivalent.

LEMMA 3.9. Let T be a well-designed pattern tree, let �1, �2 be two arbitrary order-
ings for T , and let P1 = TR(T , �1) and P2 = TR(T , �2) be the graph patterns obtained
by transforming T with �1 and �2, respectively. Then P1 ≡ P2.

LEMMA 3.10. Let T be a QWDPT, let � be an ordering for T , and let T1 and T2 be
well-designed pattern trees such that T ↪→∗ T1 and T ↪→∗ T2. If P1 = TR(T1, �) and
P2 = TR(T2, �), then P1 ≡ P2.

Full proofs of both lemmas are provided in the electronic appendix. The following
theorem follows directly from Lemmas 3.9 and 3.10.

THEOREM 3.11. Let T be a QWDPT. Then all graph patterns in SEM(T) are equiva-
lent, that is, for any two graph patterns P1, P2 ∈ SEM(T), it holds that P1 ≡ P2.

This finally allows us to define the semantics of a QWDPT via an arbitrary graph
pattern from SEM(T).

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:11

Definition 3.12. Let T be a QWDPT and G an RDF graph. Then the evaluation
of T over G, denoted by �T �G, is defined as the set of mappings �P�G for an arbitrary
P ∈ SEM(T).

By Theorem 3.11, the semantics of a QWDPT according to Definition 3.12 is well
defined. This means that, for a QWDPT T , we may choose any representative from
SEM(T) for evaluation.

Given two QWDPTs T1 and T2, we say that T1 and T2 are equivalent, denoted by
T1 ≡ T2, if for every RDF graph G it holds that �T1�G = �T2�G. Similarly, a QWDPT T is
equivalent to a SPARQL graph pattern P, denoted by T ≡ P, if for every RDF graph G
it holds that �T �G = �P�G. Notice that Definition 3.12 plus Proposition 3.6 imply that
for every QWDPT T there exists a well-designed graph pattern P such that T ≡ P.
The last result of this section states that the opposite also holds, and thus, QWDPTs
can represent the entire class of well-designed SPARQL graph patterns.

PROPOSITION 3.13. For every well-designed graph pattern P, there exists a QWDPT T
such that P ≡ T . Moreover, given a well-designed graph pattern, an equivalent QWDPT
can be constructed in polynomial time.

PROOF. In Pérez et al. [2009] it was shown that every well-designed graph pattern is
equivalent to a pattern in OPT-normal form which is defined as follows.

(1) A pattern of the form (t1 AND t2 AND · · · AND tk) with ti triple patterns, is in
OPT-normal form.

(2) If P1 and P2 are in OPT-normal form then (P1 OPT P2) is in OPT-normal form.

Given a pattern P in OPT-normal form we describe an algorithm to construct a well-
designed pattern tree. If P = (t1 AND t2 AND · · · AND tk) then we create a pattern
tree with a single node and label {t1, . . . , tk}. Now, if P = (P1 OPT P2) then we construct
a pattern tree T1 from P1, a pattern tree T2 from P2, and then construct a pattern tree
T from T1 and T2, by considering T1 and T2 together, adding the root of T2 as a child of
T1, and setting the root of T1 as the root of the obtained tree T . It is not difficult to show
that the obtained pattern tree T is well designed and that there exists an ordering �
for T such that TR(T , �) = P and thus, T ≡ P.

3.2. Evaluating Pattern Trees
In this section we introduce an evaluation method for QWDPTs that takes advantage
of our tree representation. Beside providing an intuitive meaning to QWDPTs (and
therefore also to the well-designed SPARQL graph patterns represented by a pattern
tree), this semantics also shows a possible way for evaluating the pattern tree. Thus
QWDPTs can act as execution plans for well-designed SPARQL patterns. In Pérez
et al. [2006a] the authors proposed a top-down evaluation method for SPARQL graph
patterns and they showed that for well-designed patterns the top-down evaluation over
a graph G is equivalent to the evaluation given by �·�G. Our proposal is similar to the
approach in Pérez et al. [2006a], but it is based on an alternative characterization
of the evaluation of well-designed graph patterns proposed in Pérez et al. [2009]. We
reformulate here this characterization for the case of pattern trees. It will later play an
important role when we study transformations of pattern trees as well as containment
and equivalence testing. We first introduce the necessary terminology.

We say that a mapping μ1 is subsumed by μ2, denoted by μ1 � μ2, if dom(μ1) ⊆
dom(μ2) and for every ?X ∈ dom(μ1) it holds that μ1(?X) = μ2(?X) (implying that
μ1 ∼ μ2). We write μ1 � μ2 whenever μ1 � μ2 and μ1 �= μ2. Furthermore, recall that
given a set P = {t1, . . . , t�} of triple patterns, we denote by and(P) the graph pattern
(t1 AND t2 AND · · · AND t�). Now given a pattern tree T = ((V, E, r), (Pn)n∈V), we use

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:12 A. Letelier et al.

and(T) to denote the SPARQL pattern constructed by taking the conjunction (AND) of
all the triples that occur in T . That is, if V = {n1, . . . , n�}, then

and(T) = (
and(Pn1) AND · · · AND and(Pn�

)
)
.

We next characterize the evaluation of a QWDPT. It follows directly from the results
in Pérez et al. [2009] for well-designed graph patterns, and the relationship with
QWDPTs shown in the previous section.

LEMMA 3.14. Let T be a QWDPT with root r, and let G be an RDF graph. A mapping
μ is in �T �G if and only if:

(1) μ ∈ �and(T ′)�G for a subtree T ′ of T rooted at r, and
(2) for each mapping ν and subtree T ′′ of T rooted at r, if ν ∈ �and(T ′′)�G then μ �� ν.

PROOF. This lemma follows from the characterization of the evaluation of
well-designed graph patterns proposed in Pérez et al. [2009], in particular from
Proposition 4.5 in Pérez et al. [2009], and the relationship between well-designed
graph patterns and quasi well-designed pattern trees. The argument is as follows. It
was proved in Pérez et al. [2009] that given a well-designed graph pattern P and an
RDF graph G,

a mapping μ is in �P�G if and only if μ is a maximal (with respect to �) partial
solution of P. (1)

The notion of partial solution mentioned in (1) coincides with the following notion in the
case of pattern trees. Given a pattern tree T rooted at r, a mapping μ is a partial solution
for T over G if there exists a subtree T ′ of T rooted at r, such that μ ∈ �and(T ′)�. Thus,
given the relationship between well-designed pattern and quasi well-designed pattern
trees, and the definition of the semantics of a pattern tree T (which states that we can
evaluate an arbitrary pattern in SEM(T , �)), we obtain that (1) can be reformulated in
our case as follows. Given a quasi well-designed pattern tree T and an RDF graph G,

a mapping μ is in �T �G if and only if μ is a maximal (with respect to �) partial
solution of T . (2)

Finally, notice that property (1) in Lemma 3.14 essentially states that mapping μ is a
partial solution for T over G, and property (2) in Lemma 3.14 states that μ is maximal.
Thus we have that the characterization in Lemma 3.14 coincides with Property (2)
which shows that the lemma holds.

Lemma 3.14 essentially states that the mappings in the evaluation of a QWDPT over
some graph G are exactly those that map all triples in some subtree T ′ of T (hence
and(T ′)) into G, and that cannot be further extended by considering another subtree T ′′
of T . This characterization inspires the following procedural semantics that is obtained
by evaluating the pattern tree by a top-down traversal. For simplicity, given a label Pn
of node n and a graph G, we denote by �Pn�G the set �and(Pn)�G.

Definition 3.15. Consider an RDF graph G, a QWDPT T = ((V, E, r), (Pn)n∈V), and
a set M of mappings. For n ∈ V , we define the evaluation of Tn (the complete subtree of
T rooted at n) given M over G, denoted by ext(M, n, G), as follows. If n is a leaf, then

ext(M, n, G) = M � �Pn�G,

and, otherwise, if n1, . . . , nk are the child nodes of n, then

ext(M, n, G) = M1 � M2 � · · · � Mk,

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:13

where Mi = (M � �Pn�G) ext(M � �Pn�G, ni, G). We define the top-down evaluation of
T over G, denoted by �T �td

G , as

�T �td
G = ext({μ∅}, r, G),

where μ∅ is the mapping with the empty domain.

The preceding definition can be also seen in a more procedural way: Given some
QWDPT with root r and some RDF graph G, first get the set M of all mappings that
map Pr into G. For each mapping μ ∈ M property (1) of Lemma 3.14 is satisfied. Now
in order to test property (2), it suffices to check for each such mapping μ if it can be ex-
tended to some child n of r, that is, to some mapping μ′ : vars(Pr) ∪ vars(Pn) → dom(G)
compatible with μ such that μ′(Pn) ⊆ G. If this is possible, replace μ by μ′. Note that μ′
again satisfies property (1) of Lemma 3.14. Hence one way to think of this evaluation
method is to maintain a set of partial solutions together with a subtree T ′ of the input
QWDPT rooted at r for each of them. In order to determine whether the mapping can be
extended, it suffices to check if it can be extended to a child node of the leaf nodes of T ′.

The following theorem shows that the top-down evaluation defined previously coin-
cides with the semantics of pattern trees introduced in the previous section.

THEOREM 3.16. Let T be a QWDPT and G an RDF graph. Then �T �G = �T �td
G .

PROOF. We first introduce some notation. Let T = ((V, E, r), (Pn)n∈V) be a quasi well-
designed pattern tree, n ∈ V . We denote by Tn the subtree of T rooted at node n. From
now on in this proof, whenever we say that a pattern tree T1 is a subtree of a pattern
tree T2 we assume that both trees coincide in their root node and that all the labels in
T1 are the same as the labels of T2 (for the nodes that are composing the subtree T1).

Now let G be an RDF graph. We next show that for every node n ∈ V the following
property holds. Let M be a set of mappings all of them with the same domain, and
assume that there is a set of triple patterns PM such that M = �PM�G Moreover,
assume that if ?X is a variable that occurs in two different descendants of n but not in
Pn, then ?X ∈ dom(μ) for every μ ∈ M (and thus ?X occurs in PM). Finally, we denote
by T PM

n the pattern tree obtained from Tn by adding all triples in PM to the label of the
root of Tn (that is, the new label of the root is Pn ∪ PM). We claim that

ext(M, n, G) = �T PM
n �G.

We show this by induction on the tree Tn. If n is a leaf node, then Tn is composed
of a single node labeled Pn, and then ext(M, n, G) = M � �Pn�G. On the other hand
�T PM

n � = �Pn ∪ PM�G = �PM�G � �Pn�G = M � �Pn�G, and then the property holds.
Assume now that n has n1, . . . , nk as children. Then in this case we have that

ext(M, n, G) = (
(M � �Pn�G) ext(M � �Pn�G), n1, G)

)

� · · · � (
(M � �Pn�G) ext(M � �Pn�G), nk, G)

)
.

Let M′ = M � �Pn�G. It is not difficult to see that for every ni, if ?X occurs in two
different descendants u and v of ni but not in Pni , then ?X ∈ dom(μ) for every μ ∈ M′.
This is because u and v are also descendants of n, and thus variable ?X is either in Pn or
in dom(μ) for every μ ∈ M. Moreover, we have that M′ = �PM ∪ Pn�G. Thus we can apply
the induction hypothesis, and then we have that ext(M � �Pn�G, ni, G) = �T PM∪Pn

ni
�G,

and thus, we can write ext(M, n, G) as

ext(M, n, G) = (
�PM ∪ Pn�G �T PM∪Pn

n1
�G

)
� · · · � (

�PM ∪ Pn�G �T PM∪Pn
nk

�G
)
.

In order to prove what we need, it is therefore enough to show that

�T PM
n �G = (

�PM ∪ Pn�G �T PM∪Pn
n1

�G
)
� · · · � (

�PM ∪ Pn�G �T PM∪Pn
nk

�G
)
. (3)

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:14 A. Letelier et al.

Before proving this we observe that, although Tn can be a pattern which is not quasi well
designed, the properties of M ensure that T PM

n is quasi well designed. Similarly T PM∪Pn
ni

is quasi well designed for every i ∈ {1, . . . , k}. We now prove (3). Thus assume that
μ ∈ �T PM

n �G. Then since T PM
n is quasi well designed, by Lemma 3.14 we know that there

exists a subtree T ′ of T PM
n such that μ ∈ �and(T ′)�G, and μ is maximal, that is, there is no

other subtree T ′′ such that μ is strictly subsumed by a mapping in �and(T ′′)�G. Consider
a maximal such subtree T ′ for μ. First notice that T ′ is composed of the root of T PM

n plus
(possibly empty) subtrees of the Tni ’s as children of the root of T PM

n . Thus, assume that
T ′ is composed of the root of T PM

n plus trees T ′
1 , T ′

2 ,. . . ,T ′
k as children, where every T ′

i is
either empty (in which case nothing is added as a child to the root of T PM

n), or T ′
i is a

subtree of Tni . Since μ ∈ �and(T ′)�G and T ′ contains Pn∪ PM as root, we know that there
exists a mapping μ′ such that μ′ � μ and μ′ ∈ �Pn ∪ PM�G. Notice that this mapping
μ′ is unique (and has as domain exactly the variables mentioned in Pn ∪ PM). We next
prove some properties of the trees T ′

i depending on whether they are empty or not.

—Given that μ ∈ �and(T ′)�G, we have that for every i ∈ {1, . . . , k}, if T ′
i is not empty

then there exists a mapping μ′
i such that μ′

i � μ and μ′
i ∈ �and(T ′

i)�G. For every
nonempty T ′

i consider the pattern (T ′
i)PM∪Pn constructed similarly as T PM∪Pn

ni
. Then by

the construction of T ′, we know that there exists a mapping μ′∪μ′
i ∈ �and((T ′

i)PM∪Pn)�,
with μ′ the portion of μ such that μ′ ∈ �PM ∪ Pn�G. Notice that μ′ ∪ μ′

i � μ. We claim
that μ′ ∪ μ′

i ∈ �T PM∪Pn
ni

�G. On the contrary, assume that μ′ ∪ μ′
i /∈ �T PM∪Pn

ni
�G. Since

μ′ ∪ μ′
i ∈ �and((T ′

i)PM∪Pn)�, (T ′
i)PM∪Pn is a subtree of T PM∪Pn

ni
, and T PM∪Pn

ni
is quasi well

designed, by Lemma 3.14 we know that there exists a subtree T ′′
i of T PM∪Pn

ni
and a

mapping νi such that μ′ ∪ μ′
i � νi and νi ∈ �and(T ′′

i)�. Since μ′ ∪ μ′
i � νi we know that

there exists a variable ?Y ∈ dom(νi) such that ?Y /∈ dom(μ′ ∪ μ′
i). Moreover for every

such variable ?Y that is in dom(νi) but not in dom(μ′ ∪ μ′
i), we have that ?Y does not

occur in any other branch of T PM
n since T PM

n is quasi well designed. In particular, ?Y
does not occur in any Tnj for j �= i, and then we have that ?Y /∈ dom(μ). Moreover,
since μ′ ∪ μ′

i � μ and all the variables that are in dom(νi) but not in dom(μ′ ∪ μ′
i)

are not in dom(μ), we have that μ and νi are compatibles, and then μ � μ ∪ νi.
Furthermore, since νi ∈ �and(T ′′

i)�, we have that there exists a subtree T ′′ of T PM
n

such that μ � μ ∪ νi ∈ �and(T ′′)�. This is a contradiction with the maximality of μ.
—Now assume that T ′

i is empty. We show next that there is no mapping νi compatible
with μ such that νi ∈ �T PM∪Pn

ni
�G. On the contrary, assume that there is a mapping

νi compatible with μ such that νi ∈ �T PM∪Pn
ni

�G. Given that T PM∪Pn
ni

is quasi well
designed from Lemma 3.14 we obtain that there exists a subtree T ′

i of T PM∪Pn
ni

such
that νi ∈ �and(T ′

i)�G. Recall that T PM∪Pn
ni

is constructed from Tni by adding PM ∪ Pn to
the label of the root. Thus, we have that νi = ν ′

i ∪ ν ′′
i such that ν ′

i ∈ �PM ∪ Pn�G and
ν ′′

i ∈ �and(T ′′
i)� where T ′′

i is the tree obtained from T ′
i deleting PM ∪ Pn from its root.

Then T ′′
i is a subtree of Tni . Consider now the tree T ′′ obtained from T ′ by adding

T ′′
i as a child to the root of T ′. Then we have that T ′′ is a subtree of T PM

n and that
μ∪νi ∈ �and(T ′′)�G. Thus, if μ∪νi �= μ we obtain a contradiction with the maximality
of μ, and if μ ∪ νi = μ we obtain a contradiction with the maximality of T ′. Thus, we
have shown that there is no mapping νi compatible with μ such that νi ∈ �T PM∪Pn

ni
�G.

Let μ′ the portion of μ such that μ′ ∈ �PM ∪ Pn�G. Summarizing we have shown that:

—for every T ′
i which is not empty, there exists a portion of μ, say μ′

i such that
μ′ ∪ μ′

i ∈ �T PM∪Pn
ni

�G, and thus μ′ ∪ μ′
i ∈ (

�PM ∪ Pn�G �T PM∪Pn
ni

�G
)
, and

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:15

—for every T ′
i which is empty, we have that μ is not compatible with any mapping in

�T PM∪Pn
ni

�G, implying that μ′ is not compatible with any mapping in �T PM∪Pn
ni

�G, and
thus μ′ ∈ �PM ∪ Pn�G �T PM∪Pn

nk
�G.

From this we obtain that μ can be written as μ = μ1 ∪ μ2 ∪ · · · ∪ μk such that
μi ∈ �PM ∪ Pn�G �T PM∪Pn

nk
�G, which implies that μ is in

(
�PM ∪ Pn�G �T PM∪Pn

n1
�G

)
�

· · · � (�PM ∪ Pn�G �T PM∪Pn
nk

�G).
For the opposite direction, if we assume that μ is in (�PM ∪ Pn�G �T PM∪Pn

n1
�G) � · · · �(

�PM ∪ Pn�G �T PM∪Pn
nk

�G
)
, then μ = μ1 ∪ · · · μk with μi ∈ �PM ∪ Pn�G �T PM∪Pn

ni
�G. By

using an argument similar to the one used in the previous case, and using the fact
that every T PM∪Pn

ni
is quasi well designed and Lemma 3.14, it is not difficult to conclude

that μ is in �T PM
n �G.

To conclude the proof of the theorem, just observe that for the pattern tree
T = ((V, E, r), (Pn)n∈V) the set �T �td

G is defined as ext({μ∅}, r, G), which by the property
shown before (and since T is quasi well designed) is equal to �T ∅

r �G = �T �G. This
completes the proof of the theorem.

Recall that in Definition 3.12 we defined the semantics of QWDPTs by their exten-
sions to well-designed SPARQL patterns. Theorem 3.16 now allows us to define the
semantics of QWDPTs directly via their tree representation.

As already noted at the beginning of this subsection, this alternative, procedural
semantics immediately gives rise to an evaluation procedure for QWDPTs. Recall that
for well-designed graph patterns, the problem EVALUATION is coNP-complete [Pérez
et al. 2009]. Since well-designed graph patterns can be transformed in polynomial
time into equivalent QWDPTs and vice versa, the same complexity result also applies
to QWDPTs. In fact, the complexity of evaluating QWDPTs greatly depends on the
complexity of evaluating the BGP at each node of the tree: beside the evaluation
problem, by a clever implementation of the top-down semantics, even the enumeration
problem can be solved efficiently for a QWDPT if the corresponding problem can be
solved efficiently for each BGP at each node of the tree (note that this would not
be the case by a straightforward implementation of the top-down semantics). Before
discussing the evaluation and enumeration problem for QWDPTs in more detail in
Section 4, we first introduce in Section 3.3 several transformations on QWDPTs that
may simplify the structure of a QWDPT. Providing a useful tool for the evaluation of
QWDPTs, these transformations will play an important role in Section 4 and are thus
presented first. For example, they will allow us to provide a much simpler proof of the
coNP-completeness of EVALUATION than the one given in Pérez et al. [2009].

Furthermore, the top-down evaluation supports the idea of considering QWDPTs
as a first step towards high-level query execution plans for well-designed SPARQL
query patterns: they provide a syntactical representation of a query together with an
evaluation method working on this representation. In these terms, the relaxation from
well-designed pattern trees to QWDPTs provides additional potential for optimization
and redundancy elimination for those query plans.

3.3. Transformation of QWDPTs
The results in Section 3.2 already suggest that there may exist several syntactically
different, yet equivalent QWDPTs, as illustrated by the following example.

Example 3.17. Consider the QWDPT T2 from Example 3.5 together with an equiv-
alent QWDPT T ′

2 that was retrieved from T2 by duplicating the triple (?A, webPage, ?W)
from the root to its child.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:16 A. Letelier et al.

T2 : {(?A, name, ?N)}

{(?B, email, ?E)}

{(?A, webPage, ?W)}

T ′
2 : {(?A, name, ?N)}

{(?B, email, ?E), (?A, name, ?N)}

{(?A, webPage, ?W)}

The goal of this section is to identify preferable representations of equivalent QWDPTs.
We do so by identifying nonoptimal structures within a pattern tree and providing a
procedure for how to resolve them. This shows one advantage of QWDPTs, namely
that they allow us to easily talk about the structure of queries and to define several
equivalence-preserving transformations on the structure of the pattern trees. Previous
works [Pérez et al. 2009; Schmidt et al. 2010] on transformation rules for SPARQL
patterns have been based on the properties of the SPARQL operators. In contrast, the
transformations that we introduce in this section are based on the tree structure of
QWDPTs (i.e., the operator structure) and the structure of the sets of triple patterns
composing the pattern tree.

Before presenting our transformation rules, we need to introduce some additional
notation. Let T = ((V, E, r),P) be a pattern tree, and na node in V . We define the branch
of n in T , denoted by branch(n, T), as the unique path from r to n, given as the sequence
of nodes n1, . . . , nk with n1 = r and nk = n. If it is clear from the context, we may drop the
name of the pattern tree and simply write branch(n). We denote by Pbranch(n,T) the set of
triple patterns

⋃k
i=1 Pni . Given two sets P1 and P2 of triple patterns, a homomorphism

h from P1 into P2, written h: P1 → P2, is a mapping h: vars(P1) → U × V such that for
all triple patterns t ∈ P1 it holds that h(t) ∈ P2, where h(t) denotes the triple obtained
from t by replacing all variables ?X ∈ vars(t) by h(?X) and leaving URIs unchanged.
It is further convenient to introduce the following notation to speak about variables
occurring in some Pn.

Definition 3.18. Let T = ((V, E, r),P) be a pattern tree and let n, n̂ ∈ V be ver-
tices such that n̂ is the parent node of n. Then the new variables at n are defined as
newvars(n) = vars(Pn) \ vars(Pbranch(n̂)). For the case of the root r, we define newvars(r)
as vars(Pr).

We are now ready to formally state a set of transformation rules for QWDPTs. In
the formulation of the rules we assume that, whenever we remove a node n from a
pattern tree, then all edges incident to n are removed as well. We further assume a
fixed QWDPT T = ((V, E, r), (Pn)n∈V) to be the pattern tree before the application, and
we consider T ′ = ((V ′, E′, r′), (P ′

n)n∈V ′) as the resulting QWDPT after applying the rule.
If P ′

n is not defined explicitly for some n ∈ V ′, we always consider P ′
n = Pn by “default”.

We will use the following running example in order to explain the intuition behind
these rules.

Example 3.19. Consider the following QWDPT T .
n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel),
(?H, location, ?L)}

n3 : {(?A, location, ?L), (?A, poi, ?P),
(?M, location, ?L)} n4 : {(?H, nearby, ?M)}

n5 : {(?H, price, ?C)} n6 : {(?H, review, ?R)}

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:17

Basically the query asks for the following information: first of all we are looking for
a list of top-rated art museums (variable ?M in node n1). In node n2, for each such
museum, we are interested in a list of hotels (?H) in the same area as the museum,
if such information is available (thus this part of the query is attached as child node
to the root). In case the information on hotels is available, on the one hand (node n3)
the query tries to retrieve information on further points-of-interest in the same area
as the museum (?A) if such information can be found. On the other hand (node n4), in
case that the hotel is additionally located close to the museum, it also tries to derive
the price for a room (?C in node n5) and possible reviews (?R in node n6) for the hotel.
Note that by Definition 3.15, the semantics of the query is to start the evaluation at
the root node, and then in a top-down traversal to extend every partial solution as long
as possible to the new variables in the child nodes. This captures the intuition that the
information queried further down in the tree would be “nice to have”, but even if it is
not present the query parts further up the tree may still return an answer.

The transformation rules presented next are all motivated by this top-down evalua-
tion. The first rule is just the inverse of the concept of duplicating triples to children.
Recall that we showed earlier that duplicating triples to children does not change the
semantics of a QWDPT. From this it follows immediately that the inverse operation,
that is, deleting triples from a node that occur in some ancestor of that node, preserves
the semantics as well. Consider for example the triple t = (?M, location, ?L) in node n3
in Example 3.19. Since the same triple already occurs in Pn2 , we can safely remove it
from Pn3 . Intuitively, the correctness of this rule can be seen in terms of the top-down
evaluation as follows. For every mapping μ that we try to extend to n3, we know that
μ(Pbranch(n2)) ⊆ G (for some RDF graph G). Hence especially μ′(t) ⊆ G holds for every
extension μ′ of μ. This gives the first transformation rule, formally defined next.

Rule R1 (deletion of redundant triples): Let n ∈ V . If there exists a triple t ∈ Pn such
that, t ∈ Pn′ for some ancestor n′ of n, then delete t from Pn, that is, P ′

n = Pn \ {t}. If
P ′

n = ∅, delete n and turn its child nodes into children of the parent of n.

By a similar thought, also node n4 in Example 3.19 shows a strange behavior: it does
not introduce any “new” variable (i.e., all variables in Pn4 already occur somewhere in
Pbranch(n2)). Hence “extending” a partial solution μ on branch(n2) to n4 is no extension in
the sense of increasing the domain of μ, but it only enforces additional constraints on μ.
However, independent of μ also mapping Pn4 into some given RDF graph G or not (i.e.,
independent of μ satisfying those additional constraints or not), the partial solution
μ remains unchanged. We therefore refer to nodes like n4 as unproductive nodes. We
cannot always just delete such unproductive nodes though, since whether μ(Pn4) ⊆ G
or not makes a difference when going to the children of n4. Extending μ to ?C and ?R
should only be possible if indeed μ(Pn4) ⊆ G holds. Hence the idea of the second rule is
to defer this test μ(Pn4) ⊆ G until it really makes a difference, and to remove it if it has
no influence at all.
Rule R2 (deletion of unproductive nodes): Let n, n̂ ∈ V such that n̂ is the parent of n,
and let n1, . . . , nk ∈ V be the children of n. If newvars(n) = ∅, then merge n into each
of its children and make each ni a child of n̂. That is, let P ′

ni
= Pni ∪ Pn for i = {1, . . . , k},

V ′ = V \ {n}, and E′ = (E \ {(n̂, n), (n, n1), . . . , (n, nk)}) ∪ {(n̂, n1), . . . , (n̂, nk)}. If n has no
child node, then applying this rule is equivalent to deleting n.

Hence applying Rule R2 to the QWDPT in Example 3.19 results in copying Pn4 into
Pn5 and Pn6 , making n5 and n6 direct children of n2, and deleting n4.

So each application of Rule R2 reduces the number of nodes in a QWDPT (hence the
number of OPT-operators in a corresponding SPARQL graph pattern). The next rule

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:18 A. Letelier et al.

aims at the same goal. Recall from the definition of the semantics of the left-outer join
M1 M2 that it behaves differently from the join operator M1 �� M2 only if there exist
mappings in M1 for which there does not exist a compatible mapping in M2. Hence if
we can indeed guarantee that M2 contains at least one compatible mapping for each
mapping M1, we could replace the left-outer join by a join, thus replace an OPT-operator
by an AND-operator. This is for example the case in node n3 in Example 3.19. Consider
the mapping h defined as h = {?A →?M, ?L →?L, ?P → art-museum, ?M →?M} and
that is the identity on all constants. Then it is easy to check that

⋃
t∈Pn3

h(t) ⊆ Pbranch(n2).
Hence h is a homomorphism from Pn3 into Pbranch(n2). Since in addition it is also the
identity on all variables in Pn3 that already occurred in Pbranch(n2), it is easy to see that
given a partial solution μ on branch(n2), the mapping μ′ = μ(h(?X)) for all variables
?X ∈ vars(Pn3) is compatible with μ and thus a possible extension of μ to n3. Hence we
can safely merge the node n3 into n2, which corresponds to replacing the corresponding
OPT-operator by an AND.

Rule R3 (homomorphism upwards): Let n, n̂ ∈ V be nodes such that n̂ is the parent
of n, and let n1, . . . , nk ∈ V be the children of n. If there exists a homomorphism
h: Pn → Pbranch(n̂) with h(?X) =?X for all variables ?X ∈ vars(Pn) ∩ vars(Pbranch(n̂)),
then merge n into n̂. That is, let P ′

n̂ = Pn̂ ∪ Pn, V ′ = V \ {n} (remove n) and E′ =
(E \ {(n̂, n), (n, n1), . . . , (n, nk)}) ∪ {(n̂, n1), . . . , (n̂, nk)} (turn n’s child nodes into children
of n̂).

Example 3.20. We have seen that all Rules R1, R2, and R3 can be applied to the
QWDPT shown in Example 3.19. The resulting pattern tree is shown next. Note that
by applying those rules we were able to heavily simplify the structure of the QWDPT.

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel),
(?H, location, ?L), (?A, location, ?L), (?A, poi, ?P)}

n5 : {(?H, nearby, ?M), (?H, price, ?C)} n6 : {(?H, nearby, ?M), (?H, review, ?R)}

Note that the Rules R1, R2, and R3 will play an essential role for the further results
in this article, especially for the complexity of the equivalence problem studied in
Section 5.

Since the top-down evaluation allows one to work on different branches of a QWDPT
independent of each other (which opens the door to parallel query processing), it is a
natural goal to replace long branches of a tree by several shorter (and parallel) ones. An
observation similar to the one that allowed us to develop Rule R3 provides a first step
towards this goal. Instead of having a homomorphism from some node n only “upwards”
into branch(n̂) (with n̂ being the parent of n), assume that this homomorphism in
addition has the child n′ of n as target. In this case we know that whenever some
partial solution to branch(n̂) can be extended directly to n′ (i.e., without extending it to
n before), then it can also be extended to n. Hence we can shift n′ from being a child of
n to being a child of n̂.

Rule R4 (parallelization): Consider nodes n̂, n, n′ ∈ V such that n̂ is the parent of n,
and n is the parent of n′. If there exists a homomorphism h: Pn → Pn′ ∪ Pbranch(n̂) with
h(?X) =?X for all variables ?X ∈ vars(Pn) ∩ vars(Pbranch(n̂)), then turn n′ from a child of
n into a child of n̂, if the resulting pattern tree is quasi well designed. That is, V ′ = V ,
E = (E \ {(n, n′)}) ∪ {(n̂, n′)}, if T ′ is still quasi well designed.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:19

The next result formally shows that all these rules are indeed correct, that is, that
they preserve the semantics of the QWDPT they are applied to.

THEOREM 3.21. Let T be a QWDPT and T ′ the pattern tree that results from applying
either Rule R1, or R2, or R3, or R4, to T . Then T ′ is a QWDPT such that T ≡ T ′.

Recall that an intuitive description of why those rules are correct was already given
before using the top-down semantics of QWDPTs. The formal proof is very technical
and does not provide any more insights than the description given earlier. The complete
proof of the theorem can be found in the electronic appendix.

Having this set of rules, our next goal is to identify QWDPTs that have some “nice”
properties. Towards this goal, we say that a QWDPT T is reduced with respect to some
rule R, if R cannot be applied to T . While checking whether some QWDPT T is reduced
with respect to R3 or R4 is an expensive task (it requires to decide the existence of some
homomorphisms), it is rather easy to determine whether T is reduced with respect to
R1 or R2. Moreover, already if T is reduced only with respect to R1 and R2, it possesses
some useful properties that make it easier to work with—and reason about—T . We
thus introduce a first normal form for QWDPTs based on these two rules.

Definition 3.22. We say that a QWDPT T is in nonredundant normal form (NR
normal form) if T is reduced with respect to Rules R1 and R2.

In the following, we discuss several properties of the NR normal form. The first result
shows that for a given QWDPT this normal form is actually unique and can indeed be
computed independently from possible rule applications of R3 and R4.

PROPOSITION 3.23. Let T be a QWDPT. Then the following hold.

(1) Iteratively applying Rules R1 and R2 (in arbitrary order) to T leads to a unique
pattern tree T ∗ in NR normal form.

(2) If T is in NR normal form then it remains in NR normal form when applying Rules
R3 or R4 to T .

PROOF SKETCH. In order to prove (1), we show in the electronic appendix that for a
QWDPT T = ((V, E, r),P) the unique NR normal form T ∗ = ((V ∗, E∗, r),P∗) consists
of V ∗ = V \ {n ∈ V | newvars(n) = ∅} and E∗ = {(n, p(n)) | n ∈ V ∗ \ {r}} where for every
n ∈ V ∗ \ {r} the node p(n) ∈ V is the first ancestor of n in T (i.e., the ancestor closest to
n) such that p(n) ∈ V ∗. Finally, P∗

n = Pbranch(n,T) \ Pbranch(n̂,T) for every n ∈ V ∗ where n̂ is
the parent node of n in V ∗.

Property (2) follows from the fact that the pattern tree is quasi well designed and the
requirement that the homomorphism that allows to apply R3 and R4 is the identity
on the shared variables. Using these facts, we show in the electronic appendix that
for every node n in a QWDPT in NR normal form, the application of R3 or R4 cannot
introduce any triple patterns in branch(n) that allows to apply R1 or R2 to n.

The next result makes use of the crucial property of the NR normal form, which
is the following. Let T = ((V, E, r),P) be a QWDPT in NR normal form. Then for
every n ∈ V such that n �= r, it holds that newvars(n) �= ∅. This simple property,
which follows directly from the definition of Rule R2, allows us to define an alternative
characterization of the solutions of QWDPTs in terms of maximal subtrees. In fact,
this property allows one to uniquely identify the subtree that may witness that some
mapping μ is a solution to the QWDPT. In the characterization we use the following
notation. Given a mapping μ and a set of mappings M, we say that M subsumes μ,
denoted by μ � M, if there exists a mapping ν ∈ M such that μ � ν.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:20 A. Letelier et al.

LEMMA 3.24. Let T be a QWDPT in NR normal form with root r, and G an RDF
graph. Then μ ∈ �T �G if and only if there exists a subtree T ′ of T rooted at r such that:

(1) dom(μ) = vars(T ′), and
(2) T ′ is the maximal subtree of T such that μ � �and(T ′)�G.

PROOF. To prove the lemma we use the characterization of the evaluation of a
QWDPT provided in Lemma 3.14. Thus assume first that μ ∈ �T �G and let T ′ be
the subtree of T mentioned in Lemma 3.14. That is, μ ∈ �and(T ′)�G and there does not
exist another subtree T ′′ and a mapping ν ∈ �and(T ′′)�G such that μ � ν. First notice
that dom(μ) = vars(T ′) since μ ∈ �and(T ′)�G. Thus we only need to show that T ′ is
the maximal subtree of T such that there exists ν ∈ �and(T ′)�G with μ � ν. To obtain
a contradiction, assume that T ′ is not maximal. Thus, there exists another subtree
T ′′ that strictly contains T ′ as subtree such that μ � ν for some ν ∈ �and(T ′′)�G. We
consider two cases.

—If dom(μ) = dom(ν) then vars(T ′′) = vars(T ′) which, since T ′′ strictly contains T ′,
contradicts the fact that T is reduced with respect to Rule R2.

—If dom(μ) �= dom(ν) then μ � ν which contradicts the characterization in Lemma 3.14
(since T ′′ is a subtree with ν ∈ �and(T ′′)�G and μ � ν).

In any case we obtain a contradiction and thus, T ′ should be the maximal subtree
satisfying that there exists ν ∈ �and(T ′)�G with μ � ν.

To prove the opposite direction, assume that dom(μ) = vars(T ′) and T ′ is the maximal
subtree of T for which there exists a mapping ν ∈ �and(T ′)�G with μ � ν. From these
two properties it is straightforward to conclude that μ ∈ �and(T ′)�G. Thus, we only need
to prove that there does not exist another subtree T ′′ and a mapping ν ∈ �and(T ′′)�G
such that μ � ν. To obtain a contradiction, assume that there exists such a subtree T ′′.
Notice that since μ � ν then dom(μ) � dom(ν) which implies that vars(T ′) � vars(T ′′).
We claim that since T is reduced with respect to Rule R2, then vars(T ′) � vars(T ′′)
implies that T ′ is a subtree of T ′′. On the contrary, assume that T ′ is not a subtree of T ′′.
Then there exists a node n in T ′ which is not in T ′′. Notice that since n is not in T ′′ then
no descendant of n is in T ′′. Moreover, since T is reduced with respect to Rule R2, we
know that newvars(n) �= ∅, and thus we have that there exists a variable ?X such that:
(1) ?X occurs in n, (2) ?X does not occur in any ancestor of n in T , and (3) ?X occurs in a
node n′ in T ′′ which is not a descendant of n. Properties (1), (2), and (3) contradict the
fact that T is a QWDPT. Thus we have that necessarily T ′ is a subtree of T ′′. Moreover,
since vars(T ′) � vars(T ′′) we have that T ′ is a proper subtree of T ′′. Finally since there
exists a mapping ν ∈ �and(T ′′)�G and μ � ν we obtain that T ′ cannot be a maximal
subtree satisfying the condition in Lemma 3.24. This is our desired contradiction.

Notice that as opposed to Lemma 3.14 that characterizes the mappings in the evalua-
tion of a QWDPT as the maximal (with respect to �) mappings satisfying some property,
Lemma 3.24 takes advantage of the NR normal form to characterize mappings in terms
of the structure of a QWDPT, in particular, in terms of maximal subtrees.

The NR normal form provides a “cheap” elimination of some redundancies. As such
it will be an integral part of the equivalence test for QWDPTs in Section 5.2. While the
NR normal form proves helpful in many situations, especially in Section 5.2, it will not
always be sufficient to assume NR normal form. Instead, it will turn out to be useful if
the QWDPT is further reduced with respect to R3 which can reduce some more complex
sources of redundancy in the structure of trees. As a result, the following normal form
will play an important role in the equivalence test.

Definition 3.25. Let T be a QWDPT. We say that T is in R3 normal form if T is
reduced with respect to Rules R1, R2, and R3.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:21

One intuition of the R3 normal form is that given some QWDPT ((V, E, r),P) in this nor-
mal form, for every n ∈ V with parent n̂, there exists at least one RDF graph G and map-
ping μ with μ(Pbranch(n̂)) ⊆ G that cannot be extended to a mapping μ′ such that μ′(Pn) ⊆
G. That is, from the fact that some variable assignment maps some Pbranch(n̂) into G, we
cannot derive any statement about Pn. This intuitively implies that every node in the
tree carries some information which is nonredundant with respect to its ancestors.

The next proposition shows that the R3 normal form exists and can be reached in
polynomially many steps. It also identifies a simple condition under which this normal
form is unique. Its proof is provided in the electronic appendix.

PROPOSITION 3.26. Let T be a QWDPT. Then the following hold.

(1) Iteratively applying R1, R2, and R3 to T eventually leads to a (not necessarily
unique) pattern T ∗ that is in R3 normal form. Moreover, if T is in NR normal form,
then iteratively applying R3 leads to a unique pattern T ∗ in R3 normal form.

(2) The number of rule applications of R1, R2, and R3 needed to arrive at a pattern in
R3 normal form is linear in the size of T .

As pointed out, one goal of applying the transformation rules is to remove redundan-
cies from QWDPTs, and thus to reduce the size of the QWDPT. A natural question is
therefore whether the R3 normal form is able to guarantee some kind of minimality
of QWDPTs. As usual, different minimization criteria for QWDPTs could be consid-
ered, like the number of variables, the number of triple patterns, or the number of
OPT-operators. We shortly discuss these properties next, showing that QWDPTs in
R3 normal form are not minimal with respect to these measures. Identifying transfor-
mations that guarantee to lead to a minimal pattern with respect to these measures
remains as part of our future work.

First of all, we observe that the number of variables in a QWDPT cannot be reduced.
In fact, we will show in Theorem 5.10 that equivalent QWDPTs always contain the
same set of variables. The same theorem shows that for a QWDPT in NR normal form,
the number of different triple patterns is already minimal, since equivalent QWDPTs
in NR normal form must contain the same set of triple patterns. Another aspect is the
overall number of triple patterns in a QWDPT, that is, the number considering repeated
occurrences of the same pattern. Obviously, Rule R1 reduces their number. However,
it can be easily seen that the resulting QWDPT not necessarily contains a minimal
number of triple patterns. Even more, the application of Rule R2 may even increase
the number of triple patterns: When applied to a node containing k triple patterns and
having � children, applying R2 increases the number of triple patterns by k · (� − 1).
Thus, there may exist a trade-off between the number of triple patterns and OPT-
operators in a QWDPT. As mentioned before, the presented transformation rules are
rather aimed towards the minimization of the OPT-operators. As a result, the normal
forms do not guarantee the QWDPT to contain a minimal number of triple patterns.

Although our transformation rules are aimed towards reducing the number of nodes
(thus, the number of OPT-operators), even a QWDPT in R3 normal form need not
contain a minimal number of OPT-operators, as shown by the following example.

Example 3.27. Consider the QWDPTs T and T ′ as depicted next.
T : n1 : {(a, a, a)}

n2 : {(?X1, b, ?X1)}

n4 : {(?X2, c, ?X2)}

n3 : {(?Y1, c, ?Y1)}

n5 : {(?Y2, b, ?Y2)}

T ′ : n1 : {(a, a, a)}

n2 : {(?X1, b, ?X1)}

n4 : {(?X2, c, ?X2), (?Y2, b, ?Y2)}

n3 : {(?Y1, c, ?Y1)}

Obviously, both, T and T ′ are in R3 normal form, and T ≡ T ′. Thus, T is not minimal.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:22 A. Letelier et al.

Identifying transformations that guarantee to lead to a QWDPT with an actually
minimal number of OPT-operators remains as future work.

In this section, we have proposed a tree representation of SPARQL queries and a
set of rules that can be used to restructure these trees. The results presented in this
section therefore describe a starting point for the study of an algebra of query plans,
which forms the basis of query optimization for this language. QWDPTs together with
Rules R1–R3 will also be crucial for studying classical static analysis problems for
SPARQL in the next sections. Rule R4 has been mainly presented so as to give a flavor
of what further transformation rules in this algebra could look like. It may be beneficial
in particular in an environment where parallel processing is supported.

4. EVALUATION AND ENUMERATION OF WELL-DESIGNED SPARQL
As promised in Section 3.2, we now take a closer look on the evaluation and enumera-
tion problem for QWDPTs, and thus for well-designed SPARQL graph patterns. First of
all, note that BGPs are essentially CQs over a relational schema with a single ternary
predicate. Hence one way to see QWDPTs is as a collection of CQs whose results are
combined according to the tree structure. Looking for tractable fragments of the evalua-
tion (refer to Definition 2.2) or enumeration problem of QWDPTs, it is therefore natural
to try to establish a relationship between tractable fragments of CQs and QWDPTs.

Conjunctive Query (CQ) evaluation2 is a classical NP-complete problem [Chandra
and Merlin 1977]. A lot of effort has thus been invested into the search for tractable
fragments of CQs [Yannakakis 1981; Chekuri and Rajaraman 2000; Flum et al. 2002;
Gottlob et al. 2002, 2000; Greco and Scarcello 2010a]. Typical tractable fragments are
Acyclic CQs (ACQs) [Yannakakis 1981], CQs with bounded treewidth [Flum et al. 2002]
or bounded hypertree width [Gottlob et al. 2002]. This search for tractable fragments
of CQs has also been extended to the enumeration problem (i.e., given a CQ Q and a
database D, output all tuples in the result of Q over D) [Flum et al. 2002; Bagan et al.
2007; Greco and Scarcello 2010b].

We now want to extend the study of tractable fragments of CQ evaluation to tractable
fragments of evaluating well-designed SPARQL graph patterns. For the decision prob-
lem (i.e., EVALUATION; refer to Definition 2.2), tractable fragments of CQ evaluation
immediately carry over to tractable fragments of SPARQL evaluation. For the enumer-
ation problem (i.e., given an RDF graph G and a well-designed SPARQL graph pattern
P, compute all solutions μ) a much more detailed analysis is required. In both cases,
we first discuss the general relationship between the problem for CQs and QWDPTs,
and then show how this relationship can be exploited to extend tractable fragments
from CQs to QWDPTs.

In the following, we say that a set P of triple patterns is from a tractable fragment
of CQ evaluation if, given an RDF graph G, the existence of a mapping μ : vars(P) →
dom(G) with μ(P) ⊆ G can be decided in polynomial time. Also, analogously to CQs,
a join tree for a set P of triple patterns is a pair (T , λ) of a tree T and a function
λ : V (T) → P that satisfies the following properties: (1)

⋃
n∈V (T){λ(n)} = P and (2) for

every pair t1, t2 of triple patterns in P, it holds for every node n ∈ V (T) on the unique
path between n1 and n2 (where n1, n2 ∈ V (T) such that λ(n1) = t1 and λ(n2) = t2) that
vars(t1) ∩ vars(t2) ⊆ vars(λ(n)). We call a set P of triple patterns acyclic if there exists
a join tree for P.

2There are several strongly related problems such as asking whether a given tuple is contained in the result
of a given CQ over a given database, or asking whether a given Boolean CQ evaluates to true over a given
database, or query containment, etc. All these problems have straightforward reductions between each other.
By slight abuse of notation we thus simply speak of “CQ evaluation” to refer to any of these problems.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:23

4.1. Evaluation of QWDPTs
We start with a look at the decision problem EVALUATION (refer to Definition 2.2),
which was shown coNP-complete in Pérez et al. [2009]. For our representation of
SPARQL graph patterns as QWDPTs, a coNP test can work as follows. Let T =
((V, E, r),P) be a QWDPT and assume that it is in NR normal form (which can be com-
puted in polynomial time). By using the characterization of the evaluation of QWDPTs
provided in Lemma 3.24, in order to check whether μ is a solution of T over G, the
coNP algorithm can first find a subtree T ′ of T rooted at r such that dom(μ) = vars(T ′).
Notice that if this subtree exists, then it is unique (since T is in NR normal form),
and thus, this step can be done in polynomial time. Then the algorithm checks that T ′
is a maximal subtree such that μ � �and(T ′)�G. The latter test requires coNP power
since we have to check that μ cannot be extended to match any of the sets of triple
patterns at nodes “below” the leaf nodes of T ′. However, it is sufficient to check this for
every child node of T ′ (i.e., for every child of a leaf node of T ′) individually: if μ can be
extended to any child node, this immediately proves that it is not maximal. The single
source of the coNP-hardness is thus the test that μ cannot be extended to some BGP,
while the selection of possible nodes to attach to T ′ (hence the selection of the BGP to
test) is not responsible for this hardness. We will make use of this property shortly.

Finally, note that this simple coNP algorithm heavily relies on the NR normal form
from Section 3.3 (the coNP algorithm provided in Pérez et al. [2009] is considerably
more involved).

Turning towards the relationship with CQs, clearly, if all sets of triple patterns are
from tractable fragments of CQ evaluation, the problem of checking whether μ is a
solution of T over G becomes tractable.

COROLLARY 4.1. Suppose that we only consider QWDPTs (and thus well-designed
SPARQL graph patterns), where for each node t the set Pt of triple patterns is from a
tractable fragment of CQ evaluation. Then EVALUATION is also tractable for those
QWDPTs.

This follows immediately from the algorithm sketched before; instead of coNP power
to test whether μ can be extended to some “child” node of T ′, this is now feasible
in polynomial time. Note that tractability is required for each set Pt individually,
hence for different nodes t and t′, the sets Pt and Pt′ may belong to different tractable
fragments. This observation can be strengthened even more. Note that the T ′ can be
always identified in polynomial time, independent of the sets Pt being from tractable
fragments of CQ evaluation or not. Since this property is only needed in order to test
whether μ can be extended to some “child” node of T ′, it suffices if this property is
satisfied by all those “child” nodes ni. Furthermore, it is not necessary that each Pni is
from a tractable fragment of CQ, but it suffices if μ(Pni) is from such a fragment.

4.2. Enumeration of Well-Designed SPARQL
Next we take a look onto the enumeration problem for QWDPTs, that can be defined
as follows.

Definition 4.2. Let ENUMERATION be the following problem.
INPUT: An RDF graph G and a QWDPT T .
OUTPUT: All mappings μ ∈ �T �G.

First of all, we observe that already the enumeration problem for CQs is intractable.
Recall that an appropriate notion of tractable enumeration has to take the size of
the output into account. Indeed, even for a single CQ, the set of solutions can be
exponentially big. Hence polynomial-time algorithms with respect to the input make

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:24 A. Letelier et al.

no sense in this case. Recall further that there exist several different notions of tractable
enumeration [Johnson et al. 1988]. The weakest form are output polynomial algorithms.
The only guarantee they provide is that they will output all results of a query in time
polynomial in the size of the output. However, the output may start only after an
exponential delay, or there may be exponential gaps between two outputs (exponential
in the input size). A stronger concept is that of polynomial delay algorithms. These
algorithms guarantee that the time to either compute the next solution or to detect
that no further solution exists is polynomially bounded in the input size.

Thus, the intractability of CQ enumeration means that in general solutions cannot
be enumerated in output polynomial time (unless P = NP; this follows from the obser-
vation that the evaluation of Boolean CQs is NP-complete). Thus, also the enumeration
problem for CQs was often studied in the literature. See Bagan et al. [2007] and Greco
and Scarcello [2010b] for recent results. This intractability also holds for CQs corre-
sponding to BGPs, and thus enumerating all solutions to a QWDPT is intractable as
well.

Another aspect of enumeration algorithms, that is also reflected in the notions of
tractability given earlier, is that one usually prefers to retrieve the results incremen-
tally over the running time of the algorithm, instead of having to wait until the algo-
rithm finishes and only then to get all results at once.

However, note that even if we are given such an algorithm for CQs, a straightforward
implementation of the semantics of QWDPTs as presented in Section 3.2 would still
return all results to the QWDPT only at the end of the algorithm. Thus, before studying
how tractable fragments for the enumeration problem of CQs carry over to QWDPTs,
by describing a more clever way of combining the results for the different nodes of the
tree, we will first establish a general relationship between the enumeration of solutions
to CQs and QWDPTs (hence, SPARQL graph patterns).

A usual way to implement enumeration algorithms is in form of iterators, that is,
they are implemented in terms of an object providing functions next() and hasNext(),
where next() returns the next solution, while hasNext() returns true if there exists
yet another solution. We will make use of iterators as well: on the one hand we assume
to be provided with an iterator for CQ enumeration (that we will use to evaluate the
sets of triple patterns at each node of a QWDPT), and on the other hand we provide an
iterator for QWDPTs.

Following the presentation in Cohen et al. [2006], in order to increase readability
we do not define the functions next() and hasNext() explicitly. Instead, the enumer-
ation algorithm is described as an ordinary algorithm, and we consider iterators as
constructs that take an enumeration algorithm as argument and provide the next()
and hasNext() functions. That is, consider an iterator I := new Iterator(E(x)) for an
enumeration algorithm E with input x. In response to I.next() being called, the iterator
executes E(x) until it encounters output(A) for the first time. Then the execution of E is
interrupted, and A is returned as the result of I.next(). At the next call of I.next(), the
execution of E is continued at the position where it was last interrupted, that is, right
after the last output(.) command executed (and the last state of E is restored). Once
E terminates (instead of being interrupted), no further answer exists. The function
hasNext() can be either implemented by continuing the execution of E and checking
whether another result is generated or not, or (like in our case) it is implemented by
checking the current state of E.

In the following, assume a QWDPT T = ((V, E, r),P) to be evaluated over some RDF
graph G. The algorithm in Figure 1 assumes the existence of some enumeration algo-
rithm EnumerateCQ(Pt,μ) that, given a set Pt of triple patterns and a partial variable
assignment μ returns all extensions of μ to Pt over G. Since this problem is equivalent
to enumerating all solutions to a CQ, we therefore consider EnumerateCQ(Pt,μ) as a

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:25

Fig. 1. Iterator for SPARQL tree patterns.

black box. The idea of our (recursive) enumeration algorithm Enumerate(t,μ) is as fol-
lows. For t ∈ V and a partial assignment μ, the algorithm first checks whether μ can be
extended to Pt (lines 1–2). For each such extension μcurr, it checks recursively for each
child node ti whether there exists an extension of μcurr to Pti (lines 5–7). Next, for each
ti that has such an extension the first solution is stored, together with the biggest index
i such that ti provides a solution (lines 8–10). If μcurr cannot be extended to any child
node, then the algorithm just returns μcurr as one extension of μ to the complete sub-
tree rooted at t (line 14; recall that the execution of the output(.) statement ends the
execution of the call to next(), and the control flow is returned to the caller), and then
considers the next extension of μ on t (line 15 jumps to the next iteration of the while
loop in line 2). If on the other hand μcurr can be extended to some children of t (lines
17–33), the algorithm enumerates all these extensions as follows. (For the sake of sim-
plicity, in the following we only consider the � children to which μcurr can be extended.)
In lines 17–33, all possible solutions are created that can be built from combining the

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:26 A. Letelier et al.

extensions of μcurr to t1, . . . , t�. Note that the first possible extension for each ti was saved
in μi in line 9. After returning this solution (line 18), the solutions are enumerated by
iterating over the solutions for t1, . . . , t� as follows. First, the child node ti with the
highest index i is identified that has yet another solution (lines 20–21). This extension
is saved in μi (line 22), and for all children tj with i < j ≤ � the iterators are reset to
the first extension of μcurr, which is stored in μ j (lines 24–27). If such an index i exists,
the new solution is returned in the next iteration of the repeat loop (line 18), otherwise
all extensions of μcurr have already been returned, and the algorithm terminates.

THEOREM 4.3. The problem of enumerating all solutions of a QWDPT (and hence,
of a well-designed SPARQL graph pattern) can be reduced in polynomial time (by a
Turing reduction) to the problem of enumerating all solutions of CQs.

PROOF IDEA. The iterator described in Figure 1 reduces the problem of enumerating
all solutions of a QWDPT to the problem of enumerating all solutions of CQs. Moreover,
neglecting the cost of the calls to the iterator for CQs, the algorithm in Figure 1 clearly
works in polynomial time.

With this result at hand, we now turn towards tractable enumeration. In fact, our goal
is to identify conditions under which the enumeration of the solutions of a QWDPT is
feasible with polynomial delay. For instance, acyclic CQs and CQs of bounded treewidth
or hypertree width [Yannakakis 1981; Chekuri and Rajaraman 2000; Flum et al. 2002;
Gottlob et al. 2002] have this property. From Theorem 4.3 we can now conclude that any
tractability results for CQs immediately carry over to well-designed SPARQL graph
patterns.

THEOREM 4.4. Suppose that we only consider QWDPTs where the sets of triple pat-
terns at each node are from fragments of CQ enumeration for which polynomial-time de-
lay algorithms exist. Then the problem ENUMERATION can be solved with polynomial-
time delay for such QWDPTs.

An inspection of our iterator for QWDPTs reveals that Theorem 4.4 could be further
strengthened: for the tractability of the enumeration problem, it is sufficient that the
sets of triple patterns are from tractable fragments of CQ evaluation after considering
all “old variables” at each node as constants, that is, after replacing for node n all vari-
ables ?X ∈ vars(Pn) \ newvars(n) by μ(?X). In general, such an elimination of variables
from a CQ may yield a significantly bigger tractable class.

5. CONTAINMENT AND EQUIVALENCE
In this section we study the fundamental problems of containment and equivalence of
well-designed SPARQL queries. Similarly to query languages on relational databases,
these problems are crucial for query optimization. For containment we consider the
subsumption relation (�) introduced in Section 3.2 rather than the classical subset
relation (⊆). Clearly, for CQs, the two notions coincide. However, in the presence of
partial query answers, subsumption is the more natural notion of containment [Kanza
et al. 2002; Arenas and Pérez 2011], and has also been considered in recent work to
compare the evaluation of two patterns containing OPT-operators [Pérez et al. 2009;
Arenas and Pérez 2011]. This is illustrated in the following example (taken from Arenas
and Pérez [2011]).

Example 5.1 [Arenas and Pérez 2011]. Consider two SPARQL graph patterns P1 =
(?X, n, ?Y) and P2 = (?X, n, ?Y) OPT (?X, e, ?Z), and an RDF graph G = {(a, n, b),
(a, e, c)}. Then �P1�G = {μ = {?X → a, ?Y → b}}, while �P2�G = {μ′ = {?X → a, ?Y →
b, ?Z → c}}. Hence P1 �⊆ P2. This is, however, unintuitive, since the answer to P2

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:27

contains strictly more information than that to P1, and it is easy to see that for no
graph G, pattern P2 returns fewer bindings than P1.

For CQs without existentially quantified variables, deciding both the equivalence
and containment of two queries are tractable problems. In the presence of existential
quantifiers, they are classical NP-complete problems [Chandra and Merlin 1977]. In
this article, we study equivalence and containment for well-designed SPARQL queries,
or, equivalently, for our representation by quasi well-designed pattern trees (QWDPTs).
We start in this section by considering the case without projection, and will extend our
study to projection in Section 6. In contrast to CQs, the problems of testing for con-
tainment (in the form of subsumption) and equivalence differ in their computational
complexity. Indeed, in this section we prove that subsumption between QWDPTs is
�P

2 -complete while the equivalence problem is NP-complete. The NP-membership will
be the most difficult part to prove. The key to this NP-membership result is the R3
normal form introduced in the previous section and an appropriate extension of homo-
morphisms, which we shall refer to as “strong homomorphisms”.

5.1. Complexity of Subsumption
We extend the definition of subsumption of mappings introduced in Section 3.2, to
subsumption of sets of mappings. Given sets of mappings M1 and M2 we say that M1
is subsumed by M2, denoted by M1 � M2, if for every μ1 ∈ M1 there exists a μ2 ∈ M2
such that μ1 � μ2. For two QWDPTs T1 and T2, we further say that T1 is subsumed by
T2, denoted by T1 � T2, if �T1�G � �T2�G holds for every RDF graph G.

Finally, we introduce the notion of a frozen RDF graph that is not only useful for
proving the next lemma, but will be used in several proofs in this section. Let P be a
set of triple patterns and let fr be a bijective function that assigns to each ?X ∈ vars(P)
a unique, new URI fr(?X) = x, and that maps constants onto themselves. Then the
frozen RDF graph G for P is the set of triples G = {fr(t)|t ∈ P}. Furthermore, let fr−1

denote the inverse of fr, that is, fr−1(fr(?X)) =?X.
We are now ready to state our main characterization of subsumption between

QWDPTs by providing a necessary and sufficient condition to test whether T1 � T2.

LEMMA 5.2. Consider QWDPTs T1 and T2 with roots r1 and r2, respectively. Then
T1 � T2 if and only if for every subtree T ′

1 of T1 rooted at r1, there exists a subtree T ′
2 of

T2 rooted at r2 such that:

(1) vars(T ′
1) ⊆ vars(T ′

2), and
(2) there exists a homomorphism from the triples in T ′

2 to the triples in T ′
1 that is the

identity over vars(T ′
1).

PROOF. We first prove direction (⇐). Thus let T1 = ((V1, E1, r1),P1) and T2 = ((V2,
E2, r2),P2) be QWDPTs, and assume that for every subtree T ′

1 of T1 rooted at r1, there
exists a subtree T ′

2 of T2 rooted at r2 such that: (1) vars(T ′
1) ⊆ vars(T ′

2), and (2) there
exists a homomorphism from the triples in T ′

2 to the triples in T ′
1 that is the identity

over vars(T ′
1). Now, let G be an RDF graph and μ ∈ �T1�G. We need to prove that there

exists a mapping μ′ ∈ �T2�G such that μ � μ′.
Given that μ ∈ �T1�G, from Lemma 3.14 we know that there exists a subtree T ′

1
of T1 rooted at r1, such that μ ∈ �and(T ′

1)�G. Moreover, by hypothesis, we know that
there exists a subtree T ′

2 of T2 such that vars(T ′
1) ⊆ vars(T ′

2), and a homomorphism
h from the triples in T ′

2 to the triples in T ′
1 which is the identity over vars(T ′

1). Let
triples(T ′

1) denote the set of triples in T ′
1 , and similarly for triples(T ′

2). Then we know
that h(triples(T ′

2)) ⊆ triples(T ′
1). Moreover, given that μ ∈ �and(T ′

1)�G we know that
dom(μ) = vars(T ′

1) and μ(triples(T ′
1)) ⊆ G. Thus, we have that μ(h(triples(T ′

2))) ⊆ G,

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:28 A. Letelier et al.

which means that the mapping μ(h(·)) (i.e., the composition of μ and h) is in �and(T ′
2)�G.

Now, notice that dom(μ(h(·))) = vars(T ′
2). Thus, since vars(T ′

1) ⊆ vars(T ′
2) and h is

the identity over vars(T ′
1) we have that for every variable ?X ∈ dom(μ) it holds that

?X ∈ dom(μ(h(·))) and μ(?X) = μ(h(?X)), which implies that μ � μ(h(·)). Finally, since
μ(h(·)) ∈ �and(T ′

2)�G, applying Lemma 3.14 we obtain either μ(h(·)) ∈ �T2�G or there
exists a mapping μ′ such that μ(h(·)) � μ′ and μ′ ∈ �T2�G. In either case we have that
there exists a mapping μ′ ∈ �T2�G such that μ � μ′, which proves the case.

To prove direction (⇒), assume that for every RDF graph G it holds that �T1�G �
�T2�G. We need to prove that for every subtree T ′

1 of T1 rooted at r1, there exists a
subtree T ′

2 of T2 rooted at r2 such that: (1) vars(T ′
1) ⊆ vars(T ′

2), and (2) there exists
a homomorphism from the triples in T ′

2 to the triples in T ′
1 that is the identity over

vars(T ′
1). Let T ′

1 be a subtree of T1 rooted at r1, and call G1 the RDF graph fr(triples(T ′
1)).

Notice that by construction we have that fr ∈ �and(T ′
1)�G1 . Thus, by Lemma 3.14 we

know that there exists a mapping, say f ′, such that fr � f ′ and f ′ ∈ �T1�G1 . We are
assuming that T1 � T2, thus, we know that there exists a mapping, say f ′′, such that
f ′ � f ′′ and f ′′ ∈ �T2�G1 . Applying Lemma 3.14 again, we know that there exists a
subtree T ′

2 of T2 such that f ′′ ∈ �and(T ′
2)�G1 . This implies that dom(f ′′) = vars(T ′

2)
and f ′′(triples(T ′

2)) ⊆ G1 = fr(triples(T ′
1)). First, recall that fr � f ′′ and thus, since

dom(fr) = vars(T ′
1) and dom(f ′′) = vars(T ′

2), we obtain that vars(T ′
1) ⊆ vars(T ′

2), thus
proving property (1) given before. Now, recall that fr(?X) is a fresh URI for every ?X ∈
vars(T ′

1). Thus, let g be a function such that g(fr(?X)) =?X for every ?X ∈ vars(T ′
1), that

is, g is the inverse of fr (which is well defined since fr(?X) is fresh for every ?X). Consider
now the mappings g(f ′′(·)) and g(fr(·)). Given that f ′′(triples(T ′

2)) ⊆ fr(triples(T ′
1)), we

have that g(f ′′(triples(T ′
2))) ⊆ g(fr(triples(T ′

1))) = triples(T ′
1), which implies that g(f ′′(·))

is a homomorphism from triples(T ′
2) to triples(T ′

1). Moreover, since fr � f ′′ we have
that for every ?X ∈ vars(T ′

1) it holds that f ′′(?X) = fr(?X) which implies that for every
?X ∈ vars(T ′

1) it holds that g(f ′′(?X)) = g(fr(?X)) =?X. Thus we have that g(f ′′(·)) is a
homomorphism from triples(T ′

2) to triples(T ′
1) which is the identity over vars(T ′

1), thus
proving property (2) given before. This completes the proof.

Note that Lemma 5.2 yields a straightforward �P
2 procedure to test whether T1 � T2

holds: for every subtree T ′
1 of T1 rooted at r1, check whether there exists a subtree T ′

2 of
T2 rooted at r2 and a homomorphism satisfying properties (1) and (2). In what follows
we also show the matching lower bound.

THEOREM 5.3. The subsumption problem of QWDPTs (and, therefore, of well-
designed SPARQL graph patterns) is �P

2 -complete.

PROOF SKETCH. We first prove the �P
2 -membership. Let T1 and T2 be QWDPTs with

roots r1 and r2, respectively. Consider first the following problem: given a fixed subtree
T ′

1 of T1 rooted at r1, check whether there exists a subtree T ′
2 of T2 rooted at r2 such that:

(1) vars(T ′
1) ⊆ vars(T ′

2) and (2) there exists a homomorphism h from the triples in T ′
2 to

the triples in T ′
1 that is the identity over vars(T ′

1). This problem is clearly in NP, since
we can guess the subtree T ′

2 and the homomorphism h, and then check in polynomial
time that (1) and (2) are satisfied.

From the preceding observation and Lemma 5.2, it follows easily that checking
whether T1 � T2 is in �P

2 . From Lemma 5.2 we know that in order to check T1 �� T2,
it is enough to guess a subtree T ′

1 of T1 rooted at r1 and then check that there is no
subtree T ′

2 of T2 rooted at r2 such that: (1) vars(T ′
1) ⊆ vars(T ′

2) and (2) there exists
a homomorphism from the triples in T ′

2 to the triples in T ′
1 that is the identity over

vars(T ′
1). This last property can be checked using an NP-oracle, and therefore the whole

process of checking T1 �� T2 can be done in NPNP. This implies that checking T1 � T2, is
in �P

2 .

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:29

We show the �P
2 -hardness by reduction from the well-known �P

2 -hard problem
3-QSAT∀,2. Let an arbitrary instance of this problem be given by a quantified Boolean
formula 	 = ∀�x ∃�y (C1 ∧ · · · ∧ Cm) where each Ci = (li,1 ∨ li,2 ∨ li,3) (for i ∈ {1, . . . , m}) is
a disjunction of three literals over the variables �x = (x1, . . . , xk) and �y = (y1, . . . , y�).

We define two QWDPTs T1 and T2 with T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2, r2),P2)
as follows. In order to keep the proof readable, we do not use triple syntax in this
reduction, but use atoms with binary and ternary predicate symbols instead. We shall
give a translation of these atoms into triple syntax at the end of the proof. Now let
V1 = {r1, n1, . . . , nk} and E1 = {(r1, ni) | 1 ≤ i ≤ k}, that is, r1 is the root and all other
nodes are children of r1. Let further
Pr1 = {s(?U, ?U), r(0, 1), r(1, 0)} ∪ {qi(d, 0, 1) | 1 ≤ i ≤ k}

∪ {c(0, 0, 1), c(0, 1, 0), c(1, 0, 0), c(1, 0, 1), c(1, 1, 0), c(0, 1, 1), c(1, 1, 1)} and
Pni = {qi(?Zi, 1, 0)} for i ∈ {1, . . . , k},
where we introduce one new variable ?Zi for each variable xi ∈ �x.
Finally, let V2 = {r2} and E2 = ∅, with

Pr2 = {s(?U, ?U)} ∪ {r(?Yj, ?Ȳ j) | 1 ≤ j ≤ �} ∪ {qi(?Zi, ?Xi, ?X̄i) | 1 ≤ i ≤ k}
∪ {c(l∗i,1, l∗i,2, l∗i,3) | 1 ≤ i ≤ n}

where ?Yj, ?Ȳ j are new variables for every yj ∈ �y and ?Xi, ?X̄i are new variables for
every xi ∈ �x. The ?Zi are the same as in T1, and
l∗i, j =?Xα (respectively, ?Yβ) if li, j = xα (respectively, yβ) and
l∗i, j =?X̄α (respectively, ?Ȳβ) if li, j = ¬xα (respectively, ¬yβ).

The intuition behind the reduction is best explained in terms of Lemma 5.2. Consider
an arbitrary subtree T ′

1 of T1 rooted at r1. The crucial idea is that T ′
1 encodes a truth

assignment I on �x as follows: if ni ∈ T ′
1 , then I(xi) = true, otherwise I(xi) = false. Now

recall that according to Lemma 5.2, T1 � T2 iff there exists a subtree T ′
2 ⊆ T2 together

with a homomorphism that is the identity on vars(T ′
1) that maps the triple patterns in

T ′
2 into those of T ′

1 . The encoding of the truth assignment is now enforced as follows:
The only possible subtree of T2 is T2 itself. Hence for all i ∈ {1, . . . , k} s.t. ni ∈ T ′

1 , the
required homomorphism h must map ?Zi onto ?Zi, and therefore ?Xi onto 1 and ?X̄i
onto 0, which encodes I(xi) = true and I(¬xi) = false. On the other hand, if ni /∈ T ′

1 ,
then h must map ?Zi onto d, which enforces h(?Xi) = 0 and h(?X̄i) = 1, which encodes
I(xi) = false and I(¬xi) = true. Finally the idea is that for every possible subtree T ′

1 of
T1 rooted at r1 the homomorphism h defined the way described before can be extended
to the variables ?Y1, ?Ȳ1, . . . , Y�, ?Ȳ� in a way that it maps the set of triple patterns in
T2 into those of T ′

1 iff the corresponding truth assignment I on �x can be extended to �y
in a way that C1,∧ · · · ∧ Cm evaluates to true.

The proof of the correctness of the reduction is given in the electronic appendix to
this article. We close the proof by showing how the ternary symbols qi and c can be
replaced by a collection of triples. This can be done as follows: Each atom qi(α, β, γ)
is simply replaced by three triples (1, qi, α), (2, qi, β), and (3, qi, γ). For the c-atoms,
some more care is required. Let c(α, β, γ) be the j-th atom (with j ∈ {1, . . . , 7}) with
leading symbol c in Pr1 . Then we replace it by 3 triples (j, c1, α), (j, c2, β), and (j, c3, γ).
Moreover, we replace each atom c(l∗i,1, l∗i,2, l∗i,3) in Pn by 3 triples (?Ai, c1, l∗i,1), (?Ai, c2, l∗i,2),
and (?Ai, c3, l∗i,3) for a new variable ?Ai.

For equivalence and containment of CQs it is well known that Q1 ≡ Q2 iff Q1 ⊆ Q2 and
Q2 ⊆ Q1. The next result establishes the same close connection between subsumption
and equivalence of well-designed SPARQL queries.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:30 A. Letelier et al.

LEMMA 5.4. Let T1 and T2 be two QWDPTs. Then T1 ≡ T2 if and only if T1 � T2 and
T2 � T1.

PROOF. The “only if” part is straightforward. To prove the “if” part, let P1 ∈ SEM(T1)
and P2 ∈ SEM(T2), and let G be an arbitrary graph. We need to prove that �P1�G = �P2�G.
Let μ be a mapping in �P1�G. We show next that μ ∈ �P2�G. Intuitively, if this is not the
case, then because of the mutual subsumption, there must exist an extension of μ in
�P1�G, which contradicts the assumption that μ ∈ �P1�G. Formally, given that T1 � T2,
we know that �P1�G � �P2�G, and thus, there exists a mapping μ′ in �P2�G such that
μ � μ′. Similarly, given that T2 � T1 we have that �P2�G � �P1�G, and thus, there
exists μ′′ ∈ �P1�G such that μ′ � μ′′. Therefore we have that μ � μ′′ and thus μ and
μ′′ are compatible mappings. In Pérez et al. [2009] (see Claim 3.9) the authors proved
that for a SPARQL pattern P constructed using only AND- and OPT-operators, and an
arbitrary graph G, if ν1, ν2 ∈ �P�G are compatible mappings, then ν1 = ν2. In our case,
given that μ,μ′′ ∈ �P1�G are compatible mappings, we obtain that μ = μ′′. Finally, since
μ � μ′ � μ′′ we obtain that μ = μ′ and then μ ∈ �P2�G. This proves that �P1�G ⊆ �P2�G.
Similarly, it can be proved that �P2�G ⊆ �P1�G, and thus �P1�G = �P2�G.

From Theorem 5.3 and Lemma 5.4 we obtain that equivalence of well-designed
SPARQL queries can be tested in �P

2 . However, in the next section we provide a better
upper bound, namely NP.

5.2. Complexity of Equivalence
We now turn towards testing the equivalence of two QWDPTs (and, thus of two well-
designed SPARQL graph patterns). The NP-membership proof consists of three major
steps. First, we introduce as a key concept the notion of a strong homomorphism be-
tween two branches of one or two pattern trees and use it to define the notion of
strongly homomorphically equivalent branches. In order to describe the intuition of
these concepts, we also show some of their basic properties. This first step is provided
in Section 5.2.1. As the second step, we provide a strong homomorphism-based char-
acterization of equivalent QWDPTs in R3 normal form (we observe that testing for the
existence of a strong homomorphism is NP-hard). Since computing the R3 normal form
of a QWDPT is not in NP, in the last step we show that actually computing the R3 nor-
mal form is not necessary, but guessing a polynomial number of R3 rule applications is
sufficient. The second and third step are presented in Section 5.2.2. Most of the proof
details of this section can be found in the electronic appendix of this article.

5.2.1. Strong Homomorphisms.

Definition 5.5 (Strong Homomorphism). Consider two QWDPTs T1 = ((V1, E1, r1),
P1) and T2 = ((V2, E2, r2),P2). Moreover, let n1 ∈ V1, n2 ∈ V2, and let branch(n1, T1) be
the sequence of nodes r1 = n1, . . . , nk = n1.

We say that there exists a strong homomorphism H : branch(n1, T1) → branch(n2, T2)
if H is a set H = {hi | 1 ≤ i ≤ k} of homomorphisms hi : Pni → Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)
such that hi(?X) =?X for all ?X ∈ vars(Pni) ∩ vars(Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)) (where for
i = 1 let Pbranch(ni−1,T1) = ∅).

We further say that branch(n1, T1) and branch(n2, T2) are strongly homomorphically
equivalent if there exist strong homomorphisms H1 : branch(n1, T1) → branch(n2, T2)
and H2 : branch(n2, T2) → branch(n1, T1).

The basic intuition of a strong homomorphism H : branch(n1) → branch(n2) is that
every variable assignment μ that maps Pbranch(n2) into some RDF graph G can be
extended to a variable assignment μ′ that also maps Pbranch(n1) into G. Note that a simple
homomorphism h: Pbranch(n1) → Pbranch(n2) is not enough to guarantee this property.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:31

Intuitively, the reason for this is that for two nodes n1 and n2 as in Definition 5.5,
there may be RDF graphs G and variable assignments μ that not only map all triple
patterns in branch(n2) into G, but also the triple patterns contained in some “prefix”
of branch(n1). In order to extend such variable assignments to the complete branch
branch(n1), the existing assignments on the variables in this “prefix” of branch(n1)
must not be altered. This is illustrated in the following example.

Example 5.6. Consider the QWDPTs T1 and T2 defined as follows.
T1 : n1 : {(?V, c, ?V)}

n2 : {(?Y1, a, ?Y2),
(?X1, a, ?Z)}

n3 : {(?Y3, a, ?Y4),
(?X1, b, ?X1)}

T2 : n′
1 : {(?V, c, ?V)}

n′
2 : {(?Y1, a, ?Y2)}

n′
3 : {(?Y3, a, ?Y4),
(?Y1, b, ?Y1)}

n′
4 : {(?X1, a, ?Z)}

It is easy to see that there exists a homomorphism h: Pbranch(n3,T1) → Pbranch(n′
3,T2)

that is the identity on all shared variables. However, a strong homomorphism
H : Pbranch(n3,T1) → Pbranch(n′

3,T2) does not exist, because a homomorphism h3 : Pn3 →
Pbranch(n′

3,T2) ∪ Pbranch(n2,T1) with the properties required by Definition 5.5 is missing.
Now consider some variable assignment τ that is defined only on variables in

branch(n′
3, T2). If τ maps branch(n′

3, T2) into an RDF graph G, then because of the
homomorphism h there exists an extension τ ′ of τ that also maps branch(n3, T1) into G.

However, this is no longer the case for mappings that contain variables not occurring
in branch(n′

3, T2), but somewhere in the branch of n3. As a concrete example, consider the
mapping μ : {?V → v, ?Z → z} ∪ {?Yi → yi | 1 ≤ i ≤ 4} ∪ {?X1 → x1} over the RDF graph
G = {(v, c, v), (y1, a, y2), (x1, a, z), (y3, a, y4), (y1, b, y1)}. It can now be easily checked that
μ ∈ �T2�G and that it maps branch(n′

3, T2) into G. The homomorphism h suggests that we
can conclude that μ also maps branch(n3, T1) into G (or can be extended to a mapping
that does so). But μ(Pbranch(n3,T1)) � G, because of μ((?X1, b, ?X1)) = (x1, b, x1) /∈ G.
Hence, despite the existence of h and μ(branch(n′

3, T2)) ⊆ G, μ is not a solution to T1,
thus T1 �≡ T2.

Note that if we replace the pattern (?X1, b, ?X1) in n3 by (?Y1, b, ?Y1), then there exists
a strong homomorphism H : Pbranch(n3,T1) → Pbranch(n′

3,T2). Actually, T1 and T2 can then be
shown to be equivalent.

This idea, which will be crucial for our NP equivalence test, is formalized in the
following lemma.

LEMMA 5.7. Consider two QWDPTs T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2, r2),P2),
and let n1 ∈ V1 and n2 ∈ V2 with branch(n1, T1) = n1, . . . , nk. Then the following state-
ments are equivalent.

(1) There exists a strong homomorphism H : branch(n1, T1) → branch(n2, T2).
(2) For every i ∈ {1, . . . , k}, for every RDF graph G and every mapping μ:

vars(Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)) → dom(G) the following holds:
If μ(Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)) ⊆ G, then there exists a mapping μ′:
vars(Pbranch(n1,T1)) → dom(G) such that μ′(Pbranch(n1,T1)) ⊆ G and μ(?X) = μ′(?X)
for all ?X ∈ dom(μ) ∩ dom(μ′) (where for i = 1, let Pbranch(ni−1) = ∅).

PROOF IDEA. The basic idea of showing that property (1) implies property (2) is to
show the existence of μ′ via induction along the path from ni−1 to n1 (say ni, . . . , nk):
assuming that there exists a mapping μ j−1 mapping Pnj into G (for j ∈ {i, . . . , k}), the

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:32 A. Letelier et al.

mapping μ j can be constructed by combining μ j−1 and hj ∈ H. Omitting some technical
details, μ j can be basically defined as μ j−1(hj(Pnj)) ∪ μ. The idea is that hj maps Pnj

into Pbranch(nj−1,T1) ∪ Pbranch(n2,T2), from where either μ j−1 or μ (which agree on the shared
variables) map it into G. For the other direction (i.e., (2) ⇒ (1)), the existence of the
required homomorphisms can be shown making use of the frozen RDF graph of parts
of the query: consider the path n1, . . . , nk with n1 = r1 and nk = n1. Again, by omitting
some technical details, each homomorphism hi ∈ H (i.e., i ∈ {1, . . . , k}) can be basically
retrieved by considering P = Pbranch(ni ,T1) ∪ Pbranch(n2,T2). Now for G = fr(P), obviously
μ(P) ⊆ G holds for the mapping μ defined on all variables ?X ∈ vars(P) as μ(?X) =
fr(?X). The homomorphism hi with all required properties can then be constructed
from the extension μ′ of μ (that exists by assumption) as hi(?X) = fr−1(μ′(?X)) for
all ?X ∈ vars(Pni). The formal proof of the lemma is again provided in the electronic
appendix of this article.

We next discuss two further properties of strong homomorphisms on QWDPTs.
Recall that Example 5.6 shows that the existence of homomorphisms between two

branches does not imply the existence of strong homomorphisms. An immediate corol-
lary of the previous result, that will be also needed later, shows that the converse holds.
Its proof, based on the frozen RDF graph of branch(n2, T2) and Lemma 5.7, is provided
in the electronic appendix.

COROLLARY 5.8. Consider two QWDPTs T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2, r2),
P2) in R3 normal form, and let n1 ∈ V1 and n2 ∈ V2.

If there exists a strong homomorphism H : branch(n1, T1) → branch(n2, T2) then there
also exists a homomorphism h: Pbranch(n1,T1) → Pbranch(n2,T2) that is the identity on all
variables ?X ∈ vars(Pbranch(n1,T1)) ∩ vars(Pbranch(n2,T2)).

Lemma 5.7 holds in the general case that n1 and n2 belong to different QWDPTs. If n1
and n2 are from the same pattern tree T , we can even show a slightly stronger result:
Instead of talking about extensions of μ as in Lemma 5.7, we know that the property
is already satisfied by μ itself. The formal proof of the proposition can again be found
in the electronic appendix.

PROPOSITION 5.9. Consider a QWDPT T = ((V, E, r),P) and nodes n1, n2 ∈ V . Then
the following statements are equivalent.

(1) There exists a strong homomorphism H : branch(n1, T) → branch(n2, T).
(2) For every RDF graph G and μ ∈ �T �G it holds that μ(Pbranch(n1)) ⊆ G whenever

μ(Pbranch(n2)) ⊆ G.

5.2.2. Testing Equivalence of QWDPTs is in NP. As outlined earlier, the next step towards
an NP test for equivalence of QWDPTs is a strong homomorphism-based characteriza-
tion of equivalent QWDPTs in R3 normal form.

Recall that in QWDPTs, every variable occurs in some node that is an ancestor to
all other nodes containing this variable. Given two QWDPTs T1, T2 in R3 normal form,
the main aspect of the characterization of equivalence presented shortly is to require,
for every variable, this node in T1 (say n1) to be strongly homomorphically equivalent
with the corresponding node in T2 (say n2). Intuitively, this ensures that every variable
mapping that maps branch(n1, T2) into some RDF graph G can be also extended to map
branch(n2, T2) into G. By symmetry and the maximality of solutions, this implies that
in fact every solution on one QWDPT is also a solution on the other QWDPT.

THEOREM 5.10. Let T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2, r2),P2) be two QWDPTs
in R3 normal form. Then T1 ≡ T2 if and only if:

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:33

(1)
⋃

n∈V1
Pn = ⋃

n∈V2
Pn,

(2) Pr1 = Pr2 , and
(3) for all pairs (n1, n2) of nodes n1 ∈ V1 and n2 ∈ V2 with newvars(n1)∩newvars(n2) �= ∅

it holds that branch(n1, T1) and branch(n2, T2) are strongly homomorphically
equivalent.

PROOF IDEA. In the following, we only sketch the main ideas of the proof, which can
be found in the electronic appendix. For a better orientation, we will use the same
names here as in the full proof, even if this may look sometimes a little unintuitive.

The general structure of the proof showing that T1 ≡ T2 implies the properties (1), (2),
and (3) is as follows: Properties (1) and (2) are shown by providing a way how to create a
counterexample in case the property does not hold. In both cases, this counterexample
consists of the “frozen RDF graph” of some part of the “smaller” query, that is, that
query that misses either a triple or a variable (in case that both pattern trees contain
an element the other does not, one of them can be chosen arbitrarily). It is then shown
that the “identity” mapping μ = fr is a solution to the “smaller” query, but not to the
other one.

Instead of property (3), an obvious equivalent property is shown, namely: for every
variable ?X ∈ vars(T1), the branches branch(n1, T1) and branch(n2, T2) are strongly
homomorphically equivalent for n1 ∈ V1 such that ?X ∈ newvars(n1) and n2 ∈ V2 such
that ?X ∈ newvars(n2). The proof is done by induction along some total order <v on the
variables that satisfies the condition that if n is an ancestor of n′ in either T1 or T2, then
n <v n′ (such an order can be shown to exist).

For the other direction, the main idea is to show that T1 � T2 (T2 � T1 can be shown
by symmetric arguments, which implies T1 ≡ T2 by Lemma 5.4). Given μ ∈ �T1�G (for
arbitrary G) the goal is therefore to show that there exists some subtree R2 of T2
that contains the same variables as R1 (the subtree of T1 representing the solution
according to Lemma 3.24) and such that μ(R2) ⊆ G. Towards this goal, R2 is claimed
to be the minimal subtree S of T2 rooted at r2 such that vars(R1) ⊆ vars(S). The claim
is proven by induction along a sequence S1, . . . , Sm of subtrees where S1 consists of r2
only, Sm = S, and every Si+1 is Si extended by one node. The proof must show that
in every step the node added to Si contains only variables from R1 and μ(Si+1) ⊆ G.
Since Pr1 = Pr2 , the induction start is trivial. For the induction step, it is convenient to
distinguish two cases.

The first case assumes that μ is defined on all variables in vars(Pni+1) (where ni+1
is the node added to Si). In this case the idea is to show that the identity on all
variables in vars(Pn+1) is a homomorphism from Pn+1 into P(R1) ∪ P(Si). This proves
Pn+1 ⊆ P(R1) ∪ P(Si). Since μ(P(R1) ∪ P(Si)) ⊆ G (for Si by the induction hypothesis
and for R1 by assumption), this proves the case. The second case, that is, if μ is not
defined on all variables in vars(Pni+1) can be shown to lead to a contradiction to μ being
a solution.

We want to point out that the requirement that both queries contain the same set of
atoms is necessary, and does not follow from the strong homomorphical equivalence of
all nodes that share “new” variables, as can be seen in the following example.

Example 5.11. Consider the following two QWDPTs.
{(?X, a, ?X)}

{(?X1, b, ?Y1)}

{(?X, a, ?X)}

{(?X1, b, ?Y1), (?X2, b, ?Y2)}
Obviously these two QWDPTs are not equivalent, as they do not even contain the
same set of variables. However, it can be easily checked that all required strong

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:34 A. Letelier et al.

homomorphisms exist: the homomorphism building the strong homomorphism is just
the identity on all variables except for ?X2 and ?Y2 which are mapped to ?X1 and ?Y1,
respectively.

Since testing the existence of strong homomorphisms is NP-hard, while computing the
R3 normal form of a QWDPT requires a coNP test, Theorem 5.10 does not yet provide
an NP algorithm for deciding equivalence. However, the following result shows that
the coNP test can be avoided: instead of computing the R3 normal form, it suffices
to apply rule R3 “often enough” so that the conditions of Theorem 5.10 are satisfied.
Theorem 5.12 then guarantees that these properties still hold in R3 normal form, thus
excluding the possibility of “false positives”.

THEOREM 5.12. Consider two QWDPTs T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2,
r2),P2) in NR normal form such that (1)

⋃
n∈V1

Pn = ⋃
n∈V2

Pn, (2) Pr1 = Pr2 , and (3) for
all pairs (n1, n2) of nodes n1 ∈ V1 and n2 ∈ V2 with newvars(n1) ∩ newvars(n2) �= ∅ it
holds that branch(n1, T1) and branch(n2, T2) are strongly homomorphically equivalent.
Moreover, let T ∗

1 = ((V ∗
1 , E∗

1, r∗
1),P∗

1) and T ∗
2 = ((V ∗

2 , E∗
2, r∗

2),P∗
2) be R3 normal forms of

T1 and T2 respectively.
Then the following conditions still hold for T ∗

1 and T ∗
2 : (1)

⋃
n∈V ∗

1
Pn = ⋃

n∈V ∗
2

Pn,
(2) Pr∗

1
= Pr∗

2
, and (3) for all pairs (n∗

1, n∗
2) of nodes n∗

1 ∈ V ∗
1 and n∗

2 ∈ V ∗
2 with

newvars(n∗
1) ∩ newvars(n∗

2) �= ∅, it holds that branch(n∗
1, T ∗

1) and branch(n∗
2, T ∗

2) are
strongly homomorphically equivalent.

PROOF IDEA. First of all, observe that the application of rule R3 leaves the set of triple
patterns in a QWDPT unchanged. Thus property (1) still holds for T ∗

1 and T ∗
2 .

For the remaining two properties, we only give an intuition of the proof idea, and
provide the complete proof in the electronic appendix to this article.

Since property (3) is useful for proving (2), it is convenient to discuss the proof of
property (3) first. In order to do so, it suffices to show that for pairs (n1, n2) of nodes
n1 ∈ V1 and n2 ∈ V2 that introduce the same variable, there still exist strong homomor-
phisms between the corresponding branches after applying any of Rule R1, R2, or R3.
The existence of the different homomorphisms is shown by applying the following ideas.
The original (strong) homomorphism may remain valid, the required homomorphism
can be constructed by extending some homomorphism by the identity mapping, or the
composition of two existing homomorphisms gives the required homomorphism. In case
that none of these cases applies, the existence of further strong homomorphisms can
be concluded that can then be used to construct the required mapping. The concrete
proof is a very technical description of how these ideas can be applied in different cases
to get the desired result. Therefore even a more detailed proof sketch is omitted.

Finally, in order to show that property (2) holds, first observe that obviously Rules R1
and R2 never change the root. Thus the only rule to consider is Rule R3. We distinguish
three cases, based on the roots r∗

1 and r∗
2 (i.e., the roots in the assumed R3 normal forms).

If both roots are ground, then it can be shown that either Rule R3 was never applicable
to any child of the roots, or the child node contained a subset of the triple patterns in
the root. In both cases, the roots remained unchanged, and the result follows from the
assumption.

The second case is that one of r∗
1 and r∗

2 is ground, but the other is not. This can
be shown to contradict the assumption that T ∗

1 and T ∗
2 are in R3 normal form. Both

QWDPTs share the same set of variables. Hence the variable that occurs in the non-
ground root (say in r∗

2) must occur somewhere in T ∗
1 , say in some node n. Because of

property (3), there exists a strong homomorphism branch(n, T ∗
1) → r∗

2 . It can be further
shown that there exists a strong homomorphism from r∗

2 to r∗
1 (basically following from

Pr1 = Pr2 and the homomorphisms that allowed us to transform r2 into r∗
2 by merging

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:35

children of r2 into r2). However, the existence of these two strong homomorphisms can
be shown to contradict the assumption that T ∗

1 is in R3 normal form, since their com-
bination gives rise to a homomorphism that allows one to apply Rule R3 to n (in the
following we refer to this property as property (i)).

The third case applies if both roots are assumed to be nonground. In this case, one
can show that if newvars(r∗

1) � newvars(r∗
2) this again gives a contradiction to T ∗

1
and T ∗

2 being in R3 normal form (the idea is similar to before: first identify appro-
priate strong homomorphisms, and then show the contradiction using property (i)).
For newvars(r∗

1) ⊆ newvars(r∗
2), because newvars(r∗

1) = vars(r∗
1) it must be the case that

vars(r∗
1) ⊆ vars(r∗

2). Because there further exists a strong homomorphism H : r∗
1 → r∗

2 , it
must be the identity on all variables in vars(r∗

1), and therefore Pr∗
1

⊆ Pr∗
2
. By symmetric

arguments also Pr∗
2

⊆ Pr∗
1

follows.

Given two QWDPTs T1 and T2, the combination of Theorem 5.10 and Theorem 5.12
suggests the following algorithm for deciding whether T1 ≡ T2.

(1) Transform T1 and T2 into NR normal forms T ∗
1 and T ∗

2 , respectively.
(2) Guess two application sequences S1 and S2 of Rule R3 (i.e., nodes where to apply

Rule R3 and the corresponding homomorphisms), one starting on T ∗
1 and one on

T ∗
2 , of length at most |V ∗

1 |, respectively, |V ∗
2 |.

(3) Check that the homomorphisms from step 2 fulfill the conditions of Rule R3. Denote
the QWDPTs resulting from these R3 applications with T ′

1 and T ′
2 .

(4) For any two nodes n1 in T ′
1 and n2 in T ′

2 with newvars(n1) ∩ newvars(n2) �= ∅,
guess strong homomorphisms (i.e., collections of homomorphisms according to
Definition 5.5) in both directions between branch(n1, T ′

1) and branch(n2, T ′
2).

(5) Check that T ′
1 and T ′

2 fulfill conditions (1)–(3) of Theorem 5.12.

By showing the correctness of this algorithm and providing a matching lower bound,
this gives the main result of this section.

THEOREM 5.13. The equivalence problem of QWDPTs (and, therefore, of well-
designed SPARQL graph patterns) is NP-complete.

PROOF. The NP-membership follows from the preceding algorithm. The proof of its
correctness and runtime is given in the electronic appendix to this article.

The NP-hardness is shown by a straightforward reduction from the well-known
NP-complete problem 3COL on graphs. Let G = (V, E) be an arbitrary instance of
3COL. We define the following two sets of triple patterns.

—G1 : {(r, e, g), (g, e, r), (b, e, r), (r, e, b), (b, e, g), (g, e, b), (?V1, ?V2, ?V3)}
—G2 : {(?Xi, e, ?Xj) | (vi, v j) ∈ E}
Using these patterns, we define the QWDPTs T1 and T2 as follows: Let T1 contain a
single node r1 and let T2 contain two nodes, that is, the root r2 and a child node n2 of
the root r2. We define Pr1 = G1 ∪ G2, Pr2 = G1, and Pn2 = G2.

First of all it is easy to see that the reduction is feasible in polynomial time. The
proof of its correctness is provided in the electronic appendix.

In this section, we have thus proved that testing equivalence of QWDPTs, and there-
fore of well-designed SPARQL graph patterns, is in NP. We notice that our proof re-
quired a nontrivial use of the tree representation of SPARQL queries and the normal
forms introduced in the previous section. One of the main contributions of this section
is the introduction of the notion of strong homomorphisms which is the core notion in
the NP equivalence test. We expect that just as homomorphisms are the fundamental
tool for checking equivalence of CQs and extensions of CQs [Chandra and Merlin 1977;

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:36 A. Letelier et al.

Ullman 1997], strong homomorphisms can be used to design equivalence tests for more
expressive fragments of SPARQL.

6. WELL-DESIGNED SPARQL GRAPH PATTERNS WITH PROJECTION
So far we only considered the case where solutions to QWDPTs (or, equivalently, well-
designed SPARQL graph patterns) contain all variables for which a mapping could be
found. In terms of CQs, this corresponds to the case where all variables in a CQ are
free, that is, of CQs without projection. However, since projection is an interesting and
important feature in every query language, in this section we reconsider all results
achieved so far in the presence of projection. Towards this goal, after settling the se-
mantics of projection we start by reconsidering the transformation rules and normal
forms explored in Section 3.3. We then take a look on the evaluation and enumera-
tion problem of QWDPTs in the presence of projection. Subsequently, we will study
subsumption and equivalence for QWDPTs in the new setting.

Unlike in the previous sections, in the presence of projection there is a difference
between bag- and set-semantics. Following the majority of research on CQs and their
extensions, we also consider set-semantics and leave bag-semantics as future work.

6.1. Semantics and Notation
In SPARQL 1.0, projection is not part of the graph patterns, but is applied as a result
modifier on top of the set of mappings returned by the SPARQL graph pattern. We take
the same approach for our studies of projection on QWDPTs.

Definition 6.1 (pQWDPT). A projected QWDPT (pQWDPT) is a pair (T , X) where
T is a QWDPT and X ⊆ vars(T) is a set of variables.

That is, in order to express projection we explicitly annotate a QWDPT with the set of
variables onto which the result shall be projected.

The semantics of a pQWDPT is easily defined in terms of QWDPTs. For a mapping μ
and a set of variables X, let μ|X denote the mapping μ′ defined as dom(μ′) = X∩dom(μ)
and μ′(?X) = μ(?X) for all ?X ∈ dom(μ′). That is, μ|X denotes the projection of μ
to the variables in X. Given a pQWDPT (T , X) and an RDF graph G, its semantics
�(T , X)�G is defined as the projection of �T �G onto X, formally defined as �(T , X)�G =
{μ|X | μ ∈ �T �G} [Pérez et al. 2006b]. In analogy to CQs, we call the variables in X
the free variables (fvars(T)) and the variables in vars(T)\X the existential variables
(evars(T)). Also, for a set Pn of triple patterns at some node n of T , let fvars(Pn) be
the set of free variables occurring in Pn, that is, fvars(Pn) = vars(Pn) ∩ fvars(T). In
analogy to the notion of newvars(n) for some node n of T , let newfvars(n) denote the set
newfvars(n) = fvars(Pn)\ vars(Pbranch(n̂)) where n̂ is the parent node of n. Analogously,
newevars(n) = evars(Pn)\ vars(Pbranch(n̂)).

For two QWDPTs T1 and T2, we always assume that evars(T1) ∩ evars(T2) = ∅. Note
that this can be easily achieved by variable renaming.

6.2. Rules and Normal Forms
Concerning the evaluation of pQWDPTs, there is not much difference between allowing
for projection or not. Especially the top-down evaluation presented in Section 3.2 is still
applicable (the results retrieved from this evaluation must only be projected onto the
free variables).

However, in the presence of projection there is some difference with respect to
transformations as discussed in Section 3.3, and the properties we can show for
the corresponding normal forms. Recall that in Section 3.3, we introduced a set of
equivalence-preserving transformation rules for QWDPTs together with two normal
forms of QWDPTs: in NR normal form, neither Rule R1 nor Rule R2 can be applied to

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:37

a QWDPT T , while in R3 normal form in addition Rule R3 is not applicable as well. We
now examine in how far those results carry over or need to be adapted when allowing
in addition for projection.

First of all, Rules R1, R3, and R4 are obviously still correct (i.e., equivalence
preserving) also in the presence of projection. It is, however, easy to see that on
several pQWDPTs the transformations described by Rule R2 could be performed safely
although the formulation in Section 3.3 does not allow Rule R2 to be applied. Such a
case is demonstrated by the following example.

Example 6.2. Consider the following pQWDPT (T , X) with X = {?X} and T as
shown next.

n1 : {(?X, a, ?X)}

n2 : {(?Y, b, ?Y)}
For the subtree T ′ of T consisting only of n1, it obviously holds for every RDF graph G

that �(T , X)�G = �(T ′, X)�G. Note that while n2 introduces a new variable, this variable
is neither part of the solution, nor has it any influence on the solutions.

This example shows that considering only nodes n with newvars(n) = ∅ is unnecessar-
ily restrictive in the presence of projection. Instead, Rule R2 can be strengthened to
Rule R2’ as follows:

Rule R2’ (deletion of unproductive nodes in the presence of projection): Let n, n̂ ∈
V such that n̂ is the parent of n, and let n1, . . . , nk ∈ V be the children of n. If
newfvars(n) = ∅ and the resulting pattern tree is still quasi well designed, then merge
n into each of its children and make each ni a child of n̂. That is, let P ′

ni
= Pni ∪ Pn for

i = {1, . . . , k}, V ′ = V \{n}, and E′ = (E\{(n̂, n), (n, n1), . . . , (n, nk)})∪{(n̂, n1), . . . , (n̂, nk)}.
If n has no child node, then applying this rule is equivalent to deleting n.

Note that while in the preceding rule it is sufficient if a node does not introduce any
“new” free variables, unlike Rule R2 it has the additional restriction that it must not
be applied if the result is not quasi well designed. This is because it might now be the
case that R2’ is applied to a node that introduces some existential variable. Merging
this node into more than one child would lead to a pattern tree that is no longer quasi
well designed, as depicted in the following example.

Example 6.3. Consider the following pQWDPT (T , {?X, ?X1, ?X2}).
n1 : {(?X, a, ?X)}

n2 : {(?Y, b, ?Y)}

n3 : {(?Y, c, ?Y)}

n4 : {(?X1, a, ?Y)} n5 : {(?X2, a, ?X)}
Then n2 could be merged into n3, and the resulting node could be merged into both

n4 and n5 which would become direct children of n1. However, then both of them would
contain the variable ?Y , which does not occur in n1. Hence the result would not be quasi
well designed.

Note that Example 6.3 also shows that a similar result as Proposition 3.23 does not
hold for Rule R2’. Especially, applying R1 and R2’ in arbitrary order does not lead to a
unique result. In the previous example, there are two possibilities to apply R2’: either

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:38 A. Letelier et al.

merge n2 into n3, or merge n3 into both n4 and n5. In both cases, R2’ cannot be applied
subsequently, since as discussed the result would not be quasi well designed. Hence we
get two different pQWDPTs to which neither R1 nor R2’ can be applied.

We nevertheless apply the definitions of NR normal form and R3 normal form to
pQWDPTs as well. That is, a pQWDPT (T , X) is in NR normal form if T is reduced
with respect to Rules R1 and R2’. Furthermore, (T , X) is in R3 normal form if it is
reduced with respect to Rules R1, R2’, and R3. Note that just as in Section 3.3, both
NR and R3 normal form of a pQWDPT can be computed by a linear number of rule
applications of R1, R2’, and R3.

A more detailed study of the properties of NR and R3 normal form of pQWDPTs in
the line of the one presented in Section 3.3 for QWDPTs is left as future work. How-
ever, already these very basic considerations and definitions allow us to come up with a
characterization of solutions to pQWDPTs similar to Lemma 3.24. Furthermore, they
are also sufficient to extend our results on testing for subsumption and equivalence be-
tween QWDPTs to pQWDPTs. We start with providing the important characterizations
of solutions to pQWDPTs.

LEMMA 6.4. Let (T , X) be a pQWDPT in NR normal form, G an RDF graph, and μ
a variable mapping for some subset of X. Then μ ∈ �(T , X)�G if and only if there exists a
subtree T ′ of T = ((V, E, r),P) rooted at r such that:

(1) dom(μ) = fvars(T ′) and
(2) there exists a mapping λ on evars(T ′) such that μ ∪ λ ∈ �T �G.

PROOF. Follows immediately from the definition of �(T , X)�G and Lemma 3.24.

This characterization provides a useful tool that will be used in the proofs of various
complexity results presented next.

6.3. Evaluation in the Presence of Projection
For CQs without existential quantified variables, the decision problem corresponding
to EVALUATION is tractable. However, it becomes NP-complete for CQs with exis-
tentially quantified variables. The next result shows that a similar behavior can be
observed for well-designed SPARQL graph patterns as well. That is, the complexity
increases by one level in the polynomial hierarchy if projection is added. Formally, we
consider the following variant of EVALUATION.

Definition 6.5. Let EVALUATIONproj be the following decision problem.
INPUT: A pQWDPT (T , X), an RDF graph G, and a mapping μ on X.
QUESTION: Is μ ∈ �(T , X)�G?

We next show that this problem is �P
2 -complete.

THEOREM 6.6. The problem EVALUATIONproj is �P
2 -complete.

PROOF SKETCH. Membership is shown by devising a simple “guess and check” al-
gorithm that tests whether the solution candidate μ satisfies Lemma 6.4. Given a
QWDPT T , a mapping μ, a set X of free variables, and an RDF graph G, the witness
(or certificate) that must be guessed by the algorithm consists of:

(1) the subtree T ′ of T rooted at r and
(2) the mapping λ on evars(T ′).

For the “check” part, it remains to test whether fvars(T ′) = dom(μ) and whether
μ ∪ λ ∈ �T �G. The first test can be obviously done in polynomial time, while the second
test is in coNP [Pérez et al. 2009].

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:39

Hardness is shown by reduction from the problem Q-3COL∃,2, which is the following
decision problem: given a graph G = (V, E) together with a partition (V1, V2) of V ,
the question is whether there exists a 3-coloring φ1 of V1, such that for all possible
3-colorings φ2 of V2 the 3-coloring φ = φ1 ∪φ2 is no valid 3-coloring of G. Please observe
that in order to provide short names for the different concepts, with a 3-coloring we
refer to an arbitrary assignment of the nodes to three colors (not necessarily assigning
different colors to nodes connected by an edge). If in addition all adjacent nodes are
assigned different colors, we call this a valid 3-coloring. The �P

2 -completeness of this
problem follows immediately from Ajtai et al. [2000].

Hence let an arbitrary instance of this problem be given by a graph C = (VC, EC) and
a partition (V1, V2) of VC . We construct an instance ((T , X), G, μ) of EVALUATIONproj .
Let T = ((V, E, r),P) with V = {r, n} and E = {(r, n)}, and P, G, X, μ be defined as
follows.

G = {(a, a, a), (1, e, 2), (2, e, 1), (1, e, 3), (3, e, 1), (2, e, 3), (3, e, 2), (1, c, 1), (2, c, 2), (3, c, 3)},
Pr = {(?Yi, c, ?Yi) | vi ∈ V1},
Pn = {(?Yi, c, ?Yi) | vi ∈ V2} ∪ {(?Yi, e, ?Yj) | (vi, v j) ∈ E} ∪ {(?A, a, ?A)},
X = {?A} and μ = μ∅ (i.e., the empty mapping).

This reduction is obviously feasible in polynomial time. A formal proof of its correctness
is provided in the electronic appendix. Next, only a short intuitive description of the
idea of the proof is provided.

Towards the idea of the proof, first note that μ∅ ∈ �(T , X)�G iff there exists some
mapping on vars(Pr) that cannot be extended to Pn. Now there is an obvious one-to-
one correspondence between mappings μ on vars(Pr) and 3-colorings τ of V1. There
is further a one-to-one correspondence between mappings μ′ on vars(Pn) \ {?A} and
colorings τ ′ of V2. However, the combined mapping μ ∪ μ′ only maps Pn into G if the
corresponding coloring τ ∪ τ ′ is a valid 3-coloring of C: obviously, μ ∪ μ′ must map
variables ?Yi and ?Yj representing nodes vi, v j ∈ VC that are connected by an edge in
EC to different values in order to map the triple (?Yi, e, ?Yj) into G. Hence, μ∅ is only
a solution if there exists some mapping μ on Pr such that it cannot be extended to a
mapping μ′ with μ′(Pn) ⊆ G. By the relationship sketched before, this corresponds to
the fact that there exists some 3-coloring on V1 that cannot be extended to a coloring
on V2 that is a valid 3-coloring of C (since every such coloring would give rise to a
corresponding extension μ′ of μ).

While for CQs with projection, deciding if a given tuple is part of the solution over
some instance is NP-complete, the problem becomes tractable if the query is acyclic. In
fact, ACQs are a rather restricted class of CQs for which this problem is tractable, since
many other tractable classes aim at generalizing the set of ACQs. Hence in our setting
the natural next question is how the complexity is changed if, given some QWDPT T ,
we assume the sets of triple patterns at each node in T to be acyclic. The next result
shows that while the problem becomes easier, it still remains intractable.

THEOREM 6.7. Suppose that we only consider pQWDPTs built from QWDPTs where
the sets of triple patterns at each node are from tractable fragments of CQ evaluation.
Then the problem EVALUATIONproj is in NP. The problem remains NP-hard even if the
sets of triple patterns at each node of the QWDPT are acyclic.

PROOF. Membership is shown using the “guess and check” algorithm presented in
the proof of Theorem 6.6. Just note that in the current setting also the second test is
feasible in polynomial time, according to Corollary 4.1.

The hardness will follow immediately from the proof of Theorem 6.8 given shortly.
Its discussion is therefore postponed.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:40 A. Letelier et al.

Note that the reason for EVALUATIONproj to become easier in this setting is the
same as in Corollary 4.1. That is, testing whether the mapping μ ∪ λ ∈ �T �G (where
μ is the solution, T ′ the guessed subtree, and λ the guessed mapping on evars(T ′)) is
in polynomial time. Hence the formulation “the sets of triple patterns at each node of
the QWDPT are from tractable fragments of CQ evaluation” might be unnecessarily
restrictive. In fact, it is only important that the second step (the “check” part) of
the preceding algorithm can be decided in polynomial time. Possible relaxations of the
formulation of the theorem that still guarantee that the check can be done in polynomial
time have been already discussed in the paragraph following Corollary 4.1. The same
discussion also applies in this case.

6.4. Enumeration in the Presence of Projection
We next extend our results on the enumeration problem to settings that also allow for
projection. Similar as in the case of the decision problem, also the enumeration problem
becomes harder in the presence of projection. While for the case without projection we
showed that the existence of polynomial delay algorithms for the sets of triple patterns
at each node of a QWDPT implies the existence of a polynomial delay algorithm for
the QWDPT, the following result shows that for pQWDPTs, such an algorithm does
not exist. In fact, it shows an even stronger result, namely that already in case that
the sets of triple patterns at each node are acyclic, there does not even exist an output
polynomial algorithm.

THEOREM 6.8. Under the assumption that P �= NP, the problem
ENUMERATIONproj cannot be solved in output polynomial time, even if the sets
of triple patterns at each node of the input pQWDPT are acyclic.

PROOF. The proof is by showing that if an output polynomial algorithm exists, then
the problem 3COL could be solved in polynomial time. Towards this goal, let an arbi-
trary instance of 3COL be given by a graph C = (VC, EC) where VC = {v1, . . . , vn} and
EC = {e1, . . . , em}. Given C, construct an instance ((T , X), G) of ENUMERATIONproj

with T = ((V, E, r),P) where V = {r, n1, . . . , nm} and E = {(r, n1)} ∪ {(ni−1, ni) | 2 ≤ i ≤
m}. Let further G, P, and X be defined as

G = {(u, a, u), (1, c, 1), (2, c, 2), (3, c, 3), (1, e, 2), (2, e, 1), (1, e, 3), (3, e, 1), (2, e, 3), (3, e, 2)},
Pr = {(?U, a, ?U)},
Pni = {(?Vj, c, ?Vj) | v j ∈ VC} ∪ {(?Vk, e, ?V�)}, for 1 ≤ i ≤ m− 1 and ei = (vk, v�),
Pnm= {(?Vk, e, ?V�), (?W, a, ?W)} where em = (vk, v�) and
X = {?U, ?W}.
Now T is obviously quasi well designed, and also the BGP at each node is obviously
acyclic: for the nodes n1, . . . , nm−1, just consider the join tree where all triple patterns
{(?Vk, c, ?Vk) | vk ∈ VC} are connected to the triple pattern (?Vk, e, V�). The BGPs Pr and
Pnm are trivially acyclic.

The idea of the proof is very similar to that of the proof of Theorem 6.6. Therefore
only a short proof sketch is given. It is obvious that �(T , X)�G contains at most two
mappings, namely μ1 = {?U → a} and μ2 = {?U → a, ?W → a}. Furthermore, the
following relationships between C and �(T , X)�G hold.

—If there exists no valid 3-coloring for C, then �(T , X)�G = {μ1}.
—If there exist valid 3-colorings for C but not all possible 3-colorings are valid, then

�(T , X)�G = {μ1, μ2}.
—If all possible 3-colorings of C are valid 3-colorings, then �(T , X)�G = {μ2}.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:41

The key observation towards those three properties is that every mapping μ with
μ(Pn1) ⊆ G encodes a 3-coloring on VC , and every extension μ′ of μ to the variable
?W with μ′(Pbranch(nm)) ⊆ G encodes a valid 3-coloring on C: note that μ′(Pni) ⊆ G iff
the coloring encoded by μ′ assigns different colors to the two nodes connected by edge
ei ∈ EC .

In order to see that this indeed shows the nonexistence of an output polynomial
enumeration algorithm for ENUMERATIONproj even in the case that the BGP at each
node of the input pQWDPT is acyclic, assume to the contrary that such an algorithm
exists. Since we have just shown that |�(T , X)�G| ≤ 2, this would imply that we can
enumerate the solutions of T in (input) polynomial time. Hence we construct a PTIME
decision procedure for 3COL by first enumerating the solutions of T over G and then
checking whether μ2 ∈ �(T , X)�G. Since this is obviously feasible in polynomial time,
this gives the desired contradiction to P �= NP.

Note that from the previous proof the hardness of Theorem 6.7 follows immediately:
consider the same reduction as shown in the preceding proof. Then we have just shown
that μ2 ∈ �(T , X)�G iff C is a positive instance of 3COL.

6.5. The Subsumption and Equivalence Problem
Next, extending the results of Section 5 to projection, we study the problems of deciding
subsumption and equivalence of pQWDPTs. Recall that all results in this section are
stated for set-semantics and that the study of bag-semantics is left for future work.
Note that in case of projection two pQWDPTs may return the same variable assignment
on the free variables due to completely different mappings on the existential variables
(and thus structures of the queries). Hence, intuitively, testing for subsumption and
equivalence in the presence of projection requires one to consider more possibilities
than without projection. Indeed, we show in this section that while the complexity of
subsumption remains unchanged, the complexity of testing equivalence increases.

Before showing these results, we first clarify the notions of subsumption and equiv-
alence for pQWDPTs. Given two pQWDPTs (T1, X1) and (T2, X2), (T1, X1) is subsumed
by (T2, X2), denoted as usual by (T1, X1) � (T2, X2), if �(T1, X1)�G � �(T2, X2)�G holds
for every RDF graph G. Similarly, the two pQWDPTs are equivalent, denoted by
(T1, X1) ≡ (T2, X2), if �(T1, X1)�G = �(T2, X2)�G holds for every RDF graph G.

Our first result shows that deciding subsumption for pQWDPTs is similar to deciding
subsumption for QWDPTs. In fact, the following lemma—characterizing subsumption
between pQWDPTs—is a generalization of Lemma 5.2, since basically property (2)
requires the homomorphism to be the identity on the shared variables.

LEMMA 6.9. Consider pQWDPTs (T1, X1) and (T2, X2) with roots r1 and r2, respec-
tively. Then (T1, X1) � (T2, X2) if and only if X1 ⊆ X2 and for every subtree T ′

1 of T1 rooted
at r1, there exists a subtree T ′

2 of T2 rooted at r2 such that:

(1) vars(T ′
1) ∩ X1 ⊆ vars(T ′

2), and
(2) there exists a homomorphism from the triples in T ′

2 to the triples in T ′
1 that is the

identity over vars(T ′
1) ∩ X1.

The proof of this lemma is similar to that of Lemma 5.2, providing the characteriza-
tion for the case without projection. The proof can therefore be found in the electronic
appendix of this article. Note that this result, just as Lemma 5.2 for QWDPTs, gives
an immediate �P

2 algorithm for testing subsumption between two pQWDPTs.
Hence, for the subsumption problem, the complexity does not change when going from

QWDPTs to pQWDPTs. The next result shows that testing for equivalence becomes
harder in the presence of projection than it is without.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:42 A. Letelier et al.

LEMMA 6.10. Let (T1, X1) and (T2, X2) be two pQWDPTs. Deciding whether (T1, X1) ≡
(T2, X2) is �P

2 -hard.

The proof of this result is provided completely in the electronic appendix to this work.
Recall that for the case without projection, Lemma 5.4 established a close connection

between subsumption and equivalence (by showing T1 ≡ T2 iff T1 � T2 and T2 � T1
holds for QWDPTs T1 and T2), thus giving an immediate �P

2 algorithm for testing
equivalence. As the following example shows, this relationship does no longer hold in
the presence of projection.

Example 6.11. Consider the following two pQWDPTs (T1, X) and (T2, X) with
T1: n1 : {(?X1, a, ?Y1), (?Y2, a, ?Y3)}

n′
2 : {(?X2, a, ?Y3), (?X2, a, ?X2), (?Y2, a, ?Y2)}

T2: n′
1 : {(?X1, a, ?Y ′

1)}

n′
2 : {(?X2, a, ?Y ′

3), (?X2, a, ?X2)}
and let X = {?X1, ?X2}. Then (T1, X) � (T2, X) and (T2, X) � (T1, X), as can be checked
using Lemma 6.9: the checks for (T1, X) � (T2, X) as well as the check for the subtree
of T2 consisting of n′

1 only for testing (T2, X) � (T1, X) are rather easy to verify. For the
remaining case of testing the complete tree T2, consider the following mapping from
vars(T1) to vars(T2): first of all, ?X1 →?X1 and ?X2 →?X2 is required. Furthermore,
take ?Y1 →?Y ′

1, ?Y2 →?X2, and ?Y3 →?Y ′
3. It can be checked that this indeed maps

all triples in T1 into T2, and therefore proves (T2, X) � (T1, X). However, for the RDF
graph G = {(1, a, 1), (1, a, 0), (2, a, 3)}, the mapping μ defined as μ := {?X1 → 1, ?Y1 →
0, ?Y2 → 2, ?Y3 → 3} gives rise to the solution μ|X = {?X1 → 1} of (T1, X): just note
that μ cannot be extended to n2 since (μ(?Y2), a, μ(?Y2)) = (2, a, 2) /∈ G. However, λ =
{?X1 → 1} /∈ �(T2, X)�G since every extension λ′ of λ to ?Y ′

1 with (λ′(?X1), a, λ′(?Y ′
1)) ⊆ G

can be extended to a mapping λ′′ such that λ′′(Pn′
2
) ⊆ G.

As a result, for pQWDPTs the �P
2 -membership of subsumption does not give any upper

bound on the complexity of equivalence, and we have to leave the exact complexity of
deciding equivalence as an open problem. An upper bound for this problem is not yet
known.

We conclude by observing that the “theme” of problems becoming more difficult in
the presence of projection compared to the setting without projection showed up for
almost every problem studied in this section. The subsumption problem is a notable
exception in this respect.

7. CONCLUDING REMARKS
Static analysis is a fundamental task in query optimization. In this article we have ini-
tiated the study of this problem for SPARQL queries by concentrating on the fragment
of well-designed SPARQL queries. One of our main contributions is the introduction
of an abstract representation of well-designed queries as trees. This representation
allowed us to provide transformation rules and normal forms that proved useful when
studying equivalence, containment, and tractable query enumeration. Table I provides
an overview on the corresponding complexity results presented in this article. It can be
observed that allowing for projection on top of well-designed SPARQL graph patterns
increases the complexity of almost all of the problems studied. Our results further show
that the huge amount of results on efficient CQ evaluation can be fruitfully applied
to the evaluation of the conjunctive parts of well-designed SPARQL graph patterns
to reduce the complexity of several of the problems studied. Beside settling the exact
complexity of the equivalence problem in presence of projection, an interesting line for
future work is the inclusion of further SPARQL operators to our study, in particular,

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:43

Table I. Overview on Complexity Results

� ≡ eval. (tract. CQ) enum. for tract. CQ

no projection �P
2 NP coNP∗ (in P) polynomial delay

with projection �P
2 �P

2 -hard �P
2 (NP) not output polynomial

Complexity of the problems on well-designed SPARQL graph patterns studied in this
article: subsumption (�), equivalence (≡), evaluation (eval.), and enumeration (enum.).
“tract. CQ” denotes the settings where all sets of triple patterns of the input (p)QWDPT
are assumed to be from tractable classes of CQ evaluation. If not stated otherwise, the
problems are complete for the given complexity classes.
* [Pérez et al. 2009].

to consider filtering, union, and the new language features of SPARQL 1.1, such as
difference, nested projection, and aggregate functions.

On the practical side, in Letelier et al. [2012a], we combined the techniques and
algorithms presented in this article (both those for manipulating pattern trees and
those for testing equivalence and subsumption) in a tool that helps a user to analyze
(thus to better understand), modify, and manually optimize her SPARQL queries.

The next step will be to create a competitive SPARQL engine based on pattern trees,
transformations on them, and the top-down evaluation.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
ABADI, D. J., MARCUS, A., MADDEN, S., AND HOLLENBACH, K. J. 2007. Scalable semantic web data management

using vertical partitioning. In Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB’07). ACM Press, New York, 411–422.

AJTAI, M., FAGIN, R., AND STOCKMEYER, L. J. 2000. The closure of monadic np. J. Comput. Syst. Sci. 60, 3,
660–716.

ANGLES, R. AND GUTIERREZ, C. 2008. The expressive power of SPARQL. In Proceedings of the 7th International
Semantic Web Conference (ISWC’08). Lecture Notes in Computer Science, vol. 5318, Springer, 114–129.

ARENAS, M. AND PÉREZ, J. 2011. Querying semantic web data with SPARQL. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’11). ACM Press, New
York, 305–316.

BAGAN, G., DURAND, A., AND GRANDJEAN, E. 2007. On acyclic conjunctive queries and constant delay enumer-
ation. In Proceedings of the 21st International Workshop on Computer Science Logic (CSL’07). Lecture
Notes in Computer Science, vol. 4646, Springer, 208–222.

BERNERS-LEE, T. 2006. Linked data – Design issues. http://www.w3.org/DesignIssues/LinkedData.html.
BIZER, C., HEATH, T., AND BERNERS-LEE, T. 2009. Linked data - The story so far. Int. J. Semantic Web Inf. Syst.

5, 3, 1–22.
CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in relational data

bases. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing (STOC’77). ACM
Press, New York, 77–90.

CHEKOL, M. W., EUZENAT, J., GENEVES, P., AND LAYAIDA, N. 2012. SPARQL query containment under shi axioms.
In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12). AAAI Press.

CHEKURI, C. AND RAJARAMAN, A. 2000. Conjunctive query containment revisited. Theor. Comput. Sci. 239, 2,
211–229.

COHEN, S., FADIDA, I., KANZA, Y., KIMELFELD, B., AND SAGIV, Y. 2006. Full disjunctions: Polynomial-delay iterators
in action. In Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06). ACM
Press, New York, 739–750.

DBPEDIA. 2012. DBPedia.org. http://DBpedia.org/sparql.
FLUM, J., FRICK, M., AND GROHE, M. 2002. Query evaluation via tree-decompositions. J. ACM 49, 6, 716–752.
GALLEGO, M. A., FERNANDEZ, J. D., MARTINEZ-PRIETO, M. A., AND DE LA FUENTE, P. 2011. An empirical study of

real-world SPARQL queries. In Proceedings of the 1st International Workshop on Usage Analysis and the
Web of Data (USEWOD’11).

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

25:44 A. Letelier et al.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000. A comparison of structural CSP decomposition methods. Artif.
Intell. 124, 2, 243–282.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2002. Hypertree decompositions and tractable queries. J. Comput.
Syst. Sci. 64, 3, 579–627.

GRECO, G. AND SCARCELLO, F. 2010a. The power of tree projections: Local consistency, greedy algorithms, and
larger islands of tractability. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS’10). ACM Press, New York, 327–338.

GRECO, G. AND SCARCELLO, F. 2010b. Structural tractability of enumerating CSP solutions. In Proceedings of
the 16th International Conference on Principles and Practice of Constraint Programming (CP’10). Lecture
Notes in Computer Science, vol. 6308, Springer, 236–251.

GUTIERREZ, C., HURTADO, C. A., MENDELZON, A. O., AND PÉREZ, J. 2011. Foundations of semantic web databases.
J. Comput. Syst. Sci. 77, 3, 520–541.

HM GOVERNMENT. 2012. data.gov.uk. http://data.gov.uk.
JOHNSON, D. S., PAPADIMITRIOU, C. H., AND YANNAKAKIS, M. 1988. On generating all maximal independent sets.

Inf. Process. Lett. 27, 3, 119–123.
KANZA, Y., NUTT, W., AND SAGIV, Y. 2002. Querying incomplete information in semi-structured data. J. Comput.

Syst. Sci. 64, 3, 655–693.
LARSON, P.-A. AND ZHOU, J. 2005. View matching for outer-join views. In Proceedings of the 31st International

Conference on Very Large Data Bases (VLDB’05). ACM Press, New York, 445–456.
LASSILA, O. AND SWICK, R. R. 1999. Resource description framework (RDF) model and syntax. W3C Recom-

mendation. http://www.w3.org/TR/PR-rdf-syntax.
LETELIER, A., PÉREZ, J., PICHLER, R., AND SKRITEK, S. 2012a. SPAM: A SPARQL analysis and manipulation tool.

Proc. VLDB Endow. 5, 12, 1958–1961.
LETELIER, A., PÉREZ, J., PICHLER, R., AND SKRITEK, S. 2012b. Static analysis and optimization of semantic

web queries. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS’12). ACM Press, New York, 89–100.

MALLEA, A., ARENAS, M., HOGAN, A., AND POLLERES, A. 2011. On blank nodes. In Proceedings of the International
Semantic Web Conference. 421–437.

NEUMANN, T. AND WEIKUM, G. 2010. The RDF-3x engine for scalable management of RDF data. Int. J. VLDB
19, 1, 91–113.

PÉREZ, J., ARENAS, M., AND GUTIERREZ, C. 2006a. Semantics and complexity of SPARQL. In Proceedings of the
5th International Semantic Web Conference (ISWC’06). Lecture Notes in Computer Science, vol. 4273,
Springer, 30–43.

PÉREZ, J., ARENAS, M., AND GUTIERREZ, C. 2006b. Semantics of SPARQL. Tech. rep. TR/DCC-2006-17, Univer-
sidad de Chile. http://users.dcc.uchile.cl/∼jperez/papers/sparql.semantics.pdf.

PÉREZ, J., ARENAS, M., AND GUTIERREZ, C. 2009. Semantics and complexity of SPARQL. ACM Trans. Datab.
Syst. 34, 3.

PICALAUSA, F. AND VANSUMMEREN, S. 2011. What are real sparql queries like? In Proceedings of the International
Workshop on Semantic Web Information Management (SWIM’11). ACM Press, New York, 7.

POLLERES, A. 2007. From sparql to rules (and back). In Proceedings of the 16th International Conference on
World Wide Web (WWW’07). ACM Press, New York, 787–796.

PRUDHOMMEAUX, E. AND SEABORNE, A. 2008. SPARQL query language for RDF. W3C Recommendation.
http://www.w3.org/TR/rdf-sparql-query/.

SCHMIDT, M., HORNUNG, T., KUCHLIN, N., LAUSEN, G., AND PINKEL, C. 2008. An experimental comparison of RDF
data management approaches in a SPARQL benchmark scenario. In Proceedings of the 7th International
Semantic Web Conference (ISWC’08). Lecture Notes in Computer Science, vol. 5318, Springer, 82–97.

SCHMIDT, M., MEIER, M., AND LAUSEN, G. 2010. Foundations of SPARQL query optimization. In Proceedings of
the 13th International Conference on Database Theory (ICDT’10). ACM Press, New York, 4–33.

SERFIOTIS, G., KOFFINA, I., CHRISTOPHIDES, V., AND TANNEN, V. 2005. Containment and minimization of RDF/s
query patterns. In Proceedings of the 4th International Semantic Web Conference (ISWC’05). Lecture
Notes in Computer Science, vol. 3729, Springer, 607–623.

SIDIROURGOS, L., GONCALVES, R., KERSTEN, M. L., NES, N., AND MANEGOLD, S. 2008. Columnstore support for RDF
data management: Not all swans are white. Proc. VLDB Endow. 1, 2, 1553–1563.

STOCKER, M., SEABORNE, A., BERNSTEIN, A., KIEFER, C., AND REYNOLDS, D. 2008. SPARQL basic graph pattern
optimization using selectivity estimation. In Proceedings of the 17th International Conference on World
Wide Web (WWW’08). ACM Press, New York, 595–604.

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Static Analysis and Optimization of Semantic Web Queries 25:45

ULLMAN, J. D. 1997. Information integration using logical views. In Proceedings of the 6th International
Conference on Database Theory (ICDT’97). Lecture Notes in Computer Science, vol. 1186, Springer,
19–40.

US GOVERNMENT. 2012. data.gov. http://www.data.gov.
WEISS, C., KARRAS, P., AND BERNSTEIN, A. 2008. Hexastore: Sextuple indexing for semantic web data manage-

ment. Proc. VLDB Endow. 1, 1, 1008–1019.
YANNAKAKIS, M. 1981. Algorithms for acyclic database schemes. In Proceedings of the 7th International Con-

ference on Very Large Data Bases (VLDB’81). 82–94.

Received October 2012; revised April 2013; accepted June 2013

ACM Transactions on Database Systems, Vol. 38, No. 4, Article 25, Publication date: November 2013.

Copyright of ACM Transactions on Database Systems is the property of Association for
Computing Machinery and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

