
68 communications of the acm | january 2013 | vol. 56 | no. 1

practice

I
l

l
u

s
t

r
a

t
io

n

 b
y

 A
l

ici

a

 K
u

b
i

s
t

a
 /

 A
n

d
ri

j

 Bor

y

s
 A

s
s

oci

a

t
e

s

The Internet was designed to deliver information,
but few people envisioned the vast amounts of
information that would be involved or the personal
nature of that information. Similarly, few could
have foreseen the potential flaws in the design of
the Internet—more specifically, Web browsers—
that would expose this personal information,
compromising the data of individuals and companies.

If people knew just how much of their personal
information they unwittingly make available to each
and every website they visit—even sites they’ve never
been to before—they would be disturbed. If they give
that website just one click of the mouse, out goes even
more personally identifiable data, including full name
and address, hometown, school, marital status, list

of friends, photos, other websites
they are logged in to, and in some cas-
es, their browser’s autocomplete data
and history of other sites they have
visited.

Obtaining all this information has
been possible for years. Today’s most
popular browsers, including Chrome,
Firefox, Internet Explorer, and Safari,
do not offer adequate protection for
their users. This risk of data loss seems
to run counter to all the recent market-
ing hype about the new security fea-
tures and improvements browser ven-
dors have added to their products over
the past several years such as sandbox-
ing, silent and automatic updates, in-
creased software security, anti-phish-
ing and anti-malware warnings, all of
which are enabled by default. While all
are welcome advancements, the fact is

The Web Won’t
Be Safe or
Secure Until
We Break It

doi:10.1145/2398356.2398373

 Article development led by
 queue.acm.org

Unless you have taken very particular
precautions, assume every website
you visit knows exactly who you are.

By Jeremiah Grossman

january 2013 | vol. 56 | no. 1 | communications of the acm 69

that these features are designed only
to prevent a very particular class of
browser attacks—those generally clas-
sified as drive-by downloads.

Drive-by downloads seek to escape
the confines of the browser walls and
infect the computer’s operating system
below with malware. Without ques-
tion, drive-by-downloads are a serious
problem—millions of PCs have been
compromised this way when encoun-
tering infected websites—but they cer-
tainly are not the only threat browser
users face, especially in an era of or-
ganized cybercrime and ultra-targeted
online advertising.

The techniques behind attacks
that obtain personal information are
completely different and just as dan-
gerous as malware, perhaps more so
since the solution is far more com-

plicated than just installing antivirus
software. These attack techniques
have even more esoteric labels such as
XSS (cross-site scripting), CSRF (cross-
site request forgery), and clickjacking.
These types of attacks are (mostly)
content to remain within the browser
walls, and they do not exploit memory-
corruption bugs as do their drive-by
download cousins, yet they are still
able to do their dirty work without leav-
ing a trace.

These attacks are primarily writ-
ten with HTML, CSS (Cascading Style
Sheets), and JavaScript, so they are not
identifiable as malware by antivirus
software in the classic sense. They take
advantage of the flawed way in which
the Internet was designed to work. The
result is that these attack techniques
are immune to protections that thwart

drive-by downloads. Despite the dan-
gers they pose, they receive very little
attention outside the inner circles
of the Web security industry. To get a
clearer picture of these lesser-known
attacks, it’s important to understand a
common Web technology use case.

HTML allows Web developers to in-
clude remotely hosted image files on a
Web page from any location across the
Web. For example, a website located at
http://coolwebsite/ may contain code
such as:

<img src= ”http://someotherweb-
site/image.png”>

This instructs a visiting browser to
send a Web request to http://someo-
therwebsite/ automatically, and when
returned, to display the image on the

70 communications of the acm | january 2013 | vol. 56 | no. 1

practice

screen. The developer may tack on
some JavaScript to detect if the image
file was loaded successfully or con-
tained an error:

<img src=”http://someotherwebsite/
image.png” onload=”successful()”
onerror=”error()”>

If the image file loaded correctly, then
the “successful” JavaScript function
executes. If an error occurred, then
the error function executes. This code
is completely typical and innocuous,
but the same functionality can also be
leveraged for invasive, malicious ends.

Now, let’s say http://coolwebsite/
loaded an image file from http://
someotherwebsite/, but that image file
is accessible only if the user’s browser
is currently logged into http://someo-
therwebsite/. As before:

<img src=”http://someotherwebsite/
loggedin.png” onload=”loggedIn()”
onerror=”notLoggedIn()”>

If the user is logged in, then the
image file loads successfully, which
causes the executions of loggedIn.
If the user is not logged in, then not-
LoggedIn is executed. The result is
an ability to test easily and invisibly
whether a visitor is logged in to a par-
ticular website that a Web developer
does not have a relationship with. This
login-detection technique, which le-
verages CSRF, can be applied to online
banks, social networks, Web mail, and
basically anything else useful to an
attacker. The attacker behind http://
coolwebsite/ just has to find the URLs
that respond in a Boolean state with
respect to login.

Next, consider that a malicious
website owner might want to go one
step further and “deanonymize” a
Web visitor, which is to say, learn the
visitor’s real name. Assume from the
previous example that the attacker
can determine if the visitor is logged
into Twitter, Facebook, Google+,
among others. Hundreds of millions
of people are persistently logged in
to these online services every day.
These websites, and many like them,
are designed that way for conve-
nience purposes.

The next thing an attacker could
take advantage of is those familiar

third-party Web widgets, such as Twit-
ter’s “Follow,” Facebook’s “Like,” and
Google’s “+1” buttons.

While these buttons may seem in-
nocent and safe enough, nothing re-
ally technically prevents websites from
placing those buttons within an HTML
container, such as a div tag, making
those buttons transparent and hover-
ing them just under a Web visitor’s
mouse pointer. This is done so that
when visitors click on something they
see, they instead automatically Follow,
Like, or +1 whatever else the bad guy
wants them to. This is a classic case
of clickjacking—an attack seen in the
wild every day.

Here’s why this flaw in the Internet
matters: since the attacker controls the
objects behind those buttons, after the
user clicks, the attacker can tell exactly
“who” just Followed, Liked, or +1’ed
on those online services (for example,
Twitter: “User X Followed you.” Face-
book: “User X Liked Page Y.”). To deano-
nymize the Web visitor, all the attacker
needs to do is look at the public profile
of the user who most recently clicked.
That is when the fun begins for the at-
tacker and trouble begins for the un-
suspecting Internet user.

One more longstanding issue,
“browser intranet hacking,” deserves
attention. This serious risk, first dis-
cussed in 2006, remains largely unad-
dressed to this day. Browser intranet
hacking allows website owners to ac-
cess the private networks of their visi-
tors, which are probably behind net-
work firewalls, by using their browsers
as a launch point. This attack technique
is painfully simple and works equally
well on enterprises and home users, ex-
posing a whole new realm of data.

The attack flow is as follows: a
Web user visits a malicious website
such as http://coolwebsite/. That
site instructs the visitor’s browser to
make a Web request to an IP address
or host name that the visitor can get
to but the attacker cannot, such as
192.168.x.x or any non-routable IP as
defined by RFC-1918. Such requests
can be forced through the use of IMG
tags, as in the earlier example, or also
through the use of iframe, script,
and link tags:

<iframe src=”http://192.168.1.1/”
onload=”detection()”>.</iframe>

Depending on the detectable re-
sponse given from the IP address,
the attacker can use the Web visitor’s
browser to sweep internal private net-
works for listening IP Web servers.
This sweeping can locate printers, IP
phones, broadband routers, firewalls,
configuration dashboards, and more.

The technique behind browser in-
tranet hacking is similar to the Bool-
ean-state detection in the login-de-
tection example. Also, depending on
whether the user is logged in to the IP/
Hostname, this type of attack can force
the visitor’s browser to make configu-
ration changes to the broadband rout-
er’s Web-based interface through well-
known IPs (192.168.1.1, 10.10.0.1, and
so on) that can be quickly enumerated.
The consequences of this type of ex-
ploitation can be devastating as it can
lead to all traffic being routed though
the attacker’s network first.

Beyond login detection, deanony-
mization, and browser intranet hack-
ing are dozens of other attack tech-
niques possible in today’s modern
browsers. For example, IP address geo-
location tells, roughly speaking, what
city/town a Web visitor is from. The us-
er-agent header reveals which browser
distribution and version the visitor is
using. Various JavaScript DOM (Docu-
ment Object Model) objects make it
trivial to list what extensions and
plugins are available—to hack or fin-
gerprint. DOM objects also reveal
screen dimensions, which provides
demographic context and whether the
user is using virtualization.

The list of all the ways browser se-
curity can be bent to a website owner’s
will goes on, but the point is this: Web
browsers are not “safe”; Web brows-
ers are not “secure”; and the Internet
has fundamental flaws impacting user
(personal or corporate) security.

Now here’s the punch line: the only
known ways of addressing this class of
problem adequately is to “break the
Web” (that is, negatively impact the
usability of a significant percentage
of websites). These issues remain be-
cause Web developers, and to a large
extent Web users, demand that certain
functionality remain available, and
that functionality is what makes these
attacks possible.

Today’s major browser vendors,
whose guiding light is market share,

practice

january 2013 | vol. 56 | no. 1 | communications of the acm 71

Dramatic
improvements
in browser security
and online privacy
are held hostage
by backward
compatibility
requirements
related to
how the Internet
was designed.

are only too happy to comply. Their
choice is simple: be less secure and
more user-adopted, or be secure and
obscure. This is the Web security trade-
off—a choice made by those who do
not fully understand, appreciate, or are
liable for the risks they are imposing
on everyone using the Web.

Nonstarter Solutions
To fix login detection, a browser might
decide not to send the Web visitor’s
cookie data to off-domain destina-
tions (those different from the host-
name in the URL bar) along with the
Web requests. Cookies are essential to
tracking login state. The off-domain
destination could still get the request,
but would not know to whom it be-
longed. This is a good thing for stop-
ping the attack.

Not sending cookies off-domain,
however, would break functional-
ity for any website that uses multiple
hostnames to deliver authenticated
content. The approach would break
single-click Web widgets such as Twit-
ter’s “Follow,” Facebook’s “Like,” and
Google’s “+1” buttons. The user would
be required to perform a second step.
It would also break visitor tracking via
Google Analytics, Coremetrics, and so
on. This is a clear nonstarter from the
perspective of many.

To fix clickjacking, Web brows-
ers could ban iframes entirely, or at
least ban transparent iframes. Ide-
ally, browser users should be able to
“see” what they are really clicking on.
Suggesting such a change to iframes,
however, is a losing battle; millions of
websites rely upon them, including
transparent iframes, for essential
functionality. Notable examples are
Facebook, Gmail, and Yahoo! Mail. You
do not normally see iframes when they
are used, but they are indeed every-
where. That level of breakage is never
going to be tolerated.

For browser intranet hacking, Web
browsers could prohibit the inclu-
sion of RFC-1918 resources from non-
RFC-1918 websites. This essentially
creates a break point in the browser
between public and private networks.
One reason that browser vendors say
this is not doable is that some organi-
zations actually do legitimately include
intranet content on public websites.
Therefore, because some organiza-

tions (whom you have never heard of
and whose websites you’ll never visit)
have an odd use case, your browser
leaves the private networks you are on,
and that of hundreds of millions of
others, wide open.

As shocking as this sounds, try
looking at the decision not to fix the
problem from the browser vendors’
perspective. If they break the uncom-
mon use case of these unnamed or-
ganizations, the people within those
organizations are forced to switch to a
competing “less-secure” browser that
allows them to continue business as
usual. While the security of all other
users increases for the browser that
makes the change, that browser vendor
loses some fraction of market share.

Security Chasm
The browser vendors’ unwillingness to
risk market share has led to the current
security chasm. Dramatic improve-
ments in browser security and online
privacy are held hostage by backward
compatibility requirements related to
how the Internet was designed. Web-
browser vendors compete with each
other in trench-style warfare, gaining
ground by scratching for a tiny percent-
age of new users, everyday—users who
do not pay them a dime, while simul-
taneously trying to keep every last user
they already have.

It’s important to remember that
mainstream browsers are essentially
advertising platforms. The more eye-
balls browsers have, the more ads are
delivered. Ads, and ad clicks, are what
pay for the whole party. Anything get-
ting in the way of that is never a priority.

To be fair, there was one impor-
tant win recently when, after years of
discussion, a fix was applied to CSS
history sniffing. This is the ability of a
website to uncover the history of other
websites a user had visited by creating
hyperlinks on a Web page and using ei-
ther JavaScript or CSS to check the col-
or of the link displayed on the screen.
A blue link meant the visitor had not
been there; purple indicated the user
had visited the site. This was a serious
privacy flaw that was simple, effec-
tive, and 10,000-URLs-per-second fast
to execute. Any website could quickly
know where you banked, shopped,
what news you read, adult websites fre-
quented, among others.

72 communications of the acm | january 2013 | vol. 56 | no. 1

practice

The problem of CSS history sniff-
ing finally got so bad and became so
high profile that approximately 10
years after it first came up, all the ma-
jor browser vendors finally broke the
functionality required for the attack.
Many Web developers who relied on
the underlying functionality were vo-
cally upset, but apparently this was an
acceptable level of breakage from the
browser vendors’ perspective.

When the breakage is not accept-
able, but the issue is still bad, new
opt-in browser security features are
put forth. They generally have low
adoption rates. Prime examples are
Content Security Policy, X-Frame-
Options, Origin, Strict Transport Se-
curity, SSL (Secure Sockets Layer),
Secure and HttpOnly cookie flags, and
others. Website owners can imple-
ment these solutions only when or if
they want to, thereby managing their
own breakage. What none of these
features do is to allow Web users to
protect themselves, something every
browser should enable its users to do.
Right now, Web security is in a hold-
ing pattern—waiting for the bad guys
to cause enough damage—which then
should give enough juice to those with
the power to take action.

Beyond the Status Quo
The path toward a more secure Web
has a few options. We could establish a
brand-new World Wide Web, or an area
within it. A Web platform designed to
be resilient to the current laundry list of
problems, however, will forever plague
its predecessor. For the moment, let’s
assume we technically know how to
make a secure platform, which is a big if.

The next step would be to convince
the developers behind the millions,
potentially hundreds of millions, of
important websites to move over and/
or build atop version two. Of course,
the promise of a “more secure” plat-
form would not be sufficient incen-
tive by itself. They would have to be
offered something more attractive
in addition. Even if there were some-
thing more attractive, this path would
only exchange our backward-compat-
ibility problem for a legacy problem,
which is likely to take years, perhaps a
decade or more, to get beyond.

There is another path—one that
already has a demonstrated model of

success in mobile applications. What
you find there basically amounts to
many tiny Web browsers connected
to the mobile version of the main
website. The security benefit pro-
vided by mobile platforms such as
Apple’s iOS and Google’s Android
is that the applications are isolated
from one another in both memory
and session state.

For example, if you launched Bank of
America’s mobile application, logged
in, did your banking, and then subse-
quently launched Facebook’s mobile
application and logged in, neither
app has access to the other app’s ses-
sion, as would be the case in a normal
desktop Web browser. Mobile applica-
tions have little to no issues regarding
login detection, deanonymization, and
intranet hacking. If mobile platforms
can get away with this level of applica-
tion and login-state isolation, certainly
the desktop world could as well.

By adopting a similar application
model on the desktop using custom-
configured Web browsers (let’s call
them DesktopApps), we could address
the Internet’s inherent security flaws.
These DesktopApps could be branded
appropriately and designed to launch
automatically to Bank of America’s or
Facebook’s website, for example, and
go no further. Like their mobile ap-
plication cousins, these DesktopApps
would not present a URL bar or any-
thing else making them look like the
Web browsers they are on the surface,
and of course they would be isolated
from one another. Within these Desk-
topApps, attacks such as XSS, CSRF,
and clickjacking would become largely
extinct because no cross-domain con-
nections would be allowed—an essen-
tial precondition.

DesktopApps would also provide an
important security benefit to Chrome,
Firefox, Internet Explorer, and Safari.
Attacks such as login detection and
deanonymization would be severely
hampered. Let’s say Web visitor X uses
only a special DesktopApp when ac-
cessing the websites of Bank of Amer-
ica, Facebook, or whatever else and
never uses the default Web browser for
any of these activities. When X is using
Chrome, Firefox, or Internet Explorer
and comes across a website trying to
perform login detection and deanomy-
mization, well, X has never logged in to

anything important in that browser, so
the attacks would fail.

What about intranet hacking? The
answer is to break the functionality,
as described earlier. Web browsers
should not allow non-RFC-1918 web-
sites to include RFC-1918 content—at
least not without an SSL-style security
exception. One or all of the incumbent
browser vendors need to be convinced
of this. If that mystery company with
an odd use case wants to continue, it
should have a special corporate Desk-
topApp created that allows for it. It
would be far more secure as a result, as
would we all.

This article has outlined a broad
path to fix Web security, but much is
left unaddressed about how to roll out
a DesktopApp and get the market to
adopt such practices. Beyond just the
security benefits, other features are
needed to make DesktopApps attrac-
tive to Web visitors; otherwise there
is no incentive for browser vendors to
innovate. There’s also lobbying to be
done with website owners and develop-
ers. All of this makes fixing the Inter-
net a daunting task. To get past secu-
rity and reach our final destination—a
world where our information remains
safe—we must develop creative solu-
tions and make hard choices.	

 Related articles
 on queue.acm.org

Browser Security

Charles Reis, Adam Barth, and Carlos Pizano
http://queue.acm.org/detail.cfm?id=1556050

Security in the Browser

Thomas Wadlow and Vlad Gorelik
http://queue.acm.org/detail.cfm?id=1516164

Cybercrime 2.0: When the Cloud Turns Dark
Niels Provos, Moheeb Abu Rajab,
and Panayiotis Mavrommatis
http://queue.acm.org/detail.cfm?id=1517412

Jeremiah Grossman is the founder and CTO of
WhiteHat Security, where he is responsible for Web
security R&D and industry outreach. He is a cofounder of
Web Application Security Consortium (WASC) and was
previously named one of InfoWorld’s Top 25 CTOs. He
serves on the advisory boards of two start-ups, Risk I/O
and SD Elements. Before founding WhiteHat, he was an
information security officer at Yahoo!

© 2013 ACM 0001-0782/13/01

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

