Journal of Computer Security 22 (2014) 415-465 415
DOI 10.3233/JCS-140498
10S Press

Automated detection of parameter tampering
opportunities and vulnerabilities in web applications

Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky and
V.N. Venkatakrishnan *
Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Parameter tampering attacks are dangerous to a web application whose server fails to replicate the vali-
dation of user-supplied data that is performed by the client in web forms. Malicious users who circumvent
the client can capitalize on the missing server validation. In this paper, we provide a formal description
of parameter tampering vulnerabilities and a high level approach for their detection. We specialize this
high level approach to develop complementary detection solutions in two interesting settings: blackbox
(only analyze client-side code in web forms) and whitebox (also analyze server-side code that processes
submitted web forms). This paper presents interesting challenges encountered in realizing the high level
approach for each setting and novel technical contributions that address these challenges. We also con-
trast utility, difficulties and effectiveness issues in both settings and provide a quantitative comparison
of results. Our experiments with real world and open source applications demonstrate that parameter
tampering vulnerabilities are prolific (total 47 in 9 applications), and their exploitation can have serious
consequences including unauthorized transactions, account hijacking and financial losses. We conclude
this paper with a discussion on countermeasures for parameter tampering attacks and present a detailed
survey of existing defenses and their suitability.

Keywords: Parameter tampering attacks, symbolic evaluation, dynamic monitoring

1. Introduction

Interactive form processing is pervasive in today’s web applications. It is crucial
for electronic commerce and banking sites, which rely heavily on web forms for
billing and account management. Originally, typical form processing took place only
on the server-side of a web application. Recently, however, with the facilities offered
by the use of JavaScript on web pages, form processing is also being performed on
the client-side of a web application. Processing user-supplied inputs to a web form
using client-side JavaScript eliminates the latency of communicating with the server,
and therefore results in a more interactive and responsive experience for the end user.
Furthermore, client-side form processing reduces network traffic and server loads.

*Corresponding author: V.N. Venkatakrishnan, Department of Computer Science, 851 S. Morgan (M/C
152), Room 1120 SEO, Chicago, IL 60607-7053, USA. Tel.: +1 312 996 4860; Fax: +1 312 413 0024;
E-mail: venkat@uic.edu.

0926-227X/14/$27.50 © 2014 — IOS Press and the authors. All rights reserved

416 P. Bisht et al. / Parameter tampering vulnerability detection

The form processing performed by the browser mostly involves checking user-
provided inputs for errors. For instance, an electronic commerce application accept-
ing credit card payment requires the credit card expiry date to be valid (e.g., be a
date in future and be a valid month/day combination). Once the input data has been
validated, it is sent to the server as part of an HTTP request, with inputs appearing
as parameters to the request.

A server accepting such a request may be vulnerable to attack if it assumes that
the supplied parameters are valid (e.g., the credit card has not yet expired). This
assumption is indeed enforced by the browser-side JavaScript; however, malicious
users can circumvent client-side validation by disabling JavaScript, changing the
code itself, or simply crafting an HTTP request by hand with any parameter values
of the user’s choice.

While there has been extensive work to address specific server-side input valida-
tion problems such as SQL injection and Cross-site scripting, the parameter tamper-
ing problem itself has received little attention in the research literature despite its
prevalence. SWIFT [14] and Ripley [44] focus on the broader issue of ensuring data
integrity in web application development frameworks. The goal of these approaches
is to construct new web applications that are effectively immune to parameter tam-
pering attacks. In contrast, the focus of this paper is on vulnerability analysis, i.e., on
detecting parameter tampering vulnerabilities in existing web applications (or legacy
applications) that are already in deployment.

In this paper, we investigate the problem of finding parameter tampering vulner-
abilities in legacy web applications in two complementary and interesting settings:
(a) web application’s source code is unavailable (blackbox setting) and (b) source
code is available (whitebox setting). Intuitively, to detect parameter tampering vul-
nerabilities one needs to reason about checks performed by the client-side validation
in a form and if the corresponding server-side validation misses any of these checks.
Computing client-side checks requires analysis of client-side code (e.g., HTML,
JavaScript) whereas server-side checks can be learned by means of server-side code
analysis (e.g., application codebase in PHP, JSP, ASP, etc., and database schemas in
MySQL, MSSQL, etc.).

The blackbox setting would solely rely on client-side code analysis and be agnos-
tic to server-side technologies (e.g., PHP, JSP, etc.) i.e., it does not require access to
the server-side codebase. This is most appealing in cases where codebase is either
not available (say for the purpose of protecting trade secrets/intellectual property) or
is hard to analyze (due to proprietary languages or complex architecture). Thus this
setting boasts wider applicability appeal and often yields detection solutions that
can be used by remote testers e.g., as Software-as-a-Service. Finally, due to code
independence, blackbox setting is often deployment friendly i.e., blackbox defenses
can be seamlessly integrated in peripheral environments of web applications such as
firewalls. However, in the absence of server-side source code knowledge, blackbox
detection has to rely on heuristics to detect whether the server-side code validation

P. Bisht et al. / Parameter tampering vulnerability detection 417

is missing any checks. Such heuristics are bound to have some imprecision and min-
imizing that is a challenge in the blackbox setting. Another challenge for this setting
is to develop systematic ways to learn validation performed by client-side code in a
web form.

The whitebox setting can benefit from client-side validation analysis and replace
blackbox heuristics by analyzing the server-side code and precisely determine miss-
ing checks i.e., parameter tampering vulnerabilities. The knowledge of server-side
code would likely enable the whitebox setting to yield more precise results when
compared to the blackbox setting. Given that the server-side logic can be embedded
in several layers (e.g., application code, database schema), the biggest challenge for
whitebox setting is in precisely extracting validation performed by the server-side
code.

Our goal is to develop systematic solutions for detecting parameter tampering vul-
nerabilities in the above two settings such that they can be used by testing profes-
sionals, website administrators or web application developers. In both the settings,
given a web site (i.e., a deployed web application) and/or its source code, we aim
to produce a report of potential vulnerabilities and the associated HTTP parameters
that triggered these vulnerabilities. We envision this report being used in a variety of
ways: by professional testers to develop and demonstrate concrete exploits using the
inputs generated by our tool ; by web application developers checking server code
and developing patches as needed; and finally, web site administrators using the re-
port to estimate the likelihood that their site is vulnerable and alerting the concerned
developers.

Summary of contributions.

e We present the first systematic approach for reasoning of parameter tampering
vulnerabilities in web applications and a high level approach for detecting them.

e We specialize the high level approach to a blackbox setting (server-side code
not analyzed), and propose the first systematic approach to detect parameter
tampering opportunities (need manual analysis in confirming vulnerabilities) in
web applications, which we call NOTAMPER.

e We also specialize the high level approach to a whitebox setting (server-side
code analyzed), and propose the first systematic approach to generate parameter
tampering exploits by construction, which we call WAPTEC. To the best of our
knowledge this is the first approach that analyzes client, server and database
code to build an in-depth and precise understanding of validations performed at
the server and client, and uses it in precisely generating confirmed exploits.

e In realizing the above approaches, we make several novel technical contribu-
tions:

— Client-side JavaScript code analysis techniques specialized to form validation
code.

418 P. Bisht et al. / Parameter tampering vulnerability detection

— Input-generation techniques that cope with the many challenges of blackbox
vulnerability analysis and novel heuristics to generate and prioritize inputs
that are likely to result in vulnerabilities.

— In-depth server-side analysis that reasons about validation performed by dif-
ferent server-side modules (application code and database).

e For both, blackbox and whitebox settings, we narrate our experiences in imple-
menting them. We empirically demonstrate effectiveness of these tools by re-
porting several parameter tampering opportunities as well as confirmed exploits
from six open source applications and three online web sites. Starting from pa-
rameter tampering opportunities, we develop concrete exploits for a majority
of these applications/web sites. We also manually confirmed exploits reported
by our whitebox tool. Overall, we were able to find 47 exploits in these ap-
plications. These exploits demonstrate serious security problems: unauthorized
monetary transactions at a bank, unauthorized discounts added to a shopping
cart, and so on. We also contrast our experiences in using whitebox and black-
box tools for detecting parameter tampering, compare their results and provide
quantitative comparison of their results.

e We provide an in-depth discussion of challenges posed in defending parameter
tampering attacks. We also survey the existing defenses for web application
security vulnerabilities and assess their suitability in the context of parameter
tampering vulnerabilities.

This paper is organized as follows. Section 2 presents interesting aspects of
parameter tampering vulnerabilities through attacks on a simple web form and
then presents our formulation of the parameter tampering attack vectors. Section 2
presents a high level overview of our approach as well as challenges in detect-
ing such vulnerabilities. Section 3 provides architectures of our blackbox approach
(NOTAMPER) as well as whitebox approach (WAPTEC) and describes challenges
met by these approaches. Section 4 describes key components of NOTAMPER and
WAPTEC. Section 5 presents our evaluation over several real world examples and
web sites. Section 6 presents the related work, and Section 7 describes possible ways
to fix parameter tampering vulnerabilities in legacy applications. In Section 8 we
conclude.

2. Overview

Figure 1(a) depicts a typical web application that solicits user inputs through a
web form. All user supplied inputs undergo client-side validation. This validation
rejects invalid inputs, and otherwise submits them to server for further processing.
Ideally the server must first validate the inputs again (as the client-side is an untrusted
environment), before using them in sensitive operations. If the server-side validation

P. Bisht et al. / Parameter tampering vulnerability detection

Typical Web Application

419

Parameter Tampering

. form o A
User inputs o Vulnerability Analysis
l ¥ submission source code / website acess
PHP, JSP, ...

- ste
JavaScript if (input...) L P1
if (input...) -..reject Client-side input
e‘;éreied Server-side input validation analysis

submit form validati(;:n
Client-side input H v step,

validation use input in a

sensitive operation

Client ‘Server

Parameter tampering vulnerability:
Client-side input validation stronger than

Server-side input validation

(a)

Validation mismatch
analysis

exploits / hints

(b)

Fig. 1. High level overview: (a) parameter tampering vulnerabilities in web applications, and (b) proposed

vulnerability analysis.

Checkout

Checkout

-4 Kitchenaid 5-Quart Mixer, Red ($399.99)

1 All-Clad Copper Core 14-Piece Set ($1,999.95)

Total Price: 399.95

LY R v 1234-5678-9012-3456 |

7890-1234-5678-9012

Delivery Instructions

Submit

(a)

Bow o e

function validateForm(){
var ql = document.getElementById ("
quantityl");
var q2 = document.getElementById ("
quantity2");
var n = document.getElementById ("
name") ;
var d = document.getElementById ("
directions™");
if(ql < 0 |l 92 < 0 || n.length()
> 10 || /["a-zA-2]1/.match(d)
){
// show error, don’t submit
return false;
} else {
// submit form
return true;
}
}

Listing 1. client.js

(b)

Fig. 2. Running example: (a) Web form of a shopping cart application, and (b) Client-side validation
code in JavaScript. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

JCS-140498.)

fails to reject inputs that the client-side validation would have rejected, an attacker
can bypass client-side validation and submit malicious inputs.

As a more concrete example, Fig. 2(a) illustrates the client-side of a small web
application that serves as the running example throughout this paper. This example
is based on real-world scenarios. Consider the checkout form of a shopping cart

420 P. Bisht et al. / Parameter tampering vulnerability detection

application in which a user has already selected two products for purchase. The form
asks the user for the quantity of each product, the credit-card to be charged (displayed
in a drop-down list of previously-used cards), the name and address for shipping, any
special delivery instructions, and a hidden field op set to “purchase”. (These fields
assume the usual meaning as in a typical shopping session.)

Before this data is submitted to the server, the client-side JavaScript code shown in
Fig. 2(b) ensures that the quantity for each product is non-negative, that the delivery
instructions include no special characters, and the name is less than 10 characters.
The web browser will only submit the form to the server if these conditions are met.
The server-side code shown in Listing 2 computes the cost of purchase and inserts
this into the orders database.

Notice that the server fails to replicate some of the validations performed by the
client, leading to a number of attacks, which we describe below.

Attack 1: Negative quantities. We discovered the following attack on the web-
site of an online computer equipment retailer. By disabling JavaScript, a malicious
user can bypass the validation check on the quantity of each product (parameters
quantity; and quantity,) and submit a negative number for one or both prod-
ucts. It is possible that submitting a negative number for both products would result
in the user’s account being credited; however, that attack will likely be thwarted
because of differences in credit card transactions on the server involving debit and
credit. However, if a negative quantity is submitted for one product and a positive
quantity is submitted for the other product so that the resulting total is positive, the
negative quantity acts as a rebate on the total price. In the figure, the quantities cho-
sen were —4 and 1 respectively, resulting in a ‘discount’ of $1600.

Attack 2: Charging another user’s account. We discovered a similar exploit at a fi-
nancial institution and were able to transfer funds between arbitrary accounts. When
the form is created, a drop-down list is populated with the user’s credit card account
numbers (parameter card). By submitting an account number not in this list, a ma-
licious user can purchase products and charge someone else’s account.

Attack 3: Pattern validation bypass. This attack enabled us to perform a Cross-site
Scripting attack and escalate to admin privileges. The web form ensures that the de-
livery instructions (parameter directions) contain only uppercase and lowercase
letters. In particular, special characters and punctuation are disallowed to prevent
command injection attacks on the server. By circumventing these checks, a mali-
cious user can launch attacks such as XSS or SQL injection.

Attack 4: Submitting additional fields. We discovered a zero-day attack on the open
source application dcpportal that enables privilege escalation of an ordinary user
to an administrator. While the web form does not even include a field called dis-
count, the server code reduces the total price of the order by 15% when this field is
present. This attack arises because the server code is used both to process checkout
forms for regular users and checkout forms for employees.

P. Bisht et al. / Parameter tampering vulnerability detection 421

$ca = $_POST[’card’];

1

2 if($ca matches '1234-5678-9012-3456'|'7890-1234-5678-9012")
3 // generate HTML to show a

4 //selected card in the form

5

6 $n = $_POST[’'name’];

7 if(strlen($n) > 10

8 $n = substr ($n, 10);

9

10 if ($S_GET[’'op’] == "purchase"){

12 $cost = $_POST[’'quantityl’] * S$pricel + S$shipping;
13 $cost += $_POST[’quantity2’] =* S$Sprice2;

15 if(isset($_POST[’discount’]))

16 Scost = $cost - $_POST[’discount’] * S$Scost / 100;

17

18 $g = "INSERT INTO orders (‘name‘, ‘address‘', ‘card', ‘cost‘', ‘directions‘)
19 $g .= " VALUES (Sn, $_POST[’address’], Sca, $cost, $_POST[’directions’])

PRI
P

20

21 mysql_query ($q) ;

22 if (mysqgl_error())

23 Shtml .= " Please specify an address";
24}

Listing 2. server.php.

2.1. Problem description

More formally, in a form submission, the client-side of a web application solicits
n string inputs from the user and sends them to the server for processing. Formally,
each string input is a finite sequence of characters from some alphabet X. We will
denote an n-tuple of such inputs as I, and the set of all such [as 7.

IT=X"xX"x..-xZX*

Conceptually, both the client and the server perform two tasks: checking that user-
supplied inputs satisfy certain constraints, and either communicating errors to the
user or processing those inputs. For the problem at hand, we ignore the second task
on both the client and server and focus entirely on the constraint-checking task. For-
mally, constraints can be formulated as a function Z — {true, false}, where false in-
dicates an error. We use pglient to denote the (explicit or implicit) constraint-checking
function on the client and pgerver to denote the constraint-checking function on the
server.

Problem formulation. Our approach is based on the observation that for many typ-
ical form processing web applications there is a specific relationship between pgerver
and pcient: that Pgerver 18 More restrictive than pejient. Because the server often has

422 P. Bisht et al. / Parameter tampering vulnerability detection

access to more information than the client, pgerver SOMetimes rejects inputs accepted
by Pclient- For example, when registering a new user for a website, the server will
guarantee that the user ID is unique, but the client will not. In contrast, if pgerver ac-
cepts an input, then we expect pcjient to accept it as well; otherwise, the client would
be hiding server-side functionality from legitimate users. Thus, we expect that for all
inputs I

Dserver(I) = true = peient(I) = true. (D

The server-side constraint checking is inadequate for those inputs I when the nega-
tion of this implication holds:

Dserver(l) = true N perient(I) = false. 2

We call each input satisfying 2 a potential parameter tampering attack vector.

In practice, parameter tampering attack vectors sometimes arise because the devel-
oper simply fails to realize that the client checks should be replicated on the server.
But even if the developer attempts to replicate the client checks on the server, the
server and client are usually written in different languages, e.g., JavaScript for the
client and PHP, ASP, or Java for the server. When there are two codebases, improve-
ments made to one (such as additional new validation checks and maintenance up-
dates) do not always translate to changes to the other, leading to a mismatch between
the validations performed by the client and server.

2.2. Discussion

The above formulation is kept simple for the purpose of capturing the essence of
parameter tampering. The basic formulation can be extended to handle a number
of additional scenarios that arise in practice. For instance, web applications that en-
gage a third-party Cashier service (such as PayPal) can be viewed as those where
the (trusted) server component involves the traditional application server as well as
the cashier service, both of which interact with an untrusted client. In this case, the
constraint checking function pgerver 18 split across the traditional web server as well
as the cashier service [45].

The basic model above also does not require that the constraint checking is explic-
itly represented in client code. We envision pcjiene to be composed of both explicit
and implicit client constraints. Explicit constraints include those that are explicitly
specified in the code of the client, such as those enforced in JavaScript. The con-
straint checked in Line 10 of Fig. 2(b) is an example of an explicit constraint. Ex-
plicit constraints are usually application-specific. Implicit constraints are those that
the web application expects to hold at the client, but not explicitly represented by
the code of the application. Examples of such constraints include “read-only” con-
straints in certain header fields such as cookies, hidden-fields in forms, and ensuring

P. Bisht et al. / Parameter tampering vulnerability detection 423

the absence of delimiters in URL query strings. Such implicit constraints are usually
application-agnostic. Such implicit functions allow our basic approach to capture
many tampering vulnerabilities such as cookie tampering and server-side HTTP pa-
rameter pollution attacks [13].

2.3. Conceptual approach

Our goal is to automatically construct parameter tampering exploits for web appli-
cations. We note that these vulnerabilities arise when the server-side input validation
for a web form is weaker than the corresponding client-side validation. Constructing
such exploits therefore boils down to finding such mismatches in validation. Concep-
tually our approach is comprised of two steps: (1) extract the validation performed by
the client (Client Validation Analysis) and (2) analyze the server to find validations
that ought to be performed but are not (Validation Mismatch Analysis).

Client-side validation analysis (Step;). We first analyze the code of a given web
form to extract the validation it performs. Specifically, we extract a logical repre-
sentation of Pejient, Which we call fejient, by applying program analysis techniques.
We then apply an SMT solver to fjient to effectively generate inputs that are accept-
ed/rejected by the client.

Validation mismatch analysis (Step,). This step is performed differently depending
on whether in the blackbox or whitebox settings. The blackbox analysis must over-
come the fact that the source code for the server is unavailable, whereas the whitebox
analysis must carefully analyze the server’s source code.

Blackbox validation mismatch analysis. Given fgjjen; of @ web form, the next step
is to find out if the server fails to check any constraints that are checked by the client
and to identify parameter tampering exploits — inputs that the client rejects and the
server accepts. Finding inputs that the client rejects is straightforward: use an SMT
solver to generate inputs that falsify f;ien. However, detecting whether or not the
server accepts or rejects such an input is more difficult because the only information
about whether or not an input is accepted or rejected is the web pages the server sends
in response to our inputs. Consequently, we generate two classes of inputs: benign
and hostile. Benign inputs are those the client accepts (i.e., satisfy fcjient), and hostile
inputs are those the client rejects (i.e., falsify fcjient). We compare the web pages the
server sends in response to the benign inputs to the pages the server sends in response
to the hostile inputs. The more similar a hostile page is to the benign pages, the more
likely the server accepted the hostile input. This approach is inherently heuristic but
as we show in the evaluation is effective in practice.

Whitebox validation mismatch analysis. The blackbox approach has an obvious
drawback: our heuristic for determining whether or not a hostile input was accepted
by the server may be wrong, leading to false positives and negatives. The whitebox
approach is similar to the blackbox approach in that they both manipulate benign

424 P. Bisht et al. / Parameter tampering vulnerability detection

and hostile inputs. But it differs in that it inspects the code the server executes in
response to a given input to better determine whether or not the server accepted
that input. Seen this way, the whitebox approach generates concrete exploits that are
correct by construction.

Discussion. The crux of our approach is the assumption that all inputs rejected by
the client ought to be rejected by the server; however, there are cases when this as-
sumption fails to hold, e.g., when the server is a generic web service (such as Google
maps), and the client is an application using a portion of that service (such as a
map of Illinois). While this falls outside our intended scope, our basic approach can
be used in such settings by replacing the automatic extraction of fcjiene from a web
form with a manually constructed fjiene- The construction of (potential) parameter
tampering exploits can then continue just as described above. In other words, our
approach treats fgjien;, however it is generated, as an approximate specification for
the intended behavior of the server and then attempts to find inputs that fail to satisfy
that specification. Our approach can therefore be viewed as combining formal verifi-
cation for parameter tampering vulnerabilities with a program analysis front-end for
automatically extracting a specification of intended behavior.

3. Approach

In this section, we discuss the architecture and algorithms of our approach.

Figure 3 illustrates how the two steps of our approach (Input Validation Analysis
and Validation Mismatch Analysis) are realized in the blackbox and whitebox sce-
narios. In both scenarios, the starting point (on the left-hand side of the figure) is
the Web Page Analyzer, which given a web page extracts a logical formula fgjjen
representing the inputs that the page accepts. That formula is then fed into a Con-
straint Solver, which performs one of two tasks, depending on whether deployed in
the blackbox or whitebox scenario.

[A
Blackbs .
) ackbox bl"' bm »| Opportunity , External
| ——t—>
! — »| Detector Hogile Analysis
! In Inut
---------------------- 1~ T TTTTTTTTTTT T Rarking Exploits
HTML
Web /
g6 JavaScript > Solver

pag Analyzer

_________________________ A _Severside ____f________
Whitebox by...bpy \ Constraints hostile

1

1

E Whitebox Dynamic
! Analysis

1

1
1
hyhy |
i
1

Fig. 3. Illustration of validation mismatch phase for blackbox and whitebox scenarios.

P. Bisht et al. / Parameter tampering vulnerability detection 425

In the blackbox scenario (depicted in the top half of the figure) the Constraint
Solver finds several distinct benign inputs (inputs satisfying fcjient) and several dis-
tinct hostile inputs (inputs satisfying = fqjient)- (A user can influence which benign
and hostile inputs are generated by providing hints to the solver.) In our running
example, fgjien is the following.

—(quantity; < 0 Vquantity, < 0)
A (len(name) < 10)
A (directions € [a-zA-Z] %)
A (op = “purchase’)
Acard € (1234-5678-9012-3456 | 7890-1234-5678-9012).

The Constraint Solver might enumerate the benign and hostile inputs given in Ta-
ble 1.

Those hostile and benign inputs are then given to the Opportunity Detector, which
submits the inputs to the server and compares the resulting web pages to rank the
hostile inputs by how likely it is the server accepted them, i.e., by how likely it is
they are parameter tampering exploits. The Opportunity Detector then presents the
results to an external tester for further analysis.

We note that because the Opportunity Detector is imperfect, the ranking it pro-
duces may be wrong; thus, we require an external tester to manually verify which
hostile inputs are true exploits. That said, the blackbox analysis is still valuable to
testers because it greatly prunes the space of inputs that a manual tester would need
to consider, thereby making the testing process more efficient than a conventional
testing approach.

The whitebox approach (depicted in the bottom half of the figure) improves on the
blackbox notion of “server acceptance” by ensuring that every hostile input it claims
to be accepted by the server (i) causes the server to execute a sensitive operation
and (ii) takes a path through the code that some benign input also takes through the
code. Such inputs are likely to be accepted by the server and therefore be parameter
tampering exploits.

Table 1
Example benign and hostile inputs generated by the constraint solver

7R})

benign quantityq =1, quantity, =1, name =“a”, directions =",
op = “purchase” card =1234-5678-9012-3456

hostile quantityq =-3, quantityy =1, name = “a”, directions =",
op = “purchase” card =1234-5678-9012-3456

hostile guantityq =2, quantity, =-2, name =“a”, directions =
op = “purchase” card =1234-5678-9012-3456

hostile quantityy =2, quantityy =2, name = “a”, directions =",
op = “purchase” card =9999-9999-9999-9999

426 P. Bisht et al. / Parameter tampering vulnerability detection

Table 2
Constraints imposed by HTML form controls

Control Example Constraints
SELECT (select name=x) X € (1]2]3)

(option value=-1")

(option value="2")

(option value="3")
RADIO/ (input type=radio name=x value=“10") X € (10]20)
CHECKBOX (input type=radio name=x value=20"")
HIDDEN (input name=x type=hidden value=20") x=20
maxlength (input name=x maxlength=10) len(x) < 10
readonly (input name=x readonly value="20") x=20

To accomplish these goals, the whitebox approach first uses the Constraint Solver
to find a benign input (or several benign inputs) and then uses the Dynamic Analyzer
to ensure that input causes the server to execute a sensitive operation (to ensure the
benign input is actually accepted by the server). In addition the Dynamic Analyzer
extracts a logical formula, which we call fgerver, representing the code path that the
benign input took through the server. In our running example, ferver might be the
formula below.

(len(name) < 10) A (op = “purchase”) A (required(address)).

Then the Dynamic Analyzer sends fserver to the Constraint Solver, which computes
a hostile input that takes the same path as the benign input through the server, i.e., it
finds a solution to feerver A — felient- The resulting hostile input is then a correct-by-
construction parameter tampering exploit.

Below, we describe this process and the components in Fig. 3 in more detail.

3.1. Phase 1: Input validation analysis

The first phase, which is common to both blackbox (NOTAMPER) and whitebox
(WAPTEC) solutions, builds an understanding of client-side validation. Conceptually,
the result of this phase is a logical formula fjjeq that represents the constraints im-
posed by the client on any data it allows to be submitted to the server. For web pages
built using HTML and JavaScript (a common class of web pages), fclient 1S com-
prised of the constraints enforced by HTML and constraints enforced by JavaScript.
As discussed below, extracting the constraints enforced by HTML requires a simple
analysis; however, extracting the constraints enforced by JavaScript requires more
sophisticated techniques.

P. Bisht et al. / Parameter tampering vulnerability detection 427

Extracting HTML constraints. The constraints implied on form fields by HTML
are easily extracted by inspecting the type of HTML input control used to display
each form field. Table 2 summarizes the constraints imposed by each HTML input
control through examples. In our running example, the hidden parameter op yields
the constraint (op = “purchase”). Similarly, there is a drop-down list for the card
control that includes two credit card values. The resulting constraint requires card
to be assigned one of the values in that list:

card € (1234-5678-9012-3456 | 7890-1234-5678-9012).

We note that HTML 5 provides richer input controls for many commonly occur-
ring fields such as phone numbers and email addresses, that could also be a source
of interesting client validation functions.

Extracting JavaScript constraints. Extracting the constraints enforced by
JavaScript code requires overcoming several obstacles: (i) identifying the JavaScript
code relevant to validation, (ii) addressing the fact that JavaScript code utilizes
the browser’s Document Object Model (DOM) to reference form field values, and
(iii) actually analyzing the relevant JavaScript code.

Identifying JavaScript validation code. Identifying JavaScript validation code is
difficult because many web pages utilize a plethora of JavaScript for validation, dis-
play, and even raw functionality. Validation code in particular is spread out across
different event handlers, e.g., validation may occur when a form is submitted as well
as when each of the form fields is changed. The fact that different code executes at
different times means that we must treat the web page as a state machine that vali-
dates different code depending on the actions of the user. Each state in the machine
represents the data the user has entered and flags indicating which data contains
an error. As the user supplies or edits data, JavaScript code validates the data and
updates the error flags accordingly, resulting in a state transition. The constraints im-
posed by the client on some particular data set could in theory be dependent on the
path the user took through the state machine to enter that data, and hence the formula
fetient could depend upon the structure of that state machine.

We address this challenge by analyzing the JavaScript event handlers as if they
were all executed when the form was submitted. When user supplies inputs in a
form, it triggers events that cause JavaScript event handlers (validation routines) to be
executed. Thus we collect all the event handlers (and associated scripts) and generate
a single function that invokes all those event handlers, returning true exactly when
all the event handlers return true.

The benefit of doing so is mainly computational: it obviates the need to manually
simulate events or consider the order in which events occur. But it also reflects a
reasonable assumption users often make about data entry — that the order in which
data was entered does not affect the validity of that data. For those cases where the
order of data entry matters, our analysis may be overly restrictive, e.g., considering
all event handlers may simulate the occurrence of mutually exclusive events.

428 P. Bisht et al. / Parameter tampering vulnerability detection

DOM interactions. 'To complicate matters, JavaScript validation routines refer to
the form fields using the browser’s DOM (e.g., via document . getElement-
ById(’quantity; ’)). Thisis especially troublesome if the DOM is dynamically
modified by JavaScript by adding/deleting additional input controls or disabling/en-
abling existing input controls.

We address this challenge by building a DOM simulator during analysis by re-
cursively building a DOM from the HTML and running any initialization JavaScript
code that dynamically modifies the DOM. The DOM simulator supports a small set
of core methods for managing the DOM (e.g., getElementById). Currently, we
do not support document .write or document . innerHTML, but limited sup-
port for these functions have been explored in a related project [38].

Analyzing JavaScript code. The key observation for extracting parameter valida-
tion constraints from a given JavaScript snippet is that form submission only occurs
if that code returns true. In the simplest case, the code includes the statement re-
turn true or return <boolexp>, where <boolexp> is a Boolean expres-
sion. In theory, the code could return any value that JavaScript casts to true, but in
our experience the first two cases are far more common. This observation leads to the
key insight for extracting constraints: determine all the program conditions that lead
to true return values from all event handler functions. To find all such program
conditions, we employ a symbolic analyzer to concolically execute the JavaScript
snippet computed in the previous step.

The symbolic analyzer begins by executing the validation code concretely. When a
Boolean expression with symbolic variables is encountered, the execution forks: one
assuming the Boolean expression is true and the other assuming it is false. Both
executions replicate the existing variable values (program state) except for those af-
fected by assuming the Boolean expression is true or false. Concrete execution
then resumes. Supported DOM modification APIs act on the DOM specific to a fork.

For a given program location, the program condition is the set of conditions
that must be satisfied for control to reach that point. If a fork returns false, it is
stopped and discarded. If a fork returns true, it is stopped and the program con-
ditions to reach that point are noted. Further, the DOM representation at this point
reflects state of the HTML input controls while submitting the form including any
modifications done by the JavaScript as well. The constraints checked on this fork
are then computed by combining constraints of enabled controls in the DOM repre-
sentation and program conditions using a conjunction (A).

Once all forks have been stopped, fcjient is computed by combining formulas for
each path that returned true with disjunction (V).

For the running example one control path succeeds in returning true, resulting
in the following formula.

—(quantity; < 0V quantity, <0)
A len(name) < 10
Adirections € [a-zA-Z]*

P. Bisht et al. / Parameter tampering vulnerability detection 429

The above is then combined with constraints on parameters card and op mentioned
before to generate fgjien.

3.2. Phase 2: Validation Mismatch Analysis — Blackbox setting (NOTAMPER)

The Input Validation Analysis phase produces a logical formula fjjen represent-
ing the validation being done by the client code. Given this formula, Validation Mis-
match Analysis aims to find out if the server-side code fails to replicate any of the
constraints enforced by the client. In the blackbox setting, the main challenge is in
finding missing constraints without having any access to the server-side code.

Our tool for blackbox analysis, NOTAMPER, performs validation mismatch analy-
sis in two steps: (a) Constraint Solver: generate benign and hostile inputs by solving
fetient (representing inputs the client will accept) and — fcjiene (representing inputs
the client will reject), respectively, and (b) Opportunity Detector: send these inputs
to the server, and identify those hostile inputs that have likely been accepted by the
server-side code, thus representing parameter tampering opportunities.

We discuss the challenges encountered in realizing the above two steps and our
algorithms in more detail below.

3.2.1. Constraint solver: Generating benign and hostile inputs

The Constraint Solver is conceptually simple: analyze fcjient OF = felient to find
inputs that satisfy all the constraints. Typically this is done by an SMT solver. How-
ever, the Constraint Solver is not just an SMT solver because it must generate several,
interestingly distinct solutions to fejient OF — felient-

Ideally, the solutions the Constraint Solver finds are orthogonal to one another. In-
tuitively, two inputs are orthogonal if they force the server to exercise different code
paths. For hostile inputs, orthogonality is especially important because it ensures that
each hostile input probes the server for a different weakness. Since if two hostile in-
puts take the same server code path, they are either both rejected or both accepted
and hence testing the second provides no more information than the first.

The way the Constraint Solver attempts to generate orthogonal solutions to fejient
is by asking the SMT solver to find solutions to different subsets of the constraints
of felient. In particular, the Constraint Solver converts fejien: to DNF!, and finds one
solution per disjunct. Intuitively, DNF is an equivalent representation of fjjen; that
identifies the semantically distinct subsets of constraints within fjien-

In the running example, suppose fcjient is the formula

(quantity; >0V quantity; = 0)A(directions € [a-zA-Z] *).

Constraint Solver finds one solution for quantity; > 0 A directions €
[a-zA-2Z]* and another for quantity; = 0 Adirections € [a-zA-Z] *.

n our experience DNF conversion was inexpensive (despite its worst-case exponential character)
because of fijient’s structural simplicity.

430 P. Bisht et al. / Parameter tampering vulnerability detection

If the type of quantity; is [0-9]1+ and the type of directions is [a-zA-
Zz0-91 *, Constraint Solver includes the constraints quantity; € [0-9]+ and
directions € [a-zA-Z0-9]*.

3.2.2. Opportunity Detector: Identifying parameter tampering opportunities

The Constraint Solver produces a set of hostile inputs hq,...,hy, and a set of
benign inputs by, ..., by,. The goal of the opportunity detector is to determine which
hostile inputs are actually parameter tampering opportunities. The main challenge is
that the Opportunity Detector must ascertain whether or not a given hostile input is
accepted by the server while treating the server as a blackbox.

The Opportunity Detector addresses this challenge by ordering hostile inputs by
how structurally similar their server responses are to the server responses of benign
inputs. The more similar a hostile response is to the benign responses, the more
likely the hostile input is a parameter tampering opportunity. In our running example,
consider a hostile input where the parameter quantity; is assigned a negative
number. If the server fails to verify that quantity; is greater than or equal to
zero, both the hostile and benign responses will present a confirmation screen, the
only difference being the number of copies and total price. On the other hand, if the
server checks for a negative number of quantity;, the hostile response will be an
error page, which likely differs significantly from the confirmation screen.

As the server’s responses are in HTML, we employ HTML similarity detection.
There are many similarity detection algorithms for HTML responses in the literature,
the most notable being algorithms for computing tree edit distance (Ref. [6]). These
are especially useful in case of documents derived from a variety of sources that may
contain similar content (e.g., news articles from various newspapers). In our case,
since the HTML documents are produced by a single web application, it is very likely
that these responses are structurally more aligned than documents from different
sources, and therefore we use a home-brewed document comparison strategy based
on the Ratcliff and Obsershelp algorithm [36] on approximate string matching.

Approximate matching. An important issue to be addressed in response comparison
is that the contents of a HTML response will frequently include a number of variable
elements that are not dependent on the server inputs, e.g., time stamps, user names,
number of people logged in. A large number of such elements introduce differences
in benign responses, even when the inputs are identical; therefore, we resort to an ap-
proximate matching strategy that filters out such noise from benign responses before
comparing to hostile responses.

Suppose we have just two benign responses B and B;. Analyzing these responses
and extracting their differences will often isolate the noisy elements in the page.
These noisy elements can then be removed. For this purpose, we developed a utility
that analyzes these two responses and returns the following: (1) the common se-
quences in B and Bj;, (2) content in B that is not in B;, and (3) content in B, that
is not in Bj. Elements (2) and (3) comprise the noise, and once eliminated from B
and B; respectively, we arrive at the same HTML document C}.

P. Bisht et al. / Parameter tampering vulnerability detection 431

To analyze hostile response h;, we repeat the noise elimination procedure, only
this time with files B| and H;. The resulting HTML, C, produces two possibilities,
depending on whether the input s; was accepted or not. If the input was accepted,
based on our observation above, the server response H; is likely to be similar (mod-
ulo noise) to By, and therefore the result C is likely to be structurally the same
as C'. In case the input was rejected, the server returns a response that is likely to be
structurally dissimilar, and therefore C, will be less similar to C'y.

The final step is the comparison between C; and C. Again, a naive comparison
will not work because of the possibility that not all noise causing elements were
removed during the earlier step. For example, page generation times are often em-
bedded in the page itself, if the times were the same for B; and B,, but different
for Hy, then C} and C, will not be strictly structurally the same. Instead, we again
use our approximate matching strategy on C| and C, as inputs. Only this time, we
compute the edit distance between the two structures, resulting in a numeric value
(that we call difference rank) for each hostile input. The higher the rank for a given
hostile input, the less likely it is that the input points to a potential vulnerability.

3.3. Phase 2: Validation Mismatch Analysis — Whitebox setting (WAPTEC)

The Validation Mismatch Analysis phase in the whitebox setting eliminates the
need for the Opportunity Detector and identifies parameter tampering exploits (as
opposed to opportunities in the blackbox setting). This is done in a two-step process:
(1) find benign inputs that cause the server to execute a sensitive operation (such as
the INSERT query in line 18 of our running example) and (ii) find hostile inputs that
take the same control paths as the accepted benign inputs. The hostile inputs that we
find represent correct-by-construction parameter tampering exploits because (a) the
server cannot distinguish them from benign inputs, (b) they successfully execute
sensitive operations, and (c) they are rejected by the client.

WAPTEC, our tool embodying this approach, performs Step (i) using a form of
constraint-guided search that submits benign inputs to the server and analyzes the
code the server executes to find a control path that leads to a sensitive sink. When
successful, WAPTEC constructs a logical formula fgever that represents the control
path the server executed. Then in Step (ii), WAPTEC solves the logical formula
= felient N\ fserver tO enumerate parameter tampering exploits. Conceptually, every
such solution amounts to a parameter tampering exploit, but to ensure the input is
in fact an exploit, WAPTEC submits it to the server and ensures it reaches a sensitive
operation.

As shown in Fig. 3, the two key components for this analysis are: (a) the Constraint
Solver, which finds solutions to logical formulas, and (b) the Whitebox dynamic
analysis, which captures and analyzes the sequence of statements executed by the
server. Since we discussed the challenges of the Constraint Solver in Section 3.2, in
the rest of this section we focus on the Whitebox dynamic analysis.

432 P. Bisht et al. / Parameter tampering vulnerability detection

We begin by describing the process of computing the formula fgepver that repre-
sents the control path the server took for a given input. When go on to explain how
WAPTEC finds benign inputs that reach a sensitive operation using fserver. Finally we
discuss how WAPTEC utilizes the ferver corresponding to a benign input that reaches
a sensitive sink to construct parameter tampering exploits, focusing on the soundness
of the approach.

3.3.1. Computing fserver

For any given input, WAPTEC can observe the sequence of instructions the server
executes (the trace) in response to that input. Representing that control path as the
logical formula fgepver is conceptually simple: feerver is the conjunction of all the con-
ditions in IF statements in the trace. In practice, however, the construction of fserver
is more involved, a process we describe in three stages: (a) processing IF statements,
(b) addressing the sink expression, and (c) coping with database operations.

Processing IF statements. The sequence of IF statements in a trace is a crucial
characterization of that trace, since if two inputs satisfy all the same IF conditions
they will take the same path through the server code. But simply conjoining all the
conditions in a trace is inadequate because the conditions are often written in terms
of program variables, instead of form fields. Hence, as WAPTEC analyzes the trace,
it replaces program variables in the conditions of IF statements with the values of
those variables in terms of the form field’s inputs. More precisely, WAPTEC walks
backwards in the trace and recursively replaces program variables with the values
assigned to them until the condition is expressed in terms of inputs, concrete values
and built-in functions.

For example, the IF statement on Line 2 (Listing 3) checks if $main_ca matches
(1234-5678-9012-3456 | 7890-1234-5678-9012). We expand $main_ca
with $_POST['card’] because of the assignment statement on Line 1.

A challenge in precisely representing a given control path with IF statements is
that some IF statements are irrelevant because they have no impact on the code
path the server takes after they finish executing. A naive approach that considers all
IF conditions as relevant would report imprecise results. For example, consider the
first IF statement in the trace (Listing 3). This IF statement checks the value of
parameter card and sets the HTML form to show the selected entry. Although the
trace contains a check on card, it is executed regardless of the inputs and hence
does not influence the code path the server takes afterwards. In particular, regardless
of whether the IF is true or false, the query at line 20 is still vulnerable to an attacker
tampering with card. Similarly, a form may contain several parameters but a server-
side sink may only use some of them. Therefore, our analysis must factor whether a
tampered parameter is actually going to be used at a sensitive operation.

Thus when computing fserver, WAPTEC identifies those conditionals relevant to
a given sink by employing data- and control-dependency analysis: the data depen-
dency analysis identifies conditionals that actually contributed data to a sink, and

2We discuss this assertion in more detail in the section on soundness.

P. Bisht et al. / Parameter tampering vulnerability detection 433

1 $main_ca = $_POST[’'card’]; //

2 if($Smain_ca matches ’card—l\card—2’){ //

3

4}

5

6 $main_n = $_POST[’'name’];

7 1if(! strlen(Smain_n) > 10) {

8}

9

10 if($S_GET[’op’] == "purchase") {

11

12 Smain_cost = $_POST[’quantity’] * 100 + 10; // where S$price is 100

13

14 if(!isset ($_POST[’'discount’]) {

15 3}

16

17 Smain_qg = "INSERT INTO order (‘name‘,‘address‘', ‘card‘, ‘cost‘)";

18 Smain_qg = "INSERT INTO order (‘name‘', ‘address‘, ‘card‘', ‘cost‘)" "
VALUES('" . S$mainn . ", '" . $_POST[’address’] . "'" . S$main_ca

"," . $main_cost . ");";

19

20 mysqgl_query (Smain_qg);

21 S_wb_status = "SUCCESS"; // query execution denoted by SUCCESS
status

22

23}

Listing 3. Trace generated for running example.

the control dependency analysis identifies conditionals that actually dictated control
flow to a sink. For the running example, the query executed at line 20 is neither data
nor control dependent on conditional statement at line 2 and hence this conditional
is ignored while analyzing sink at line 20.

For the trace in Listing 3 the above process contributes the following constraints
to the fierver formula:

len(name) < 10 A op = “purchase” N\ —isset(discount).

Sink expressions. While the sequence of IF statements controls which sink is exe-
cuted, the sink itself rarely operates directly on the user-provided inputs. Rather, the
sink operates on variations of the user’s input. For example, at line 8 (Listing 2) the
server-side variable $n, which is used in the sink, contains only the first 10 characters
of the user-provided name parameter. In terms of generating hostile inputs that reach
this sink, it is important to represent in fserver the fact that only the first 10 characters
of name will have any effect on the sink. That is, this control path implicitly enforces
the constraint len(name) < 10.

WAPTEC adds these implicit constraints by analyzing the sink expression (e.g.,
SQL query), extracting the constraints, and adding them to fgerver. To extract the
constraints, WAPTEC first rewrites the sink expression purely in terms of user inputs
and concrete values (following a process similar to expansion of IF conditions). The

434 P. Bisht et al. / Parameter tampering vulnerability detection

resulting SQL sink expressions are then parsed with a SQL parser thus identifying
data arguments to SQL queries that contain user inputs (or a function of user inputs).

Database operations. Database operations are another example of implicit con-
straints on inputs. Each time the database is updated, it automatically checks if its
integrity constraints are satisfied after the update, and if not rolls back that update.
Thus, each time a database update is executed, there are additional constraints that
are checked that do not appear in the web application’s code. In our running ex-
ample, without considering the database constraint (NOT NULL) on the address
field, it is not possible to generate acceptable benign inputs. Note that this also for-
bids discovery of legitimately exploitable parameters for such sinks, thus resulting in
false negatives e.g., the quantity, exploit cannot be constructed without provid-
ing a non-null address value. WAPTEC therefore analyzes the database’s schema
and integrity constraints to extract those additional constraints and then adds them to
fserver, a process that is not as simple as it seems.

We first note that the database schema is a sequence of SQL queries that creates
different tables and views and expresses certain restrictions on data that can be in-
serted into each column of a table. Suppose we know that a user input u is being
inserted into a column c of a table, then all constraints implied on ¢ by the database
schema, must be satisfied (if validation) or will be enforced when data is added to
the database (if sanitization). However, finding the mapping between u (typically
server-side variables) and ¢ (column name in a database table) is challenging as it
requires bridging the namespace differences between application code and database
schema i.e., application code and database tables may refer to same data with differ-
ent names. WAPTEC analyzes database schema and queries issued in traces to build
a mapping between server-side variables and database columns which enables it to
then express constraints imposed by database in terms of user inputs.

In the first step, this analysis parses the schema of an application’s database. For
each table creation statement we analyze the column definitions that typically specify
constraints on values that can be stored e.g., “NOT NULL” clause enforces non-
null values whereas enum specifies domain of accepted values. We handle My SQL
formatted schemas and extract such conditions in the solver language.

In the second step, we generate a symbolic query for SQL sinks found in traces
and parse them. This parsing enables us to map table column names to program vari-
ables. For example, on parsing a symbolic SQL query “insert into T (uid,

..values ('S_GET[u]’,...”, we can associate column uid of table T to
program variable $_GET [u]. Once this mapping is available, we generate con-
straints by replacing column names with program variables in constraints generated
by the first step e.g., if uid column had a NOT NULL constraint, this analysis will
yield a constraint (NOT NULL u).

Discussion. The above discussion highlights the relationships between server vari-
able names, client form field names and database field names as intended by typical
web applications. For the applications we analyzed, the relationships between server

P. Bisht et al. / Parameter tampering vulnerability detection 435

variables, form fields, and database fields were fairly simple (i.e. one-to-one map-
pings). However, for applications where the relationships are more complex, reason-
ing across the three namespaces of the application will be more difficult to automate.
For example, a web form might ask for an address as a single field, but the street, city,
state, and zip code are all stored in different fields in the database. For applications
where the namespace mappings cannot be automatically inferred, we might imagine
accepting a specification for the mappings and in so doing broaden the applicability
of our analysis.

3.3.2. Finding accepted benign inputs

Now that we have a mechanism for computing the formula feerver representing
a control path, we discuss how WAPTEC uses such formulas to construct a benign
input that is accepted by the server. While it may seem that every benign input ought
to be accepted by the server, in reality, the server can reject benign inputs because
the server enforces more constraints than the client (perhaps because it has more
information). In our running example, the client does not require the address field
to have a value but the server does.

Since not every solution to fcjien¢ Will be accepted by the server, WAPTEC first finds
one that is. To do this, it starts with any solution to fjien and checks if it causes the
server to execute a sensitive operation. If so, WAPTEC is done; otherwise, it augments
fetient With additional constraints, the intention being that any input satisfying the
augmented fjient Will take a different control path on the server, which will hopefully
include a sensitive sink. In our running example, the augmentation of fcjjen; Will
require address to have a non-empty value.

To compute this augmentation, the Trace Analyzer examines the execution trace
of the code the server executed on the failed input, and computes a logical formula
(fserver) representing that code trace. The intuition is that fgerver represents (the con-
junction of) the conditions on the server’s inputs that if true will always lead to the
same control path. Since that control path fails to lead to a sensitive sink, every input
leading to a sensitive sink must falsify one of the conditions on the path, i.e., it must
satisfy the negation of fserver- Thus, the augmentation of fj;ene When no success sink
is found is fclient A _‘fserver-

This process then repeats, starting with the augmented fjien, finding an input that
satisfies it, and iterating until WAPTEC finds an input satisfying the augmented f_jjen
that also reaches a sensitive sink. At a high level, this process generates a series of
benign inputs, where each subsequent input has a better chance of being accepted
than all of the previous.

Once WAPTEC finds an accepted benign input, it performs a depth-limited version
of the procedure above to find additional, accepted benign inputs that take nearby
control paths. To do that, the Trace Analyzer analyzes the trace of the first accepted
benign input to extract feerver, Which is a conjunction C| A - - - A Cy,. For each Cj,
WAPTEC adds —C; to (the augmented) fcjien, finds a satisfying input, and checks if
that input leads to a sensitive operation. We call this process perturbation, since

436 P. Bisht et al. / Parameter tampering vulnerability detection

WAPTEC attempts to perturb the constraints leading to one sensitive sink to find
additional paths leading to sinks. Since each C; can potentially produce a distinct
control path leading to a sensitive sink, after this depth-limited search WAPTEC has
between 1 and n + 1 control paths leading to sensitive operations. The perturbation
process is motivated by the intuition that small changes to successful inputs may still
drive execution successfully to sensitive sinks, which are often clustered together,
and hence after finding a single sink, there is a high likelihood of finding additional
sinks nearby.

3.3.3. Soundness

Once a benign input that is accepted by the server is found, WAPTEC computes
fserver for the resulting control path, finds solutions to = fcjient/A fserver, and checks that
those solutions do in fact reach sensitive sinks. The pseudo-code for our approach
can be found in Algorithms 1 and 2.

Algorithm 1. WAPTEC (url)

1: felient := clientAnalyzer(url)

2: @ := {true}

3: loop

4 a:=pop(Q)

5. v = solve(fclient N @)

6: (success, fserver) := server(url,v)

7. if success then

8: genHostiles(url, fclient fserver)

9: for all C; | feerver = C1 A+ ACpy do
10: v = solve(felient N a A —C)
11 (success, fserver) := server(url,v)
12: if success then genHostiles(url, fciient, fserver)
13: else

14: Q =QU{aA-Cj| —fserver =C1 V-V Ch}
15: Q := simplify(Q)
16: if empty(Q)) then return

Algorithm 2. GENHOSTILES(url, fejient, fserver)

1: for all § € DNF(— [jient) do

2 v = solve(d N fserver)

3: success .= server(url,v)

4: if success then print Exploit found: v

P. Bisht et al. / Parameter tampering vulnerability detection 437

It is important to describe at a high level the mechanisms that we use for generating
the client formula fjjen; and the server formula fgerver, and their implications for the
correctness of our approach.

The client formula fjien is generated by the Web page Analyzer using symbolic
evaluation [33]. Since the formula is statically computed from the source, it is in fact
an approximation. Specifically, due to the nature of the approximations made in [7],
felient 18 an under-approximation of the constraints the client enforces, which means
that every time an input is generated that satisfies fgjiens, it is indeed the case that this
input will lead to a successful form submission from the client. Similarly, = f¢jient,
represents an over-approximation of input instances that are rejected by the client.
Inputs satisfying — fqjien; are therefore not necessarily rejected, but we can always
execute those inputs in the actual client code to ensure they are rejected by the client.

In our approach, the server-side behavior is obtained by dynamic analysis of
server-side code. This means that the server-side formula fgerver Will be specifically
tied to each run, and is generated from the program trace induced by the run. By its
very nature, dynamic analysis only considers the operations done by code that is ex-
ecuted; hence, feerver precisely captures the server behavior for the run without any
approximations.

Since fserver 18 precise, and WAPTEC can verify that any solution to — fcjient A
fserver 1 actually rejected by the client, all the exploits WAPTEC reports are by our
definitions concrete parameter tampering exploits.

4. Implementation

Of the many components within NOTAMPER and WAPTEC, two warrant additional
discussion: the Constraint Solver and the Dynamic Analyzer. Below we describe the
logical language used by the Constraint Solver and how it compares to the logical
language needed to express constructs in traditional programming languages. We
also describe how the Dynamic Analyzer generates traces of server code so as to
observe how the server responds to a given input.

4.1. Constraint language for NOTAMPER and WAPTEC

The language for expressing the constraints extracted by both NOTAMPER and
WAPTEC includes the standard Boolean connectives AND, OR, NOT together with
the atomic constraints described in Table 3. The equality and numeric constraints are
standard. The regular expression constraints require that a value assigned a variable
belong to a given regular expression. A number of language-specific constraints are
also necessary to encode some of the functions built into the languages we analyzed.
(User-defined functions can be inlined as long as they are not recursive.) For exam-
ple, the function trim is built into PHP and removes whitespace from the ends of a
string.

438 P. Bisht et al. / Parameter tampering vulnerability detection

Table 3
Constraint language for f.jjene and fserver
Class Examples Instances
Equality * =, # TF£Yy
Numeric * +ox,—, [, <> <
Modal required required(x)
Regex * € ¢ x € [abc]*

PHP/JavaScript trim, len, concat len(x) < len(concat(y, z))

Instead of building a custom solver to enumerate solutions to a given formula
in our language, we used the state-of-the-art SMT solver Kaluza and translated our
constraint language into the language Kaluza supports. Roughly, Kaluza supports the
categories of constraints marked with an asterisk, plus functions for computing the
length of a string and concatenating two strings. Kaluza only handles conjunction
(AND), but because we always first convert formulas to DNF before solving (see
Section 3), Kaluza’s support for Boolean operators is sufficient. Thus, translating
our constraint language to Kaluza’s language mainly requires translating the modal
and language-specific constraints.

The paper in which Kaluza was presented [38] describes how a number of
language-specific constraints can be translated, and we refer the reader inter-
ested in additional details. Unfortunately, not all of the constraints generated by
PHP/JavaScript analysis can be faithfully translated into Kaluza’s constraint lan-
guage. For example, PHP employs a number of built-in data structures not handled
by Kaluza, and PHP functions often accept and return such data structures. For exam-
ple, MyBloggie application employs the preg_replace function, which is a regular-
expression version of a string replacement operation. preg_replace can both accept
and return arrays as arguments. Arrays are difficult to translate to Kaluza because
they correspond to an unknown number of variables, and Kaluza expects a fixed
number of variables in the constraints. Another example of a function we did not
translate is found in DCPPortal application: the md5 function computes the MD5
hash of its argument.

For constraints that cannot be translated to Kaluza’s language, we simply drop
those constraints, producing a constraint set that is weaker than it ought to be, po-
tentially leading to unsoundness and incompleteness in the search for parameter
tampering exploits. However, because we always checks if the variable assignment
produced by the solver satisfies the original constraints, unsound results are never
reported.

A lower-level but more fundamental difference between our constraint language
and that of Kaluza is that Kaluza requires every variable to have a single type and
does not provide functions to cast from one type to another.> This is problematic be-
cause the languages we investigated (PHP and JavaScript) allow variables to take on

3Type casting functions, while included in the documentation, were unavailable at the time of evalua-
tion.

P. Bisht et al. / Parameter tampering vulnerability detection 439

arbitrary values. This mismatch makes the translation difficult because a constraint
such as ¢ £ 0 A x # “0” causes a type error in Kaluza but appears frequently in the
semantics of PHP, e.g., when defining whether a variable evaluates to true or false.

Our approach approximates the semantics of PHP and JavaScript functions with a
combination of type inference to detect type mismatches, type resolution to choose
one type for mismatched arguments, static casting to convert problematic arguments
to the chosen types, and type-based simplification to eliminate constraints that do
not actually affect the satisfiability of the constraints but cause Kaluza to throw type
erTors.

4.2. Trace generation transformation

The key goal of trace generation transformation is to enable generation of traces
that faithfully capture processing of user supplied data in a web application. To do
so, the trace generation transformer performs a source-to-source transformation of
applications written in PHP language. A trace is a well formed straight-line PHP
program that is comprised only of assignments, calls to inbuilt functions and IF-
THEN statements.

For the running example (Listing 2), Listing 3 shows the generated trace
for inputs card='card-1’, name='alice’, address='wonderland’,
op='purchase’ and quantity=1. Each line in the generated trace (Listing 3)
corresponds to the line in the running example (Listing 2) that generated it.

The other choice for capturing such traces is to instrument a PHP interpreter itself.
Although, this approach requires less effort on a per application basis, it may require
extensive changes to the PHP interpreter. Also, there are considerable analysis needs
that led us to adopt a program rewriting route. First, we needed taint tracking to
identify the flow of untrusted inputs. Second, we needed data and control flow anal-
ysis required to identify conditions only relevant to the sink. Third, to handle PHPS
object-oriented features, we need to unambiguously identify each object in order to
avoid name collisions. While these can be done by hacking various internal parts a
PHP interpreter, such changes would generally not be portable across revisions to
the interpreter. Our implementation does so in a much cleaner fashion while retain-
ing portability across various PHP interpreters and is not broken by revisions to the
interpreter.

Assignments. Table 4 shows the key rules used in transformation. All text shown in
bold font is recorded in traces and 7 represents application of one or more transfor-
mation rules. Rule R| shows the most common step in this transformation that adds
two statements after each assignment statement of the original program: one to prop-
agate taint (function taint) and another to generate corresponding trace (function
trace). Certain features of PHP language such as exit, return, break,
continue mandate computation of taint and trace information before the actual
statement.

440 P. Bisht et al. / Parameter tampering vulnerability detection

Table 4
Trace generation transformation, condition c is of the form v1 op vy
Original Transformed Rule
uU=0; U=0; R

u_t =taint (u,array (v_t)) ;

trace(“u=v");;

if(c) { if(c){
S1; trace(“if(c) {”); 7(Sl);trace(“}"); Ry
} else { } else {
S2; trace(“if (!c){”); 17(S2);trace(“}");
} }
while(c){ while(c){ R3
S; trace(“1if(c){”); 7(S);trace(“}");
} } trace(*if (!c) {...force-analyze;}");
u=£f(w); u=f(v,u_t); Ry
u_t=f_ret_t;

trace(“u = f_ret_v;");

classc { classc { Rs
} var id;
functionc() { this—id=unig(); ...}

Algorithm 3. TRACE(v; op vy)

if v;_t and v,_t are false then
return;
v|_t == true ? print (“PREF _v,”) : print (vy)
: print (“op”);
vy_t == true ? print (“PREF_v,”) : print (v;)

AN

For most parts, the function taint implemented standard information flow tech-
niques to propagate taint for user inputs. However, special care was needed to ini-
tialize and propagate taint as PHP recursively defines some of the inbuilt arrays e.g.,
super global array GLOBALS contains itself as a member.

Algorithm 3 shows the key processing done by the function trace. It takes two
variables v and v, as arguments, which are connected by a PHP operator op. This
function checks taint values of variables v; and v,. If both variables are untainted,
it simply returns as this operation does not manipulate user inputs (i.e., tainted
values); otherwise it records variable names for tainted variables (represented by
print(“PREF_v;”)) and concrete values for untainted variables (represented by

P. Bisht et al. / Parameter tampering vulnerability detection 441

print(vy)). All PHP operators and keywords are reported verbatim in traces.

A challenge in reporting variable names in traces is caused by the possibility of
name collisions. As traces are straight-line programs, all functions (except PHP in-
built) executed by the web application needs to be in-lined. As this in-lining merges
variables from several lexical scopes it could result in name collisions and could gen-
erate traces that misrepresent run of the web application e.g., name-collisions could
result in traces that incorrectly capture use/reachability of an important variable. To
avoid name collisions, a unique prefix is attached to each variable being reported in
the trace (shown by PREF_ in R and Algorithm 3). To compute these prefixes, we
use function/method signatures and for variables appearing in classes, a per object
unique identifier is used additionally (discussed later). We do not show prefix in rules
other than R for ease of presentation.

Conditional statements. Rule R, shows transformation of an i f-else statement
and captures evaluated condition with explicit 1f statements. In specific, for the
else branch, negation of the then branch condition is captured. Similarly, for an
If statement without the corresponding else clause, if the then branch is not
taken, negation of the if condition is reported in the trace.

To faithfully capture conditional execution of statements in traces, the transformer
enables printing of scope delimiters (opening and closing curly braces) with if state-
ments. It retains a counter to track number of opened curly braces and uses this infor-
mation to print right number of closing curly braces in traces. Certain PHP language
features may terminate a variable number of lexical scopes (e.g., return would
close all open lexical scopes in a function), and the counter is updated accordingly to
ensure correct accounting of remaining scope delimiters to be reproduced in traces.

Loops. All looping constructs are first translated to while loops and rule Rj3
shows its transformation. The generated trace captures execution of each loop it-
eration with the help of an if statement. On termination of the loop, guard condi-
tion is always false and an empty post-loop if captures that. To ensure that such
empty if statements are not ignored during analysis of traces, meta information
(force-analyze) is added. Note that tainted loop conditions are typically of the
form ¢ op u where c is a loop counter and u is a user input. As the loop counter in-
crements, for each loop iteration the corresponding trace will contain concrete value
of the loop counter thus yielding a unique condition (refer to Algorithm 3).

Function calls. All user defined functions are transformed according to rule R4
which modifies the function signature to pass taint of each argument. Further, two
global variables are introduced for each function to retain its return value and the
corresponding taint (£_ret_v and £_ret_t respectively). To inline user defined
functions, corresponding trace assigns return value of the function to the left hand
side variable. Notice that the generated trace would contain executed function state-
ments immediately before this assignment.

442 P. Bisht et al. / Parameter tampering vulnerability detection

Calls to inbuilt functions are retained in traces. Invocation of sink functions (sql
query execution and file I/O) require additional processing to report their status (suc-
cess/failure) in traces. This requires sink specific computation e.g., for My SQL sinks
this amounts to checking the return value of mysql_errno () as well as analyzing
return value of a query mysgl_query (“show warning”).

Classes. Object-oriented features are often used in PHP programs (2 of the 6 appli-
cations we evaluated were object-oriented and used inheritance). As multiple instan-
tiations of a class yield objects with same methods, method signatures are same for
all such objects. Thus appending signatures to variable names may still lead to name
collisions in object-oriented programs. Further, a member variable can be accessed
using multiple namespaces e.g., by using the this operator (inside methods) or by
using names assigned to objects. Although, all such instances are accessing the same
memory region, a naive renaming scheme may lose precision by failing to identify
these accesses with a single variable name.

The main changes required to classes are for computing unique prefixes for vari-
ables and is shown in rule Rs5. Here transformer adds a member variable id to hold
the unique identifier for each instance of the class. The constructor methods are aug-
mented to initialize the id variable to a unique value. Further, inheritance is inherently
handled in this scheme as the id member of inheriting class shadows the id member
of base class. With the help of id variable, accesses to a member variable through an
object ($o — member;) or this operator ($this — membery) are uniformly trans-
formed as v_$id_member|. This enables subsequent analysis to correctly identify
accesses to a single memory location from disparate namespaces.

5. Evaluation

We implemented both the blackbox and whitebox approaches as prototype tools
(NOTAMPER and WAPTEC, respectively) to enable testing on real world applications.
We selected six medium to moderately large opensource PHP applications (that were
used as benchmarks in other papers [43,46]) and three live websites for our test suite.
Table 5 provides background information on these applications (lines of code, num-
ber of files, and functionality). The test suite was deployed on a Mac Mini (1.83 GHz
Intel, 2.0 GB RAM) running the MAMP application suite, and the prototype was de-
ployed on an Ubuntu workstation (2.45 GHz Quad Intel, 2.0 GB RAM).

5.1. Summary

Experiments. We first evaluated both approaches by running the prototype in black-
box mode (NOTAMPER) and then again in whitebox mode (WAPTEC). For the open
source applications, we were able to run both approaches, but we could run only
NOTAMPER on the websites due to their source code not being openly available.
Then we used the results of both evaluations to compare and contrast whitebox and
blackbox analysis in the context of parameter tampering attacks.

P. Bisht et al. / Parameter tampering vulnerability detection 443

Table 5
Summary of results
Application Size Files Use Exploits
(KLOC)
SnipeGallery 9.1k 54 Image Mgmt 2
SPHPBlog 26.5k 113 Blog 1
DcpPortal 144.7k 484 Content Mgmt 32
PHPNews 6.4k 21 News Mgmt 1
Landshop 15.4k 158 Real Estate 3
MyBloggie 9.4k 59 Blog 6
www.wiley.com Closed source Library 0
www.selfreliance.com Closed source Banking 1
www.codemicro.com Closed source Shopping 1

Results summary. The outcome of our experiments is summarized in Table 5. We
evaluated one form in each application. Our prototypes found a total of 47 exploits
that were also manually verified. For each application shown in column 1, the last
column shows reported exploits. As shown in this table, WAPTEC successfully gen-
erated one or more exploits for each open source application in the test suite, and
NOTAMPER generated exploits for 2 of the 3 closed source applications. We high-
light several interesting exploits below.

5.2. Exploit details

Unauthorized money transfers. The online banking website www.selfreliance.com
allows customers to transfer money between their accounts online. A customer logs
onto the web site, specifies the amount of money to transfer, uses a drop-down list to
choose the source account for the transfer, and uses another drop-down list to choose
the destination account. Both drop-down lists include all of the user’s account num-
bers. It turns out that the server for this application did not validate that the account
numbers provided were selected from the drop-down lists. Thus, sending the server
a request to transfer money between two arbitrary accounts succeeded, even if the
user logged into the system was an owner of neither account. When NOTAMPER an-
alyzed this form, it generated a hostile input where one of the account numbers was a
single zero. The server response was virtually the same as the response to the benign
inputs (where the account numbers were selected from the drop-down lists). There-
fore, this input was ranked highly by NOTAMPER as a potential vulnerability. When
we attempted to confirm the vulnerability, we were able to transfer $1 between two
accounts of unrelated individuals. (Note that if the server had checked for valid ac-
count numbers but failed to ensure the user owned the chosen accounts, NOTAMPER
would not have discovered the problem; however, if the human tester provided valid
account numbers as hints, NOTAMPER would have identified the problem.) We note
that this vulnerability could have significant impact given that the bank in question

444 P. Bisht et al. / Parameter tampering vulnerability detection

has over 30,000 customers. Further, a successful exploit requires only the knowl-
edge of victim account numbers, which are shared routinely when writing checks.
The bank was contacted about this vulnerability and fixed it in less than 24 hours,
during which time the functionality for transferring money was disabled completely.
Furthermore, Selfreliance had licensed the software that contained the vulnerability
from ESP Solutions (www.espsolution.net), who applied a global patch for
all their clients that utilized this functionality and additionally fixed similar problems
in their other key product FORZA that provides online banking features.

Unlimited shopping rebates. The online shopping website www.codemicro.com
sells computer equipment, e.g., hard drives, printers, network switches. The form
in question shows the contents of the shopping cart and allows a user to modify
the quantities of the selected products. The quantity fields employ JavaScript to re-
strict shoppers to enter only positive numeric values. When NOTAMPER analyzed
this form, it circumvented JavaScript and supplied a negative number for one of the
quantity fields. The resulting HTML page was identical to the pages produced by
benign inputs, except for the quantities and total price; thus NOTAMPER ranked it
highly as a potential parameter tampering exploit. We were able to further develop
this into another serious exploit. After adding two items to the cart and disabling
JavaScript in the browser, we set the quantity of one item to a negative number.
Then when we re-enabled the JavaScript, the total purchase price was computed by
multiplying the quantity of each product by its price. Thus, the negative quantities
enabled unlimited rebates for any purchase. Furthermore, these negative quantities
were successfully accepted by the server, thus permitting the user to purchase at the
reduced price. The potential of exploiting this vulnerability could have been signifi-
cant as the website contains a very large inventory of computer equipment. The site
administrators confirmed the vulnerability and fixed it within 24 h.

Privilege escalation. The DcpPortal application allows guests to register for an
account. The registration form solicits standard information, such as name, e-
mail, username, password, etc. Upon normal registration, a user is provided with
an account having basic privileges. When the form is submitted, the server-side
form processing code validates the provided information and checks if a cookie
make_install_prn is set. When this cookie is set to 1, the user is registered with
administrative privileges. By setting this cookie, it is possible for an attacker to reg-
ister an account with escalated privileges. Discovery of the above vulnerability re-
quired WAPTEC to construct a negative parameter tampering exploit, i.e., the client-
side formula fgjjen for this form did not contain any restriction on the parameter
make_install_prn; however, the server-side formula fserver checked its value. After
analyzing the server-side code, WAPTEC discovered this additional parameter and
set it to true, which resulted in the escalation of privileges of the user being regis-
tered to an administrator. After confirming the exploit, we analyzed the application to
understand the root cause of this flaw. We found that the application used the cookie

P. Bisht et al. / Parameter tampering vulnerability detection 445

make_install_prn during initial installation to allow creation of an administrator ac-
count. To patch this vulnerability, the application can use additional server-side state
(e.g., sessions) to avoid depending on the cookie value alone or have a separate form
for this purpose.

Duplicate users. 'The DcpPortal application requires unique usernames comprising
of at most 32 alphanumeric characters for new account registrations. The client-
side allows only 32 alphanumeric characters, while the server enforces uniqueness
by checking that the database does not contain a matching username before creat-
ing an account. Further, during insertion of new user details, the database enforces
the length by truncating usernames to 32 characters. During vulnerability analy-
sis, WAPTEC recognized that the server fails to enforce the length constraint before
checking for existing usernames. For this vulnerability, WAPTEC generated hostile
inputs that exceeded 32 characters, which because all existing user names in the
database are 32 characters caused the username existence check to always return
false. In addition, the server also fails to replicate the alphanumeric constraint on
username and WAPTEC generated a hostile input that contained invalid characters.
When confirming these exploits, we were able to refine them. Although true account
duplication works only for long usernames, it is possible to create imposter accounts
by appending URL encoded whitespace to existing usernames.

Blog category hijacking. MyBloggie, a blogging application, allows registered
users to submit posts to the blog. When submitting a post, users are asked to choose
a category from a drop-down list of existing categories. By submitting a value not
in that list, an attacker can submit posts that will appear in a category that will be
created in the future. This may negatively impact effectiveness/quality of the future
category; thus, this attack can hijack a future blog category. WAPTEC discovered the
missing validation exploited it by supplying an out of range value.

Additional exploits. Below we briefly describe one exploit from each of the other
four applications we evaluated.

e PHPnews, a news management application, allows administrators to modify
certain files through a form that includes name of the file as a hidden field.
The server-side code fails to validate that the file name is not tampered and as
a result attackers can update existing files, create arbitrary files and/or corrupt
files of other applications deployed on the same web server.

e SnipeGallery, a photo album application, allows users to arrange albums hier-
archically by selecting a parent category for each new album from a drop down
list. By selecting a value not in that list, the new album becomes invisible; fur-
thermore, additional analysis shows that a carefully constructed parent album
value leads to a SQL injection attack.

e Landshop, a real estate application, includes a form with a hidden field not
pertinent to that form. When the value of this field is set to the ID of an existing
listing (which are displayed prominently on the site), that listing is deleted from
the application whether the user is the owner or not.

446 P. Bisht et al. / Parameter tampering vulnerability detection

e SPHPBIlog, a blogging application, allows users to choose a language for the
blog from a drop down menu. By selecting a language not in the list, an attacker
can make the application unusable and thus conduct a denial-of-service attack.

The severity of the generated exploits underscore a widespread lack of sufficient
replication of the client-side validation in the corresponding server-side code.

5.3. Comparison of blackbox and whitebox results

We evaluated the blackbox and whitebox approaches individually to compare and
contrast them. Specifically, we were interested in comparing the number of exploits,
false positives and false negatives. The results of the comparison are summarized
in Table 6. For each application, this table reports the number of confirmed exploits
found by NOTAMPER (column 2) and WAPTEC (column 3). The next two columns re-
port false positives and false negatives for NOTAMPER when compared to WAPTEC.
In total, the blackbox approach resulted in 23 false positives, and 24 fewer con-
firmed exploits when compared to the whitebox approach. Further, for the DcpPortal
and Mybloggie applications, WAPTEC found several exploitable sinks. For example,
for DcpPortal column 3 shows 16 (32): each hostile input generated by negating
16 felient disjuncts was used in 2 distinct sinks and hence were exploitable (total
32 exploits). We wish to note that all these disjuncts would have contributed to one
hostile each, at best, in NOTAMPER. In the rest of this section we describe some of
the qualitative benefits of using WAPTEC when compared to NOTAMPER, using the
exploits described in Section 5.2 as examples.

Multiple sink analysis. A single form input can be used by the server at multi-
ple sensitive operations and can potentially cause problems at each such operation.
WAPTEC has the ability to detect multiple vulnerabilities along a single path reached
by an input, whereas NOTAMPER is incapable of reasoning about multiple sinks
due to its blackbox nature. The duplicate user exploit in DcpPortal demonstrates a
case where a single hostile input exploited multiple sinks. When WAPTEC negated

Table 6
Comparing whitebox and blackbox analysis results
Application Confirmed exploits False positives False negatives
Blackbox Whitebox Blackbox Blackbox

SnipeGallery 2 2 1 0
SPHPBlog 1 1 0 0
DcpPortal 13 16 (32) 9 19
PHPNews 1 1 0 0
Landshop 3 3 1

Mybloggie 1 5(6) 12 5

Total 21 45 23 24

P. Bisht et al. / Parameter tampering vulnerability detection 447

the 32 alphanumeric character length constraint, it produced an invalid string that
was used at two sinks. The string was first used in a sink that checked if a dupli-
cate username exists in the database, and later it was inserted into the database at a
second sink. WAPTEC detected that the malformed username was used at both sinks
and reported an exploit for each. On the contrary, NOTAMPER reported a single vul-
nerability for a similar hostile input. This is because NOTAMPER is incapable of
reasoning about multiple sinks and, therefore, suffers from false negatives.

Negative tampering. Negative tampering attacks are those where the user supplies
data for form fields not present in the actual form. The server is vulnerable to such
attacks when it checks the value of such fields, a reasonable behavior if the server
code is used to process multiple forms. WAPTEC uncovered a negative tampering vul-
nerability on the DcpPortal registration form. It found a conditional that depends on
the value of a parameter make_install_prn, which is not found in the client-side for-
mula. To explore this branch, it satisfied the conditional by setting make_install_prn
to 1. By analyzing data and control dependencies, it then determined that this branch
modifies parameter values used in the sink, and therefore, reported the exploit. The
result of this exploit allows a malicious user to obtain a new account with escalated
privileges. NOTAMPER is inadequate to discover such exploits because that requires
analysis of server-side form processing logic to uncover hidden functionality, which
is out of scope for a blackbox tool.

Sanitization. Once a web server has been given inputs, it will sometimes sanitize
those inputs to make potentially unsafe inputs safe to operate on. Since NOTAMPER
treats the server as a blackbox, it cannot determine whether or not the server sanitizes
inputs and so even when the web page returned by the server for a hostile input indi-
cates error-free processing, the hostile input may not be an actual exploit. The server
could have transformed the input into safe equivalent before using it. This sanitiza-
tion can occur either in the web application code or in the database itself. Because
WAPTEC can analyze the source code, it can either identify sanitization or avoid it. As
mentioned in Section 3.3, WAPTEC avoids sanitization in the web application code
by only finding hostile inputs that take the same code path as some benign input. For
database sanitization, WAPTEC analyzes the database schema and checks for warn-
ings on database operations that signal sanitization. Not accounting for sanitization
led NOTAMPER to yield false positives in two different applications. In DcpPortal,
NOTAMPER produced a hostile input by falsifying a range constraint on a field for
the user’s birthdate. The server quietly modified any value not in the required range to
0000-00-00. Thus, while NOTAMPER saw only an error-free web page and reported
a potential exploit, WAPTEC observed a database warning when saving the date, and
thus correctly avoided a false positive. Similarly, in SnipeGallery, the database au-
tomatically enforced a length constraint on a form field by truncating extra values;
hence, NOTAMPER reported a false positive having submitted an overly long value
and having received no errors, but WAPTEC discovered the database’s truncation of
that value. In general, it is possible to deal with sanitization functions correctly in

448 P. Bisht et al. / Parameter tampering vulnerability detection

the whitebox approach, if the code uses well-known sanitization functions. (More on
this in Section 5.4.)

Incomplete client specification. Another source of problems for the blackbox case
is attributed to insufficient client-side information for generating a benign input that
is actually accepted by the server. In the blackbox case, it is critical that NOTAM-
PER’s benign inputs are actually accepted by the server, since otherwise it is likely
that many of the hostile input server responses will look similar to the benign in-
put responses even if they were actually rejected by the server. A simple example is
when the client enforces no constraints, but the server requires that some of the fields
have values. Unfortunately, there is little opportunity in the blackbox case to enhance
the information from the client about how the server ought to perform, which is why
analyzing the server’s code in the whitebox case is so valuable. We can take infor-
mation we learn about the server and add it to the information we know about the
client. For example, NOTAMPER failed to catch the category hijacking exploit in the
MyBloggie application because it did not know what all of the ‘required’ variables
were (i.e., the set of variables that are required for server-side processing). In this
example, the server-side code required the client to set the value of either the submit
or the preview field. NOTAMPER happened to set neither field, and hence regardless
the values for other variables, the server returned an error, making the responses for
benign and hostile inputs all look similar. To alleviate these problems, testers can im-
prove the automatic benign input generation step by supplying hints to NOTAMPER
and still preserve the automatic hostile input generation and analysis.

Summary. WAPTEC demonstrated that a whitebox approach produces improved re-
sults over the blackbox approach used by NOTAMPER. WAPTEC uncovered a greater
number of exploits and eliminated false positives and false negatives by precisely
reasoning about form inputs across the entire application (client and server). In con-
trast, NOTAMPER is limited to using constraints implied by the client-side code and
employs heuristics to determine if the server-side code accepted/rejected inputs and
thus inherently suffers from false positives and false negatives.

Although WAPTEC results are consistently better than NOTAMPER, both of these
approaches have their own utility. As NOTAMPER does not rely on analyzing server-
side code, it can be employed to analyze a wider range of applications and websites.
However if the source code is available, a whitebox analysis like WAPTEC can be
employed to perform deeper code analysis to pinpoint more security problems more
accurately. This can greatly reduce the human effort required to confirm exploits.

5.4. Soundness
Even though the whitebox approach consistently yields better results compared

to the blackbox approach, the whitebox approach is imperfect. WAPTEC may yield
false positives if its computation of fgerver is imprecise due to loop approximations

P. Bisht et al. / Parameter tampering vulnerability detection 449

Table 7
Impact of loops and sanitization on results

Application # of loops Loop impact # of sanitizers Sanitization impact
SnipeGallery 0 none 4 none
SPHPBlog 17 none 22 none
DcpPortal 18 none 86 none
PHPNews 2 none 3 none
Landshop 15 none 34 none
Mybloggie 10 none 13 1 potential fp

and unknown sanitizing functions. Recall that WAPTEC computes fserver by analyz-
ing the trace of instructions executed for a fixed set of inputs and approximates the
semantics of loops. Further, if inputs are processed enroute to sensitive operations,
WAPTEC does not always know whether inputs are sanitized before they reach a sen-
sitive operation (a fundamental limitation of many whitebox approaches as they fail
to distinguish sanitization functions from those functions that may simply process
inputs for non-security reasons). To understand the pervasiveness of these potential
sources of unsoundness, we examined all instances of loops and sanitization for each
of our application’s (relevant) traces. The results of our findings are summarized in
Table 7. For each application, column 2 shows the number of loops encountered in
traces and column 3 shows the impact loop approximations had on results. Column
4 shows the number of sanitization functions appearing throughout each trace, and
the last column shows the impact that those sanitizers had on results.

Loops. As discussed in Section 3.3, WAPTEC extracts server-side constraints from
straight line traces which include unrolled loop bodies. As a consequence, the con-
straints that are extracted from traces might be approximate representations of the
true fserver- This is true when the following conditions are met for any loop: (i) the
number of loop iterations is influenced by form inputs, and (ii) the loop body con-
tains constraints on form inputs. When these conditions are met, there is a potential
for false positives. For example, a loop that iterates the length of an input to filter
characters, will result in a constraint that checks only as many characters as con-
tained in the benign input. In that case, a subsequent hostile input containing illegal
characters past that length would be falsely reported as an exploit by WAPTEC. One
way to mitigate the occurrence of false positives due to loop approximations is to
conduct a preliminary test to detect loops that satisfy the 2 conditions, and then ei-
ther discard them during formula extraction or ask testers to supply loop invariants
for them.

In our analysis of server traces, we found no cases where loop approximations
impacted soundness of our results. From the 62 unique loops we encountered, their
breakdown is as follows. There were 15 that iterated over the result set of a SQL
query not involving inputs, 1 that iterated over the result set of a SQL query involv-
ing inputs, 7 that iterated over data from the server’s environment, 3 that iterated over

450 P. Bisht et al. / Parameter tampering vulnerability detection

a static range, 30 that iterated over a program variable unrelated to any inputs, and
6 that iterated directly over inputs. None of the loops whose iterations were influ-
enced by inputs imposed constraints on inputs, thus we found no false positives due
to loops. Although there is a potential hazard for false positives due to loop approxi-
mations, the applications from our test suite suggest that the occurrence of loops that
are both input dependent and input constraining is uncommon. It is straightforward
to alert the user of our tool to alert the user in these special circumstances, so that
the user can carry out further analysis on any impact that the presence of loops may
have on the results of the analysis.

Sanitization. Another potential source of false positives is server-side sanitization
functions. Note that in our analysis, fsrver includes the actions of sanitization func-
tions on the paths traversed by the benign inputs (cf. Algorithm 1). However, when
WAPTEC explores the other parts of the server codebase, and when it handles a hostile
input by correcting it with the help of a filter function, the ferver may not properly
reflect the validation that is performed by the server. Consequently, a false positive
could arise when a hostile input gets sanitized in the basic block that contains a sink
expression. A necessary condition for a false positive is for the client to constrain
an input and for the server to sanitize that same input, such that a hostile input is al-
tered into a benign value. Since sanitization functions are troublesome only in these
special circumstances, we set out to determine whether any false positives caused by
sanitization were present in our results.

Among all the tested applications, there were 162 unique functions that resembled
sanitization, e.g., preg_replace, trim, stripslashes. Out of this total, there were O in-
stances where sanitization had an adverse impact on our results. In the majority of
cases (127 occurrences), sanitization was performed on program variables that were
irrelevant to form inputs, e.g., during HTML code generation by template engines.
In all but one of the remaining 34 cases, fcjien did not contain a constraint corre-
sponding to the input being sanitized on the sever-side, therefore, a hostile input was
not generated and no false positives were encountered.

5.5. Additional details

For each evaluated application, Table 8 captures the complexity of generated for-
mulas (column 2 — client-side constraints, column 3 — server-side constraints, column

Table 8
Additional results

Application Formula complexity =~ Avg. trace size (KB) Time (s)

SnipeGallery 11 5 11 5 41
SPHPBlog 37 1 1 1 4
DcpPortal 187 2 48 135 10,042
PHPNews 1 1 1 1 12
Landshop 20 2 8 20 60
MyBloggie 37 5 738 2082

P. Bisht et al. / Parameter tampering vulnerability detection 451

4 — database constraints), average size of generated traces (column 5 — kilobytes) and
average time taken to run the tool (column 6 — seconds).

Outliers. The most notable application we tested, DcpPortal, included the largest
formula complexities, the largest number of exploits, and the longest running time.
The larger the formula complexity, the larger and more complex the form; hence,
a longer running time is to be expected. The large number of exploits is partially
attributed to large formula complexity because the potential number of exploit gen-
eration attempts is larger; however, the presence of a large number of confirmed
exploits points to poor server-side validation of inputs.

Manual intervention. In a preliminary analysis of the chosen applications, we se-
lected forms that contained interesting client-side specifications and collected login
credentials necessary to access them (in 5 applications). We also extracted form ac-
tion parameters in cases where applications reused processing code between multiple
forms (total of 4). These hints were necessary to facilitate automatic analysis and to
restrict exploration of server-side code pertaining to other forms. Overall, it required
typically less than 5 minutes to collect this data for each form.

6. Related work

There has been much work on the topic of detecting cheating in a client-server
paradigm. These works can be broadly classified into two categories: (1) those that
detect such vulnerabilities (i.e., an offline system vulnerability analysis) and (2) those
that prevent (or eliminate) cheating by monitoring the system (or fixing the root
causes of vulnerabilities). The latter will be discussed in Section 7, and we focus on
the former category in the rest of this section.

Historical context. Parameter tampering attacks have existed since the early days
of the Web an e-commerce. We are aware of at least one SANS security bulletin [37]
from 2000 talked about the prevalence of “price modification” vulnerabilities in on-
line security vendors. Fu [20] highlighted the issue of tampering in the context of
online authentication. Since then, multiple factors have led to the rise of these vulner-
abilities: growth of JavaScript and AJAX technologies, increased application com-
plexity, and the increase in attack surface. This has motivated a detailed investigation
of these problems that was presented in this paper.

Multi-tier web application analysis. Web applications, those following the LAMP
model (Linux, Apache, MySQL, PHP) in specific, are inherently multi-tiered and
feature different components that are written in different programming languages.
Specifically, a LAMP application features client-side code written in HTML/
JavaScript, server-side code written in PHP and database schema expressed in
MySQL. To precisely construct parameter tampering exploits, WAPTEC reasons
across these tiers and expresses them uniformly in the language of the solver. To
the best of our knowledge, WAPTEC is the first work that offers a systematic multi-
tiered analysis for legacy web applications. Most existing works on web application

452 P. Bisht et al. / Parameter tampering vulnerability detection

analysis do not reason across all tiers. Balzarotti et al. [3] offer a system that tries
to reason across modules of a web application to find data and work flow attacks
on web applications and in doing so offer limited support for finding URLs embed-
ded in JavaScript and HTML code. Programming languages such as Links [15,16]
and frameworks such as [14,24] offer principled construction of multi-tiered appli-
cations but do not assist analysis of legacy web applications. In contrast, WAPTEC
offers a more powerful analysis framework that combines concolic analysis of the
HTML/JavaScript with static analysis of runtime traces for legacy web applications.

Specification inference. AutolSES [42] is an approach for C program bug detection
that mines for common security-related patterns and identifies deviations from these
as vulnerabilities. Engler [18] detects security bugs in C programs by mining tempo-
ral safety patterns and checking for inconsistencies. Srivastava [40] et al. exploit the
difference between multiple implementations of the same application programming
interface to detect security violations. Felmetsger et al. [19] develop a system that
monitors normal execution of a web application to infer a set of behavioral specifi-
cation. This specification is then used to find paths in program that will likely violate
these specifications and hence may indicate missing checks. In contrast to these ap-
proaches, in our problem context, we are analyzing the two distinctive code bases
of a single web application and have developed techniques to check consistencies
between these two code bases.

Test input generation. A rich literature exists on automating the task of test input
generation [17,22,23,26,32,38,39]. Saxena et al. [38] combines the use of random
test generation and symbolic execution for testing JavaScript applications with a
goal to find code injection vulnerabilities in the client-side code that result from
untrusted data provided as arguments to sensitive operations. Halfond et al. [26] em-
ploy symbolic execution and constraint solving to infer web application interfaces
for improved testing and analysis of web applications. Kiezun et al. [32] use sym-
bolic execution and a library of attack strings to find code injection attacks in web
applications. Sen et al. [39] propose a technique that combines concrete and sym-
bolic execution to avoid redundant test cases as well as false warnings. Authors of
[22,23] propose techniques to record an actual run of the program under test on either
a well-formed input [23] or random inputs [22], symbolically evaluate the recorded
trace, and gather constraints on inputs capturing how the program uses these. The
collected constraints are then negated one by one and solved with a constraint solver,
producing new inputs that exercise different control paths in the program. Although
NOTAMPER and WAPTEC aim to find hostile inputs and in that sense are similar to
these approaches, our formulation of the parameter tampering problem as one check-
ing the consistency of the server and the client code bases and development of web
application-specific methods such as perturbation that are specialized to this problem
make them distinctive.

Emmi et al. [17] concolically execute server-side code and analyze executed SQL
queries to find missing database records to improve branch coverage in testing.
WAPTEC tests legacy applications that typically contain relevant records in databases

P. Bisht et al. / Parameter tampering vulnerability detection 453

and extracts database constraints to improve precision of results. A key technical dif-
ference is that Emmi et al. decode WHERE clauses to reason about “missing records”
in the current database and do not elaborate satisfying “database metadata” (typically
database table schema) to generate such inputs. WAPTEC’s database handling criteria
is based on such schema analysis. In particular, it relies on the insight that database
schema encodes constraints that must be satisfied by acceptable hostile and benign
1mputs.

Input validation. The lack of sufficient input validation is a major source of security
vulnerabilities in web applications, including the type of vulnerabilities reported in
this paper. As a result, there is a fairly well developed body of literature in server-side
techniques that attempt to curb the impact of untrusted data. Attacks such as SQL
injection and Cross-site Scripting are well studied examples (e.g., [41] and many
others) in which untrusted data can result in unauthorized actions in a web appli-
cation. Both WAPTEC and NOTAMPER are similar to such studies in the sense that
they can find vulnerabilities that could be exploited by SQL injection or Cross-site
Scripting attacks. However, our approach uses client-side code as a specification of
the expected server-side behavior and hence is able to also find logic vulnerabilities
that do not necessarily require code injection. Recent work has focused on the simi-
lar issue of automatically discovering server-side parameter pollution [1] as well as
finding vulnerabilities in cashier-as-a-service stores [45]. As discussed earlier, these
types of vulnerabilities are captured by our basic model of parameter tampering,
although additional improvements to our implementation are required in order to
identify these vulnerabilities.

Sanitization. Sanitization of inputs is an effective layer of defense for attacks that
ride user inputs. Typically sanitization aims to re-write hostile inputs to render them
benign. Unfortunately, there is no standard technique to sanitize user inputs, which
often results in vulnerable applications. Saner [2] attempts to identify and validate
adequacy of sanitization routines in web applications. It models sanitization per-
formed by the web application as an automata and detects inadequacy by finding
nonempty intersections, which characterize successful attacks. Recently, BEK [29]
proposes a language for writing sanitizers that enables systematic reasoning about
their correctness. To select a server-side control path to analyze, WAPTEC generates
inputs that satisfy the client-side validation. In general, this leads to selection of paths
in the server-side code that do not sanitize user inputs. For cases where sanitization
is performed on all control paths, WAPTEC offers a limited reasoning of sanitization.
In summary, all of the above research works provide the much needed starting points
for sound reasoning about sanitization in web applications, an important area that
needs further research.

7. Countermeasures

As shown in our evaluation, legacy (existing) code in both open source and com-
mercial world is vulnerable to parameter attacks. Fixing these vulnerabilities in

454 P. Bisht et al. / Parameter tampering vulnerability detection

legacy code is both important and challenging. (We discuss development method-
ologies for new applications that reduce this attack’s surface in the related work
Section 6.) Given the large number of legacy applications, techniques that involve
manual programmer effort to find/fix these problems is expensive. Hence an auto-
mated means to patch applications is desirable.

The goal of this section is to present an analysis of the problem space of automated
countermeasures, in order to identify the requirements for a good solution in the
whitebox and blackbox settings. We do so by outlining the challenges (Section 7.1)
to any automated approach that aims to prevent exploitation of parameter tampering
vulnerabilities. We then discuss the requirements for any whitebox solution that an-
alyze server-side source code (Section 7.2) as well as by blackbox solutions that do
not require access to server source code (Section 7.3).

7.1. Challenges for automated patch generation

In our running example the client-side JavaScript code requires the end user to
specify a positive value for the parameter quantity, thus encoding intent of the
application with respect to this parameter (Listing 1). However, the corresponding
server-side code does not check value of the parameter quantity and fails to en-
force that intent (Listing 2). This lapse can then be exploited by supplying a negative
value for the parameter quantity.

The goal for automated patch generation is to locate and fix such missing enforce-
ment of these checks. In our running example, the tampering vulnerability involved
the use of parameter quantity. In order to patch the application of this vulnerabil-
ity, such inputs need to be forbidden. To generate such patches automatically, several
questions must to be answered:

o [dentifying patch constraints. (Section 7.1.1) What constitutes a patch? Specif-
ically, what are the constraints on inputs that need to be forbidden? For the
running example, the single check quantity < 0 constitutes the constraint
that when checked on the server prevents the parameter tampering vulnerability
on negative quantities.

e Patch placement. (Section 7.1.2) Where do we place the patch on the server?
In the case of whitebox changes to the server, does it suffice to check the patch
constraints at the program entry point? Or, do we check the patch constraints
before each sensitive operation?

e Patch side-effects. (Section 7.1.3) What are the remedial actions needed when
an input does not match the patch constraints? How can one ensure that the
placement of the patch does not introduce unwanted side-effects?

7.1.1. Challenges identifying patch constraints

The main challenge for identifying patch constraints stems from the dynamic na-
ture of web applications. Quite frequently, web applications use server-side state
(database, files, etc.) to create web forms. In our running example, the card drop

P. Bisht et al. / Parameter tampering vulnerability detection 455

down menu is populated from a database that stores credit cards used by the user in
the past. As the server-side state changes, such form fields change and in turn may
imply a different set of constraints. In our running example, if the user makes use of a
new creditcard say 1111 — 2222 — 3333 — 4444, the original constraint implied
by the drop down menu

‘ card € {1234-5678-9012-3456, 7890-1234-5678-9012} ‘

changes to the following constraint.

‘ card € {1234-5678-9012-3456,7890-1234-5678-9012, 1111-2222-3333-4444} ‘

In general, a form field may encode state information that is different across user
sessions but could also change within a session over time (for example, different
users will likely have different credit cards, but even a single user may add and
use new cards during the lifetime of a session). Consequently, the challenge is in
computing patches that account for possible changes in server-side state.

7.1.2. Challenges in patch placement

A first-cut approach to enforcing client constraints on the server may just involve
checking client constraints at the entry point of server-side code. This may appear to
be a simple way to solve the patch placement problem. However, this approach may
raise false alarms because a parameter tampering vulnerability may be specific to a
control path in the server-side code. From the discussion in Section 7.1.1, we know
that computing the right constraints for each specific path may be hard. Some paths
may not use the parameter (and hence are not vulnerable) or merely use it in non-
sensitive operations. Even if used in sensitive operations along a different path, the
expected constraints on any input on that path may be different. To illustrate this, let
us consider an example. Quite often, server-side code is written to handle multiple
distinct forms. For example, it is common to have a common registration module on
the server-side (say register.php) that handles registrations for admin as well
as non-admin users. The registration form for admin users may use a different client
form (and a different set of associated constraints) compared to non-admin users. In
server-side modules such as register . php, typically there are distinctive control
paths for admin and non-admin users.

In our running example, the check on the quantity; must be performed before
it is used in a purchase operation:

exit if (quantity,; < 0 AND op == “purchase”)

i.e., forbid execution if the value of the parameter quantity is negative and the
requested operation is “purchase”. The check on the op field ensures that the client
constraints are only checked along the path that leads to the (sensitive) purchase
operation.

456 P. Bisht et al. / Parameter tampering vulnerability detection

7.1.3. Challenges in side-effect free patching

While introducing patches to the server, It is important to consider the operations
that have side effects. Examples of these operations may include database or file
updates on the server. It is important to ensure that the introduction of patches does
not introduce any operations that have side effects. Although form validation code in
web applications are typically performed before most sensitive operations in server
code, the possibility of operations with side effects cannot be ruled out. In this case,
remediation procedures need to be incorporated in the server code if the inputs do
not match the constraints to be enforced. Automatically generating such remediation
measures is a challenging, especially because it requires methods to learn and re-
employ remediation measures present in the server’s code base.

7.2. Whitebox defenses for preventing tampering attacks

As we discussed in Section 5, our whitebox detection was more precise than black-
box. So a whitebox solution to fix tampering vulnerabilities is a natural choice. Given
the source code of a web application, the two ways in which such patches can be gen-
erated and enforced are: (a) insert a reference monitor and forbid malicious behavior
or (b) fix the root cause of vulnerability without monitoring. We note that both the
above techniques modify source code but as discussed below, vastly differ in their
methods.

7.2.1. Prevention solutions: Monitor and forbid malicious behavior

Monitoring based prevention solutions have been extensively used in literature
e.g., [4,10,12,27,28,34,35,41,47]. These solutions typically embed a reference mon-
itor in the source code to monitor a security relevant property and disallow executions
that may violate this property. For example, [4,12,27,28,34,35,41,47] offer to prevent
exploitation of SQL injection vulnerabilities by employing monitors that track taint
like properties for computed queries to identify injected SQL payloads.

For preventing tampering vulnerabilities using this approach, a runtime monitor
could compute client-side constraints when a web form is generated. When this form
is submitted for processing, the monitor could then deduce missing validation and
enforce it before tampered parameters are used.

The first challenge such an approach faces is in knowing the precise fgjjent t0
enforce when a form is submitted. Specifically, a user may have opened several web
forms (thus generating multiple fcjien¢ in monitor’s records) and the monitor will
need a reliable way of using the fcjiene corresponding to the submitted form. In other
words, the above discussion elicits a critical need for associating each generated web
Sform with its corresponding submission. To do so, a monitor needs to chain together a
generated web form (and hence constraints encoded by it) with its submission (hence
the knowledge of which constraints to check). One preliminary idea to achieve this is
by associating a unique id with each computed fjjen, embedding the unique id in the
form (e.g., as a hidden field), and then checking fjieny based on unique id submitted
with the form.

P. Bisht et al. / Parameter tampering vulnerability detection 457

The second challenge is in determining missing checks in the server-side for a
given fgjient- An inefficient but simple patch would be to check the complete fcjient
again before the form is processed (essentially augmenting server .php). Alter-
natively, by analyzing conditions checked by the server, the monitor could eliminate
parts of f.jiene that the server checks correctly. Specifically, to eliminate constraints
correctly checked by server, the monitor would need to perform logical deductions
about conditions and whether they embody equivalent or stronger constraints than
fetient- Whether or not this is feasible depends on the nature of the checks and the
limitations of state-of-the-art solvers.

Summary. Each submitted form can be associated with fjjene computed at the form
creation site, by using the unique id. Thus, the monitor can essentially lookup and
enforce fgjjent associated with the unique id in submitted form data. This unique id
serves to associate the right set of constraints to be checked with each form submis-
sion addressing the challenges discussed in Section 7.1.2. Further, as the monitor
freshly computes fjiene €ach time a form is generated, it can correctly handle evolv-
ing constraints encoded by forms due to changes in server-side state (Section 7.1.1).
Some engineering challenges in this approach, as typical of monitor based solutions,
are to ensure that the monitoring code does not change semantics of the original ap-
plication (except when attacks are detected) and that the performance overheads are
acceptable.

7.2.2. Elimination solutions: Fix the root cause of vulnerabilities

Unlike monitoring solutions that only forbid malicious behavior, elimination solu-
tions aim to achieve an ambitious goal of fixing the source code. Such solutions are
desirable as they aim to repair source code while introducing low performance over-
heads when compared to monitoring solutions. Privtrans [11] and TAPS [9] are two
such examples. Privtrans [11] uses static analysis to split the application for privi-
lege separation whereas TAPS re-writes SQL query generation to employ PREPARE
statements thus eliminating SQL injection vulnerabilities.

In the context of parameter tampering vulnerabilities, an elimination solution
would need to change the server-side code such that it is free of parameter tampering
vulnerabilities. Specifically, this entails statically augmenting the form processing
code such that it computes and employs the intuitive patch discussed earlier at run-
time. However, such a program transformation is quite challenging to realize for the
following reasons:

o Computing input-verifier: To identify missing checks the solution needs to stat-
ically reason about all possible forms an application may generate, constraints
they embody and constraints that corresponding form processing files fail to
check. The above knowledge seems sufficient to identify missing checks, how-
ever it must be generalized to deal with dynamic forms. For example, if a SQL
query is used in populating a drop down menu, the form processing code must
also issue the same query to retrieve data and then check if the user submitted

458 P. Bisht et al. / Parameter tampering vulnerability detection

input is one of the values returned by the query. Intuitively, the form processing
side must mirror processing done by form generation code to correctly validate
form fields that rely on server-side state. Further care must be taken to ensure
that such mirrored processing is side-effect free; otherwise the application se-
mantics may change (e.g., if form generation code increments a global counter
to embed it in the form, the form processing code must not mirror this pro-
cessing as it would increment the global counter and may result in unexpected
behavior).

o Computing path-selector: The input-verifier parts of the patches must be placed
in the server-side code such that they forbid parameter tampering attempts. To
do so, for each form the solution must statically identify server-side code frag-
ments that process it and an ideal program location where the patch can be
checked without affecting other control paths. Unfortunately, even when such
program locations can be identified, some or all user inputs may have been
modified (e.g., due to sanitization or application specific data processing) by
statements preceding such program locations. These changes may invalidate
input-verifier part of the patch that contains constraints user submitted inputs
must satisfy before being sanitized or processed in any way.

Summary. Elimination solutions have great appeal as they can eliminate monitor-
ing overheads while making minimal changes to a codebase. However, as discussed
above, developing an elimination solution that addresses both the challenges above
effectively seems hard.

7.3. Blackbox defenses for parameter tampering attacks

A blackbox solution for preventing parameter tampering would detect tampering
attacks just by analyzing HTTP requests and responses, without analyzing the server
code. Such a solution would be platform agnostic and deployment friendly as it can
be “plugged-in” to the existing deployment environment without requiring any code
changes. Since blackbox defenses do not instrument server-side code, they do not
suffer from the problem of server-side-effects (Section 7.1.3). We closely look at
the popular approaches in the following areas: (a) Web application firewalls (WAFs),
(b) Monitoring using expected models of client behavior and (c) Taming web clients.

Web application firewalls. A typical web application firewall intercepts and ana-
lyzes all traffic (HTTP requests and responses) to and from a web application and
forbids requests/responses that appear malicious. To differentiate between benign
and malicious traffic, these solutions typically undergo a training phase that builds a
profile of benign requests/responses. Typically, the duration of the training period is
a function of the complexity of the web application and the size of incoming traffic
during the training phase.* In the commercial world, there are several such solutions

“4Rarely such training phases lasts more than a month, but they require the active involvement of de-
ployment personnel to add exceptions to reduce false positives (so that benign traffic that appears to be
malicious is allowed).

P. Bisht et al. / Parameter tampering vulnerability detection 459

available e.g., Citrix NetScaler,” IBM Security Network IPS,® F5Networks — Appli-
cation Security Manager.’ In the context of parameter tampering vulnerabilities, a
WAF solution would need to learn the type/range of benign values that each form
field accepts as well as the relationships between form fields. Once this knowledge
is available, a WAF solution can identify and reject tampered parameters.

The major challenge for such a solution would be to determine the actual set of
constraints that embody a patch. Typically WAFs are good at detecting violations of
expected types, e.g., a violation that arises because a string value submitted where a
numeric value was expected. This may be effective in detecting a large class of code
injection attacks. However, parameter tampering attacks can also be based on data
injection, i.e., the tampered parameter value is of expected type but has malicious
value. For example, suppose a form field can only have numeric values between 1
and 4. On the one hand, if the WAF accepts all numerical values for this field then
attacks with both positive and negative numbers are possible. On the other hand, if
WAF only allows numbers seen during the training, it risks rejecting valid inputs due
to insufficient training.

The above challenge is further complicated by form fields that change with server-
side state, as the training phase for such fields will never be complete. In this regard,
a WAF solution must find middle ground such that the training phase is completed
in reasonable time and the resulting checks are reasonably effective, i.e., they do not
reject any valid values but may fail to reject a high number of malicious values (err
on the side of false negatives).

The second challenge is in deciding when to check restrictions learned during the
training phase. One idea is to associate the learned restrictions with each form field
(alternatively name-value pairs in the HTTP responses). However, this may cause
false positives if two forms contain the same form field but one of them requires
stricter checks than the other. In this case, the WAF must either distinguish these
fields (e.g., if the two forms have at least one uncommon form field) or compromise
by selecting the lesser restrictive check (otherwise it would cause false positives).

Summary. WAFs provide a practical compromise by avoiding complicated source
code analysis to reduce false positives through a training phase, sometimes assisted
by operators. For defending parameter tampering attacks, WAFs must find ways to
infer constraints on form fields that go beyond type checking, and ways to enforce
sufficiently restrictive checks on user inputs. Whether WAF solutions can be effec-
tive in preventing all or a good majority of parameter tampering attacks in a web
applications is dependent on the quality of training phase as well as the application
(specifically, composition of forms).

5 http://www.citrix.com/English/ps2/products/product.asp?contentID=2312027.
6http://www—O 1.ibm.com/software/tivoli/products/security-network-intrusion-prevention.
7http://www.fS .com/products/big-ip/big-ip-application-security-manager.

460 P. Bisht et al. / Parameter tampering vulnerability detection

Enforcement of models of client behavior. A conceptually closely related line of
work [5,21] aims to curb malicious clients in online games by constructing a model
of proper client behavior against which behavior of actual clients are compared. Gif-
fin et al. [21] compute a control flow model of expected system calls for the code
executing on the client, and Bethea et al. [5] employ symbolic analysis of the client-
side code to model an untampered client. Guha et al. [25] compute a model of the
expected flow of requests from the client portion (HTML and JavaScript) of Ajax
web applications.

The above works are all placed in problem settings where the clients are fixed
(i.e. their code bases does not change over executions). For instance, [5] leverages
the fact that online games usually have two distinct codebases: one for the server
and one for the client. Guha et al. [25] use a model where the web application’s
clients are fixed (served by the static HTML pages on the server, with all dynamism
factored into AJAX calls of the client). In these settings, the client can therefore
be analyzed offline, and could also benefit from an expensive analysis. Hence these
techniques cannot be directly applied to detect parameter tampering vulnerabilities in
applications considered in this paper, because the clients are dynamically generated.

Client replication. Ripley [44] executes two copies of the client-side code: one in
a trusted environment and another in a user controlled environment. It then identifies
differences in outputs of these two clients as malicious behavior. To do so, it aug-
ments the user client code to relay all client-side events (e.g., user interactions) to
the trusted copy of the client, which then computes the expected output.

In the context of parameter tampering vulnerabilities, if successfully relayed, vali-
dation events will cause the trusted client copy to reject tampered parameters whereas
the malicious client will proceed with form submission and hence be rejected. Unfor-
tunately, apart from limitations mentioned in [44], solutions such as Ripley require
substantial and careful engineering. Moreover, Ripley requires all “relevant” client
events (an application specific concept) to be transmitted to the server. When the
number and frequency of relevant events becomes too high, solutions such as Rip-
ley would become prohibitively expensive (e.g., an online game where all mouse-
movement events are relevant).

There is another reason that client replication is insufficient for preventing all pa-
rameter tampering attacks: some clients assume that data will be entered in a partic-
ular order, and when that order is violated the validation they perform is inadequate.
Consider a simple web form with two fields beginDate and endDate. When the
user edits endDate, the form validates that endDate is later than beginDate;
however, the same validation is not performed when the user edits beginDate.
A malicious user can therefore violate the intended constraint that beginDate
comes before endDate by first entering data into endDate and only then entering
data into beginDate. Because the form performs different validation depending
on the order in which data is entered, an attacker can launch parameter tampering
attacks without compromising the client at all. Client replication will therefore not

P. Bisht et al. / Parameter tampering vulnerability detection 461

prevent this kind of attack. Instead, we need methods for extracting and enforcing
the validations the client infended to perform on its inputs, since the server sees only
the data — not the order in which the data was entered.

Associating requests with responses. An interesting class of blackbox solutions
[30,31] aims to prevent Cross-site Request Forgery (XSRF) attacks. The key goal
of these solutions is to forbid submission of unsolicited forms (i.e., forms not gener-
ated by a web application). Typically these solutions embed an XSRF token in each
web application-generated web form and reject submitted forms that do not present
expected tokens.

The problem of preventing parameter tampering attacks is related to XSRF preven-
tion as the latter also concerns submissions of web forms; however, the analysis of
forms performed by XSRF solutions is limited to token management (add an XSRF
token to a form and delete the token record after the form is submitted). In contrast,
a countermeasure for parameter tampering must understand semantics of forms, i.e.,
which constraints a form implies and whether the submitted inputs satisfy those con-
straints.

An interesting property of XSRF tokens is that they can effectively associate each
generated form with its submission. An XSRF token is attached to each web appli-
cation generated URL (GET as well as POST). When a benign user follows these
URLs, the resulting HTTP requests contain valid XSRF tokens. However, a ma-
licious entity that attempts to initiate requests on behalf of the victim will fail to
present valid XSRF tokens and be rejected. If XSRF tokens are nonces (e.g., [30])
instead of per-session tokens (e.g., [31]) then they are effectively links between the
generation of a web form and its submission.

Linking the HTTP requests for form generation and form submission is good start-
ing point to developing a blackbox countermeasure to parameter tampering attacks.
If we begin with a nonce-based XSRF defense, we can then consider the possibility
of analyzing the client code each time it is generated and using that analysis to check
all of that client’s submissions. Because the client is analyzed each time it is gener-
ated, we can account for any dynamic state changes on the server; furthermore, that
analysis can attempt to extract the intent of the client instead of simply replicating its
validation behavior. The main drawbacks to this approach are performance-related.
Each time the server generates a web form, it must perform program analysis (an
expensive operation). Each time the server receives a form submission, it must per-
form the proper validation. Further research is necessary to understand whether the
performance overheads of this approach are within reason.

Summary. XSRF prevention solutions aim to reject unsolicited HTTP requests. For
preventing parameter tampering attacks the semantics of web forms must be under-
stood. Nonce-based XSRF tokens form a reasonable basis for building a blackbox
parameter tampering defense if web forms can be efficiently analyzed en-route to
clients.

462 P. Bisht et al. / Parameter tampering vulnerability detection
8. Conclusion

We presented a formal description of parameter tampering vulnerabilities. Then
starting with an intuitive two step high level approach for their detection, we de-
scribed two tools instantiating that approach: NOTAMPER (suitable for a blackbox
setting) and WAPTEC (suitable for a whitebox setting). To the best of our knowledge,
NOTAMPER is the first systematic approach for discovering parameter tampering
vulnerabilities and WAPTEC is the first approach to constructing parameter tampering
exploits by construction. The design and evaluation of these tools clearly indicated
the superiority of WAPTEC in precisely discovering parameter tampering vulnera-
bilities over NOTAMPER. However, NOTAMPER provides an attractive alternate as
it neither requires access nor the knowledge of the source code of the application.
Our evaluation with NOTAMPER and WAPTEC, clearly establishes the severity of pa-
rameter tampering vulnerabilities in open source and commercial web applications.
Using these tools, we developed exploits for online banking, online shopping and
open source web applications that can result in financial losses, account hijacking,
etc. Our survey of existing defenses illustrated that none of them are appropriate to
fix parameter tampering vulnerabilities and pointed to the possibility of blackbox
solutions being effective for preventing these vulnerabilities. Given that these vul-
nerabilities are prolific and have severe consequences, further research is warranted
to develop defenses for parameter tampering attacks.

Acknowledgments

We thank the anonymous reviewers for their feedback. This research was sup-
ported by NSF grants CNS-0716584, CNS-0551660, CNS-0845894, CNS-0917229,
CNS-1065537, 11P-1248717 and DGE-1069311. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the government or the National Science Foun-
dation.

References

[1] M. Balduzzi, C.T. Gimenez, D. Balzarotti and E. Kirda, Automated discovery of parameter pollu-
tion vulnerabilities in web applications, in: /8th Annual Network and Distributed System Security
Symposium, San Diego, CA, USA, 2011.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, C. Kruegel, E. Kirda and G. Vigna, Saner:
Composing static and dynamic analysis to validate sanitization in web applications, in: SP’08: Pro-
ceedings of the 29th IEEE Symposium on Security and Privacy, Oakland, CA, USA, 2008.

[3] D. Balzarotti, M. Cova, V.V. Felmetsger and G. Vigna, Multi-module vulnerability analysis of web-
based applications, in: CCS’07: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, Alexandria, VA, USA, 2007.

(4]

[5

—

[6

—_

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Bisht et al. / Parameter tampering vulnerability detection 463

S. Bandhakavi, P. Bisht, P. Madhusudan and V.N. Venkatakrishnan, CANDID: Preventing SQL in-
jection attacks using dynamic candidate evaluations, in: CCS’07: Proceedings of the 14th ACM
Conference on Computer and Communications Security, Alexandria, VA, USA, 2007.

D. Bethea, R. Cochran and M. Reiter, Server-side verification of client behavior in online games,
in: NDSS’10: Proceedings of the 17th Annual Network and Distributed System Security Symposium,
San Diego, CA, USA, 2010.

P. Bille, A survey on tree edit distance and related problems, Theoretical Computer Science 337(1—
3) (2005), 217-239.

P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz and V.N. Venkatakrishnan, NoTamper: Automatic
blackbox detection of parameter tampering opportunities in web applications, in: 17th ACM Con-
ference on Computer and Communications Security, Chicago, IL, USA, 2010.

P. Bisht, T. Hinrichs, N. Skrupsky and V.N. Venkatakrishnan, WAPTEC: Whitebox analysis of web
applications for parameter tampering exploit construction, in: CCS’11: Proceedings of the 18th ACM
Conference on Computer and Communications Security, Chicago, IL, USA, 2011.

P. Bisht, A.P. Sistla and V.N. Venkatakrishnan, Automatically preparing safe SQL queries, in:
FC’10: Proceedings of the 14th International Conference on Financial Cryptography and Data
Security, Tenerife, Canary Islands, Spain, 2010.

P. Bisht and V.N. Venkatakrishnan, XSS-GUARD: Precise dynamic prevention of cross-site script-
ing attacks, in: DIMVA’08: Proceedings of the 5th GI International Conference on Detection of
Intrusions & Malware, and Vulnerability Assessment, Paris, France, 2008.

D. Brumley and D. Song, Privtrans: Automatically partitioning programs for privilege separation,
in: S§°04: Proceedings of the 13th Conference on USENIX Security Symposium, San Diego, CA,
USA, 2004.

G. Buehrer, B.W. Weide and P.A.G. Sivilotti, Using parse tree validation to prevent SQL injection
attacks, in: IWSM’05: Proceedings of the 5th International Workshop on Software Engineering and
Middleware, Lisbon, Portugal, 2005.

L. Carettoni and S. di Paola, HTTP parameter pollution, in: OWASP AppSec Europe 2009, Poland,
2009.

S. Chong, J. Liu, A.C. Myers, X. Qi, K. Vikram, L. Zheng and X. Zheng, Secure web application
via automatic partitioning, SIGOPS Oper. Syst. Rev. 41(6) (2007), 31-44.

E. Cooper, S. Lindley, P. Wadler and J. Yallop, Links: Web programming without tiers, in: FMCO,
2006.

B.J. Corcoran, N. Swamy and M. Hicks, Cross-tier, label-based security enforcement for web ap-
plications, in: Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), June 2009, pp. 269-282.

M. Emmi, R. Majumdar and K. Sen, Dynamic test input generation for database applications, in:
ISSTA’07: Proceedings of the 2007 International Symposium on Software Testing and Analysis,
London, UK, 2007.

D. Engler, D.Y. Chen, S. Hallem, A. Chou and B. Chelf, Bugs as deviant behavior: A general ap-
proach to inferring errors in systems code, in: /8th ACM Symposium on Operating Systems Princi-
ples, Banff, AB, Canada, 2001.

V. Felmetsger, L. Cavedon, C. Kruegel and G. Vigna, Toward automated detection of logic vulnera-
bilities in web applications, in: 19th USENIX Security Symposium, Washington, DC, USA, 2010.
K. Fu, E. Sit, K. Smith and N. Feamster, Dos and don’ts of client authentication on the web, in:
Proceedings of the 10th Conference on USENIX Security Symposium, SSYM’01, Vol. 10, USENIX
Association, Berkeley, CA, USA, 2001, p. 19.

J.T. Giffin, S. Jha and B.P. Miller, Detecting manipulated remote call streams, in: Security’02: Pro-
ceedings of the 11th USENIX Security Symposium, Berkeley, CA, USA, 2002.

P. Godefroid, N. Klarlund and K. Sen, DART: Directed automated random testing, SIGPLAN Not.
40(6) (2005), 213-223.

464

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]

(391

[40]

[41]

[42]

[43]

P. Bisht et al. / Parameter tampering vulnerability detection

P. Godefroid, M.Y. Levin and D.A. Molnar, Automated whitebox fuzz testing, in: NDSS’08: Pro-
ceedings of the 15th Annual Network and Distributed System Security Symposium, San Diego, CA,
USA, 2008.

Google Web Toolkit, http://www.google.com/webtoolkit/.

A. Guha, S. Krishnamurthi and T. Jim, Using static analysis for AJAX intrusion detection, in:
WWW’09: Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain,
2009.

W. Halfond, S. Anand and A. Orso, Precise interface identification to improve testing and analysis
of web applications, in: ISSTA’09: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, Chicago, IL, USA, 2009.

W.G.J. Halfond, A. Orso and P. Manolios, Using positive tainting and syntax-aware evaluation to
counter SQL injection attacks, in: FSE’06: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Portland, OR, USA, 2006.

W.G.J. Halfond, A. Orso and A. Orso, AMNESIA: Analysis and Monitoring for Neutralizing SQL-
Injection Attacks, in: ASE, 2005.

P. Hooimeijer, B. Livhsits, D. Molnar, P. Saxena and M. Veanes, Fast and precise sanitizer analysis
with BEK, in: 20th USENIX Security Symposium, San Francisco, CA, USA, 2011.

M. Johns and J. Winter, RequestRodeo: Client side protection against session riding, in: OWASP’06:
Proceedings of the OWASP Europe 2006 Conference, 2006.

N. Jovanovic, E. Kirda and C. Kruegel, Preventing cross site request forgery attacks, in: Se-
cureComm’06: Proceedings of the Second IEEE Conference on Security and Privacy in Commu-
nications Networks, 2006.

A. Kiezun, PJ. Guo, K. Jayaraman and M.D. Ernst, Automatic creation of sql injection and cross-
site scripting attacks, in: ICSE’09: Proceedings of the 31st International Conference on Software
Engineering, Washington, DC, USA, 2009.

J.C. King, Symbolic execution and program testing, Commun. ACM 19(7) (1976), 385-394.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley and D. Evans, Automatically hardening web
applications using precise tainting, in: ICIS’05: Proceedings of the IFIP TC11 20th International
Conference on Information Security, Turin, Italy, 2005.

T. Pietraszek and C.V. Berghe, Defending against injection attacks through context-sensitive string
evaluation, in: RAID’05: Proceedings of the Sth International Symposium on Recent Advances in
Intrusion Detection, Seattle, WA, USA, 2005.

J.W. Ratcliff and D. Metzener, Pattern matching: The gestalt approach, Dr. Dobbs Journal July
(1988), 46.

Sans Windows Security Digest, http://archives.neohapsis.com/archives/sans/2000/0102.html, 2000.
P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant and D. Song, A symbolic execution frame-
work for JavaScript, in: 31st IEEE Symposium on Security and Privacy, Oakland, CA, USA, 2010.
K. Sen, D. Marinov and G. Agha, CUTE: A Concolic Unit Testing Engine for C, in: /0th European
Software Engineering Conference, 2005.

V. Srivastava, M.D. Bond, K.S. McKinley and V. Shmatikov, A security policy oracle: Detecting
security holes using multiple API implementations, in: ACM Conference on Programming Language
Design and Implementation, San Jose, CA, USA, 2011.

Z. Su and G. Wassermann, The essence of command injection attacks in web applications,
in: POPL’06: Proceedings of the 33rd Symposium on Principles of Programming Languages,
Charleston, SC, USA, 2006.

L. Tan, X. Zhang, X. Ma, W. Xiong and Y. Zhou, AutoISES: Automatically inferring security speci-
fications and detecting violations, in: 17th USENIX Security Symposium, San Jose, CA, USA, 2008.
F. Valeur, G. Vigna, C. Kruegel and E. Kirda, An anomaly-driven reverse proxy for web applications,
in: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC’06, 2006, pp. 361-368.

[44]

[45]

[46]

[47]

P. Bisht et al. / Parameter tampering vulnerability detection 465

K. Vikram, A. Prateek and B. Livshits, Ripley: automatically securing distributed web applications
through replicated execution, in: CCS’09: Proceedings of the 16th Conference on Computer and
Communications Security, Chicago, IL, USA, 2009.

R. Wang, S. Chen, X.F. Wang and S. Qadeer, How to shop for free online — security analysis of
cashier-as-a-service based web stores, in: Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP’11, 2011, pp. 465-480.

Y. Xie and A. Aiken, Static detection of security vulnerabilities in scripting languages, in: 15th
USENIX Security Symposium, Vancouver, BC, Canada, 2006.

W. Xu, S. Bhatkar and R. Sekar, Taint-enhanced policy enforcement: A practical approach to defeat
a wide range of attacks, in: SS’06: Proceedings of the 15th USENIX Security Symposium, Vancouver,
BC, Canada, 2006.

Copyright of Journal of Computer Security is the property of 10S Press and its content may
not be copied or emailed to multiple sites or posted to alistserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

