
36 communications of the acm | december 2008 | vol. 51 | no. 12

practice

consumption. But how much does the
backend affect the user experience in
terms of latency?

The Web applications listed here are
some of the most highly tuned in the
world, and yet they still take longer to
load than we’d like. It almost seems as
if the high-speed storage and optimized
application code on the backend have
little impact on the end user’s response
time. Therefore, to account for these
slowly loading pages we must focus on
something other than the backend: we
must focus on the frontend.

The Importance of
Frontend Performance
Figure 1 illustrates the HTTP traffic sent
when your browser visits iGoogle with
an empty cache. Each HTTP request is
represented by a horizontal bar whose
position and size are based on when
the request began and how long it took.
The first HTTP request is for the HTML
document (http://www.google.com/ig).
As noted in Figure 1, the request for the
HTML document took only 9% of the
overall page load time. This includes
the time for the request to be sent from
the browser to the server, for the server
to gather all the necessary information
on the backend and stitch that together
as HTML, and for that HTML to be sent
back to the browser.

The other 91% percent is spent on
the frontend, which includes everything
that the HTML document commands
the browser to do. A large part of this is
fetching resources. For this iGoogle page
there are 22 additional HTTP requests:
two scripts, one stylesheet, one iframe,
and 18 images. Gaps in the HTTP pro-
file (places with no network traffic) are
where the browser is parsing CSS, and
parsing and executing JavaScript.

The primed cache situation for
iGoogle is shown in Figure 2. Here
there are only two HTTP requests: one
for the HTML document and one for a
dynamic script. The gap is even larger
because it includes the time to read the
cached resources from disk. Even in
the primed cache situation, the HTML
document accounts for only 17% of the

Google Maps, Yahoo! Mail, Facebook, MySpace,
YouTube, and Amazon are examples of Web sites
built to scale. They access petabytes of data sending
terabits per second to millions of users worldwide.
The magnitude is awe-inspiring.

Users view these large-scale Web sites from a
narrower perspective. The typical user has megabytes
of data that they download at a few hundred kilobits
per second. Users are less interested in the massive
number of requests per second being served, caring
more about their individual requests. As they use
these Web applications they inevitably ask the same
question: “Why is this site so slow?”

The answer hinges on where development teams
focus their performance improvements. Performance
for the sake of scalability is rightly focused on the
backend. Database tuning, replicating architectures,
customized data caching, and so on, allow Web
servers to handle a greater number of requests.
This gain in efficiency translates into reductions in
hardware costs, data center rack space, and power

doi:10.1145/1409360.1409374

Want to make your Web site fly?
Focus on frontend performance.

by Steve Souders

High-
Performance
Web Sites

december 2008 | vol. 51 | no. 12 | communications of the acm 37

overall page load time.
This situation, in which a large per-

centage of page load time is spent on the
frontend, applies to most Web sites. Ta-
ble 1 shows that eight of the top 10 Web
sites in the U.S. (as listed on Alexa.com)
spend less than 20% of the end user’s
response time fetching the HTML docu-
ment from the backend. The two excep-
tions are Google Search and Live Search,
which are highly tuned. These two sites
download four or fewer resources in the
empty cache situation, and only one re-
quest with a primed cache.

The time spent generating the HTML
document affects overall latency, but
for most Web sites this backend time is
dwarfed by the amount of time spent on
the frontend. If the goal is to make the
user experience faster, the place to focus
is on the frontend. Given this new focus,
the next step is to identify best practices
for improving frontend performance.

frontend Performance
Best Practices
Through research and consulting with
development teams, I’ve developed a
set of performance improvements that
have been proven to speed up Web pag-
es. A big fan of harvey Penick’s Little Red
Book1 with advice like “Take Dead Aim,”
I set out to capture these best practices
in a simple list that is easy to remember.
The list has evolved to contain the fol-
lowing 14 prioritized rules:

Make fewer HTTP requests1.
Use a content delivery network2.
Add an Expires header3.
Gzip components4.
Put stylesheets at the top5.
Put scripts at the bottom6.
Avoid CSS expressions7.
Make JavaScript and CSS external8.
Reduce DNS lookups9.

Minify JavaScript10.
Avoid redirects11.

Remove duplicate scripts12.
Confi gure ETags13.
Make Ajax cacheable14.

A detailed explanation of each rule is
the basis of my book, high Performance
Web Sites.2 What follows is a brief sum-
mary of each rule.

Rule 1: make fewer httP Requests
As the number of resources in the page
grows, so does the overall page load time.
This is exacerbated by the fact that most
browsers only download two resources
at a time from a given hostname, as
suggested in the HTTP/1.1 specifi cation
(http://www.w3.org/Protocols/rfc2616/
rfc2616-sec8.html#sec8.1.4).a Several
techniques exist for reducing the num-

a Newer browsers open more than two connec-
tions per hostname including Internet Ex-
plorer 8 (six), Firefox 3 (six), Safari 3 (four), and
Opera 9 (four).

120
160

40

0

80
240

200

320

280

0

1

2
3

4

5

Temp

RPMSpeed

P R O G R E S S

i
L

L
u

s
T

r
a

T
i

o
N

 b
y

 N
i

k
 s

c
h

u
L

z

38 communications of the acm | december 2008 | vol. 51 | no. 12

practice

browser downloads and caches the
page’s resources. The next time the
user visits the page, the browser
checks to see if any of the resources
can be served from its cache, avoiding
time-consuming HTTP requests. The
browser bases its decision on the re-
source’s expiration date. If there is an
expiration date, and that date is in the
future, then the resource is read from
disk. If there is no expiration date, or
that date is in the past, the browser is-
sues a costly HTTP request. Web devel-
opers can attain this performance gain
by specifying an explicit expiration
date in the future. This is done with the
Expires HTTP response header, such
as the following:

Expires: Thu, 1 Jan 2015 20:00:00
GMT

Rule 4: Gzip Components
The amount of data transferred over the
network affects response times, espe-
cially for users with slow network con-
nections. For decades developers have
used compression to reduce the size of
files. This same technique can be used
for reducing the size of data sent over
the Internet. Many Web servers and
Web hosting services enable compres-
sion of HTML documents by default,
but compression shouldn’t stop there.
Developers should also compress other
types of text responses, such as scripts,
stylesheets, XML, JSON, among others.
Gzip is the most popular compression
technique. It typically reduces data sizes
by 70%.

Rule 5: Put Stylesheets at the Top
Stylesheets inform the browser how
to format elements in the page. If
stylesheets are included lower in the
page, the question arises: What should
the browser do with elements that it can
render before the stylesheet has been
downloaded?

One answer, used by Internet Ex-
plorer, is to delay rendering elements
in the page until all stylesheets are
downloaded. But this causes the page
to appear blank for a longer period of
time, giving users the impression that
the page is slow. Another answer, used
by Firefox, is to render page elements
and redraw them later if the stylesheet
changes the initial formatting. This
causes elements in the page to “flash”
when they’re redrawn, which is dis-

ber of HTTP requests without reducing
page content:

Combine multiple scripts into a ˲˲

single script.
Combine multiple stylesheets into ˲˲

a single stylesheet.
Combine multiple CSS background ˲˲

images into a single image called a CSS
sprite (see http://alistapart.com/arti-
cles/sprites).

Rule 2: Use a Content
Delivery Network
A content delivery network (CDN) is a

collection of distributed Web servers
used to deliver content to users more
efficiently. Examples include Akamai
Technologies, Limelight Networks,
SAVVIS, and Panther Express. The main
performance advantage provided by a
CDN is delivering static resources from
a server that is geographically closer to
the end user. Other benefits include
backups, caching, and the ability to bet-
ter absorb traffic spikes.

Rule 3: Add an Expires Header
When a user visits a Web page, the

Figure 2. iGoogle HTTP traffic with a primed cache.

17% 83%

Table 1. Percentage of time spent on the backend.

Web Site Empty Cache Primed Cache

http://www.aol.com/ 	 3% 	 3%

http://www.ebay.com/ 	 5% 	 19%

http://www.facebook.com/ 	 5% 	 19%

http://www.google.com/search?q=flowers 	 53% 	100%

http://search.live.com/results.aspx?q=flowers 	 33% 	100%

http://www.msn.com/ 	 2% 	√√6%

http://www.myspace.com/ 	 2% 	 2%

http://en.wikipedia.org/wiki/Flowers 	 6% 	 9%

http://www.yahoo.com/ 	 3% 	 4%

http://www.youtube.com/ 	 2% 	 3%

Figure 1. iGoogle HTTP traffic with an empty cache.

9% 91%

practice

december 2008 | vol. 51 | no. 12 | communications of the acm 39

ruptive to the user. The best answer is
to avoid including stylesheets lower in
the page, and instead load them in the
HEAD of the document.

Rule 6: Put Scripts at the Bottom
External scripts (typically, “.js” files)
have a bigger impact on performance
than other resources for two reasons.
First, once a browser starts downloading
a script it won’t start any other parallel
downloads. Second, the browser won’t
render any elements below a script un-
til the script has finished download-
ing. Both of these impacts are felt when
scripts are placed near the top of the
page, such as in the HEAD section. Oth-
er resources in the page (such as images)
are delayed from being downloaded and
elements in the page that already exist
(such as the HTML text in the document
itself) aren’t displayed until the earlier
scripts are done. Moving scripts lower
in the page avoids these problems.

Rule 7: Avoid CSS Expressions
CSS expressions are a way to set CSS
properties dynamically in Internet Ex-
plorer. They enable setting a style’s
property based on the result of execut-
ing JavaScript code embedded within
the style declaration. The issue with
CSS expressions is that they are evalu-
ated more frequently than one might
expect—potentially thousands of
times during a single page load. If the
JavaScript code is inefficient it can cause
the page to load more slowly.

Rule 8: Make JavaScript
and CSS External
JavaScript can be added to a page as an
inline script:

<script type=”text/javascript”>
var foo=”bar”;
</script>

or as an external script:
<script src=”foo.js” type=”text/

javascript”></script>
Similarly, CSS is included as either

an inline style block or an external
stylesheet. Which is better from a per-
formance perspective?

HTML documents typically are not
cached because their content is con-
stantly changing. JavaScript and CSS
are less dynamic, often not changing for
weeks or months. Inlining JavaScript
and CSS results in the same bytes (that
haven’t changed) being downloaded

on every page view. This has a negative
impact on response times and increas-
es the bandwidth used from your data
center. For most Web sites, it’s better
to serve JavaScript and CSS via exter-
nal files, while making them cacheable
with a far future Expires header as ex-
plained in Rule 3.

Rule 9: Reduce DNS Lookups
The Domain Name System (DNS) is like
a phone book: it maps a hostname to
an IP address. Hostnames are easier for
humans to understand, but the IP ad-
dress is what browsers need to establish
a connection to the Web server. Every
hostname that’s used in a Web page
must be resolved using DNS. These
DNS lookups carry a cost; they can take
20–100 milliseconds each. Therefore,
it’s best to reduce the number of unique
hostnames used in a Web page.

Rule 10: Minify JavaScript
As described in Rule 4, compression is
the best way to reduce the size of text
files transferred over the Internet. The
size of JavaScript can be further reduced
by minifying the code. Minification is
the process of stripping unneeded char-
acters (comments, tabs, new lines, extra
white space, and so on) from the code.
Minification typically reduces the size
of JavaScript by 20%. External scripts
should be minified, but inline scripts
also benefit from this size reduction.

Rule 11: Avoid Redirects
Redirects are used to map users from
one URL to another. They’re easy to
implement and useful when the true
URL is too long or complicated for users
to remember, or if a URL has changed.
The downside is that redirects insert
an extra HTTP roundtrip between the
user and her content. In many cases,
redirects can be avoided with some ad-
ditional work. If a redirect is truly nec-
essary, make sure to issue it with a far
future Expires header (see Rule 3), so
that on future visits the user can avoid
this delay. b

Rule 12: Remove Duplicate Scripts
If an external script is included multi-
ple times in a page, the browser has to
parse and execute the same code mul-

b	 Caching redirects is not supported in some
browsers.

tiple times. In some cases the browser
will request the file multiple times. This
is inefficient and causes the page to
load more slowly. This obvious mistake
would seem uncommon, but in a review
of U.S. Web sites it could be found in two
of the top 10 sites. Web sites that have
a large number of scripts and a large
number of developers are most likely to
suffer from this problem.

Rule 13: Configure ETags
Entity tags (ETags) are a mechanism
used by Web clients and servers to verify
that a cached resource is valid. In other
words, does the resource (image, script,
stylesheet, among others) in the brows-
er’s cache match the one on the server?
If so, rather than transmitting the entire
file (again), the server simply returns
a 304 Not Modified status telling the
browser to use its locally cached copy.
In HTTP/1.0, validity checks were based
on a resource’s Last-Modified date: if
the date of the cached file matched the
file on the server, then the validation
succeeded. ETags were introduced in
HTTP/1.1 to allow for validation schemes
based on other information, such as ver-
sion number and checksum.

ETags don’t come without a cost.
They add extra headers to HTTP re-
quests and responses. The default ETag
syntax used in Apache and IIS makes
it likely that the validation will errone-
ously fail if the Web site is hosted on
multiple servers. These costs impact
performance, making pages slower and
increasing the load on Web servers.
This is an unnecessary loss of perfor-
mance, because most Web sites don’t
take advantage of the advanced features
of ETags, relying instead on the Last-
Modified date as the means of valida-
tion. By default, ETags are enabled in
popular Web servers (including Apache
and IIS). If your Web site doesn’t utilize
ETags, it’s best to turn them off in your
Web server. In Apache, this is done by
simply adding “FileETag none” to your
configuration file.

Rule 14: Make Ajax Cacheable
Many popular Web sites are moving to
Web 2.0 and have begun incorporating
Ajax. Ajax requests involve fetching data
that is often dynamic, personalized, or
both. In the Web 1.0 world, this data is
served by the user going to a specified
URL and getting back an HTML docu-

40 communications of the acm | december 2008 | vol. 51 | no. 12

practice

ment. Because the HTML document’s
URL is fi xed (bookmarked, linked to,
and so on), it’s necessary to ensure the
response is not cached by the browser.

This is not the case for Ajax respons-
es. The URL of the Ajax request is in-
cluded inside the HTML document; it’s
not bookmarked or linked to. Develop-
ers have the freedom to change the Ajax
request’s URL when they generate the
page. This allows developers to make
Ajax responses cacheable. If an updated
version of the Ajax data is available, the
cached version is avoided by adding a

dynamic variable to the Ajax URL. For
example, an Ajax request for the user’s
address book could include the time
it was last edited as a parameter in the
URL, “&edit=1218050433.” As long as
the user hasn’t edited their address
book, the previously cached Ajax re-
sponse can continue to be used, making
for a faster page.

Performance analysis with yslow
Evangelizing these performance best
practices is a challenge. I was able to
share this information through confer-

ences, training classes, consulting, and
documentation. Even with the knowl-
edge in hand, it would still take hours
of loading pages in a packet sniffer and
reading HTML to identify the appropri-
ate set of performance improvements. A
better alternative would be to codify this
expertise in a tool that anyone could
run, reducing the learning curve and in-
creasing adoption of these performance
best practices. This was the inspiration
for YSlow.

YSlow (http://developer.yahoo.com/
yslow/) is a performance analysis tool
that answers the question posed in the
introduction: “Why is this site so slow?”
I created YSlow so that any Web devel-
oper could quickly and easily apply the
performance rules to their site, and
fi nd out specifi cally what needed to be
improved. It runs inside Firefox as an
extension to Firebug (http://getfi rebug.
com/), the tool of choice for many Web
developers.

The screenshot in Figure 3 shows
Firefox with iGoogle loaded. Firebug
is open in the lower portion of the win-
dow, with tabs for Console, HTML, CSS,
Script, DOM, and Net. When YSlow is in-
stalled, the YSlow tab is added. Clicking
YSlow’s Performance button initiates
an analysis of the page against the set of
rules, resulting in a weighted score for
the page.

 As shown in Figure 3, YSlow explains
each rule’s results with details about
what to fi x. Each rule in the YSlow screen
is a link to the companion Web site,
where additional information about the
rule is available.

the next Performance
challenge: Javascript
Web 2.0 promises a future where de-
velopers can build Web applications
that provide an experience similar to
desktop apps. Web 2.0 apps are built
using JavaScript, which presents signifi -
cant performance challenges because
JavaScript blocks downloads and ren-
dering in the browser. To build faster
Web 2.0 apps, developers should ad-
dress these performance issues using
the following guidelines:

Split the initial payload ˲

Load scripts without blocking ˲

Don’t scatter scripts ˲

split the initial Payload
Web 2.0 apps involve just a single figure 3: yslow.

table 2. Percentage of unused Javascript functions.

Web site Javascript size unused functions

http://www.aol.com/ 115K 70%

http://www.ebay.com/ 183K 56%

http://www.facebook.com/ 1088K 81%

http://www.google.com/search?q=fl owers 15K 55%

http://search.live.com/results.aspx?q=fl owers 17K 76%

http://www.msn.com/ 131K √√69%

http://www.myspace.com/ 297K 82%

http://en.wikipedia.org/wiki/Flowers 114K 68%

http://www.yahoo.com/ 321K 87%

http://www.youtube.com/ 240% 82%

average 252K 74%

practice

december 2008 | vol. 51 | no. 12 | communications of the acm 41

page load. Instead of loading more
pages for each action or piece of infor-
mation requested by the user, as was
done in Web 1.0, Web 2.0 apps use
Ajax to make HTTP requests behind
the scenes and update the user inter-
face appropriately. This means that
some of the JavaScript that is down-
loaded is not used immediately, but
instead is there to provide function-
ality that the user might need in the
future. The problem is that this sub-
set of JavaScript blocks other content
that is used immediately, delaying im-
mediate content for the sake of future
functionality that may never be used.

Table 2 shows that for the top 10 U.S.
Web sites, an average of 74% of the func-
tionality downloaded is not used im-
mediately. To take advantage of this op-
portunity, Web developers should split
their JavaScript payload into two scripts:
the code that’s used immediately (~26%)
and the code for additional function-
ality (~74%). The first script should be
downloaded just as it is today, but given
its reduced size the initial page will load
more quickly. The second script should
be lazy-loaded, which means that after
the initial page is completely rendered
this second script is downloaded dy-
namically, using one of the techniques
listed in the next section.

Load Scripts without Blocking
As described in “Rule 6: Put Scripts at
the Bottom,” external scripts block the
download and rendering of other con-
tent in the page. This is true when the
script is loaded in the typical way:

<script src=”foo.js” type=”text/
javascript”></script>

But there are several techniques for
downloading scripts that avoid this
blocking behavior:

XHR eval˲˲

XHR injection˲˲

ing. This seems like it would be a rare
problem, but it afflicts four of the top
ten sites in the U.S: eBay, MSN, MyS-
pace, and Wikipedia.

Life’s Too Short, Write Fast Code
At this point, I hope you’re hooked on
building high-performance Web sites.
I’ve explained why fast sites are impor-
tant, where to focus your performance
efforts, specific best practices to follow
for making your site faster, and a tool
you can use to find out what to fix. But
what happens tomorrow, when you’re
back at work facing a long task list and
being pushed to add more features in-
stead of improving performance? It’s
important to take a step back and see
how performance fits into the bigger
picture.

Speed is a factor that can be used
for competitive advantage. Better fea-
tures and a more appealing user inter-
face are also distinguishing factors. It
doesn’t have to be one or the other. The
point of sharing these performance
best practices is so we can all build
Web sites to be as fast as they possibly
can—whether they’re barebones or
feature rich.

I tell developers “Life’s too short,
write fast code!” This can be interpret-
ed two ways. Writing code that executes
quickly saves time for our users. For
large-scale Web sites, the savings add
up to lifetimes of user activity. The oth-
er interpretation appeals to the sense
of pride we have in our work. Fast code
is a badge of honor for developers.

Performance must be a consider-
ation intrinsic to Web development. The
performance best practices described
here are proven to work. If you want to
make your Web site faster, focus on the
frontend, run YSlow, and apply these
rules. Who knows, fast might become
your site’s most popular feature.	

References
1.	 Penick, H. Harvey Penick’s Little Red Book: Lessons

and Teachings From A Lifetime In Golf. Simon and
Schuster, 1992.

2.	S ouders, S. High Performance Web Sites: Essential
Knowledge for Front-End Engineers. O’Reilly, 2006.

Steve Souders (http://stevesouders.com) works at Google
on Web performance and open source initiatives. He is the
author of High Performance Web Sites and the creator of
YSlow, Cuzillion, and Hammerhead. He teaches at Stanford
and is the co-founder of the Firebug Working Group.

© 2008 ACM 0001-0782/08/1200 $5.00

script in iframe˲˲

script DOM element˲˲

script defer˲˲

document.write script tag˲˲

You can see these techniques illus-
trated in Cuzillion (http://stevesoud-
ers.com/cuzillion/), but as an example
let’s look at the script DOM element ap-
proach:

<script type=”text/javascript”>
var se = document.createElement

(‘script’);
se.src = ‘http://anydomain.

com/foo.js’;
document.getElementsByTagName

(‘head’)[0].appendChild(se);
</script>
A new DOM element is created that

is a script. The src attribute is set to the
URL of the script. Appending it to the
head of the document causes the script
to be downloaded, parsed, and execut-
ed. When scripts are loaded this way,
they don’t block the downloading and
rendering of other content in the page.

Don’t Scatter Inline Scripts
These first two best practices about
JavaScript performance have to do
with external scripts. Inline scripts also
impact performance, occasionally in
significant and unexpected ways. The
most important guideline with regard
to inline scripts is to avoid a stylesheet
followed by an inline script.

Figure 4 shows some of the HTTP
traffic for http://www.msn.com/. We see
that four stylesheet requests are down-
loaded in parallel, then there is a white
gap, after which four images are down-
loaded, also in parallel with each other.
But why aren’t all eight downloaded in
parallel?c

This page contains an inline script
after the fourth stylesheet. Moving
this inline script to either above the
stylesheets or after the images would
result in all eight requests taking place
in parallel, cutting the overall down-
load time in half. Instead, the images
are blocked from downloading until
the inline script is executed, and the
inline script is blocked from executing
until the stylesheets finish download-

c	 Note that these requests are made on different
hostnames and thus are not constrained by
the two-connections-per-server restriction of
some browsers, as described in "Rule 1: Make
Fewer HTTP Requests."

Figure 4. Stylesheet followed
by inline script in www.msn.com/.

stylesheet
stylesheet
stylesheet
stylesheet

image
image
image
image

