
practice

42 communications of the acm | december 2013 | vol. 56 | no. 12

Hyp ertext Transfer Protocol (HTTP) is one of
the most widely used application protocols on the
Internet. Since its publication, RFC 2616 (HTTP 1.1)
has served as a foundation for the unprecedented
growth of the Internet: billions of devices of all shapes
and sizes, from desktop computers to the tiny Web
devices in our pockets, speak HTTP every day to deliver
news, video, and millions of other Web applications
we have all come to depend on in our everyday lives.

What began as a simple one-line protocol for
retrieving hypertext (that is, "GET /document")
quickly evolved into a generic hypermedia transport.
Now a decade later it is used to power just about any
use case imaginable.

Under the weight of its own success, however, and
as more and more everyday interactions continue to
migrate to the Web—social, email, news and video,
and, increasingly, our personal and job workspaces—

HTTP has begun to show signs of stress.
Users and developers alike are now de-
manding near-real-time responsive-
ness and protocol performance from
HTTP 1.1, which it simply cannot meet
without some modifications.

To meet these new challenges,
HTTP must continue to evolve, which
is where HTTP 2.0 enters the picture.
HTTP 2.0 will make applications
faster, simpler, and more robust by
enabling efficient multiplexing and
low-latency delivery over a single con-
nection and allowing Web develop-
ers to undo many of the application
“hacks” used today to work around the
limitations of HTTP 1.1.

Performance Challenges of
Modern Web Applications
A lot has changed in the decade since
the HTTP 1.1 RFC was published:
browsers have continued to evolve at
an accelerating rate, user connectiv-
ity profiles have changed with the mo-

Making the
Web Faster
with HTTP 2.0

doi:10.1145/2534706.2534721

 Article development led by
 queue.acm.org

HTTP continues to evolve.

By Ilya Grigorik

december 2013 | vol. 56 | no. 12 | communications of the acm 43

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 I
w

o
n

a
 U

s
a

k
i

e
w

ic

z
/A

n
d

r
i

j
 B

o
r

y
s

 A
s

s
o

ci

a
t

e
s

bile Web now at an inflection point,
and Web applications have grown in
their scope, ambition, and complex-
ity. Some of these factors help perfor-
mance while others hinder. On bal-
ance, Web performance remains a
large and unsolved problem.

First, the good news: modern brows-
ers have put significant effort into per-
formance. JavaScript execution speed
continues its steady climb (for exam-
ple, the launch of the Chrome browser
in 2008 delivered a 20x improvement,
and in 2012 alone, the performance
was further improved by more than
50% on mobile10). And it is not just Ja-
vaScript where the improvement is oc-
curring; modern browsers also lever-
age GPU acceleration for drawing and
animation (for example, CSS3 anima-
tions and WebGL), provide direct ac-
cess to native device APIs, and leverage
numerous speculative optimization
techniques4 to help hide and reduce
various sources of network latency.

Similarly, broadband adoption (see
Table 1) has continued its steady climb
over the past decade. According to Aka-
mai, while the global average is now at
3.1Mbps, many users have access to far
higher throughput, especially with the
rollout of residential fiber solutions.1
Bandwidth is only half the equation,
however. Latency is the oft-forgotten
factor, and unfortunately, it is now of-
ten the limiting factor when it comes to
browsing the Web.3

In practice, once the user has more
than 5Mbps of bandwidth, further im-
provements deliver minimal increase
in the loading speed of the average
Web application: streaming HD video
from the Web is bandwidth bound;
loading the page hosting the HD video,
with all of its assets, is latency bound.

A modern Web application looks
significantly different from a decade
ago. According to HTTP Archive,5 an
average Web application is now com-
posed of more than 90 resources,

which are fetched from more than
15 distinct hosts, totaling more than
1,300KB of (compressed) transferred
data. As a result, a large fraction of
HTTP data flows consist of small (less
than 15KB), bursty data transfers over
dozens of distinct TCP connections.
Therein lies the problem. TCP is op-
timized for long-lived connections
and bulk data transfers. Network RTT
(round-trip time) is the limiting factor
in throughput of new TCP connections
(a result of TCP congestion control),
and consequently, latency is also the
performance bottleneck for most Web
applications.

How do you address this mismatch?
First, you could try to reduce the
round-trip latency by positioning the
servers and bits closer to the user, as
well as using lower-latency links. Un-
fortunately, while these are necessary
optimizations—there is now an entire
content delivery network (CDN) indus-
try focused on exactly this problem—

practice

44 communications of the acm | december 2013 | vol. 56 | no. 12

and popularized a number of home-
brew application workarounds (call-
ing them optimizations would give
them too much credit):

˲˲ Modern browsers allow up to six
parallel connections per origin, which
effectively allows up to six parallel re-
source transfers. Not satisfied with the
limit of six connections, many develop-
ers decided to apply domain sharding,
which splits site resources across dif-
ferent origins, thereby allowing more
TCP connections. Recall that an aver-
age page now talks to 15 distinct hosts,
each of which might use as many as six
TCP connections.

˲˲ Small files with the same file type
are often concatenated together, creat-
ing larger bundles to minimize HTTP
request overhead. In effect, this is a
form of multiplexing, but it is applied
at the application layer—for exam-
ple, Cascading Style Sheets (CSS) and
JavaScript files are combined into larg-
er bundles, small images are merged
into image sprites, and so on.

˲˲ Some files are inlined directly
into the HTML document to avoid the
HTTP request entirely.

For many Web developers all of
these are matter-of-fact optimiza-
tions—familiar, necessary, and uni-
versally accepted. Each of these work-
arounds, however, also often carries
many negative implications both for
the complexity and the performance
of applications:

˲˲ Aggressive sharding often causes
network congestion and is counter-
productive, leading to: additional and
unnecessary DNS (Domain Name Ser-
vice) lookups and TCP handshakes;
higher resource load caused by more
sockets on client, server, and interme-
diaries; more network contention be-
tween parallel streams; and so on.

˲˲ Concatenation breaks the modu-
larity of application code and has a
negative impact on caching (for ex-
ample, a common practice is to con-
catenate all JavaScript or CSS files into
large bundles, which forces download
and invalidation of the entire bundle
on a single byte change). Similarly,
JavaScript and CSS files are parsed and
executed only when the entire file is
downloaded, which adds processing
delays; large image sprites also occupy
more memory on the client and require
more resources to decode and process.

they are not sufficient. As an example,
the global average RTT to google.com,
which employs all of these techniques,
was approximately 100 milliseconds in
2012, and unfortunately this number
has not budged in the past few years.

Many existing links are already
within a small constant factor
(1.2~1.5) of the speed-of-light limit,
and while there is still room for im-
provement, especially with respect to
“last-mile latency,” the relative gains
are modest. Worse, with the rise of
mobile networks, the impact of the
latency bottleneck has only gotten
worse. While the latest 4G mobile net-
works are specifically targeting low-
latency data delivery, the advertised
and real-world performance is still
often measured in hundreds of mil-
liseconds of overhead (see Table 2 for
advertised latencies in the AT&T core
radio networks2).

If you cannot get the performance-
step function needed from improv-
ing the underlying links—if anything,
with the rise of mobile traffic, there is
a regression—then you must turn your
attention to how you construct ap-
plications and tune the performance
of underlying transport protocols re-
sponsible for their delivery.

Performance Limitations
of HTTP 1.1
Improving the performance of HTTP
was one of the key design goals for

the HTTP 1.1 Working Group, and the
standard introduced many critical per-
formance enhancements. A few of the
best known include:

˲˲ Persistent connections to allow
connection reuse.

˲˲ Chunked transfer encoding to al-
low response streaming.

˲˲ Request pipelining to allow paral-
lel request processing.

˲˲ Byte serving to allow range-based
resource requests.

˲˲ Improved and much better speci-
fied caching mechanisms.

Unfortunately, some HTTP 1.1 fea-
tures such as request pipelining have
effectively failed due to lack of support
and deployment challenges; while
some browsers today support pipelin-
ing as an optional feature, few if any
have it enabled by default. As a result,
HTTP 1.1 forces strict request queuing
on the client (Figure 1): the client dis-
patches the request and must wait un-
til the response is returned by the serv-
er, which means a single large transfer
or a slow dynamic resource can block
the entire connection. Worse, the
browser has no way of reliably predict-
ing this behavior and, as result, is of-
ten forced to rely on heuristics to guess
whether it should wait and attempt to
reuse the existing connection or open
another one.

In light of the limitations of HTTP
1.1, the Web developer community—
always an inventive lot—has created

Table 1. Global broadband adoption.

Rank Country Average Mbps Year Over Year Change

— Global 3.1 17%

1 South Korea 14.2 –10%

2 Japan 11.7 6.8%

3 Hong Kong 10.9 16%

4 Switzerland 10.1 24%

5 Netherlands 9.9 12%

…

9 United States 8.6 27%

Table 2. Advertised latencies.

LTE HSPA+ HSPA EDGE GPRS

Latency 40–50 ms 100–200 ms 150–400 ms 600–750 ms 600–750 ms

practice

december 2013 | vol. 56 | no. 12 | communications of the acm 45

˲˲ Inlined assets cannot be cached in-
dividually and inflate the parent docu-
ment. A common practice of inlining
small images also inflates their size by
more than 30% via base64 encoding
and breaks request prioritization in the
browser—typically, images are fetched
with lower priority by the browser to ac-
celerate page construction.

In short, many of the workarounds
have serious negative performance
implications. Web developers should
not have to worry about concatenating
files, spiriting images, inlining assets,
or domain sharding. All of these tech-
niques are stopgap workarounds for
limitations of the HTTP 1.1 protocol.
Hence, HTTP 2.0.

HTTP 2.0 Design and
Technical Goals
Developing a major revision of a pro-
tocol underlying all Web communica-
tion is a nontrivial task requiring a lot
of careful thought, experimentation,
and coordination. As such, it is impor-
tant to define a clear technical charter
and, arguably even more importantly,
define the boundaries of the project.
The intent is not to overhaul every de-
tail of the protocol but to make mean-
ingful though incremental progress to
improve Web performance.

With that, the HTTPbis Working
Group charter6 for HTTP 2.0 is scoped
as follows:

˲˲ Substantially and measurably im-
prove end-user-perceived latency in
most cases over HTTP 1.1 using TCP.

˲˲ Address the HOL (head-of-line)
blocking problem in HTTP.

˲˲ Do not require multiple connec-
tions to a server to enable parallelism,
thus improving its use of TCP, espe-
cially regarding congestion control.

˲˲ Retain the semantics of HTTP 1.1,
leveraging existing documentation,
including (but not limited to) HTTP
methods, status codes, URIs, and
where appropriate, header fields.

˲˲ Clearly define how HTTP 2.0 inter-
acts with HTTP 1.x, especially in inter-
mediaries.

˲˲ Clearly identify any new extensi-
bility points and policy for their appro-
priate use.

To deliver on these goals HTTP 2.0
introduces a new layering mechanism
onto TCP, which addresses the well-
known performance limitations of

HTTP 1.x. The application semantics
of HTTP remain untouched, and no
changes are being made to the core
concepts such as HTTP methods, sta-
tus codes, URIs, and header fields—
these changes are explicitly out of
scope. With that in mind, let’s take a
look “under the hood” of HTTP 2.0.

Request and response multiplex-
ing. At the core of all HTTP 2.0’s per-
formance enhancements is the new
binary framing layer (see Figure 2),
which dictates how HTTP messages
are encapsulated and transferred be-
tween the client and server. HTTP se-
mantics such as verbs, methods, and
headers are unaffected, but the way

they are encoded while in transit is
different.

With HTTP 1.x, if the client wants
to make multiple parallel requests to
improve performance, then multiple
TCP connections are required. This
behavior is a direct consequence of the
newline-delimited plaintext HTTP 1.x
protocol, which ensures only one re-
sponse at a time can be delivered per
connection—worse, this also results
in HOL blocking and inefficient use of
the underlying TCP connection.

The new binary framing layer in
HTTP 2.0 removes these limitations
and enables full request and response
multiplexing. The following HTTP 2.0

Figure 1. With 56ms RTT, fetching two files takes approximately 228ms, with 80% of that
time in network latency.

ACK
GET /html

56 ms

SYN ACK28 ms

0 msSYN

84 ms

server processing: 40 ms

HTML response124 ms

GET /css 152 ms

server processing: 20 ms

CSS response200 ms

TCP
56 ms

HTTP
172 ms

180 ms

TCP connection #1, Request #1-2: HTTP + CSS

close connection 228 ms

Client Server

Figure 2. HTTP 2.0 binary framing.

Network (IP)

Transport (TCP)

Session (TLS)
(optional)

Application (HTTP 2.0)
 POST /upload HTTP/1.1
 Host: www.example.org
 Content-Type: application/json
 Content-Length: 15

 {"msg":"hello"}

HEADERS frame

DATA frame

HTTP 2.0

HTTP 1.1

Binary Framing

practice

46 communications of the acm | december 2013 | vol. 56 | no. 12

HTTP 2.0. By itself, this change is en-
tirely unremarkable, since many pro-
tocols below HTTP already implement
similar mechanisms. This “small”
change, however, introduces a ripple
effect of numerous performance ben-
efits across the entire stack of all Web
technologies, allowing developers to
do the following:

˲˲ Interleave multiple requests in
parallel without blocking on any one.

˲˲ Interleave multiple responses in
parallel without blocking on any one.

˲˲ Use a single connection to deliver
many requests and responses in paral-
lel.

˲˲ Deliver lower page-load times by
eliminating unnecessary latency.

˲˲ Remove unnecessary HTTP 1.x
workarounds from application code.

˲˲ And much more…
Binary framing. HTTP 2.0 uses a

binary, length-prefixed framing layer,
which offers more compact repre-
sentation than the newline-delimited
plaintext HTTP 1.x protocol and is
both easier and more efficient to pro-
cess. All HTTP 2.0 frames share a com-
mon eight-byte header (see Figure
4), which contains the length of the
frame, its type, a bit field for flags, and
a 31-bit stream identifier.

˲˲ The 16-bit length prefix reveals a
single frame can carry 216−1 bytes of
data—~64KB—which excludes the
8-byte header size.

˲˲ The 8-bit type field determines
how the rest of the frame is interpret-
ed.

˲˲ The 8-bit flags field allows differ-
ent frame types to define frame-specif-
ic messaging flags.

˲˲ A 1-bit reserved field is always set
to 0.

˲˲ The 31-bit stream identifier
uniquely identifies the HTTP 2.0
stream.

Given this knowledge of the shared
HTTP 2.0 frame header, you can write
a simple parser that can examine any
HTTP 2.0 bytestream, identify differ-
ent frame types, and report their flags
and the length of each by examining
the first eight bytes of every frame. Fur-
ther, because each frame is length pre-
fixed, the parser can skip ahead to the
beginning of the next frame quickly
and efficiently. This is a big pevrfor-
mance improvement over HTTP 1.x.

Once the frame type is known, the

terminology will help in understand-
ing this process:

˲˲ Stream—a bidirectional flow of
bytes, or a virtual channel, within a
connection. Each stream has a rela-
tive priority value and a unique integer
identifier.

˲˲ Message—a complete sequence of
frames that maps to a logical message
such as an HTTP request or a response.

˲˲ Frame—the smallest unit of com-
munication in HTTP 2.0, each contain-
ing a consistent frame header, which
at minimum identifies the stream to
which the frame belongs, and carries
a specific type of data (for example,
HTTP headers, payload, and so on).

All HTTP 2.0 communication can
be performed within a single connec-
tion that can carry any number of bi
directional streams. In turn, each
stream communicates in messages,
which consist of one or multiple
frames, each of which may be inter-
leaved (see Figure 3) and then reas-
sembled via the embedded stream
identifier in the header of each indi-
vidual frame.

The ability to break down an HTTP
message into independent frames,
prioritize and interleave them within a
shared connection, and then reassem-
ble them on the other end is the sin-
gle most important enhancement of

Figure 3. Interleaved frames from multiple in-flight HTTP 2.0 streams within a single
connection.

HTTP 2.0 connection

stream 1
DATA

stream 3
HEADERS

stream 3
DATA

...
stream 1

DATA

stream 5
DATA

Client Server

Figure 4. Common eight-byte frame header.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type Flags

32 R Stream Identifier

... Frame Payload

Figure 6. DATA frame.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type (0) Flags

32 R Stream Identifier

... HTTP Payload

Figure 5. HEADERS frame with stream priority and header payload.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type (1) Flags

32 R Stream Identifier

64 R Priority

... Header Block

practice

december 2013 | vol. 56 | no. 12 | communications of the acm 47

parser can interpret the remainder of
the frame. The HTTP 2.0 standard de-
fines the types listed in Table 3.

Full analysis of this taxonomy of
frames is outside the scope of this ar-
ticle—after all, that is what the spec7
is for (and it does a great job!). Having
said that, let’s go just one step further
and look at the two most common
workflows: initiating a new stream and
exchanging application data.

Initiating New HTTP 2.0 Streams
Before any application data can be
sent, a new stream must be created
and the appropriate metadata such
as HTTP headers must be sent. That
is what the HEADERS frame is for (see
Figure 5).

Notice that in addition to the com-
mon header, an optional 31-bit stream
priority has been added. As a result,
whenever the client initiates a new
stream, it can signal to the server the
relative priority of that request, and
even reprioritize it later by sending an-
other PRIORITY frame.

How do the client and server ne-
gotiate the unique stream IDs? They
do not. Client-initiated streams have
even-numbered stream IDs and server-
initiated streams have odd-numbered
stream IDs. This offset eliminates col-
lisions in stream IDs between the cli-
ent and server.

Finally, the HTTP header key-value
pairs are encoded via a custom header
compression algorithm (more on this
later) to minimize the size of the pay-
load, and they are appended to the end
of the frame.

Notice the HEADERS frames are
used to communicate only the meta-
data about each stream. The actual
application payload is delivered inde-
pendently within the frame payload
(see Figure 6) that follow them (that is,
there is a separation between “data”
and “control” messaging).

The DATA frame is trivial: it is the
common 8-byte header followed by the
actual payload. To reduce HOL block-
ing, the HTTP 2.0 standard requires
that each DATA frame not exceed 214−1
(16,383) bytes, which means that larg-
er messages have to be broken up into
smaller chunks. The last message in a
sequence sets the END_STREAM flag
to mark the end of data transfer.

There are a few more implementa-

tion details, but this information is
enough to build a very basic HTTP 2.0
parser—emphasis on very basic. Fea-
tures such as stream prioritization,
server push, header compression, and
flow control (not yet mentioned) war-
rant a bit more discussion, as they
are critical to getting the best perfor-
mance out of HTTP 2.0.

Stream prioritization. Once an
HTTP message can be split into many
individual frames, the exact order in
which the frames are interleaved and
delivered within a connection can be
optimized to further improve the per-
formance of an application. Hence, the
optional 31-bit priority value: 0 repre-
sents the highest-priority stream; 231−1
represents the lowest-priority stream.

Not all resources have equal priority
when rendering a page in the browser:
the HTML document is, of course, crit-
ical, as it contains the structure and
references to other resources; CSS is
required to create the visual rendering
tree (you cannot paint pixels until you
have the style-sheet rules); increasingly,
 JavaScript is also required to boot-
strap the page; remaining resources
such as images can be fetched with
lower priority.

The good news is that all modern
browsers already perform this sort
of internal optimization by prioritiz-
ing different resource requests based
on type of asset, their location on the
page, and even learned priority from
previous visits4 (for example, if the ren-
dering was blocked on a certain asset
in a previous visit, the same asset may
be prioritized higher in the future).

With the introduction of explicit
stream prioritization in HTTP 2.0 the
browser can communicate these in-

ferred priorities to the server to im-
prove performance: the server can
prioritize stream processing by con-
trolling the allocation of resources
(CPU, memory, bandwidth); and once
the response data is available, the serv-
er can prioritize delivery of high-priori-
ty frames to the client. Even better, the
client is now able to dispatch all of the
requests as soon as they are discovered
(that is, eliminate client-side request
queueing latency) instead of relying
on request prioritization heuristics in
light of limited parallelism provided
by HTTP 1.x.

Server push. A powerful new feature
of HTTP 2.0 is the ability of the server
to send multiple replies for a single cli-
ent request—that is, in addition to the
response to the original request, the
server can push additional resources
to the client without having the client
explicitly request each one.

Why would such a mechanism be
needed? A typical Web application
consists of dozens of resources, all of
which the client discovers by examin-
ing the document provided by the serv-
er. As a result, why not eliminate the
extra latency and let the server push
the associated resources to the cli-
ent ahead of time? The server already
knows which resources the client will
require—that is server push.

In fact, while support for server push
as an HTTP protocol feature is new,
many Web applications are already
using it, just under a different name:
inlining. Whenever the developer in-
lines an asset—CSS, JavaScript, or any
other asset via a data URI—they are,
in effect, pushing that resource to the
client instead of waiting for the client
to request it. The only difference with

Table 3. HTTP 2.0 frame types.

DATA used to transport HTTP message bodies

HEADERS used to communicate additional header fields for a stream

PRIORITY used to assign or reassign priority of referenced resource

RST_STREAM used to signal abnormal termination of a stream

SETTINGS used to signal configuration data about how two endpoints may communicate

PUSH_PROMISE used to signal a promise to create a stream and serve referenced resource

PING used to measure the round-trip time and perform "liveness" checks

GOAWAY used to inform the peer to stop creating streams for current connection

WINDOW_UPDATE used to implement flow control on per-stream or per-connection basis

CONTINUATION used to continue a sequence of header block fragments

practice

48 communications of the acm | december 2013 | vol. 56 | no. 12

the resource allocation is performed
between multiple streams. To ad-
dress this, HTTP 2.0 provides a simple
mechanism for stream and connec-
tion flow control:

˲˲ Flow control is hop-by-hop, not
end-to-end.

˲˲ Flow control is based on window
update frames: the receiver adver-
tises how many bytes of DATA-frame
payload it is prepared to receive on a
stream and for the entire connection.

˲˲ Flow-control window size is up-
dated via a WINDOW_UPDATE frame
that specifies the stream ID and the
window increment value.

˲˲ Flow control is directional—the
receiver may choose to set any window
size it desires for each stream and for
the entire connection.

˲˲ Flow control can be disabled by a
receiver.

As experience with TCP shows, flow
control is both an art and a science.
Research on better algorithms and
implementation improvements are
continuing to this day. With that in
mind, HTTP 2.0 does not mandate any
specific approach. Instead, it simply
provides the necessary tools to imple-
ment such an algorithm—a great area
for further research and optimization.

Efficient HTTP 2.0 upgrade and
discovery. Though there are a lot more
technical and implementation details,
this whirlwind tour of HTTP 2.0 has
covered the highlights: binary fram-
ing, multiplexing, prioritization, serv-
er push, header compression, and flow
control. Combined, these features
will deliver significant performance
improvements on both the client and
server.

Having said that, there is one more
minor detail: how does one deploy a
major revision of the HTTP protocol?
The switch to HTTP 2.0 cannot happen
overnight. Millions of servers must be
updated to use the new binary framing
protocol, and billions of clients must
similarly update their browsers and
networking libraries.

The good news is that most mod-
ern browsers use efficient background
update mechanisms, which will en-
able HTTP 2.0 support quickly and
with minimal intervention for a large
portion of existing users. Despite this,
some users will be stuck with older
browsers, and servers and intermedi-

HTTP 2.0 is that this workflow can now
move out of the application and into
the HTTP protocol itself, which offers
important benefits: pushed resources
can be cached by the client, declined
by the client, reused across different
pages, and prioritized by the server.

In effect, server push makes obso-
lete most of the cases where inlining is
used in HTTP 1.x.

Header compression. Each HTTP
transfer carries a set of headers used
to describe the transferred resource.
In HTTP 1.x, this metadata is always
sent as plaintext and typically adds
anywhere from 500 to 800 bytes of
overhead per request, and often much
more if HTTP cookies are required.
To reduce this overhead and improve

performance, HTTP 2.0 compresses
header metadata:8

˲˲ Instead of retransmitting the same
data on each request and response,
HTTP 2.0 uses header tables on both
the client and server to track and store
previously sent header key-value pairs.

˲˲ Header tables persist for the en-
tire HTTP 2.0 connection and are in-
crementally updated both by the client
and server.

˲˲ Each new header key-value pair is
either appended to the existing table
or replaces a previous value in the ta-
ble.

As a result, both sides of the HTTP
2.0 connection know which headers
have been sent, and their previous val-
ues, which allows a new set of headers
to be coded as a simple difference (see
Figure 7) from the previous set.

Common key-value pairs that rarely
change throughout the lifetime of a
connection (for example, user-agent,
accept header, and so on), need to
be transmitted only once. In fact, if
no headers change between requests
(for example, a polling request for
the same resource), then the header-
encoding overhead is zero bytes—all
headers are automatically inherited
from the previous request.

Flow control. Multiplexing mul-
tiple streams over the same TCP con-
nection introduces contention for
shared bandwidth resources. Stream
priorities can help determine the rela-
tive order of delivery, but priorities
alone are insufficient to control how

Figure 7. Differential encoding of HTTP 2.0 headers.

GET:method

https:scheme

example.com:host

/resource:path

image/jpegaccept

Mozilla/5.0 …user-agent

GET:method

https:scheme

example.com:host

/new_resource:path

image/jpegaccept

Mozilla/5.0 …user-agent

HEADERS frame (Stream 1)

 :method: GET
 :scheme: https
 :host: example.com
 :path: /resource
 accept: image/jpeg
user-agent: Mozilla/5.0 ...

HEADERS frame (Stream 3)

:path: /new_resource

implicit

implicit

implicit

implicit

implicit

Request #1 Request #2

Figure 8. HTTP Upgrade mechanism.

GET /page HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: HTTP/2.0
HTTP2-Settings: (SETTINGS payload)

HTTP/1.1 200 OK
Content-length: 243
Content-type: text/html

(... HTTP 1.1 response ...)

 (or)

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: HTTP/2.0

(... HTTP 2.0 response ...)

practice

december 2013 | vol. 56 | no. 12 | communications of the acm 49

aries will also have to be updated to
support HTTP 2.0, which is a much
longer labor- and capital-intensive
process.

HTTP 1.x will be around for at least
another decade, and most servers
and clients will have to support both
1.x and 2.0 standards. As a result, an
HTTP 2.0-capable client must be able
to discover whether the server—and
any and all intermediaries—support
the HTTP 2.0 protocol when initiat-
ing a new HTTP session. There are two
cases to consider:

˲˲ Initiating a new (secure) HTTPS
connection via TLS.

˲˲ Initiating a new (unencrypted)
HTTP connection.

In the case of a secure HTTPS con-
nection, the new ALPN (Application
Layer Protocol Negotiation9) extension
to the TLS protocol allows users to
negotiate HTTP 2.0 support as part of
the regular TLS handshake: the client
sends the list of protocols it supports
(for example, http/2.0); the server se-
lects one of the advertised protocols
and confirms its choice by sending the
protocol name back to the client as
part of the regular TLS handshake.

Establishing an HTTP 2.0 connec-
tion over a regular, nonencrypted
channel requires a bit more work. Be-
cause both HTTP 1.0 and HTTP 2.0 run
on the same port (80), in the absence
of any other information about the
server’s support for HTTP 2.0, the cli-
ent will have to use the HTTP Upgrade
mechanism to negotiate the appropri-
ate protocol, as shown in Figure 8.

Using the Upgrade flow, if the server
does not support HTTP 2.0, then it can
immediately respond to the request
with an HTTP 1.1 response. Alterna-
tively, it can confirm the HTTP 2.0 up-
grade by returning the “101 Switching
Protocols” response in HTTP 1.1 for-
mat, and then immediately switch to
HTTP 2.0 and return the response us-
ing the new binary framing protocol.
In either case, no extra round-trips are
incurred.

Crystal Gazing
Developing a major revision of a pro-
tocol underlying all Web communica-
tion is a nontrivial task requiring a lot
of careful thought, experimentation,
and coordination. As such, crystal gaz-
ing for HTTP 2.0 timelines is danger-

ous business—it will be ready when it
is ready. Having said that, the HTTP
Working Group is making rapid prog-
ress. Its past and projected milestones
are as follows:

˲˲ November 2009—SPDY protocol
announced by Google.

˲˲ March 2012—call for proposals for
HTTP 2.0.

˲˲ September 2012—first draft of
HTTP 2.0.

˲˲ July 2013—first implementation
draft of HTTP 2.0.

˲˲ April 2014—Working Group last
call for HTTP 2.0.

˲˲ November 2014—submit HTTP
2.0 to IESG (Internet Engineering
Steering Group) as a Proposed Stan-
dard.

SPDY was an experimental protocol
developed at Google and announced
in mid-2009, which later formed the
basis of early HTTP 2.0 drafts. Many
revisions and improvements later, as
of late 2013, there is now an imple-
mentation draft of the protocol, and
interoperability work is in full swing—
recent Interop events featured client
and server implementations from
Microsoft Open Technologies, Mozil-
la, Google, Akamai, and other con-
tributors. In short, all signs indicate
the projected schedule is (for once)
on track: 2014 should be the year for
HTTP 2.0.

Making the Web (Even) Faster
With HTTP 2.0 deployed far and wide,
can we kick back and declare victo-
ry? The Web will be fast, right? Well,
as with any performance optimiza-
tion, the moment one bottleneck is
removed, the next one is unlocked.
There is plenty of room for further op-
timization:

˲˲ HTTP 2.0 eliminates HOL block-
ing at the application layer, but it still
exists at the transport (TCP) layer. Fur-
ther, now that all of the streams can be
multiplexed over a single connection,
tuning congestion control, mitigating
bufferbloat, and all other TCP optimi-
zations become even more critical.

˲˲ TLS is a critical and largely unop-
timized frontier: we need to reduce
the number of handshake round-trips,
upgrade outdated clients to get wider
adoption, and improve client and serv-
er performance in general.

˲˲ HTTP 2.0 opens up a new world of

research opportunities for optimal im-
plementations of header-compression
strategies, prioritization, and flow-con-
trol logic both on the client and server,
as well as the use of server push.

˲˲ All existing Web applications will
continue to work over HTTP 2.0—the
servers will have to be upgraded, but
otherwise the transport switch is trans-
parent. That is not to say, however, that
existing and new applications cannot
be tuned to perform better over HTTP
2.0 by leveraging new functionality
such as server push, prioritization, and
so on. Web developers will have to de-
velop new best practices, and revert
and unlearn the numerous HTTP 1.1
workarounds they are using today.

In short, there is a lot more work to
be done. HTTP 2.0 is a significant mile-
stone that will help make the Web fast-
er, but it is not the end of the journey.	

 Related articles
 on queue.acm.org

Improving Performance on the Internet

Tom Leighton
http://queue.acm.org/detail.cfm?id=1466449

High-Performance Websites

Steve Souders
http://queue.acm.org/detail.cfm?id=1466450

How Fast is Your Website?
Patrick Meenan
http://queue.acm.org/detail.cfm?id=2446236

References
1.	A kamai. State of the Internet, 2013; http://www.

akamai.com/stateoftheinternet/.
2.	AT &T. Average speeds for AT&T LaptopConnect

Devices, 2013; http://www.att.com/esupport/article.
jsp?sid=64785&cv=820&_requestid=733221#fbid
=vttq9CyA2iG and http://developer.att.com/home/
develop/referencesandtutorials/whitepapers/
BestPracticesFor3Gand4GAppDevelopment.pdf.

3.	B elshe, M. More bandwidth doesn’t matter (much),
2010; https://docs.google.com/a/chromium.org/
viewerr?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfG
RldnxneDoxMzcyOWI1N2I4YzI3NzE2.

4.	G rigorik, I. High-performance networking in Google
Chrome, 2013; http://www.igvita.com/posa/high-
performance-networking-in-google-chrome/.

5.	HTT P Archive; http://www.httparchive.org/.
6.	 IETF HTTPbis Working Group. Charter, 2012; http://

datatracker.ietf.org/doc/charter-ietf-httpbis/.
7.	 IETF HTTPbis Working Group. HTTP 2.0 specifications,

2013; http://tools.ietf.org/html/draft-ietf-httpbis-http2.
8.	 IETF HTTPbis Working Group. HPACK-Header

Compression for HTTP/2.0, 2013; http://tools.ietf.org/
html/draft-ietf-httpbis-header-compression.

9.	 IETF Network Working Group. Transport Layer
Security (TLS) Application Layer Protocol Negotiation
(ALPN) Extension, 2013; http://tools.ietf.org/html/
draft-friedl-tls-applayerprotoneg.

10.	U pson, L. Google I/O 2013 keynote address, 2010;
http://www.youtube.com/watch?v=9pmPa_KxsAM.

Ilya Grigorik is a Web performance engineer and
developer advocate at Google where he works to make
the Web faster by building and driving adoption of
performance best practices at Google and beyond.

© 2013 ACM 0001-0782/13/12 $15.00

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

