
Developing Web Applications Based on Model

Driven Architecture

Yen-Chieh Huang*

Department of Information Management, Meiho University

No. 23, Pingguang Rd., Neipu, Pingtung, 912, Taiwan, R.O.C.
p7894121@mail.ncku.edu.tw

Chih-Ping Chu

Department of Computer Science and Information Engineering

National Cheng-Kung University
No. 1, University Road, Tainan, 701, Taiwan, R.O.C.

chucp@csie.ncku.edu.tw

Received 12 October 2011

Revised 16 October 2013

Accepted 31 October 2013

Model Driven Architecture (MDA) is a new software development framework. This paper
presents a model-driven approach to the development of Web applications by combining

Conallen's web applications design concept and Kleppe's MDA process. We use the UML

extension mechanism, i.e. stereotypes, to de¯ne the various web elements, and use the

Robustness diagram to represent MVC 2 structure for Web application. After required analysis,
we start by using a use case diagram as CIM, and then transform CIM to PIM, and PIM to

PSM. We propose mapping rules for model-to-model transformation. Finally, we develop a tool

named WebPSM2Code, which can automatically transform PSM diagram to Web application
code, such as Java, JSP, HTML, Servlet, Javascript, as well as deployment descriptor ¯le. All

the ¯les can automatically address to the correct directory structure for JSP Web application,

and the transformation rate is about 39% of the whole system. Using this methodology, systems

can be analyzed, designed, and generated more easily and systematically. Thereby, the time
that Web programmers spend on coding can be reduced.

Keywords: Model driven architecture; platform independent model; platform speci¯c model.

1. Introduction

The practice of software development spans more than 50 years, and it is largely

intangible [1]. Software development technology has gradually changed from struc-

ture analysis and design into object-oriented analysis and design, but the software

*Corresponding author.

International Journal of Software Engineering
and Knowledge Engineering

Vol. 24, No. 2 (2014) 163–182

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194014500077

163

http://dx.doi.org/10.1142/S0218194014500077

industry is still labor intensive. According to the latest Standish Group CHAOS

report (2009), software project success rates are descending, with only 32% of all

projects succeeding, 44% coming in late or over budget, or lacking required features

and functions, and 24% failing and being cancelled prior to completion or delivered

and never used [2]. Web engineering is a relatively new direction of Software Engi-

neering with focus on the development of Web-based systems [3]. Several approaches

for the development of Web applications have been proposed in the last years. Model

driven Web engineering (MDWE) is the application of model driven engineering to

the domain of Web application development where it might be particularly helpful

because of the continuous evolution of Web technologies and platforms.

Web applications are complex systems based on a variety of hardware and

software components, protocols, languages, interfaces, and standards [4], which

have evolved into sophisticated computing tools that not only provide stand-alone

functions to the end user, but are also integrated with corporate databases and

business applications [5]. In the MDA framework [3], the database, application and

web user interface are logically separated, so its architecture is appropriate for Web

applications.

In recent years, many client-server applications (i.e. browser–web server appli-

cations) have been developed. Web applications are widely designed using the

Model-View-Controller (MVC) process, which is also the most time-consuming and

error-prone process. In MVC 2 architecture, a controller handles system navigation,

a model stores a set of data, and a view (or multiple views) presents the data stored in

the model. Web applications are implemented using an MVC 2 pattern using a

Servlet as the controller, a Java Bean (or EJB) as the model, and JSP pages as

visualization elements.

The MDA is a framework for software development that is de¯ned by the Object

Management Group (OMG) [6], which de¯nes the model-based development process,

as well as the model that is automatically mapped to the implementation approach.

The MDA framework is increasingly used by software developers to develop various

kinds of domain applications. Paloma C�aceres et al. (2003) used MDA to develop an

information system [7]. Beigbeder et al. (2004), Fujikawa et al. (2004), and Tai et al.

(2004) used MDA to develop Web applications [8–10]. Fong (2006) used MDA to

develop a bank system.

In this study, the MDA development process and MVC/Model 2 pattern were

used to design JSP Web applications. UML and CASE tools were used to create

model diagrams for the Web applications, which included creating a PIM diagram,

transforming the PIM into a PSM, and transforming the PSM into Code. Therefore,

this study focused on to the step-by-step transformation of MDA models using an

e±cient system development approach and generating code templates, to increase

system development productivity.

The rest of this paper is organized as follows: Section 2 introduces the MDA

development process. Section 3 discusses the methodology for model transformation.

PIM transformation is presented in Sec. 3.1, the mapping rules for the PIM to PSM

164 Y.-C. Huang & C.-P. Chu

transformation are presented in Sec. 3.2, and the transformation of the PSM into

code is discussed in Sec. 3.3. Section 4 presents a case study that is used for the

validation of the methodology and calculates the transformation rate of the code

templates. Finally, Sec. 5 draws some conclusions and outlines areas for future

research.

2. The Model Driven Development Process

2.1. Model Driven Architecture (MDA)

From the perspective of MDA, software development is driven by the activity of the

modeling software system. Kleppe et al. proposed the MDA framework [3], which

includes three kinds of models as shown in Fig. 1: the platform independent model

(PIM), platform speci¯c model (PSM), and code model, and de¯nes the Communi-

cation Bridge, which connects the models to each other [10]. They proposed that a

PIM should be created, then transformed into one or more PSMs, and then trans-

formed into code.

Platform Independent Model. A PIM is a model with a high level of abstraction

that is independent of any implementation technology. A PIM is a software system

that supports a business. In a PIM, the system is modeled from the viewpoint of how

it best supports the business [10].

Platform Speci¯c Model. A PSM is tailored to specify a system in terms of the

implementation constructs that are available in one kind of implementation tech-

nology. The PIM is transformed into one or more PSMs.

Code. The ¯nal step in the development is the transformation of each PSM into a

code model. The transformation from PSM into code models is straightforward.

Fig. 1. The three levels of MDA (Kleppe, 2003 Rosa's MDA).

Developing Web Applications Based on Model Driven Architecture 165

A PIM should be created for a business. Then it can be transformed into one or

more PSMs such as Web PSM, EJB PSM, or Relational PSM (shown in Fig. 1). The

Web PSM represents the User Interface (UI), the EJB PSM represents the Appli-

cation, and the Relational PSM represents the Database. Each PSM can then be

transformed into code. The concept of model transformation is central to the reali-

zation of the bene¯ts of MDA. The most complex step in the MDA development

process is the one in which a PIM is transformed into one or more PSMs. Its

advantages include productivity, portability, interoperability, maintenance, and

documentation [3].

The MDA o®ers a way to use models instead of traditional source code. Nowa-

days, designers often use models for planning and explaining projects. The most

commonly used models are UML models.

2.2. Model-driven Web applications

Many tools can generate code from models, but the generated code is a template that

can't be executed immediately, and many additions still need to be made by hand.

UML commercial CASE tools, such as Rational Rose, Magic Draw, Enterprise Ar-

chitect, and Power Designer etc., can support UML transformation from class dia-

grams into data de¯nition language (DDL) and development languages (e.g. Java),

but the transformation from class diagrams into the source code of Web applications

has been discussed little.

In 2003 OMG proposed a methodology for transforming PIM into PSM [6], and

distinguished the following types of methods: marking, metamodel transformation,

model transformation, pattern application, model merging, and additional informa-

tion. Many studies and tools focus on MDA transformation automation but only

discussRelational PSMand JavaPSM.Harrison et al. (2000) proposedUMLdiagrams

mapping to Java code [11]. Kleppe et al. (2003), Meservy (2005), and Zhao (2007) had

proposed MDA transformation theory [3, 12, 13], but they didn't practice a real case.

In the last few years Web engineers have proposed several languages, archi-

tectures, methods, and processes for developing Web applications. In particular,

methods for modeling systems were developed, including OOHDM [14], OO-H [15],

UWE [16, 17], WebML [18], and WebTE [19]. They focus on the speci¯cation of

analysis and design models for Web systems, such as the construction of navigation

and adaptation models.

WebML [4] used metamodel, UWE [16, 17, 20] used requirements and analysis,

OOHDM [14] used navigability andmetamodel,WebSA [19] andMDWEnet [21] used

metamodel etc. Some of these models developed CASE tools, such as WebML, which

developedWebRatio, UWE, which developedArgoUWE, HDM-lite, which developed

the AutoWeb System, WebSA, which developed WebTE (WebSA Transformation

Engine). Some of the similarities and di®erences among these approaches are as follow:

First, they identi¯ed the necessity of a brand new model or diagram. Second, they

clearly separated content, navigation and presentation space by means of di®erent

166 Y.-C. Huang & C.-P. Chu

models or diagrams. Third, they aimed at de¯ning a precise and systematic for the

development of the Web application, in which some steps are automatic. Fourth,

they presented an exhaustive authoring process (a method and a notation). Fifth,

they avowed the necessity of any kind of constraint language to augment the pre-

cision of the Web application models. Sixth, they avowed the necessity of a CASE

tool that supports the whole process. Seventh, they did not follow MDA develop

processes, basically, from PIM, then PSM, then to code. Finally, most of these

studies didn't describe about how to generate the source code of the Web applica-

tions automatically or write the code from scratch.

Web technologies have evolved in recent years. For example, the MVC Web

framework has changed into the MVC/Model 2-based Web framework, and it tends

to apply the Rich Internet Applications (RIAs) to the Web content, such as using

Ajax technology for connecting with the database. This author by Huang had ever

proposed the \transformation from class diagram to relational table and application

template" in 2004 [22], which ¯gured out the transformation from PSM to database

of DDL SQL statement and Java application code, but not included the UI solution,

and this study extended previous research to open a new approach for transforming

MDA frameworks to Web applications. In this paper, we focused on transforming

between MDA's models and Web PSM to code for Web application, including the

MVC/Model 2-based Web framework and Ajax applications. An automatic code

generation program was developed based on mapping rules, but the developers still

needed to manually enhance after the transformed PSM models and codes.

2.3. MDA tools for Web applications

Conallen [23] proposed a Web application extension for UML, which extends UML

with additional semantics and constraints to model Web speci¯c architectural ele-

ments. He used stereotypes, constrains, and tags to de¯ne the relationship between a

form and a Web page. In his research, his UML extension diagrams can map to the

Java, JSP, and HTML code by the de¯ned stereotype, but not automatically, and

that is not related to the components of the MVC pattern.

WebML [4] method developed the tool named WebRatio, which claimed that it

can be transformed to Java, JSP, web.xml template ¯le. It is also one of the methods

UWE, which can be model to MVC 2 structure, but it does not follow the MDA

process. In the book [4], there are some code templates, but there is no automatically

code generating instructions.

Tai et al. [9] proposed the WAD (Web Application Descriptor) method and

WAST (Web application development support tool) tool which is a Plug-in in the

WebSphere from IBM (2004). This tool can generate three kinds of skeleton code for

Struts applications. However, their study did not follow the MDA process step by

step because they did not construct the PSM, and instead focused on the named

WAD model for generating code, according to the paper description, the tool can be

transformed to the JSP ¯les and mapped to the con¯guration ¯le.

Developing Web Applications Based on Model Driven Architecture 167

MagicUWE [24] is a plug-in in the MagicDraw UML tool. It can enhance the tool

to draw UWE diagrams, including Content diagram, Presentation diagram, Navi-

gation diagram, Process structure diagram and Process °ow diagram. However, it is

only a part of drawing tool, and it has no real help for code generation.

Another UML extension for describing Web applications (UML-based Web

Engineering, UWE) was proposed by Koch et al. (2000–2008). In their paper they

used the UML extension mechanisms to de¯ne stereotypes for representing Web

constructs, such as nodes and links. They developed a UML CASE tool called

ArgoUWE [17], de¯ned use case and activity diagrams as the CIM, designed the

class diagram as PIM, archived the automatic model and generated code, basing

on transformation rules that were de¯ned in the QVT (Query/View/Transfor-

mation) language and metamodel. The code generation was de¯ned using a QVT

language called the Atlas Transformation Language (ATL), and then generated

J2EE and JSP code template. In their paper [20], they implemented a simple

project management system, and generated some Java and JSP code. They de-

veloped a CASE tool named UWE4JSF [25] in 2009, which is a plug-in in the

Eclipse IDE. This tool claimed it can automatically generate code, such as Java,

JSP, and supported JSF web application, but it did not show the example case for

code generation.

The another MDA approach, named OOHDMDA [26, 27], was proposed by

Schmid and Donnerhak in 2005, which can generate Servlet-based Web applications.

This method was derived from Object-Oriented Hypermedia Design Method

(OOHDM), which describedWeb applications by an object model on three levels: the

conceptual level, the navigational level, and the interface level. This method can

generate some java and Servlet code, but not automatically.

RUX-Method [28, 29] integrated the concept of WebML and UWE, which focused

on User Interface and RIAs, announced that it can be transformed to Java, JSP, etc.

by ATL language. However, in the article [30], there is only ATL syntax, no actual

code in JAVA or JSP.

In this study, we followed the Kleppe's MDA development process, from the CIM,

PIM, PSM, to generate code, combined the developed concept of web application

proposed by Conallen, added and rede¯ned some stereotypes for classes, and then

make them transform to web application code templates automatically, ¯nally

modi¯ed some of code by hand to complete the whole system.

3. Methodology for Model Transformation

Model-to-model transformation is a key aspect of model-driven development (MDD).

Model-to-model transformation is the process of converting one model to another

model of the same system. A transformation de¯nition consists of a collection of

transformation rules, which are unambiguous speci¯cations of the way that one

model can be used to create another model. MDA suggests building computational

independent model (CIM), platform independent model (PIM), and platform speci¯c

168 Y.-C. Huang & C.-P. Chu

model (PSM). This study starts with the business model (CIM) level, which is de-

¯ned as requirements model, by using the use case diagram as CIM. A PIM repre-

sents the design viewpoint, which is derived from the requirements model. Therefore,

a use case can be mapped into a PIM based on additional information. A PSM

represents the implementation viewpoint. According to the PIM diagram, a Web

PSM diagram can be designed by the transformation rules, and ¯nally it can be

automatically transformed into the JSP Web application source codes by a self-

developing program. These steps are described as follows.

3.1. PIM transformation

A PIM can be represented by di®erent kinds of UML diagrams, but the class diagram

is the best choice. Class diagrams are a logical way of looking at classes and their

relationships in a system. This study adopted the Robustness elements in the anal-

ysis model for developing the Web application. The class object was divided into

three stereotyped classes: <<Boundary>>, <<Control>>, and <<Entity>>, which

were suggested by Jacobson [30].

An actor speci¯es a role that an external entity adopts when interacting with the

system directly. It touches the boundary of a system. An actor interacts with more

than one use case, and each use case must have a user interface for operating, just like

the boundary class in the PIM. A use case diagram describes the relationships be-

tween use cases and actors, and among use cases themselves.

A use case is a description of the behavior of a part of the system in terms of its

interaction with human and computerized actors. Each use case must have a

boundary class for actor interaction. A use case may act as a control class, and the

entity class is selected according to the functions of the control class. Then the entity

class is implemented for processes, logical code objects, or application objects.

Therefore, this study proposes that a use case can be mapped to a set of Robustness

elements, as shown in Fig. 2.

In Web applications, the boundary classes are either Web pages or monitor

screens. The control classes map to the processes that deliver the functionality of the

system. The entity classes usually represent the persistent objects in the system, such

as the tables in the database.

Fig. 2. A use case mapped into a set of Robustness elements.

Developing Web Applications Based on Model Driven Architecture 169

3.2. Mapping rules from PIM into PSM

According to the MDA development life cycle, a PIM diagram can be transformed

into one or more PSMs. For each speci¯c technology platform a separate PSM is

generated, which includes relational PSM, application PSM (Java PSM), and Web

PSM. Many studies and CASE tools have supported the transformation of relational

PSM and Java PSM, but this study focuses on the transformation from PIM into

Web PSM, because the Web applications include many languages and di®erent kinds

of technology, such as user interfaces, applications, and database. In this study the

Java PSM and database connection were synchronously generated while the Web

PSM was transformed.

This section gives insight into the PIM to PSM transformation based on the

mapping rules, which are divided into three classes: boundary, control, and entity.

3.2.1. Boundary class transformation

A boundary class in PIM can be transformed into a combination of Server Page,

Client Page, and Form in PSM. This Server Page is di®erent than that de¯ned by

Conallen. The functions of a boundary class in PIM can be transformed into a Server

Page in PSM, which is a JSP language used by servers to send messages, parameters,

and operations. The displayed boundary class data in PIM can be transformed into a

Client Page in PSM, and the Client Page is only an HTML-based method for dis-

playing data. The PIM boundary class input ¯elds can be transformed into a Form in

PSM. The Form aggregates all input ¯eld elements for a Web page, such as input

boxes, text areas, radio buttons, check boxes, hidden ¯elds, etc.

There are three kinds of mapping rules for transforming a boundary class in a PIM

into a Web PSM. Examples are shown in Fig. 3. Some icons are automatically

transferred using the CASE tool when the stereotypes are de¯ned. The ¯rst rule

refers to the combination of a Server Page, a Client Page, and a Form. When a Web

page has to operate server functions or display the parameters of a server, a Server

Fig. 3. A PIM boundary class transforms into three types of PSMs.

170 Y.-C. Huang & C.-P. Chu

Page must implement it. In this situation the Client Page and the Form must be

aggregated with the Server Page and become a JSP ¯le, as shown in Fig. 3(a).

The second rule refers to the combination of a Server Page and a Form. If a

boundary class does not need to operate server functions or display the parameters of

server, and does not include the action of the client site, a form can be aggregated

with a server page, as shown in Fig. 3(b).

The last rule refers to the combination of a Client Page and a Form. If a boundary

class only includes the action of the client site, a Client Page can implement it, and

the Form has to be aggregated with the Client Page, as shown in Fig. 3(c).

3.2.2. Control class transformation

In a Web application environment, a control class in the PIM can be transformed

into a Servlet in PSM, because the control class's job is to send the parameters of the

getting or posting method of. The control class has almost no attributes in PIM

analysis, but when it is implemented the Servlet may have temporary attributes in

the PSM design. (ex: initial parameters) The mapping rule from a control class in

PIM to a class in PSM is shown in Fig. 4.

3.2.3. Entity class transformation

An entity class in PIM can be transformed into a normal class in PSM, which

represents logical and object that implement Servlet for a speci¯c platform.

The attributes and operations in entity classes can be obtained from requirement

documents, drawings, data glossaries, use case descriptions, etc. Nouns may become

attributes and verbs may become operations. Figure 5 shows the mapping rules from

an entity in PIM to a class in PSM.

3.3. Transform PSM into code templates

As mentioned previously, Web applications include many technologies and lan-

guages. In this study, we developed a program named WebPSM2Code, and a Web

PSM uses WebPSM2Code to generate many Web components, such as server pages,

client pages, forms, Servlets, JavaBeans, and con¯guration ¯les. Each component

must re°ect a speci¯c stereotype to create the speci¯c language. This section will

Fig. 4. A control class in the PIM is mapping to a Servlet in PSM.

Developing Web Applications Based on Model Driven Architecture 171

introduce the transformations of components into various codes in the Web PSM

as follow:

3.3.1. Server Page class

A Server Page class is a logical abstraction of a Web page as seen by server, which is

typically implemented by a kind of scripted page, such as JSP, ASP, or PHP. In this

study, the Server Page class was mapped into JSP code, which included static

attributes, non-static attributes, and session attributes. The static attributes were

realized by JSP declaration, the non-static attributes were realized by JSP

Scriptlet, and the session attributes were obtained from the parameters of the

session. Operations de¯ned in the page, which are typically implemented as func-

tions, were realized through JSP declaration.

Figure 6 is an example of Server Page mapping to JSP code. The count attri-

bute is a static attribute realized through JSP declaration, rank is a non-static

attribute realized through JSP Scriptlet, and account is a parameter of a session

attribute from the session.getAttribute declaration.

3.3.2. Client Page class

A Client Page class can be mapped to JSP, html, or JavaScript code. The attributes

and operations in a Client Page class are realized using JavaScript. The attributes

were mapped to var declarations, and the operations were mapped to functions in

JavaScript. When the Client Page class aggregated with a server page, it was

mapped to become JSP code, if it aggregated with a form it was mapped to become

the html, and if it existed alone was mapped into JavaScript. Figure 7 is an example

Fig. 5. An entity class in the PIM is mapping to a normal class in PSM.

Fig. 6. The Server Page class is mapped into the JSP code template.

172 Y.-C. Huang & C.-P. Chu

of an asynchronous client page mapped into JavaScript code. The attribute of

isValid is declared by a var variable, and the operations of createXMLHttpRequest,

asynEvent, handleStateChange, and register are mapped to the re°ective functions.

3.3.3. Form

A form stereotyped class is a collection of input ¯elds that are aggregated to a client

page. This class maps directly to the HTML <form></form> tag. Its attributes

include the form's input ¯elds: text, password, textarea, checkbox, ¯le, image, but-

ton, option, radio, reset, hidden, submit, etc. The tagged value named method is used

to set the method attribute: GET or POST (default). All the input ¯elds (attributes)

must have a stereotype to re°ect, and only attributes that map to prede¯ned form

attribute types are forward engineered. Some examples are as follows:

<<text>>id:String ! <input type¼\text" name¼\id" value¼\">

<<text>>password:String ! <input type¼\password" name¼\password" value¼\">
<<submit>>button¼Login ! <input type¼\submit" name¼\button" value¼\Login">

Fig. 7. The Client Page is mapped to a JSP, html, or JavaScript code template.

Developing Web Applications Based on Model Driven Architecture 173

A <<submit>> stereotyped association in-form linked ¯le is allowed to send all

attributes to a server page. This association is used to determine the action attribute,

which is set to the linked ¯le or Servlet as a server page. Figure 8 shows an example of

the Form in Web PSM mapping to a code. Each property is mapped to an <input>

tag and the action is a request to a RegisterServlet.do Servlet.

3.3.4. Servlet

The user interfaces will send data or call entity classes through control classes. A

control class in the PIM will be transformed into a Servlet in the PSM. The

attributes and methods in the Servlet are implemented using JAVA, and must

consider the association relationships between classes. Generally speaking, a Servlet

must accept a Form request, and then redirect to another Web page. Figure 9 is an

example of an asynchronous Servlet mapping to Java code. Its transformation steps

Fig. 8. A Form in PSM is mapped to an html code template.

Fig. 9. An example of code for an asynchronous Servlet.

174 Y.-C. Huang & C.-P. Chu

are as follow:

1. <<Form>> request

According to the Form request the association names (Get or Post), then declare

the method of doGet or doPost.

2. <<Client Page>> asynchronous

In Servlet, the asynchronous pattern is implemented with Ajax pattern, and then

declares the method named doAsynWork.

3. <<Redirect>> or <<Forward>> – Generated the code as follows:

RequestDispatcher view ¼ request.getRequestDispatcher(\/****Redirect Page

***/″); view.forward(request, response);

3.3.5. Deployment descriptor (DD ¯le)

The web.xml ¯le, commonly known as the deployment descriptor, contains con¯g-

uration and deployment information about Web applications, which contains the

information about the de¯nitions and mappings to both JSP pages and Servlets.

Another type of information that can be contained within the deployment descriptor

is Servlet context initialization parameters.

In this study, when the PSMwas transformed to code, all Servlets were transformed

to Java codes and automatically generated servlet-mapping path records in the web.

xml ¯le. Notice that there is a<servlet-name> parameter tag here that corresponds to

a Servlet de¯ned above in theweb.xml ¯le. The other tag contained in this section is the

<url-pattern> tag, which signi¯es the URL pattern with which the Servlet is mapped.

Figure 10 shows an example of partial code in web.xml that the RegisterServlet in

<servlet-name> is mapping to the RegisterServlet.do in <url-pattern>. It is clear

that the real Servlet ¯le is Servlet.RegisterServlet class.

3.3.6. Database connecting

The Communication Bridge in MDA is the function for connecting with the data-

base. In the design phase we added a DBManager class in the PSM diagram for

connecting with database. Figure 11 shows an example connection with a MySQL

database that will be automatically transformed into Java code.

Fig. 10. An example Servlet mapping in the web.xml con¯guration ¯le.

Developing Web Applications Based on Model Driven Architecture 175

4. A Case Study

This study implemented a Project Management System to check the validity of the

methodology proposed in Sec. 3. The used platforms were JVM 1.6.0, MySQL 5.0 for

the database and Apache Tomcat 6.0 for the Web container. The UML CASE tool

was the IBM's Rational Rose. First, Rational Rose was used to design the Use Case

diagram. Second, the PIM diagram was constructed for each use case based on the

mapping rules. Third, the PSM diagram was designed according to the mapping

rules and the stereotypes added to the PSM classes. Finally, through the

WebPSM2Code tool, the PSM diagram could be automatically transformed into the

Web application code templates. Each ¯le counted the lines of code as a measure-

ment of a programmer's productivity, and then counted again when the system was

completed.

4.1. PIM diagram

Our approach includes three functions: user login and registration, project man-

agement (adding a new project, modifying a project, and deleting a project),

and project query. Figure 12 shows the six use cases and an example mapping

PIM diagram for login and registration. The preliminary analysis phase uses three

kinds of objects in the Robustness diagram as depicted in the PIM diagram. These

include boundary classes, control classes, and entity classes. Boundary classes rep-

resent Web pages contents, i.e. information in the system, such as the account

and password ¯elds in the LoginClient that allow users to login. Control classes deal

with the parameter requests for boundary classes, such as LoginClient logins and

requests for the LoginServlet. They then call the Register Entity class to handle

the request.

4.2. Web PSM diagram

Based on the de¯ned stereotypes in the previous section, the PSM is created by the

mapping rules. The PSM diagram for Login/Register is shown in Fig. 13. The PSM

Fig. 11. The example code of MySQL database connection.

176 Y.-C. Huang & C.-P. Chu

diagram re°ects the speci¯c platform and has more detailed information in it, in-

cluding stereotypes, data types, initial values, and associations between classes. The

results of the PIM to PSM mapping are shown in Table 1. Here we only demo the

transformation of Login/Register as follows:

Use Case 1: Register

This case included the boundary classes RegisterClient, RegisterForm, and Regis-

terBackForm, the control class RegisterServlet, and the entity class Register as the

back end. There were asynchronous relations between the RegisterClient class and

RegisterServlet class, which are shown in Fig. 13. Therefore, the Ajax pattern was

used for the code transformation. When users successfully registered, the Regis-

terServlet class redirected them to the Index page.

Use Case 2: Login

This use case included the boundary classes LoginClient, LoginForm, and Login-

ToRegister, and the control class LoginServlet. When users inputted their account

and password, the LoginForm class sent a request to the LoginServlet class using the

Postmethod, and then the LoginServlet class decided if the user was redirected to the

Index page or the LoginClient page.

4.3. Transforming Web PSM to code

The summarized Web PSM diagram was transformed into Web application codes.

We developed the transformation program named WebPSM2Code using Microsoft

Studio 2008 c#. It requires a runtime environment upper version than NET

framework 3.5.

Fig. 12. The Use Case diagram and a PIM diagram mapping example for Login/Register use cases.

Developing Web Applications Based on Model Driven Architecture 177

The codes ¯les followed the JSP Web application framework; the Model, Con-

troller, View, and deployment descriptor (DD) ¯le were assigned to the Context Root

folder. Table 2 shows the example of ¯lename and directory structure for the Login/

Registration use case. The Controller ¯le was stored in the WEB-INF/classes/

Table 1. The results of PIM mapping to PSM for Login/Register use case.

PIM PSM

Use case View Controller Model View Controller Model

Register RegisterClient RegisterServlet Register RegisterClient RegisterServlet Register

User RegisterForm User

DBManager RegisterBackForm DBManager

Login LoginClient LoginServlet Register LoginClient LoginServlet Register
User LoginForm User

DBManager LoginToRegister DBManager

Fig. 13. The PSM Class Diagram of a Login/Register.

178 Y.-C. Huang & C.-P. Chu

Servlet directory, all Java technology class ¯les were stored in the WEB-INF/clas-

ses/Model directory, the deployment descriptor was stored in a ¯le called web.xml in

theWEB-INF directory, and all the view pages were stored in Website Context Root

folder.

After the transformation, we counted the LOC for each ¯le using counting

standard, then manually completed this system using Coding Standard, and then

counted again. The results of the case study are shown in Table 3.

Table 2. The listing of ¯lenames after transforming from PSM into code.

Code Code

Use

case

PSM

View

Code

Context Root

PSM

controller

WEB-INFn
classesnServlet

PSM

Model

WEB-INFn
classesnModel

Register RegisterClient RegisterClient.html RegisterServlet RegisterServlet.java Register Register.java

RegisterForm User User.java

RegisterBackForm DBManager DBManager.java

Login LoginClient LoginClient.html LoginServlet LoginServlet.java

LoginForm

LoginToRegister

Table 3. The ¯les list for the Web application directory structure and comparison of code coverage

results.

Type Filename

Code template

size

Completed

program size

Code

coverage (%)

Model DBManager.java 14 54 26

MGT.java 7 92 8

Project.java 11 13 85
Register.java 11 52 21

User.java 8 10 80

Subtotal 57 227 25

Controller (Servlet) DomainModifyServlet.java 8 20 40

GetDomainServlet.java 8 14 57

GetProjectServlet.java 10 15 67
LoginServlet.java 9 20 45

ProjectDeleteServlet.java 9 20 45

ProjectMGTServlet.java 11 31 35

ProjectQueryServlet.java 10 14 71
RegisterServlet.java 11 33 33

Subtotal 76 167 46

DD ¯le web.xml 52 52 100
View domainmgtpage.jsp 11 31 35

domainpage.jsp 15 52 29

index.jsp 10 16 63
loginclient.html 10 22 45

projetcmgtpage.jsp 15 47 32

projetcpage.jsp 22 54 41

projectprivatepage.jsp 17 45 38
projectquerypage.jsp 9 33 27

registerclient.html 31 83 37

Subtotal 140 383 37

Total 319 823 39

Developing Web Applications Based on Model Driven Architecture 179

The results show that the average transformation rate was about thirty-nine

percent. When the programs had to deal with more business logic operations, the

coverage rates were lower because the functions had to be manually added by pro-

grammers. When the programs were responsible for controlling processes or sending

parameters, the coverage rates were higher.

5. Conclusions and Future Works

This study aims to realize transformation between model diagrams, and then to

make them transform into the MVC Model 2 Web application code automatically,

and it includes the development of program, such as Java, Servlet, JSP, HTML, web.

xml etc. We used the example case to validate the proposed transformation meth-

odology. This case could be transformed to a total of 23 program ¯les (see Table 3).

The ¯nal completed system showed that the transformation rate was about 39%.

Since no one has mentioned the results of the transformation code number and the

transformation rate in the previous literature, it was clear that our code generation

had much richer information than others, and the results of this study show a sig-

ni¯cant contribution to the Web application.

This study had presented a new MDA approach to transform Web applications

from CIM to PIM, then to PSM, and ¯nally to code. The Robustness diagram bridges

the gap between analysis and design. Applying MDA process, this study aims to

build sets of CIM, PIM, and PSM by analyses, design, and implementation phases of

the model-driven process. By using the UML Web Application Extension (UML

WAE) to de¯ne the stereotypes, the PSM can be automatically translated into code

by the developed program. The code templates included parts of Java Web appli-

cation ¯les, such as html, Java Bean, Servlet, JSP, deployment descriptor ¯le (web.

xml) etc.

Comparing with other Model-Driven methodologies, such as WebML, WAD,

UWE4JSF, OOHDMDA, or RUX-Method, this study not only realized automatic

code generation, but also supported the integrated JSPWeb application. As a result,

all the ¯les can address to the corrected Web application directory structure. Table 4

summarizes these tools of comparison to support what kinds of developed program.

This study found that this method can automatically transform 39% of the

whole system from Web PSM to code templates, which shows the information is

still contained in di®erent models. On one hand, because the PIM and PSM models

are represented by class diagrams, they only can express static content and associ-

ation relationships. On the other hand, the other information is hidden in another

model diagrams, such as dynamic information and behavior information. For this

reason, we can use sequence diagrams or state diagrams to describe dynamic calls

and transfers between states in the future. Therefore, our future work will focus on

generating Web application codes from interaction diagrams and behavior diagrams.

The main contribution of this study is reducing costs associated with applica-

tion life-cycles and application development time, improving application quality,

180 Y.-C. Huang & C.-P. Chu

increasing returns on technology investments, and quickening the inclusion of

emerging technology bene¯ts into existing systems.

The advantages of using models transform to codes template can reduce the

coding time, but it does have some limitations. This study only focused on dynamic

interactive webpage, such as a form submission and the associated response from the

server. The Ajax not only used to check a registered username, but also can be

applied to other web applications. This study should provide a transformable basis

for additional research. There is a continuing need for an adequate theoretical basis

for the practical application of statically structure models and dynamic behavior

models.

References

1. T. C. Lethbridge and P. Laganiere, Object-Oriented Software Engineering: Practical
Software Development Using UML and JAVA, 2nd ed. (McGraw-Hill, 2005).

2. J. Johnson, CHAOS Summary 2009, The Standish Group, 2009.
3. A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven ArchitectureTM:

Practice and Promise (Addison-Wesley, 2003).
4. S. Ceri et al., Designing Data-Intensive Web Applications (Morgan Kaufmann, 2003).
5. R. S. Pressman, Software Engineering: A Practitioner's Approach, 7th ed. (McGraw-Hill,

2010, OMG, MDA Guide Version 1.0.1., 2003).
6. P. C�aceres, E. Marcos and B. Vela, An MDA-based approach for web information system

development, in Proceedings of Workshop in Software Model Engineering, 2003.
7. S. M. Beigbeder and C. C. Castro, An MDA approach for the development of Web

applications, in Proc. of ICWE, 2004.
8. Y. Fujikawa and T. Matsutsuka, New Web application development tool and its MDA-

based support methodology, FUJITSU Sci. Tech. 40(1) (2004) 94–101.
9. H. Tai et al., Model-driven development of large-scale Web applications, IBM J. Res.

Dev. 48 (2004) 797–809.

Table 4. Comparison of prior researches on code generation.

WebML/

WebRatio

WAD/

WAST UWE4JSF OOHDMDA RUX-Method

WebPSM2

Code

Proposed by Kraus

Knapp

Koch
2007

IBM

2004

Kroiss

Koch

Knapp
2009

Schmid

Donnerhak

2005

Linaje

Preciado

2007
2008

This

Study

Java X X X X X
Servlet X X
HTML X
JSP X X X X X
DD ¯le X X X X
DBConnection X
Javascript (Ajax) X
Case Example X X
MDA process X X

X: Support.

Developing Web Applications Based on Model Driven Architecture 181

10. S. J. Mellor, K. Scott, A. Uhl and D. Weise, MDA Distilled: Principles of Model-Driven
Architecture (Addison-Wesley, Boston, 2004).

11. W. Harrison, C. Barton and M. Raghavachari, Mapping UML designs to Java, in 15th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ACM SIGPLAN Notices, Minneapolis, 2000, pp. 178–187.

12. T. O. Meservy and K. D. Fenstermacher, Transforming software development: An MDA
road map, Computer (2005) 52–58.

13. C. Zhao and K. Zhang, Transformational approaches to model driven architecture ��� A
review, in Software Engineering Workshop, 2007, pp. 67–74.

14. D. Schwabe and G. Rossi, Developing hypermedia applications using OOHDM, in
Workshop on Hypermedia Development Process, Methods and Models, Pittsburg, USA,
1998.

15. J. Gómez and C. Cachero, OO-H Method: Extending UML to model web interfaces, in
Information Modeling for Internet Applications (IGI Publishing, Hershey, 2003).

16. N. Koch, Classi¯cation of model transformation techniques used in UML-based Web
engineering, IET Software 1(3) (2007) 98–111.

17. N. Koch et al., UML-based Web engineering ��� An approach based on standards, inWeb
Engineering: Modelling and Implementing Web Applications (Springer Verlag, 2008).

18. A. Schauerhuber et al., Bridging WebML to model-driven engineering: from DTDs to
MOF, IET Software 1(3) (2007) 81–97.

19. S. Meli�a, J. Gómez and J. L. Serrano, WebTE: MDA transformation engine for
web applications, in Proc. 7th International Conference on Web Engineering (Springer-
Verlag, 2007).

20. A. Kraus, A. Knapp and N. Koch, Model-driven generation of Web applications in UWE,
in Proc. 3rd International Workshop on Model-Driven Web Engineering, 2007.

21. A. Vallecillo et al., MDWEnet: A practical approach to achieving interoperability of
model-driven Web engineering methods, in Third Int. Workshop Model-Driven Web Eng,
2007.

22. Y. C. Huang, Transformations from Class Diagram to Relational Table and Application
Template, Masters Thesis, National Sun Yat-Sen University, 2004.

23. J. Conallen, Building Web Applications with UML, 2nd ed. (Addison-Wesley, 2002).
24. M. Busch and N. Koch, MagicUWE ��� A CASE tool plugin for modeling Web appli-

cations, in Proceedings of 9th International Conference on Web Engineering, 2009.
25. C. Kroiss, N. Koch and A. Knapp, UWE4JSF: A model-driven generation approach for

Web applications, in Proceedings of 9th International Conference on Web Engineering,
Springer, 2009, pp. 493–496.

26. H. A. Schmid and O. Donnerhak, The PIm to servlet-based PSM transformation with
OOHDMDA, in 5th International Conference on Web Engineering, Sydney, 2005.

27. H. A. Schmid and O. Donnerhak, OOHDMDA ��� An MDA Approach for OOHDM
(Springer, New York, 2005).

28. M. Linaje, J. C. Preciado and F. S�anchez-Figueroa, Engineering rich internet application
user interfaces over legacy Web models, IEEE Computer Society 11(6) (2007) 53–59.

29. J. C. Preciado et al., Designing rich internet applications combining UWE and RUX-
method, in Proceedings of the Eighth International Conference on Web Engineering,
IEEE Computer Society, 2008.

30. I. Jacobson et al., Object-Oriented Software Engineering: A Use Case Driven Approach
(Addison-Wesley, Boston, 1992).

182 Y.-C. Huang & C.-P. Chu

Copyright of International Journal of Software Engineering & Knowledge Engineering is the
property of World Scientific Publishing Company and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

	Developing Web Applications Based on Model Driven Architecture
	1. Introduction
	2. The Model Driven Development Process
	2.1. Model Driven Architecture (MDA)
	2.2. Model-driven Web applications
	2.3. MDA tools for Web applications

	3. Methodology for Model Transformation
	3.1. PIM transformation
	3.2. Mapping rules from PIM into PSM
	3.2.1. Boundary class transformation
	3.2.2. Control class transformation
	3.2.3. Entity class transformation

	3.3. Transform PSM into code templates
	3.3.1. Server Page class
	3.3.2. Client Page class
	3.3.3. Form
	3.3.4. Servlet
	3.3.5. Deployment descriptor (DD file)
	3.3.6. Database connecting

	4. A Case Study
	4.1. PIM diagram
	4.2. Web PSM diagram
	4.3. Transforming Web PSM to code

	5. Conclusions and Future Works
	References

