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Web Search is one of the most rapidly growing applications on the internet today. However, the current
practice followed by most search engines – of logging and analyzing users’ queries – raises serious pri-
vacy concerns. In this paper, we concentrate on two existing solutions which are relatively easy to deploy –
namely Query Obfuscation and Anonymizing Networks. In query obfuscation, a client-side software at-
tempts to mask real user queries via injection of certain noisy queries. Anonymizing networks route the
user queries through a series of relay servers, hiding the actual query source from the search engine.
A fundamental problem with these solutions, however, is that user queries are still obviously revealed to
the search engine, although they are “mixed” among queries generated either by a machine or by other
users. We focus on TrackMeNot (TMN), a popular query obfuscation tool, and the Tor anonymizing net-
work, and try to analyse whether these solutions can actually preserve users’ privacy in practice against an
adversarial search engine. We demonstrate that a search engine, equipped with only a short-term history
of a user’s search queries, can break the privacy guarantees of TMN and Tor by only utilizing off-the-shelf
machine learning techniques.
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1. Introduction

The popularity of Internet has foreseen many developments, a major one being the
transformation of Web into a huge repository of information. Efficiently searching
this vast amount of information is important, which led to the emergence of search
engines. These search engines accept queries containing few words and provide re-
lated results to the users. To improve the relevance of these results, the leading search
engines started logging and analysing the user queries. This prevalent practice has
received considerable attention from media, public and researchers all over the world
because of the possible privacy breaches.

Public awareness was raised when the U.S. Department of Justice issued a sub-
poena to Google for a week’s worth of search query records and one million URLs

1This submission combines and extends two previously published papers [23,24].
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from its Web index in August 2005 [11]. Later in 2006, AOL released three months of
search logs to the research community. Even though these logs were pseudonymized,
the identities of a few users could be extracted based on the information embedded
in their queries [3,13]. After these major incidents, growing attention has been given
to how major search engines like Yahoo!, Google, AOL and MSN process and store
the user queries over a long period of time.

Archiving the search queries is necessary for the search engine to improve the rel-
evance of the search results. Also, analysing these stored records helps in generating
revenue for the search engines through user specific advertising. There are policies
in place to restrict the duration of storing these search records, but privacy breaches
can take place however small duration these stored records correspond to.

The privacy breaches due to stored query logs, as seen in the case of AOL logs,
can be broadly classified into implicit and explicit categories. Explicit privacy breach
takes place because of the information embedded in the query itself. Frequently, the
query content alone conveys personally sensitive information. Some examples in-
clude: a user searching for a particular disease he or his family member might be
suffering from, searching for one’s social security number (SSN) or phone num-
ber to check if it exists on the web, locating directions, subscribing to news items
and performing “ego-surfing”.2 Implicit privacy violations, on the other hand, occur
when the sensitive information cannot be learned directly from the query logs. In this
case, information needs to be extracted using aggregation and profiling methods or
data mining techniques. As an example, it is possible to infer the income level of a
user by keeping track of the brand of products he/she often searches for [32].

Realizing the need for web search query privacy, researchers have come up with
a number of techniques. These techniques can be broadly classified into three cate-
gories, based on the changes required at the server and the client sides, the require-
ment of any additional third-party infrastructure and the level of trust that the user
needs to impose. The first class of solutions involves the use of Private Informa-
tion Retrieval (PIR) protocols [20]. These protocols, however, require infrastructural
changes at both the server and the client. Though practical PIR protocols guarantee
computational privacy, they are not feasible to be deployed in practice due to the
high communication and computation overload.

The second class of solutions requires the presence of third party infrastructure,
like a proxy, e.g., Scroogle [30] or an anonymizing network, e.g., Tor [8]. These so-
lutions are advantageous in the sense that they do not require changes at the server
side, however, they force the user to impose unwanted trust onto the third party enti-
ties and have performance penalties. In the case of Scroogle, the user needs to trust a
single server hosted by a third party company – which accepts the user queries, strips
away any identifying information associated with the queries (like the cookies or the
IP addresses), and acts as a relay between the search engine and the user. Perform-
ing web search over an anonymizing network certainly provides better protection

2Ego-surfing is a popular practice among users to search for their own names, just to check what results
might appear.
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and fault tolerance than a single proxy because it relies on multiple peers. These
anonymizing networks are typically implemented using onion routing, whereby the
user queries are routed through a series of nodes/relay servers before reaching the
search engine; thereby hiding the actual source of the query. Because these relay
nodes do not modify the queries in any way, the actual query source remains visi-
ble to the search engine if there is some identifying information associated with the
query (like a cookie). To achieve better search privacy while using the anonymization
networks, client side tools like Private Web Search (PWS) [28] have been proposed,
which remove any identifying information associated with the query.

The third class of solutions are based on the principle of Query Obfuscation,
whereby a client-side software injects many noisy queries into the stream of real
user queries transmitted to the search engine. The basic idea is to make these noisy
queries closely resemble the real queries, so that it is hard for the search engine to
distinguish the real queries and profile the user. Since these methods only require
changes at the client side, they can be easily adopted by privacy conscious users.
These methods do not modify the user queries in any way, but just add few addi-
tional noisy queries; hence they do not prevent explicit privacy breaches, but only
protect the user against implicit privacy violations.

Though each class of solutions has its own advantages and disadvantages, the third
class is the easiest to deploy (since it only requires client side changes) and provides
the highest level of confidence to a user, since the user has complete control and does
not need to impose trust on any external entities. Since search engines generally are
not motivated enough to incorporate any server side changes for user privacy, the
second class of solutions, requiring third party infrastructure, are preferred over the
first class.

1.1. Our contributions

In this work we try to assess and quantify the level of privacy provided by the
third and second class of solutions, by evaluating one solution in each class; namely
TrackMeNot (TMN) [15,34] query obfuscation tool and the Tor [8] anonymizing
network.3

Both these problems are independent and yet related. They are independent be-
cause they are based on fundamentally different principles, yet they resemble sim-
ilar binary classification problems (where one tries to separate the instances of two
classes when mixed together). In the case of TMN, the problem boils down to iden-
tifying the queries of a user from the pool of queries containing user and machine
generated queries. On the other hand, the case of anonymizing networks reduces to
the problem of identifying the queries of a user from the pool of queries generated
by the user and other anonymizing network users.

3We have independently evaluated these solutions and the results have been published at [23,24]. This
submission combines and extends the two previously published papers.
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We note that our problems are different from the problem of identifying user
queries from a search log (see, e.g., [17,18]). First, an adversary in our work is
the search engine itself and not a third party attempting to de-anonymize a search
log. Second, unlike a third party, the search engine is already in possession of users’
search history using which it can effectively train a classifier. Moreover, the goals
of our study are also different; we are interested in using known classifiers to evalu-
ate the minimum effort needed by an unsophisticated adversary to break the privacy
guarantees offered by these protection services.

A higher level goal of our work is to assess and quantify the effectiveness of query
obfuscation and anonymizing networks in preserving the user privacy in practice,
against an adversarial search engine. In our assessment we try to model a naive ad-
versary, with access to partial user search history and simple off-the-shelf machine
learning techniques. Our results establish lower bounds on the accuracies that can
be achieved, since we utilize as little information as possible. It is always possible
to improve the results by utilizing more information or stronger machine learning
techniques.

It has been mentioned in [28] that search queries, even though stripped off of
any accompanying information like IP address and cookies, reveal some information
about the user. This is associated to the linkability among queries. We make use of
this query linkability to separate the machine generated TMN queries when mixed
with user queries, and to separate a specific user’s queries when mixed with queries
of other Tor users. We try to address this open problem of linking queries to users
by using machine learning techniques (called query classification) and show that
queries of a user can be identified with reasonable accuracies, just by analysing the
query content.

For TrackMeNot (TMN), we demonstrate that an adversarial search engine can
break the privacy guarantees of TMN. More specifically, by treating a selected set of
60 users – from the publicly-available AOL search logs [1] – as users of the TMN
software, we show that user queries can be identified with an average true posi-
tive rate of 48.88%, while the average TMN query misclassification rate being only
0.02%.

For an anonymizing network like Tor, we demonstrate that an adversarial search
engine can extract user of interest’s queries by utilizing only the query content. By
treating a selected set of 60 users – from the publicly-available AOL search logs –
as users of interest performing web search over Tor, we show that their queries can
be identified with 25.95% average true positive rate when mixed with queries of 99
other Tor users, and with 18.95% average true positive rate when mixed with 999
other Tor users. Though the average accuracies are not so high, our results show that
a few users of interest can be identified with accuracies as high as 80–98%, even
when mixed with queries of 999 other Tor users.

We would like to highlight that the results for the first experiment are specific to
the TrackMeNot tool, which is currently the only real-world implementation of query
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obfuscation. The results of the second experiment, in contrast, are generic and apply
to any anonymizing network since we do not utilize any network specific information
during the analysis.

1.2. Paper organization

The remainder of this paper is organized as follows. In Section 2, we present
how author identification problems compare to query classification problems, and
what prior work has been done so far in this area. Since we need to work with real
user logs for our experiments, we describe our novel experimental methodology in
Section 3. Our adversary model and metrics used to evaluate the performance of the
machine learning techniques are discussed in Section 4. Section 5 explains the details
of our first experiment, where we assess a practical query obfuscation tool called
TrackMeNot. In Section 6, we explain the details of the second experiment, where
we evaluate the effectiveness of anonymizing networks in protecting user privacy.
This is followed by Section 7, where we try to analyse and interpret our results.

2. Related work

The query classification problem is very similar to authorship attribution prob-
lems, which have a long history. An early example of authorship attribution is the
“Federalist Papers” [21]. The primary goal was to model unique author styles by
looking at the text characteristics, such as vocabulary richness (Zipf’s word fre-
quency distribution), choice of rhymes, word length and habit of hyphenation. Refer-
ence [7] showed that it was important to select content-independent attributes, such
as punctuation, usage of prepositions (e.g., “the”, “if”, “to”), etc. to reveal authors’
individual characteristics.

With the evolution of electronic text like emails, blogs, tweets and online mes-
sages, the problem of authorship attribution has also evolved [38]. Compared to the
traditional authorship attribution problem, where the texts were long and had few
possible authors (as in the case of “Federalist Papers”), electronic data is neither
long (e.g., tweets) nor does it have few authors. Firstly, shorter chunks of data makes
it harder to apply regular text analysis techniques, such as bag-of-words. Second,
style of the text may not help in identifying the author since it changes according to
the recipient (like in e-mails – same author can write in different styles for different
recipients). In most cases, the number of possible authors is either unlimited or very
large. These issues make authorship attribution problem more challenging in the con-
text of electronic data. However, studies like [7,19] and [2] show that sophisticated
classification techniques (like Support Vector Machines (SVM) and multiclass clas-
sifiers – OVA and AVA) can give promising results even with electronic data. In this
paper, we use some of these sophisticated techniques when off-the-shelf classifiers
cannot help in identifying user’s queries.



160 S.T. Peddinti and N. Saxena / Web search query privacy

Query classification is even harder compared to e-mails or articles since the query
length is much shorter. However, studies show that “Vanity Queries” [31] (those
containing user identifying information, such as name, telephone numbers and zip
codes) significantly help in identifying a user, given an anonymized search log con-
taining queries (but not identifiers). Jones et al. [18] have worked on de-anonymizing
query log bundles, which are used by the search engines to preserve the search logs
and also to meet user privacy requirements. Making use of the vanity queries, they
show that an attacker, having access to a query log bundle, can identify if the bundle
contains a query session of a particular user or even identify the names and locations
of users in that bundle. They also make use of analytical vulnerabilities and show that
it is possible to un-bundle the logs and cluster queries into users. In a related work
[17], by the same group of authors, it is shown that simple classifiers – those mapping
queries into age, gender and location of user sending the queries – can be combined
to map sequence of queries into a candidate user set which is 300–600 times smaller
than random guess. They also show that it is possible for an attacker to identify
the query session of a user, if he is able to guess some likely queries the user might
make, and the chances greatly improve if the attacker gets to know some of the user’s
unique queries.

3. Query data

In order to pursue our study, we should work with real user queries. To this end,
one possibility was to seek users who may volunteer to let us record their queries.
However, due to the privacy concerns (which form the basis for our work), it was not
feasible to recruit such volunteering users.

To address the above problem, we used a novel experimental methodology. We
worked with the released AOL search data [1] and simulated the existing queries
as they would have appeared to the search engine if the users were using the query
obfuscation tools or the anonymizing networks. The AOL search data was well suited
for this purpose because it consists of a large number of real user queries (21 million),
corresponding to a large user base (650,000) and spanning over a reasonably long
period of time (3 months). Though the AOL logs correspond to a different time
period (year 2006), it does not affect our experiments because we concentrate on
the query content alone and do not consider the associated query timestamps, as we
discuss later in the paper. Since most queries do not have temporal dependence, we
proceed with the use of historical AOL search logs for our experiments.

3.1. Relevance of AOL data

The behavior of a user group which uses privacy enhancing technologies is ex-
pected to be different from the group which is not aware of privacy issues or the ex-
istence of privacy enhancing tools. We do not have any information about the privacy
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consciousness of AOL users. However, since the AOL data was released before the
concern for web search privacy grew among users (because most users were not actu-
ally aware that search engines were collecting such logs), or before the anonymizing
techniques were actually proposed or used for this purpose, we believe the AOL logs
most likely capture the non-privacy conscious user’s search behavior.

We should note that it may not be possible to obtain data which can capture the
difference in behavior of privacy conscious users in the real world. Privacy conscious
volunteers may not be willing to share their web search query traces for research, and
even if they share, it might not reflect their regular/normal behavior and would be
corresponding to a made up personality. However, when people are knowledgeable
about how a privacy enhancing technology works and if they believe in it offering
protection, then there is a high chance that these privacy conscious users might open
up and exhibit their normal web search behavior believing they are protected. Hence,
we believe using the AOL logs might allow us to obtain a first step understanding of
the protection offered by the privacy enhancing technologies.

3.2. AOL data statistics

These AOL logs span across three months: March, April and May of 2006. We use
the May month’s data for simulating the user and reserve the data from the first two
months as the user history (which we assume is available to the search engine before
the user started using TMN or Tor). Since search engines have existed for longer
than a decade while the search privacy concerns grew recently in 2006, we believe
it is safe to assume the search engine has a partial search history of the user – until
the user started using these privacy tools. The first 2 months data will be used as a
training set and the last month data will be the test set, in case of our supervised ma-
chine learning classifiers. This AOL data is a tuple of the form 〈AnonymousUserID,
Query, QueryTime, ItemRank, ClickURL〉. For our experiments we do not make use
of the ItemRank and ClickURL fields, since they are not available for all the queries.

Since it is hard to conduct the experiment on all the 650,000 users, we selected
few users from the AOL logs for our experiments. This selection is done not at ran-
dom, but based on the users’ behaviour across different categories (discussed below)
so that a wide variety of users are covered. The following five categories have been
identified, since they were directly observable from the logs. For obtaining the statis-
tics across each category, we considered all the 650,000 AOL users across all three
months. All the graphs are plotted in logarithmic scale to closely observe the trends.

3.2.1. Number of queries
Over a period of time, different users send different number of queries. We cal-

culated the total number of searches performed by each user and plotted the number
of users across different query bands. From Fig. 1 (a power law distribution), we
can see that most users lie below the 500 query mark with the bulk of them (about
98.72%) performing less than 100 searches over a three month duration. The rest are
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Fig. 1. Number of queries. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
JCS-130491.)

spread across the graph in small numbers. The same characteristics are also seen in
the graphs plotting the maximum number of queries fired in a day, a week and one
month versus the number of users in each query band. We thus combined these four
into the same category (i.e. number of queries over a 3 month period).

3.2.2. Average query frequency
Users have different querying rates, which may turn out to be an identifying fea-

ture. We computed the average timing difference between successive queries for
each user and plotted the number of users across different time bands – shown in
Fig. 2. We can see that the largest user group has average query frequency less than
100 s; this is because most of the users send few queries in immediate succession
and then remain inactive (might be because the user removed his cookies, and all his
later queries were not attributed to the same user). We see that the number of users
with moderate time difference (of few thousand seconds) between queries are few,
because a large number of users seem to take long breaks between query sessions
pushing the average time difference between queries to large values. Hence, there is
a very small group of users who frequently send queries to the search engines.

3.2.3. Sensitive query content
The content of search queries obviously varies across users and we believe it might

play a very important role in conveying information about the query source. We con-
sidered two broad classes for the query content: sensitive and insensitive. Sensitive
queries are those, which a user may not be willing to reveal to the outside world,
such as his/her medical condition, interest in weaponry (considering the alarming
increase in terrorism), those related to child abuse and pornography, and so on. On
the other hand, a user may not mind the public taking notice of his/her insensitive
queries, such as those related to movie interests, sports and education.
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Fig. 2. Average query frequency. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-130491.)

We adopted two methods to identify the sensitive query distribution (one for each
experiment), as we were unsure which might be a better way. For the first experi-
ment, we resorted to machine learning techniques for classification of query content
since it is easy compared to keyword based identification. We manually labelled a
small subset of queries into sensitive and insensitive categories (we referred to vari-
ous press articles discussing sensitive queries that appeared in the AOL logs [3,13]),
and trained a Naive Bayes classifier with this data. We used this trained classifier
to classify the rest of the user queries. The cross-validation true positive rate of this
classifier on the manually labelled set was 68.0095%. Having classified each user’s
queries into the sensitive and insensitive categories, we plotted a graph indicating the
number of users across different sensitive/insensitive percentages (see Fig. 3). The
graph is alarming and contrary to what one would normally expect. A large number
of users were classified to be making sensitive queries. This anomaly could be be-
cause of the way we trained the classifier; while training, we labelled the complete
query in the training set to be sensitive or insensitive instead of just selecting some
relevant keywords, because we did not want the filtering mechanism to miss queries –
such as “how to kill your wife” – which are not necessarily keyword sensitive.

For the second experiment we decided to use the keyword based sensitive query
identification, to see how the distribution might vary. We observed queries of 2000
AOL users and identified certain sensitive keywords relating to medical data, ter-
rorism, weaponry, child abuse and pornography. Some sample keywords include
steroids, marijuana, rape, porn and suicide bombers. If any one of these keywords
occurred in a query, the query was labelled as sensitive. We labelled the queries of
all the AOL users and found the percentage of sensitive-insensitive query distribu-
tion for each user. We plotted the user distribution across different percentages of
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Fig. 3. Sensitive query distribution using Method1. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-130491.)

Fig. 4. Sensitive query distribution using Method2. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JCS-130491.)

sensitive queries – shown in Fig. 4. Having a different keyword set might alter the
distribution a little, but we expect the distribution to mostly remain the same.

3.2.4. Weekday/weekend distribution
From the logs, we observed that some users perform web search only during week-

days (they might be using corporate machines) and some only over the weekends.
Speculating this as an important feature for user identification, we calculated the
number of queries fired by each user over weekdays and weekends. We categorized
users into three groups – those who search only over weekdays, those who search
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Fig. 5. Weekday/weekend distribution. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/JCS-130491.)

only over weekends and those who distribute their queries between weekdays and
weekends. Figure 5 provides a graphical distribution of this data.

3.2.5. Query length
Though query lengths are implicitly attached to the queries, they may contribute

towards identifying the user. As an example, if there is a user A who sends two
word queries consistently, and we come across a query consisting of 5 words in
length, then it is highly unlikely that user A might have generated that query. Hence
considering the query length as an important attribute, we plotted the number of users
across three different query length bands – Short, Medium and Long. The users in
short band have average query length of less than 3 words, those in medium band
have average query length lying between 4 to 6 words, and users in long band have
average query length greater than 6 words. From Fig. 6, we can observe that a large
number of users send short queries.

4. Our adversarial model

The adversary in our work is the search engine itself and not a third party, whose
goal is to work against these privacy preserving solutions and identify the user
queries for profiling and aggregation purposes. Unlike a third party, the search en-
gine is already in possession of the users’ search history which it can effectively put
through use to gain an advantage. We consider the adversary to be passive and that
it only analyses the logged queries. In particular, we assume it does not inject any
manipulated responses to the user in an attempt to identify the user queries.

We try to model a naive and unsophisticated adversary, who makes use of off-the-
shelf machine learning techniques to identify the user queries with as little effort as
possible. Since the effectiveness of these machine learning techniques largely de-
pends on choosing optimized parameters, we keep our attacks simple by either using
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Fig. 6. Query length distribution. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-130491.)

default parameters for the techniques or making the simplest parameter optimiza-
tions. Also, we assume that the adversary does not make use of any information
associated with the queries besides the queries themselves, like the cookie informa-
tion associated with the search queries, the exact query timestamps or the Tor exit
node IP addresses. This additional information may not be available when the user is
using a sophisticated privacy solution (like PWS [28] + Tor). Therefore, our results
establish the lowest accuracies that can be achieved, since we utilize the least infor-
mation that is always disclosed, and it is possible to improve the results by utilizing
more information or stronger machine learning techniques.

We can consider both the query obfuscation and anonymizing network problems
as binary classification problems, where we try to associate query instances to either
a user class or Other class. Here the Other class represents the TMN class in the
query obfuscation experiment and the other Tor users in the anonymizing network
experiment. For measuring the efficiency of the machine learning techniques in cor-
rectly identifying queries belonging to each class, we use two metrics: (1) percent-
age of correctly identified User queries, and (2) percentage of Other class queries
incorrectly identified as user queries. If there are u user queries and t other class
queries, recorded by the search engine, and a classifier predicted u′ + t′ queries as
user queries, where u′ corresponds to correctly identified user queries and t′ corre-
sponds to incorrectly identified other queries, then our two metrics are given by u′/u
and t′/t, respectively. We shall henceforth refer these measures as “True Positives”
and “False Positives”. (Standard Machine learning definitions use “accuracy” and
“misclassification rates” as the performance metrics.) The classifier is said to be do-
ing a good job if u′/u is close to 1 and t′/t is close to 0, i.e., percentage of correctly
classified user queries is close to 100% and percentage of incorrectly classified TMN
queries is close to 0%.
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4.1. Relevance of classification results

Let us assume that the search engine is interested in identifying the queries cor-
responding to a user of interest, A. Assume there are nu number of A’s queries and
no number of Other class queries (note that generally nu � no). The search engine
can select a query at random and can trivially identify it to be A’s query with a prob-
ability pnaive = nu

(nu+no) . Instead, if we apply our classification approach which has
a true positive rate of x (i.e., probability of correctly identifying A’s queries) and a
false positive rate of y (i.e., probability of incorrectly identifying others’ queries as
A’s queries), then we obtain a (very small) subset of x ∗ nu A’s queries and y ∗ no
other users’ queries. Now, if we pick a random query from this subset, then the prob-
ability that this query is A’s query is pclass = x∗nu

(x∗nu+y∗no) . If our classification is
doing a good job, i.e. if x is high and y is low, then pclass would be significantly
higher than pnaive, which in turn would mean that we are doing a much better job of
identifying user’s queries than we do with a random guess.

For example, consider nu to be 100 and no to be 100,000. Assume the classifier’s
true positive rate, x, to be 50% and the false positive rate y to be 0.1%. Based on
the numbers, we can see that the classifier would label 150 queries as A’s queries.
The probability of identifying A’s queries in this small subset of 150 queries is much
higher (pclass = 0.33) when compared to the default probability (pnaive = 0.001).
The adversary, i.e. the search engine, will prefer to use these less noisy 150 queries
for personalization and aggregation purposes as compared to the 100,100 more noisy
queries. This example clearly shows the need to use a classifier to obtain a purer
sample of user queries.

In all our experiments, we try to evaluate these true positive rate x and the false
positive rate y for the classifiers, which help us in validating whether the pclass is
higher than pnaive; our results show it is indeed the case.

5. Evaluating privacy provided by query obfuscation

The goal of this experiment is to find how effective query obfuscation can be in
preserving users’ privacy in practice. We focus on a real world query obfuscation
tool called TrackMeNot (TMN) [15,34], which is implemented as a Mozilla Firefox
plugin. This tool programmatically generates queries, mimicking the user search be-
haviour, and attempts to hide the real user queries in this fake query stream. TMN has
taken necessary measures to closely simulate user’s search behavior and has evolved
considerably over time. Currently TMN is a popular and robust query obfuscation
tool, with 469,098 downloads for the plugin version 0.6.721 [35].4

Previously, theoretical models have been developed to bring insights into the effec-
tiveness of query obfuscation for search privacy [37] and a brief analysis of TMN has

4We refer the reader to Bruce Schneier’s criticism of TMN when it was introduced in 2006 [29].
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recently been conducted in [6] using search logs from a single user (see Section 2.1
of [6]). The current work represents the first step, to the best of our knowledge, to-
wards a large scale analysis of TMN.

We set out to investigate the following question: Is it possible (and to what extent)
for an adversarial search engine – equipped with users’ search histories – to filter
out TMN queries using off-the-shelf machine learning classifiers?

Overview of results: We answer the above question affirmatively. We selected
60 users from the publicly-available AOL search logs and treated them as users of
the TMN software. As per our metrics defined in Section 4, we are able to achieve
an average true positive rate of 48.88% for identifying user queries, while the aver-
age false positive rate is only 0.02%. We also observed that for few users, the true
positive rates were greater than 80% and as high as 100%, whereas for others, the
true positive rate was less than 10%. In almost all cases, the pclass value was very
close to 1 and much higher than the value of pnaive, which was always less than 0.1.
Based on our results, we can conclude that most users are susceptible to privacy vi-
olations even while using TMN, some of them being significantly more vulnerable
than others.

5.1. Background: TMN query generation

In this section, we discuss TMN query generation process. We first try to under-
stand this process based on what was reported in [15], and then, for deeper insights,
inspect TMN’s source code [34]. At a high level, the goal of TMN is to hide user
queries in a stream of random machine generated queries. In order to make these
random queries indistinguishable from real user queries, TMN adapts the randomly
generated queries to content a user is interested in. This is achieved by studying the
web search responses to real user queries and extracting useful information. TMN
uses this extracted information to adapt the random generated queries accordingly.
To understand how TMN works and adapts to user queries, consider a small exam-
ple. Assume user A installed TMN and started using it. Initial TMN queries would
be generated from popular news RSS feeds, hence the fake query stream contains
queries like “new apple macbook pro launch”, “Obama and whitehouse”, etc. When
A searches for “google android versions”, TMN notices this query and its accompa-
nying search results. By learning from this, it generates newer queries like “Google
android”, “android phones”, etc. and adds them to the query stream. Later on when
user searches for “restaurants in California”, TMN adds queries related to “califor-
nia” and “restaurants” to the query stream. This adaptation to user queries helps
TMN generate realistic looking fake queries.

5.1.1. Understanding TMN from the literature
TMN hides the user queries in a stream of programmatically generated search

queries, which mimic or simulate the user’s search behavior. In order to make the
fake queries look realistic, TMN includes many features described below. TMN
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maintains a dynamic query list, which is instantiated with an initial seed list of
queries obtained from popular RSS feeds and publicly available recent searches.
Later, individual queries from this list are randomly selected and substituted with
query-like words from HTTP response messages returned by the search engine for
actual user queries – thereby adapting the newer queries to reflect the content a user
is interested in. Over time, each TMN instance develops a unique set of queries and
adapts itself to the user’s interested content and mimics the user more closely.

TMN employs a “Selective Click-Through” mechanism, which simulates the user
behavior of clicking on the query results returned by the search engine. It also keeps
track of all the user searches by monitoring all outgoing HTTP requests from the
browser using the “Real Time Search Awareness” mechanism. The “Live Header
Maps” feature enables TMN to adapt dynamically to the client’s browser, such as
browser version and operating system details, helping TMN to use the exact set of
headers that the browser uses. TMN also implements “Burst Mode” queries in or-
der to incorporate the common user behavior of firing related queries in immediate
succession as part of a query session.

With all these features, TMN is believed to be a good simulator of user’s searching
behavior. However, it has certain drawbacks as mentioned in [15]. TMN cannot mask
a user’s private information (e.g., names or phone numbers) included in the search
queries, and it cannot prevent user identification based on the IP address or cookies.
In order to hide one’s IP address while searching, TMN developers recommend the
use of anonymizing networks, such as Tor [8,15]. Reference [29] points out TMN
might generate “hot-button issue” searches – those involving sensitive search query
terms (e.g., “HIV”, “drug-use” and “bombings”), which the user might not be willing
to search. The TMN authors claim that this problem can be prevented by configuring
the initial RSS input feeds and thus controlling the type of queries sent by TMN.
Based on these discussions, we can say that TMN (potentially) only provides pro-
tection against aggregation and profiling of individual search queries by adversarial
search engines. With and without the use of TMN, user’s area of interest would be
exposed to the adversary, but when using TMN, the actual search queries would be
masked in a stream of related queries. The better the simulated queries resemble
the actual user queries, the better are the chances for TMN to hide the actual user
queries.

5.1.2. Understanding TMN from the source code
In order to obtain a deeper understanding of TMN, we analyzed the supporting

code of TMN’s Firefox extension. Mozilla extensions which are written in XUL and
JavaScript, provide an easy way to develop new applications on top of the basic
Firefox browser platform. The XUL language extends the GUI of the browser while
the JavaScript helps in defining the functionality.

When TMN is installed on the Firefox browser, it creates a default query seed file
and a query list. This query list is initialized with some queries extracted from the
default or supplied RSS feeds and this list is padded with some queries from the
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query seed file. Once done, a search is scheduled immediately (delay is 0 s). For
the later queries, some non-zero random timer values are used based on the query
generation frequency chosen by the user (and some random offset) using the TMN
control panel.

After the delay timeout, a fake search query request is initiated. A random query
is selected from the query list and with some probability the query is modified – only
the longest word in the query is retained or a negated word is added to the query
(such as “word1 word2 – word3”), or quotation marks are added. This modified
query is used as the search query. Sometimes, if “Burst Mode” is enabled, a sequence
of related queries might be generated from the selected query by omitting some
keywords at random. These Burst Mode queries are sent within short intervals of
time, so as to form a chain of related searches – simulating user search sessions,
where queries sent in immediate succession relate to the same topic.

When encoding the generated search query into a URL, some browser details are
to be mentioned in the header portion of the URL request. TMN maintains a list of
headers and URLs for each search engine, and an entry in these lists gets updated
when TMN observes any change in the user communication with the search engine.
The previously selected and modified query is encoded into the search request URL
with updated headers and an XMLHttpRequest is generated. Apart from displaying
the sent query on the Firefox status bar, TMN also stores this request URL in logs for
later reference. When there is a state change in the XMLHttpRequest sent, i.e., when
a response is received from the server, an appropriate action is taken based on the
HTTP status response. If an error occurs, it is logged. If the HTTP status response is
OK, then the HTML response is processed and keywords are extracted from the tex-
tual content on the web page. The TMN query list is updated by randomly replacing
few old queries in the list with these new extracted keywords, thereby incorporating
the user interests. Since, the newer queries are again selected from this same query
list, the newer queries would better adapted to the content the user is interested in.
Also based on some probability, TMN tries to simulate the user click-throughs. To
this end, TMN identifies the links on the HTML response, processes these links, and
picks one of them at random. After some delay, another XMLHttpRequest is gener-
ated with the selected link, thereby simulating the user behavior of clicking a link.
TMN does not process the returned html response for this click-through link. If Burst
Mode is enabled, TMN schedules the next search with the following search queries
in sequence. After a timeout, TMN repeats the whole procedure again with another
randomly picked query from the query list.

In this way, the TMN query list (and so the TMN query seed file) gets updated
with keywords extracted from the web response returned by the search engine, both
for the user queries and TMN queries. In the long run, TMN gets adapted to the query
content the user is interested in and generates better queries making it (potentially)
much harder for the search engine to differentiate the noisy queries from the original
user queries. Because some form of randomization occurs at each and every step, it
is impossible for two TMN instances to generate the same set of TMN queries.
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5.2. Experimental study of TMN: Preliminaries

Based on our discussion in previous section, we find that TMN has taken necessary
measures to simulate user’s search behavior and generate noisy queries as similar as
possible to user’s queries. TMN has also evolved considerably over time resulting in
a potentially robust and popular query obfuscation tool. In this work, we set out to
investigate whether it is still possible (and to what extent) for an adversarial search
engine to filter out TMN queries using off-the-shelf machine learning classifiers,
and thus evaluate the privacy guarantees provided by TMN. Our adversarial model
is discussed in Section 4. We assumed that the search engine would have access to
user’s search histories for a certain duration until the point the user starts using the
TMN software.

In order to pursue our study, we should work with real user queries; and as dis-
cussed in Section 3 we work with AOL logs. We selected a few users from the AOL
logs and simulated their behaviour of issuing queries to the search engine while TMN
is installed and running on their machines. TMN is a Mozilla extension and these ex-
tensions, installed on a Firefox browser, operate only on one user profile – the one
on which it was installed. Hence, we can have multiple Firefox user profiles, each
with its own independent TMN instance, simulating a different user.

Due to the resource limitations on a single machine, it is difficult to run many
Firefox user profiles simultaneously. To remedy this, we used the PlanetLab [25]
system, a global distributed research network used by researchers to develop network
applications and run network simulations. PlanetLab resources are assigned to the
users as a resource slice, and these slices are instantiated by assigning nodes to it.
Each of these nodes need to be configured with the experimental environment, which
in our case is a working Mozilla Firefox browser with the TMN plugin installed.

5.2.1. Selecting users
We decided to select 15 AOL users from the following four categories, i.e., a total

of 60 users.

Number of queries. From Fig. 1, we find that most users are below the 100 query
mark, and of these, more than 70% perform fewer than 30 searches during the three
month period. Thus, we selected eight users at random from the set of users who fire
less than 30 queries, five users from the set of users who fire less than 100 queries
and two users who pose more than 100 queries.

Average query frequency. The graph in Fig. 2 is smooth everywhere except for a
sharp peak at 200 s. To take this into account, we randomly selected five users from
the set of users with an average query frequency of less than 200 s, five users lying
near the second rounded peak at 35,000 s, and the remaining five from the set with
more than a million seconds average gap between successive queries.
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Sensitive query content. Since there are a large number of users in the 100% sen-
sitive band (Fig. 3), we randomly selected six users from this set. Five users are
selected from the 30% insensitive – 70% sensitive band, two users from 10% sen-
sitive – 90% insensitive band, and the remaining two from 100% insensitive query
set.

Weekday/weekend distribution. Based on the distribution in Fig. 5, we equally di-
vided the choice of users among those who fire all their queries over weekdays, those
who distribute 40% on weekday and 60% on weekend, and those who search only
during weekends.

5.3. Experimental set-up and implementation

After the user selection, the task ahead was to simulate the user logs while a TMN
instance per user is running, and record all the resulting queries. Sixty nodes (cor-
responding to each selected user) were allocated to the PlanetLab resource slice,
and each of these nodes maintains one Firefox user profile. Since Mozilla is a GUI
application and X11 forwarding (necessary to run GUI applications over SSH con-
nections) is not enabled on the PlanetLab machines due to security reasons, we had
to install a VNC server on each of the nodes, which provides a GUI enabled remote
access to these machines. Google was chosen as our (adversarial) search engine.

To simulate user’s search behavior as per AOL log files, we developed a Mozilla
extension which reads the user logs and fires the queries at timestamps listed in the
logs. Similar to the TMN plugin, the new plugin also generates the user queries
as XMLHttpRequests. The html response – from the server – to these queries is
processed by TMN, since TMN does not find the corresponding request URL in
its database (see Section 5.1). TMN treats the webpage to be a valid response to an
actual user query and adapts itself to the new data – the exact behavior we need. Since
the AOL user logs belong to a different time frame (year 2006), they were translated
to the present time. The average query frequencies of TMN instances were chosen at
random so as to keep them as close as possible to the real user behavior. We also ran 5
additional TMN instances with varying average TMN query frequency, for the same
user, on our local machines in order to evaluate the effect of TMN query frequency
on the level of privacy provided by TMN. After configuring the necessary settings
on PlanetLab machines, both the user log simulator and TMN were started. These
experiments were conducted for a period of one month, and backup of the logs was
taken at regular intervals.

5.3.1. Classification of user and TMN queries
For our machine learning requirements, we used WEKA [36], an open source

software which supports many machine learning algorithms and data preprocessing
options. We used this off-the-shelf machine learning toolkit in order to estimate the
true positive rate with which we (adversarial search engine) can filter user queries,
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from the pool of user and TMN queries we obtained as described in previous sec-
tion. For this experiment we treat WEKA as a black box and do not dwell deep into
the working of the algorithms. Generally performance of a machine learning tech-
nique depends on the optimal parameters chosen for the problem; to keep our attacks
simple we do not make any optimizations, but use the default parameters.

Two main categories of machine learning algorithms which can be used for our ap-
plication are clustering and classification algorithms. Classification is a supervised
mechanism, where we need to train the classifier on some labelled training set, and
assign labels to quantities in the test set. Clustering algorithms, without any prior
knowledge of labelled data, try to group the data into clusters/groups, such that ele-
ments in a group share some common features. Clustering is unsupervised [36].

5.3.2. Preparing the data
The pool of simulated user and TMN query logs, collected over the one month pe-

riod (as discussed in previous section), form our test data which needs to be clustered
or classified. We labelled each query in the test data as a user or TMN query, since
we want to test the performance of machine learning algorithms after categorizing
the queries. The data includes the query, its label and the timestamp when the query
was fired. For indicating the time, we used WEKA’s DATE attribute in “yyyy-MM-
dd HH:mm:ss” format. This string is internally converted by WEKA into a numeric
representation (akin to the unix time stamp) when using it for machine learning. The
queries are strings and WEKA cannot directly handle string attributes. So we used
a preprocessing filter, called StringToWordVector, which breaks down the words in
the string and converts them into numeric attributes. Each string gets converted into
a word vector of 1’s and 0’s in these attributes, where ‘1’ indicates the presence and
‘0’ indicates the absence of the word in the string. For example, having just two
queries – “apple macbook pro” and “google android phones” – results in 6 numeric
attributes, one for each word (〈apple, android, google, macbook, phones, pro〉). Both
the queries can be represented as vectors in these attributes, like 〈1, 0, 0, 1, 0, 1〉 and
〈0, 1, 1, 0, 1, 0〉. These word vectors are generated from the set of words appearing in
the training set. Any new unseen words appearing in the test set are neglected. So,
a test query like “apple ipad” would be converted to 〈1, 0, 0, 0, 0, 0〉 vector, after ne-
glecting the “ipad” word. So every query would be represented as a big tuple/vector
in the query words, the timestamp and the label we assign.

5.3.3. Clustering algorithms
We started with the unsupervised/clustering schemes since they are simple and

potentially more powerful (as no labelled training is needed). We tested the perfor-
mance of well known clustering algorithms, such as SimpleKMeans, Farthest First
and EMClusterer [9] with default parameters, using the Classes-to-Clusters evalu-
ation mode in Weka. In this testing mode, the pre-assigned labels are masked and
the data gets processed using the other attributes. Once the clusters are formed, the
labels are unmasked and the majority class in each cluster is determined to find the
performance of the algorithm as per these labels. However, the clustering algorithms
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with default parameters could not distinguish user queries from those of TMN and
placed both types of queries into the same (TMN) cluster, for all of our test users. We
note that it is possible to achieve better user query identification results by fine tuning
the parameters of the clustering algorithms or applying other procedures, such as n-
grams. However, since our goal is to simulate a naive adversary trying to identify the
efficiencies using simple off-the-shelf machine learning tools with no parameter op-
timization, we defer this task to future work, and rather concentrate on classification
algorithms.

5.3.4. Classification algorithms
To train the classifiers we need to have sample data corresponding to both the

user and TMN classes (i.e., pre-labelled data). If only one of user or TMN training
data is used, all the queries would get classified into the same class since there are
no identifying features available for the second class. The training set for the user
queries was obtained from AOL two month user history, as discussed in Section 3.
To obtain the TMN training set, we used the logs from a TMN instance which was
run independently of all our simulations on a desktop machine for a period of one
week.

With these training and test sets, we chose five classifier algorithms, out of the sev-
eral classifiers applicable to our scenario, based on their performance in few prelim-
inary tests. They are: Logistic (Regression), Alternating Decision Trees (ADTree),
Random Forest, Random Tree and ZeroR. For now, we neglect other better classifiers
like SVM, so as to estimate the lowest accuracies that can be achieved. For the sake
of completeness, a brief description of each of these classifiers is provided below:

• Logistic (Regression): Regression classifier models are used to predict the prob-
ability of occurrence of an event by trying to fit the data to a logistic (linear,
polynomial, etc.) curve in a multidimensional space. Based on the location of
the data point in the multidimensional space (relative to the logistic curve), a la-
bel is assigned to it. For example, in the case of linear regression, all points
lying on one side of line in the 2-dimensional space are given one label, and
those on the other side are given another label. The positioning of the line is
determined based on the training data, so as to minimize the errors and get a
good separation between the class points. Logistic regression is mainly used
when there are two classes of data (where the classes can be separated by a line
in the point space), but multinomial versions also exist [36].

• Alternating Decision Trees (ADTree): These are similar to binary search trees,
where we start from the root and traverse to the leafs by taking the path based
on the value of the search variable. A decision tree algorithm contains deci-
sion and prediction nodes. These decision (non-leaf) nodes specify a condition
while the prediction (leaf) nodes contain a number. Based on the attribute val-
ues in the input data vector, we travel along one path from the root node to the
leaf/prediction nodes which determine the classification label for the particular
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data vector. Variants of the traditional decision trees exist, where we simultane-
ously travel along many paths up to the leaf prediction nodes and the end result
is determined by considering all the prediction node values covered [36].

• RandomForest: They are also based on classification trees, but unlike alternat-
ing decision trees Random Forests use a collection of classification trees. The
input is made to travel across all the trees and the final decision is made based
on voting, where the output of each classification tree is taken into considera-
tion [36].

• RandomTree: It is based on classification tree principles, but the nature of the
nodes in the tree is different. The algorithm considers K randomly chosen at-
tributes at each node in the tree (unlike a single attribute as in alternating deci-
sion trees) and provides an estimation of class probabilities instead of specifying
a single label/class for the data vector [36].

• ZeroR: It is the simplest classification algorithm and is based on majority. The
algorithm identifies the majority class label in the training data and classifies
every data element in the test set with this majority label, thereby providing the
threshold accuracy that should be provided by other classifiers [36].

Query and date attributes. To check for the influence of each of the attributes
(query and date) on the classification, we tested the performance of the above four
classifiers (except ZeroR as its user true positive rate is 0% due to a large TMN
query set) across the following three settings for a couple of test users. Our goal was
to determine as to what extent these attributes might be useful for classification.

(1) Considering only date and label value attributes.
(2) Considering only query and label value attributes.
(3) Considering both query and date along with label value attributes.

The results obtained are indicated in Table 1. (The percentages indicate the frac-
tions of user queries correctly identified by the classifiers – i.e. the true positive
rates; the false positive rates, i.e. the TMN query misclassification rates, were close
to 0% in most cases and so are not listed.) We can clearly see that out of the three
settings, considering only query attribute along with label values provides the max-
imum true positive rate. Including the date attribute (internally it is converted to a
numeric value by WEKA) reduces the true positive rate and considering only the
date attribute yields the worst true positive rate. Therefore, for the analysis of rest
of the experimental data, we neglect the date attribute and consider only query and
label values as the data to be classified. There could be other possible uses of the date
attribute like timing windows, but we neglect them for now to keep our attacks sim-
ple. Since Naive Bayes is a standard classifier which can be used when date attribute
is not considered, we replaced ADTree with Naive Bayes classifier for the rest of our
analysis.
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Table 1

% of user queries correctly classified with different attributes

Classifier true positive rates

Logistic ADTree Random Random

(%) (%) forest (%) tree (%)

User 1 Only query 92.59 82.22 92.59 89.63

Only date 14.44 13.7 13.7 13.7

Both query and date 92.59 13.7 89.63 46.30

User 2 Only query 85.19 85.71 86.77 86.24

Only date 3.17 0.53 0.53 0.53

Both query and date 10.58 0.53 68.25 0.53

Table 2

% of user queries correctly classified for different TMN query frequencies

TMN query
frequency

True positive rates (%) False positive rates (%)

Naive Bayes Logistic Naive Bayes Logistic

(Regression) (Regression)

10 per minute 6.25 56.25 0 0.06

5 per minute 0 56.25 0 0.02

1 per minute 56.25 56.25 0 0.12

30 per hour 56.25 56.25 0 0

10 per hour 56.25 56.25 0 0

TMN average query frequency. To test for the effect of TMN’s average query fre-
quency in protecting users’ privacy, as mentioned earlier, we ran another 5 simula-
tions apart from the 60 simulations considered before. Each of these 5 simulations,
simulated the same user but with different TMN query frequencies – 10 per minute,
5 per minute, 1 per minute, 30 per hour and 1 per hour. After one month, these TMN
logs were analyzed using the chosen classifiers. The results obtained for Naive Bayes
and Logistic (Regression), which yielded the best true positive rates, are depicted in
Table 2. Though the performance of Naive Bayes was varying a little, the Logistic
regression classifier was found to have a constant true positive rate. This suggests
that using different query frequencies would more or less provide the same level of
privacy. In other words, higher TMN frequency may not help in hiding user’s query
better, contrary to one’s intuition.

Independent user history. Since using an independent TMN log for training the
classifier turned out to be helpful in identifying the user queries with good accuracies,
we performed a test to validate whether any user log data other than the actual user’s
history would also give similar results (if this were the case, the search engine would
not need access to every user’s history of searches). To this end, we considered four
users – user1, user2, user3 and user4, from the AOL log data. Now, instead of using
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a user’s history to train the classifier for that user, we used the history of user4 as
the training data and tried to classify user1, user2 and user3’s simulated queries
from their respective TMN query pools using Logistic, RandomForest, RandomTree
and Naive Bayes (after replacing ADTree, as described before) classifiers. In all the
cases, none of the user queries were identified correctly – that is the true positive rate
turned out to be 0%.

Our analysis above shows that an independent user log is not helpful in distin-
guishing between user and TMN queries, but an independent TMN log is. One rea-
son for this could be that the independent TMN log was functional around the same
time frame as other TMN instances (i.e., it was run along with other TMN instances)
and it used the same default RSS feeds to populate the TMN query list. Note that an
adversarial search engine can also produce such updated TMN log from time to time
for training the classifiers.

We note that many users are not likely to pay attention to the RSS feeds chosen
for query generation and may use the default ones. Thus, in our experiments, we
used the default RSS feeds thereby generating the same initial seed list of queries.
We have not closed the browsers while conducting our experiments because of the
common practice among users to put their computers to sleep and re-invoke them
instead of switching them off and rebooting the machines each time, and also due
to their tendency to continue using the browser without restarting unless it crashes.
We acknowledge that not closing the browsers might affect the efficiency of TMN,
because TMN uses the RSS feeds to update the query list with new keywords only
when the browser restarts.

5.4. Classification results

After collecting the query and label data from the 60 user simulations, we were
ready to execute the selected classifiers. As mentioned earlier, for each of the
60 users, we randomly chose the TMN query frequency, simulating a real user be-
havior (as shown in Table 2, this should not impact our results much). Hence the
number of TMN queries mixed with the real user queries differs in each experiment,
impacting our pnaive and pclass values. We built the training set with user history log
and an independent TMN log as discussed previously. The results of classifiers over
the test data are depicted in Table 3. For simplicity, we have not listed the results for
all the classifiers; rather we only report the performance of the standard Naive Bayes
classifier and the maximum true positive rate achieved among the other three classi-
fiers (Random Forest, Random Tree and Logistic). Also, the true positive rates shown
are the mean true positive rates of the users belonging to different AOL categories
(as defined in Section 5.2.1).

We find that for all users, the classifiers did a very good job of correctly iden-
tifying almost all TMN queries; average false positive rate was close to 0.02%. In
other words, there were very few TMN queries which were wrongly classified. The
true positive rates for identifying the user queries were not very high in general;
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Table 3

Mean true positive rates of user queries and mean false positive rates of TMN queries for each category
of users

Users True False pnaive pclass

positive (%) positive (%)

Naive Max. Naive Max.

Bayes Bayes

No. of queries

0–10 8 6.15 11.52 0 0.07 0.002 0.97

11–100 5 7.08 33.14 0 0.25 0.011 0.79

100+ 2 18.71 33.86 0.06 0.29 0.08 0.94

Average query freq. (s)

0–100 5 28.16 40.41 0.03 0.01 0.007 0.99

35,000 5 30.83 71.86 0.01 0.01 0.006 0.87

>106 5 9.23 36.28 0 0 0.003 1

Sensitive query content (%)

0 2 60 60 0 0 0.003 1

10 2 61.46 64.79 0 0 0.002 1

70 5 45.53 63.96 0.02 0.14 0.007 0.84

100 6 23.97 39.02 0 0.16 0.017 0.84

Weekday/weekend distribution

Only weekdays 5 12.28 12.28 0 0 0.002 1

Only weekends 5 23.2 99.99 57.26 0.08 0.004 0.57

Distributed 5 1.22 99.92 86.94 0.08 0.032 0.99

average true positive rates over all users was 48.88%. In most cases, the classifier
was able to identify a reasonable fraction of user queries correctly. However, there
were indeed some cases (e.g., one in Sensitive Query Content and one in Average
Query Frequency categories) where 100% true positive rate was achieved in identi-
fying the user queries. There were 4 other user instances for which more than 80%
true positive rates were achieved. The pnaive and pclass values are reported for the best
performing classifier in each AOL category. In all cases, the values of pclass are much
higher than pnaive, which reinforces that classifiers are useful for obtaining a purer
sample of user queries.

5.5. Discussion of results

In this section, we discuss and attempt to interpret the results obtained in Sec-
tion 5.4. The first key insight from our results is that the classifiers were very accu-
rate in identifying the TMN queries (mean false positive rate over all users was only
0.02%). This is perhaps because the TMN query log – using which the classifiers
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were trained – consisted of a reasonably large number (42334) of TMN queries (al-
though only corresponding to a week’s period) which was likely sufficient to extract
features for identifying TMN queries. Recall that this log was generated around the
same time frame as our test user instances, which might have been helpful in correct
classification of TMN queries. Note that an adversarial search engine can also pro-
duce such updated TMN log from time to time for training the classifiers. A very low
false positive rate of TMN queries implies that any query classified as a user query,
is indeed a user query with significantly high probability.

The true positive rates for user queries, on the other hand, were not as good as
they were for TMN queries (we obtained a mean user query true positive rate of
48.88% over all users). One possible reason for relatively low rate in this case is that
we were only able to leverage users’ two-month history for training purposes. Since
a large number of users only fired less than 100 queries (as seen from Fig. 1) over
3 months, the classifiers did not have a large number of user queries to work with.
Due to this reason, perhaps it was not possible to derive identifying characteristics
for user queries in a number of cases. We believe that, in practice, the search engines
can utilize long-term search histories available to them prior to a user starts using
the TMN software, resulting in much better true positive rates. Even with our current
average identification rates, the value of pclass is almost close to 1 and is much higher
than pnaive, which is always lower than 0.1. The search engine can identify nearly
50% of user queries and still use them for profiling and aggregation purposes (since
almost no TMN queries were incorrectly classified, as discussed above). Remember,
the amount of information we used for the classification was very little (just the query
content) and we believe the results would improve if we made a better use of the time
stamps and use the ClickURL and ItemRank features. Note also that our true positive
rates were found to vary significantly across different users. We observed that queries
corresponding to some of the users could be identified with greater than 80% and as
high as 100% true positive rates, whereas for others, the identification rate was less
than 10%. Based on our current experiments, we can conclude that most users are
susceptible to privacy violations even while using TMN, and some of these users are
significantly more vulnerable than others (as we discuss below).

Looking at Table 3, we can make inferences regarding which users are possibly
more vulnerable based on our different categories: number of queries, average query
frequency, sensitive query content and weekday/weekend distributions. User query
identification true positive rates seem to be slightly improving with the number of
queries posed by the users. Although the false positive rates are increasing very
slightly, we can ignore them considering a good improvement in user query clas-
sification rate. These results are justifiable because the more the number of queries
sent by a user, more are the chances to identify user query patterns and hence better
are the true positive rates. Users with very fast (less than 100 s) and very slow (more
than 1 million seconds) average querying frequencies seem significantly less vulner-
able compared to those with moderate (35,000 s) frequencies. The very fast and very
slow category users are those who send very few queries in immediate succession
and then remain idle or spread their few queries across 3 months duration. Since the
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queries available for analysis are few, the true positive rates are bound to be less for
these users compared to the ones belonging to the moderate category.

We do not notice any significant effect of the sensitivity of query content on clas-
sification accuracies. However, for users who did not pose any insensitive queries
(based on our categorization in Section 3.2.3), true positive rates were found to be
relatively lower. Therefore, based on our sensitive query classification, the users who
fire a larger fraction of sensitive queries were better camouflaged by TMN than those
who fire a larger fraction of insensitive queries. This might be because of the pres-
ence of many sensitive queries in the initial query set generated from the default RSS
feeds.

Users who engage in web search only during weekdays turned out to be much
better protected compared to those who pose queries only over weekends (queries
of such users can be identified with almost 100% success). This might be because
the nature of queries posed during the weekends make them more attributable to the
user – as they are based on the user interests. The queries posed during weekdays
(highly likely to be from a work place) may not exactly reflect the same, mostly
due to the self imposed restrictions on searching for queries based on user interests
from a work place. Hence if users send queries only during weekends, then these
queries have higher chances of being related to the user. Finally, from Table 2, we
also observed that using different TMN average query frequencies would more or
less provide the same level of privacy. In other words, higher TMN frequency may
not help in hiding user’s query, contrary to one’s intuition.

In summary, our results indicate that TMN is very susceptible to machine learning
attacks. In fact, TMN could be weaker than what our attacks imply. This is because
we only used some simple off-the-shelf classifiers with default parameters and this
itself resulted in considerable true positive rates. Use of better and stronger machine
learning algorithms, with optimized parameters, is very likely to further increase the
accuracies.

5.6. Experimental summary

We focused on TrackMeNot (TMN), a real-world search privacy tool based on
query obfuscation, and demonstrated that a search engine, equipped with only a
short-term history of user’s search queries, can break the privacy guarantees of TMN
by only utilizing off-the-shelf machine learning classifiers. More specifically, by
treating a selected set of 60 users – from the publicly-available AOL search logs –
as users of the TMN software, we showed that user queries can be identified with
an average true positive rate of 48.88%, while the average TMN query false positive
rate was only 0.02%.

6. Evaluating privacy provided by anonymizing networks

The first experiment shows that query obfuscation is not very reliable and does not
provide complete privacy to the user as expected. The next best privacy option is to



S.T. Peddinti and N. Saxena / Web search query privacy 181

use additional third party infrastructure with minimum expansion of trust beyond the
user. This leads us to anonymizing networks which certainly provide better protec-
tion and fault-tolerance than the use of a single third party proxy server. As discussed
before, anonymizing network routes user queries over a path consisting of a series
of nodes (called relay servers) distributed all over the internet, effectively hiding the
actual source of the query. We have considered the Tor [8] anonymizing network for
studying the effect of anonymizing networks in protecting the user’s search privacy.

In this experiment we try to analyse how effective an anonymizing network can
be – in preserving users’ privacy in practice – against an adversarial search engine.
(From here on, we will call the anonymizing network as Tor, for simplicity of pre-
sentation and without loss of generality.) We observe that the web search over Tor
network has one fundamental drawback: the search query has to reach the search
engine in clear text format, for the search engine to be able to process the query and
return the response back to the user. In other words, a user’s search queries are not
hidden from the search engine. However, these queries are indeed “mixed” among
the queries issued by other users of the same anonymization service.

We ask the following question: Is it possible for an adversarial search engine to
associate queries coming out of Tor exit nodes to Tor users who issued these queries?

Our adversarial model is discussed in Section 4. In an attempt to keep our attacks
more generic and not limited to only one particular type of anonymizing network,
we assume that the adversary does not make use of any information specific to Tor
anonymizing network – like the Tor exit node IP addresses. We base our work on
an important observation, made by other researchers [5], that although a potentially
large number of users might be accessing web search over the Tor network, only a
small fraction of these users really remain anonymous to the search engine in prac-
tice. The reason is that a significant number of users, even while using Tor, remain
logged in to their accounts with search engines (e.g., Gmail accounts with Google)
and may not disable cookies and other identifying information [5]. It is possible to
use TOR clients like Private Web Search (PWS) [28] and remove any identifying in-
formation accompanying the query, but users are not generally aware of such tools.
This implies that a user’s queries might be getting mixed among queries of only a
small number of other (anonymous) Tor users, potentially making these queries more
identifiable.

Overview of results. We answer the aforementioned question affirmatively. More
specifically, by treating a selected set of 60 users – from the publicly-available AOL
search logs – as “users of interest” performing web search over an anonymizing net-
work, we show that their queries can be identified with high true positive rates of
80–98%, even when queries of up to 999 “other users” (other Tor users) are mixed
together. Our results indicate that we can identify a user of interest’s queries with
25.95% average true positive rate, when queries of up to 99 other Tor users are
mixed together, and this average true positive rate drops to 18.95% when queries
of 999 other Tor users are mixed together. Our experiments indicate that users who
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pose a larger number of queries, those whose queries are longer and those with higher
fraction of sensitive queries are more vulnerable. Our results cast serious doubt on
the effectiveness of anonymizing web search queries by means of anonymizing net-
works. Since our attacks only exploit a minimal amount of information (just the
query content) for the query association task and short-term search histories, and
only use existing classification tools, stronger attacks resulting in improved query
identification rates are very much plausible.

6.1. Problem formulation and study methodology

We base our work on the query information alone, because the search query must
reach the search engine in clear text format even while using any anonymizing net-
work (the query passes through many in-between relay nodes in encrypted format
when using TOR). In an attempt to keep our attacks more generic and not limited to
only one particular type of anonymizing network, we assume that the search engine
does not make use of any other information associated with the queries, such as the
query timing information, the exit node IP address, unblocked cookies accompany-
ing the queries or the Click-through patterns followed by the user. This allows us to
completely avoid the need to simulate the re-routing of queries through Tor.

An important point to notice, in the context of working with old logs, is that we
should prevent combining query logs belonging to different time periods so as to
prevent identification of queries based on the temporal information. For example, if
user A’s query log belongs to year 2005 and user B’s query log belongs to year 2010,
then separating their queries when mixed together is a lot easier using the temporal
information embedded in the queries, such as the current news topics, etc. This prob-
lem does not arise in our case since all the selected users belong to the released AOL
logs. In addition, the timestamps of the queries cannot be used directly. If the queries
are channelled through Tor, the queries are going to experience considerable (ran-
dom) delay because of the Tor’s re-routing. Hence, we do not make use of the exact
value of the timestamps, but we experiment only with timing windows and consider
the queries within those windows.

For our study, we assume that the adversarial search engine has access to the list of
possible Tor users performing web search over Tor (U). This is a realistic assumption
because the search engine has access to a user’s search history and it can determine
whether a particular user has possibly started to use Tor for issuing queries. This can
be done, for example, by identifying the query patterns (such as query frequency) for
a user or for an IP address with the help of cookies. If for a reasonable duration, e.g.,
a week, the search engine does not receive any queries from a user or an IP address,
violating the user’s typical querying pattern, it can mark that user as a potential Tor
user. Even when the users delete their cookies, there are chances that the search
engine might mistake these users to be possible Tor users. However, since the user
querying patterns do not change when using new cookies, the search engine might
be able to map these mistaken Tor users to the new cookies if the querying patterns
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match, and continue profiling the users. Such mapping techniques or anti-aliasing
techniques have been studied before in [22]. Though the content they deal with in
[22] are large texts like bulletin boards and web pages, we believe similar techniques
could be developed for mapping web search users associated with different cookies.
Thus, we assume throughout our study that the search engine can generate a possible
Tor user list and keep updating it. A determined search engine may also run Tor
relays and collect the IP addresses of all Tor machines which connect to these relays.

Over a period of time, the search engine logs a set of queries (denoted Q) that
it receives from the Tor exit nodes (list of exit nodes is publicly available). These
queries are issued by the users appearing in the list U and are all mixed together. Our
(i.e. the adversarial search engine) goal is to identify the queries in Q that correspond
to some or all users in U. We model this identification problem as a classification
problem in machine learning, whereby we train a classifier with the prior search
history of the Tor users (collected prior to the time they started using Tor) and ask
the classifier to classify the queries in Q to the respective users in U. Since we might
want to associate the queries to all users, we will need one class per user. Therefore,
the problem reduces to a multiclass classification [27] problem. In the rest of this
paper, we denote the AOL users, whose queries are to be separated from the mixed
query set received at Tor exit nodes as ‘users of interest’ and the total number of
users using web search over Tor as U. The users present in U, apart from the users of
interest, will be referred as ‘other users’.

The size of U (denoted N ) is an important parameter for our study and for the
level of privacy that can be provided to the users performing web search over Tor.
Intuitively speaking, the larger N is, more difficult it would be to correctly classify
queries. However, we argue that in practice N may not be very large. As discussed
in Section 6, recent research [5] shows that although there are, on an average, 1893
Google users at one Tor exit node over one week, about 872 of these users access the
services by signing into Google, making themselves identifiable even while using
Tor. Of the rest 1000 who did not sign into Google, a significantly large fraction of
users may not have disabled or deleted their cookies while using Tor. Cookies and
other identifying information can be blocked by using tools such as PWS [28], as
mentioned before. However, as discussed in [5], a significant number of users are
not aware of these options. In summary, even if a large number of users might be
using Tor for private web search, only about few hundreds (∼500) of unidentified
users exist at each Tor node and with 1500 Tor exit nodes in total, only about few
hundred thousands (∼750,000) of users actually remain anonymous to the search
engine. In addition, the search engine might not want to track each and every one
in this anonymous user set, but instead it might want to concentrate on few users –
selected based on the kind of sensitive queries they send or based on their real world
identities (like suspected terrorists). In light of these important observations, we con-
sider a maximum of N = 1000 anonymous web search users, and try to associate
the queries in Q to these users. We believe that this number 1000 is reasonable for
experimental purposes.
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As discussed in Section 4, we aim to identify the true positive rate x and false
positive rate y for each user of interest. We want x to be high and y to be low for
pclass to be significantly higher than pnaive. As a concrete example, our classification
attacks for AOL user #67910 yield pclass = 0.73 (x = 45/192 and y = 16/46,062),
which is about 183 times more than the probability of a random guess pnaive = 0.004,
when N = 100. Through our classification experiments in the rest of this paper, we
aim to find out the values of x and y for a diverse set of users firing different type of
queries, and for different values of N (100, 200, 300, 500 and 1000).

6.2. Selecting users

As mentioned earlier, we do not intend to identify queries belonging to all anony-
mous Tor web search users present in U, but only concentrate on a specific few (60)
users of interest. Note that since we are concentrating on the query content alone, we
have not considered any categories related to the query timing information, such as
the average timing difference between queries and weekday–weekend distribution.
We had selected 20 users of interest from each category as follows:

Number of queries: We selected 14 users of interest at random from set of users
who fire less than 100 queries, 4 users of interest at random from set of users who
fire 101–500 queries and 2 users of interest at random from the set of users who fire
more than 500 queries over a period of three months.

Query length: Most users send queries of average length less than 3 words, as seen
from Fig. 6. Following these statistics, we have chosen 15 users of interest randomly
from the set of users sending short queries, 3 users of interest were selected at random
from the set sending medium length (3–6 words) queries and 2 users of interest were
selected at random from the set sending long (more than 6 words) queries.

Sensitive queries: From Fig. 4, we observed that a large number of users belong
to the 0–10% sensitive query band and the rest are spread over other percentages in
small numbers (a few hundreds). Hence, 10 users of interest are selected at random
from the set of users sending 0–10% sensitive queries, 2 users of interest are selected
at random from 10–20% sensitive query band, 2 users of interest are selected at
random from 20–30% sensitive query band, 3 are selected from 50–60% sensitive
query band and another 3 from 90–100% sensitive query band in proportion to the
actual user distribution.

6.3. Selecting classifiers

Differentiating user queries from the machine generated queries is relatively easy
compared to differentiating one user’s queries from another user’s. During the first
experiment we observed that clustering algorithms with default parameters do not
help much, hence we did not consider them. Since the current problem is harder,
compared to the first experiment, we dropped the classifiers discussed in Sec-
tion 5.3.4 and have chosen Support Vector Machine (SVM). This selection is based
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on strong recommendations, such as [14], to use SVMs for textual classification or
categorization, and its wide spread application in similar projects [7] and [19].

There is more than one implementation of SVM algorithm in WEKA, and we have
selected WLSVM – which is the WEKA integrated version of LIBSVM (the popular
software for Support Vector Classification, Regression and Distribution Estimation).
WLSVM in WEKA implements five classification algorithms and of these three were
not suitable for our scenario. The other two, named C-SVC and nu-SVC – where
SVC stands for Support Vector Classification, are suitable for our problem. Consid-
ering our main goal of keeping the attacks simple enough for a naive adversary, we
preferred C-SVC over nu-SVC because of the simplicity in choosing the algorithm
parameters. The positive and negative training data for our classifier is obtained from
the user search history – positive examples for a user include all the queries sent by
the user so far and negative examples include the queries sent by the other Tor users
in the past.

C-SVC is a binary classifier, that separates instances of two classes when mixed to-
gether. Multiclass classification can be solved by converting multi-class problem into
multiple binary classification problems. These are popularly called as One-vs-All
(OVA) and All-vs-All (AVA), as described in [26]. Assume there are N users/classes,
with each user assigned an integer in the range [1,N ]. All the queries in the training
data belonging to user i (where i ∈ [1,N ]) are labelled i. In OVA model, we build
one separate classifier for each user/class in the dataset. For ith classifier, the positive
examples will be the training data with label i and the negative examples include all
the data with a label different from i. We classify the test data with the class label
depending on which corresponding classifier outputs greater/larger value. In AVA
model, we build N (N − 1) classifiers, one for each pair of classes i and j. Each of
these classifiers (i, j) gets trained on only the data belonging to classes i and j. At
the end, the label is predicted by following a voting mechanism (see [26] for details).

Both OVA and AVA are applicable to our problem and can yield good accuracies.
C-SVC directly performs multiclass classification by implementing AVA when the
number of classes are more than 2; thus, we used this feature directly. For OVA,
we used a meta classifier in WEKA, which helps us to implement the OVA pipeline
using C-SVC as the base classifier.

Classifier parameters play an important role in correctly identifying the queries
and increasing the performance. The performance of C-SVC classifier is determined
by three parameters – kernel type, cost parameter-C and an Epsilon (ξ) value. By
following the SVM parameter guide [16], we chose the simplest linear kernel for our
problem. The optimal values for other two parameters, C and ξ, have been chosen us-
ing another meta classifier in WEKA called CVParameterSelection. Given a sample
dataset and the parameter to be optimized, this meta classifier performs classifica-
tion on the sample dataset using all the parameter values within a specified range
and identifies the best value based on the classification performance.
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Table 4

Comparison of true positive rates for attribute selection

Classifier True positives

No additional Including query Including timing

attributes (%) length (%) window (%)

3 h 4 h 6 h 12 h

AVA 16.26 14.58 13.16 14.08 13.62 14.41

OVA 13.65 14.41 13.98 12.99 12.63 14.15

6.4. Selecting attributes

As discussed previously, we decided to concentrate on the query content alone,
without using any additional information. However, we wanted to test the influence
of time feature on the achievable accuracies and so performed a small experiment.
Since time feature cannot be used directly because of the inherent delay when queries
are sent over Tor, we considered timing windows of considerable duration. Since it
is hard to predict what size of the timing window might provide better results, we di-
vided 24 h in a day into different non-overlapping windows of sizes of 3, 4, 6 and 12 h
and compared the accuracies with each timing window size. Also, we considered the
Query Length feature, though it is implicit in the Query information. User’s anony-
mous ID and Query are the necessary attributes. In order to determine the impact of
each additional attribute on the classification results, we tried to identify the aver-
age true positive rates of user query identification for all the users of interest when
N = 100, by including one additional attribute at a time. The average true positive
rates are indicated in Table 4. We can see that by including the Query Length feature
reasonable performance is achieved both in the case of OVA and AVA. Addition of
timing windows did not provide much improvement over the existing true positive
rates, both in the case of OVA and AVA. There could be other possible and better
uses of these query times, but we neglect them for now. Hence for all the following
experiments we included Query Length as an additional attribute along with Query
and the user’s anonymous ID.

6.5. Experiment results

In our experiments, we tried to estimate the true positive rate of the classifiers
in correctly identifying queries of 60 users of interest, who are chosen at random
based on the AOL query statistics described in Section 6.2. For each user of interest,
we measure the true positive rate and false positive rate (along with pnaive and pclass)
across five datasets, where in each dataset, we vary the number of ‘other users’ whose
queries are mixed with that of the current user of interest. The five datasets containing
randomly selected 99, 199, 299, 499 and 999 other users were generated. In order to
be consistent across all 60 users of interest, we used the same ‘other user’ datasets.
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Thus, when the user of interest’s query set is mixed with the queries of these ‘other
users’, we form datasets with N as 100, 200, 300, 500 and 1000 users.

For each user of interest, we performed both OVA and AVA classification with
C-SVC as the base classifier. As outlined in Section 6.3, the kernel option in C-SVC
is chosen as Linear Kernel. The best C and ξ parameters chosen by the meta classifier
(CVParameterSelection) are C = 336 and ξ = 0.001.

For each of the three categories, we summarized the OVA results indicating the
average values of True Positive and False Positive for all the users of interest in
specific sub-categories. The summary of OVA results for Number of Queries is given
in Table 5, summary of OVA results for Query Length is given in Table 6 and the
summary of OVA results for Sensitive Queries is depicted in Table 7. The values in
the table indicate the true/false positive rates in percentages followed by the fraction
which gave those values. These fractions were included to indicate the actual number
of queries correctly classified or misclassified – helping us to measure the pnaive and
pclass. The results for AVA classification, for each category, came out to be very
similar to that of OVA classification, and are thus not reported in the paper.

The average true positive rates shown in the tables are reasonable. Across all the
60 users of interest, the average true positive rate was 25.95%, when N = 100, and
this rate drops to 18.95% when N = 1000. More importantly, though the average
true positive rates are not very high, our results show that few users of interest could
be identified with true positive rates as high as 80–98%, even when N = 1000.
This can be seen from Table 8, which lists the top five users of interest in each
category with high end true positive rates (several of them have rates as high as
80–100%). Each row in the figure corresponds to a user of interest, and these users
within each category, are arranged in the decreasing order of their true positive rates
(when N = 100). Also, across all 60 users for N = 1000, the pnaive values range
between 0–0.015, while the pclass values vary between 0.13–0.8.

6.6. Interpretation and discussion of results

In this section, we attempt to discuss and interpret the results of our study, and
draw some useful conclusions.

The first observation looking at Tables 5–7 is that the average true positive rates
(i.e., the fraction of correctly classified queries) indicate that in most cases some
fraction (at least a quarter) of users’ queries can always be correctly classified. The
false positive rates are also very low in almost all cases, which can be credited to our
choice of optimal parameters for the classifier.

Looking at Table 5 across the rows, we find that the true positive rates are likely
to increase with the number of queries posed by the user – the more active a user
is, the more identifiable his/her queries become. We can explain this based on the
nature of machine learning techniques. When more data is available about a user, the
machine learning techniques can extract better information about the user interests,
and so can make better predictions. Lack of data results in more noise and therefore



188
S.T.Peddintiand

N
.Saxena

/W
eb

search
query

privacy
Table 5

OVA results summary for number of queries

Number of
queries
fired on
average (Z)

Total
number
of users

100 user 200 user 300 user 500 user 1000 user

True False True False True False True False True False

positive positive positive positive positive positive positive positive positive positive

Z < 100 14 4.35% 0.02% 4.35% 0.06% 4.35% 0.06% 4.35% 0.01% 0.00% 0.02%

(1/23) (1/4497) (1/23) (5/8775) (1/23) (7/11,800) (1/23) (3/20,144) (0/23) (7/39,481)

100 < Z < 500 4 8.86% 0.38% 8.86% 0.11% 8.86% 0.13% 7.59% 0.06% 6.33% 0.07%

(7/79) (20/5247) (7/79) (11/10,239) (7/79) (18/13,766) (6/79) (15/23,501) (5/79) (33/46,061)

500 < Z 2 36.71% 0.36% 19.32% 0.22% 13.53% 0.11% 14.01% 0.06% 14.93% 0.05%

(76/207) (19/5248) (40/207) (23/10,238) (28/207) (15/13,766) (29/207) (15/23,501) (31/207) (22/46,061)

Table 6

OVA results summary for query length

Query
length

Total
number
of users

100 user 200 user 300 user 500 user 1000 user

True False True False True False True False True False

positive positive positive positive positive positive positive positive positive positive

Short 15 19.40% 0.025 17.91% 0.20% 16.42% 0.15% 16.42% 0.10% 15.15% 0.06%

(13/67) (1/4497) (12/67) (19/9555) (11/67) (19/12,848) (11/67) (21/21,934) (10/66) (26/42,991)

Medium 3 20.0% 0.15% 20.0% 0.01% 20.00% 0.01% 20.00% 0.00% 20.00% 0.00%

(4/20) (8/5248) (4/20) (1/10,238) (4/20) (1/13,766) (4/20) (1/23,501) (4/20) (11/46,061)

Long 2 93.33% 0.02% 90.00% 0.00% 90.00% 0.01% 90.00% 0.035% 90.00% 0.03%

(28/30) (1/5247) (27/30) (0/10,238) (27/30) (1/13,767) (27/30) (6/23,501) (27/30) (14/46,061)
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Table 7

OVA results summary for sensitive queries

Sensitive
percentage
bands

Total
number
of users

100 user 200 user 300 user 500 user 1000 user

True False True False True False True False True False

positive positive positive positive positive positive positive positive positive positive

0–10% 10 39.2% 0.83% 38.24% 0.53% 38.24% 0.38% 37.76% 0.22% 35.68% 0.16%

(245/625) (39/4723) (239/625) (49/9215) (239/625) (47/12,390) (236/625) (46/21,151) (223/625) (65/41,455)

10–20% 2 14.78% 0.06% 13.04% 0.05% 13.04% 0.03% 12.61% 0.02% 13.04% 0.06%

(34/230) (3/5248) (30/230) (5/10,239) (30/230) (4/13,767) (29/230) (5/23,502) (30/230) (29/46,062)

20–30% 2 36.36% 0.13% 37.88% 0.12% 37.88% 0.12% 37.88% 0.14% 37.88% 0.09%

(24/66) (7/5248) (25/66) (12/10,239) (25/66) (16/13,767) (25/66) (34/23,502) (25/66) (40/46,062)

50–60% 3 22.22% 0.08% 22.22% 0.03% 22.22% 0.03% 22.22% 0.02% 22.22% 0%

(4/18) (4/5248) (4/18) (3/10,239) (4/18) (4/13,767) (4/18) (4/23,502) (4/18) (1/46,062)

90–100% 3 96.3% 0.1% 96.3% 0.06% 96.3% 0.06% 74.07% 0.03% 29.63% 0.03%

(78/81) (5/5248) (78/81) (6/10,239) (78/81) (8/13,767) (60/81) (7/23,502) (24/81) (13/46,062)
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OVA users with best accuracies

OVA Top5
users

User 100 user 200 user 300 user 500 user 1000 user

True False True False True False True False True False

positive positive positive positive positive positive positive positive positive positive

Number of 1 50% 0.019% 50% 0.19% 50% 0.15% 50% 0.00% 50% 0%

queries (4/8) (1/5248) (4/8) (19/10,239) (4/8) (21/13,767) (4/8) (1/23,502) (4/8) (0/46,062)

2 25% 0.019% 25% 0.01% 25% 0.01% 25% 0.01% 25% 0%

(5/20) (1/5248) (5/20) (1/10,239) (5/20) (2/13,767) (5/20) (2/23,502) (5/20) (0/46,062)

3 58.33% 0.30% 32.29% 0.26% 20.31% 0.13% 18.75% 0.06% 23.4375% 0.03%

(112/192) (16/5248) (62/192) (27/10,239) (39/192) (18/13,767) (36/192) (14/23,502) (45/192) (16/46,062)

4 17.69% 0.78% 17.69% 0.32% 17.69% 0.33% 17.69% 0.1% 14.62% 0.12%

(23/130) (41/5248) (23/130) (33/10,239) (23/130) (46/13,767) (23/130) (23/23,502) (19/130) (56/46,062)

5 11.11% 0.08% 11.11% 0.04% 11.11% 0.007% 11.11% 0% 11.11% 0.017%

(2/18) (4/5248) (2/18) (4/10,239) (2/18) (1/13,767) (2/18) (0/23,502) (2/18) (8/46,062)

Query 1 94.74% 0% 94.74% 0% 94.74 % 0% 94.74% 0% 94.74% 0.01%

length (54/57) (0/5248) (54/57) (0/10,239) (54/57) (0/13,767) (54/57) (0/23,502) (54/57) (5/46,062)

2 84.88% 0% 84.88% 0% 84.88% 0% 84.88% 0.012% 84.88% 0.00%

(73/86) (0/5248) (73/86) (0/10,239) (73/86) (0/13,767) (73/86) (3/23,502) (73/86) (1/46,062)

3 59.68% 0% 59.68% 0.01% 59.68% 0.05% 59.68% 0.034% 59.68% 0.033%

(37/62) (0/5248) (37/62) (1/10,239) (37/62) (7/13767) (37/62) (8/23,502) (37/62) (15/46,062)

4 57.14% 0.06% 57.14% 0.19% 57.14% 0.14% 57.14% 0.10% 57.14% 0.028%

(4/7) (3/5248) 4/7 (19/10,239) (4/7) (19/13,767) (4/7) (24/23,502) (4/7) (13/46,062)

5 50% 0% 50% 0% 50% 0.007% 50% 0.01% 50% 0.00%

(12/24) (0/5248) (12/24) (0/10,239) (12/24) (1/13,767) (12/24) (2/23,502) (12/24) (2/46,062)
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Table 8

(Continued)

OVA Top5
users

User 100 user 200 user 300 user 500 user 1000 user

True False True False True False True False True False

positive positive positive positive positive positive positive positive positive positive

Sensitive 1 100% 0.095% 100% 0.048% 100% 0.0508% 100% 0.034% 0% 0%

queries (107/107) (5/5248) (107/107) (5/10,239) (107/107) (7/13,767) (107/107) (8/23,502) (0/107) (0/46,062)

2 97.82% 0.095% 97.82% 0.048% 97.82% 0.0508% 97.82% 0.034% 97.82% 0.0824%

(45/46) (5/5248) (45/46) (5/10,239) (45/46) (7/13,767) (45/46) (8/23,502) (45/46) (38/46,062)

3 96.59% 0.57% 96.59% 0.097% 96.59% 0.036% 96.52% 0.021% 96.52% 0.045%

(1417/1467) (30/5248) (1417/1467) (10/10,239) (1417/1467) (5/13,767) (1416/1467) (5/23,502) (1416/1467) (21/46,062)

4 89.13% 0.114% 89.13% 0.087% 89.13% 0.08% 30.43% 0.025% 30.43% 0.006%

(82/92) (6/5248) (82/92) (9/10,239) (82/92) (11/13,767) (28/92) (6/23,502) (28/92) (3/46,062)

5 75% 0.15% 75% 0.039% 75% 0.036% 75% 0.0297% 75% 0.009%

(9/12) (8/5248) (9/12) (4/10,239) (9/12) (5/13,667) (9/12) (7/23,502) (9/12) (4/46,062)
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poor results. Table 6 shows that longer queries are likely more identifiable. This is
because only a very small fraction of users issue longer queries (more than 6 words),
as seen from Fig. 6, and thus their queries are distinctive among the pool of a large
number of shorter queries. Following the same reasoning, we observe, from Table 7,
that true positive rates are expected to increase as the sensitivity of the query content
increases (recall the sensitive/insensitive query distribution in Fig. 4). This is an im-
portant insight demonstrating that users who pose more sensitive queries are likely
easily identifiable. Unfortunately, this contradicts the fundamental goal of using an
anonymizing network in the first place – to hide the fact that one is issuing sensitive
queries. In all cases, the pnaive values (ranging between 0–0.015) are much smaller
than the pclass values (ranging between 0.13–0.8), showing that the classifiers are
generating a small but good sub-set of queries, containing more user queries and
fewer noisy/other queries. Though the results might seem intuitive and follow the
trend that users who stand out are easily identifiable, they provide us a very good
estimate of what percentage of these user queries can actually be identified because
of the query properties.

6.7. Experimental summary

In this section, we studied the problem of identifying a user’s queries from a pool
of queries received by a search engine over an anonymizing network. We demon-
strated that an adversarial search engine, equipped with only a short-term search
history, can extract user of interest’s queries by utilizing only the query content and
off-the-shelf machine learning classifiers. More specifically, by treating a selected
set of 60 users – from the publicly-available AOL search logs – as users of interest
performing web search over an anonymizing network, we showed that their queries
can be identified with 25.95% average true positive rate when N = 100, and with
18.95% average true positive rate when N = 1000. Though the average true positive
rates are not very high, our results show that few users of interest can be identified
with rates as high as 80–98%, even when the value of N = 1000.

7. Analysis

In this section, we attempt to provide an explanation, as to why we obtained the
presented true positive rates in both the experiments and how it was possible to iden-
tify the user queries.

7.1. Reasons behind the true positive rates

To understand our results, we try to find the reasons behind how and why a query
gets identified as a user query. Analysing the results of the machine learning classi-
fication and its behaviour change as the experimental parameters vary is not a trivial
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Fig. 7. Root keyword distribution. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/JCS-130491.)

task. This is something that cannot be done in a straight-forward known way. How-
ever, we still make an attempt to study the factors behind the classification.

Since the data fed to the machine learning algorithm contained queries broken
down into word vectors, we tried to identify the word usage distribution among 1000
users. By trimming down all the query words, using stemming algorithms present
in WEKA, we identified the “root” keywords appearing in the queries and sorted
them in the decreasing order of occurrence. The distribution with the vertical axis,
on log scale, indicating the number of occurrences and the horizontal axis indicating
the number of unique root keywords can be seen in Fig. 7. There were 28,659 root
keywords (i.e. stemmed words) in total and of these only 4797 root keywords had
more than 10 occurrences. This distribution mimics the “Long Tail” behaviour of
web search queries, as discussed in [10], where each user is considered a bit eccentric
and is expected to send both common queries (all root keywords with more than
10 occurrences in the distribution) and a few unique/unusual queries (at least one
keyword with less than 10 occurrences in the distribution). These unique/unusual
keywords are what we think might be contributing for query identification.

Let us consider the SVM classifier in the second experiment and assess how these
unique keywords influence the classifier decision. By converting the query strings to
word vector, we are mapping the search queries to points in the multi dimensional
space and the SVM classifier is trying to find a maximum margin hyperplane that
helps in separating the user query points from the rest. The test queries, which are
closer to the user training queries in the multidimensional space are labelled as user
queries. If the user has unique/unusual keywords in his training data, the presence
of these unique/unusual keywords in the test queries brings them closer to the user
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query points in the multidimensional space, thereby getting the query identified as
a user query. In this way having unique/unusual query words helps in easy query
identification. The more the number of such unique/unusual queries, the better are
the chances for obtaining good accuracies – but this alone does not guarantee it.
Even if there are unique/unusual queries in the user training set, there could be more
occurrences of such query words in the ‘other user’ training set, there by preventing
the query from getting classified as a user query. For example, lets say “culinary” is
a unique keyword occurring in the training set of user of interest A. This word being
unique only guarantees that it does not occur more than 10 times in the 1000 user
query set. However, this word can occur 7 times in the other users’ training set and
2 times in A’s training set, resulting in the query not being classified as A’s query
owing to the majority.

7.2. Rules governing the classifier

After manually comparing the predictions made by the classifier, we came up with
three possible explanations of how the classifier might be predicting these user of
interest’s queries. There could be other better explanations than the ones we propose.
Let us call these explanations, as the three rules determining the label of a test query:

(1) If the exact test query is repeated in the user of interest’s training set, then the
query is identified as the user of interest’s query. Say we came across the test
query “how to kill a spider” and the exact query repeated in the user of interest
A’s training set, then we can be sure that this test query was sent by user A.
This is trivial.

(2) If a subset of keywords in the test query occur as a full fledged query in the
user of interest’s train set, then the query is identified as the user of interest’s
query. For example, if our test query is “bake a fruit cake” and if we have “bake
a cake” as a query in the A’s training set, then the test query shall be identified
as A’s query.

(3) If the test query can be obtained by combining terms from queries in the user of
interest’s train set, then the query is classified as a user of interest’s query. Say
our test query is “California bike tours” and if there are “famous bike tours”
and “New York to California” queries in the A’s training set, then the test query
is classified as A’s query.

Similar rules also apply to the identification of non user queries based on terms
in the non user (or ‘Other’) training set. If a query satisfies one rule with user of
interest’s training set, and one rule with non user training set, then based on the
parameters that we chose for the classifier and the number of times these query terms
appear in each of the training sets, the query will be classified. The presence of
unique query words in the training set and test set, would help in easing this decision
process.
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7.3. Influence of a time gap

The web content that a user is interested in varies with time. The search queries,
which are closer in time are better related than the ones sent long ago. In our scenario,
we had the test data set immediately follow the user training set. This might be one
reason why we were able to achieve considerable true positive rates. A time gap
between the test and the training data sets might make it harder to de-anonymize the
data, because the common content between the test and the train sets decreases with
time. However, prior research [33] shows that users tend to pose exact same queries
over and over, as it is easier compared to remembering the url of the search result, or
more efficient than performing an internal search within the website. This behaviour
is described as “bookmarking” [33]. For a considerable long period, these queries
do not change and this helps the machine learning approach in identifying at least a
small fraction of the user queries. We tried identifying the percentage of same queries
repeated in the test and train sets (assumed to be bookmark queries), for two AOL
users with IDs 20894930 and 67910. The percentage of bookmark queries were less
than 6%, but the machine learning true positive rates were higher than 58%, in fact
higher than 90% for user ID 20894930. Thus at least a small fraction of user queries
could still be identified, even when there is time gap between the test and training
data sets.

7.4. Reasons behind decrease in true positive rate

We understood how the accuracies are obtained, but the question that is remaining
is – “In the second experiment, why do the accuracies decrease when we increase
the value of N , the number of users using web search over anonymizing network?”.
Following the three rules mentioned above, we determine the label of a test query
based on the number of occurrences of similar query words in the training sets. The
more the occurrences of such words in the user of interest’s training set, the more
are the chances for it to be identified as a user of interest’s query and vice versa.
With the increase in the value of N , the size of the other users training set greatly
increases, improving the chances of occurrence of these test query words within.
This decreases the probability of classifying the query as a user of interest’s query.
Here is one example that we came across for one AOL user. “j c penney catalog”
was a test query and there was no exact looking query, or a query formed by subset
of its keywords in the particular user’s training set. However, the words “j c penney”
and “catalog” had occurred before in the particular user’s train set, and hence it was
labelled as the particular user’s query when N = 100 (as per explanation 3 above).
However as N increased to 300, this query was not labelled as the user of interest’s
query, since there were more occurrences of “j c penney” and “catalog” terms in the
other users’ query training set. In this way, depending on the occurrence of query
terms in the training sets, the accuracies decrease as the value of N increases.
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However, due to the “bookmarking” behavior discussed before, the classifiers will
be able to identify at least a few of the user’s queries when we increase the number
of other/noisy queries in the dataset. Adding more number of anonymizing network
users would definitely degrade the classifier’s true positive rates, but due to user’s
repeated queries, these true positive rates would still be larger than zero.

8. Conclusions

In this paper, we studied and tried to quantify the levels of privacy provided by
query obfuscation tools and anonymizing networks. As a representative example
of tools based on Query Obfuscation principle, we focussed on TrackMeNot and
demonstrated that a search engine, equipped with only a short-term history of user’s
search queries, can break the privacy guarantees of TMN by only utilizing off-the-
shelf machine learning classifiers. More specifically, by treating a selected set of 60
users – from the publicly-available AOL search logs – as users of the TMN software,
we showed that user queries can be identified with an average true positive rate of
48.88%, while the average TMN query false positive rate was only 0.02%.

We tried identifying a user’s queries from a pool of queries received by a search
engine over an anonymizing network like Tor. We demonstrated that an adversarial
search engine, equipped with only a short-term search history, can extract user of in-
terest’s queries by utilizing only the query content and off-the-shelf machine learn-
ing classifiers. By treating a selected set of 60 users – from the publicly-available
AOL search logs – as users of interest performing web search over an anonymiz-
ing network, we showed that their queries can be identified with 25.95% average
true positive rate when N = 100, and with 18.95% average true positive rate when
N = 1000 (where N is the size of user set performing web search over Tor). Though
the average true positive rates are not very high, our results show that few users of
interest can be identified with true positive rates as high as 80–98%, even when the
value of N = 1000. We even tried to identify the reasons behind how and why a
query gets classified as a user query, and answered why the true positive rates tend
to decrease as the number of users using the anonymization service increase. Our
results, therefore, cast serious doubt on the effectiveness of anonymizing web search
queries by means of anonymizing networks and Query obfuscation tools.

One of the strengths of our attacks is that they only use minimal information
(query content) for identification of users’ queries, and use off-the-shelf classifica-
tion techniques, while still being reasonably successful. Under realistic conditions,
it would certainly be possible to improve our attacks by taking into account other in-
formation that would be available to the search engine under normal circumstances.
For instance, exact query timestamps may very well be a useful attribute. Similarly
in the case of Tor, exit node IP addresses are also likely to improve the accuracies.
Say, the exit nodes vary for every t minutes and a query coming from an exit node
was identified to be coming from user A, then another related query coming from
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the same exit node within t minute time frame, has more chances to be associated
to the same user A. In addition, novel classification mechanisms can be designed
specifically tailored to this query identification problem. Finally, a search engine can
build better classifiers by training them on long-term (longer than 2 months) search
histories of the users. We believe these additions might provide significant improve-
ments in correct classification of the queries and further reduce false positive rates.
By utilizing the geographical locality information accompanying the queries and the
users [12] (place names and details pertaining to certain localities) and using contex-
tual information for query classification [4], we plan to further improve the results.
We defer these items as an interesting avenue for future research.
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