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Hyp ertext Transfer Protocol  (HTTP) is one of 
the most widely used application protocols on the 
Internet. Since its publication, RFC 2616 (HTTP 1.1) 
has served as a foundation for the unprecedented 
growth of the Internet: billions of devices of all shapes 
and sizes, from desktop computers to the tiny Web 
devices in our pockets, speak HTTP every day to deliver 
news, video, and millions of other Web applications 
we have all come to depend on in our everyday lives. 

What began as a simple one-line protocol for 
retrieving hypertext (that is, "GET /document") 
quickly evolved into a generic hypermedia transport. 
Now a decade later it is used to power just about any 
use case imaginable. 

Under the weight of its own success, however, and 
as more and more everyday interactions continue to 
migrate to the Web—social, email, news and video, 
and, increasingly, our personal and job workspaces—

HTTP has begun to show signs of stress. 
Users and developers alike are now de-
manding near-real-time responsive-
ness and protocol performance from 
HTTP 1.1, which it simply cannot meet 
without some modifications.

To meet these new challenges, 
HTTP must continue to evolve, which 
is where HTTP 2.0 enters the picture. 
HTTP 2.0 will make applications 
faster, simpler, and more robust by 
enabling efficient multiplexing and 
low-latency delivery over a single con-
nection and allowing Web develop-
ers to undo many of the application 
“hacks” used today to work around the 
limitations of HTTP 1.1.

Performance Challenges of 
Modern Web Applications
A lot has changed in the decade since 
the HTTP 1.1 RFC was published: 
browsers have continued to evolve at 
an accelerating rate, user connectiv-
ity profiles have changed with the mo-
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bile Web now at an inflection point, 
and Web applications have grown in 
their scope, ambition, and complex-
ity. Some of these factors help perfor-
mance while others hinder. On bal-
ance, Web performance remains a 
large and unsolved problem.

First, the good news: modern brows-
ers have put significant effort into per-
formance. JavaScript execution speed 
continues its steady climb (for exam-
ple, the launch of the Chrome browser 
in 2008 delivered a 20x improvement, 
and in 2012 alone, the performance 
was further improved by more than 
50% on mobile10). And it is not just Ja-
vaScript where the improvement is oc-
curring; modern browsers also lever-
age GPU acceleration for drawing and 
animation (for example, CSS3 anima-
tions and WebGL), provide direct ac-
cess to native device APIs, and leverage 
numerous speculative optimization 
techniques4 to help hide and reduce 
various sources of network latency.

Similarly, broadband adoption (see 
Table 1) has continued its steady climb 
over the past decade. According to Aka-
mai, while the global average is now at 
3.1Mbps, many users have access to far 
higher throughput, especially with the 
rollout of residential fiber solutions.1 
Bandwidth is only half the equation, 
however. Latency is the oft-forgotten 
factor, and unfortunately, it is now of-
ten the limiting factor when it comes to 
browsing the Web.3

In practice, once the user has more 
than 5Mbps of bandwidth, further im-
provements deliver minimal increase 
in the loading speed of the average 
Web application: streaming HD video 
from the Web is bandwidth bound; 
loading the page hosting the HD video, 
with all of its assets, is latency bound.

A modern Web application looks 
significantly different from a decade 
ago. According to HTTP Archive,5 an 
average Web application is now com-
posed of more than 90 resources, 

which are fetched from more than 
15 distinct hosts, totaling more than 
1,300KB of (compressed) transferred 
data. As a result, a large fraction of 
HTTP data flows consist of small (less 
than 15KB), bursty data transfers over 
dozens of distinct TCP connections. 
Therein lies the problem. TCP is op-
timized for long-lived connections 
and bulk data transfers. Network RTT 
(round-trip time) is the limiting factor 
in throughput of new TCP connections 
(a result of TCP congestion control), 
and consequently, latency is also the 
performance bottleneck for most Web 
applications.

How do you address this mismatch? 
First, you could try to reduce the 
round-trip latency by positioning the 
servers and bits closer to the user, as 
well as using lower-latency links. Un-
fortunately, while these are necessary 
optimizations—there is now an entire 
content delivery network (CDN) indus-
try focused on exactly this problem—
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and popularized a number of home-
brew application workarounds (call-
ing them optimizations would give 
them too much credit):

˲˲ Modern browsers allow up to six 
parallel connections per origin, which 
effectively allows up to six parallel re-
source transfers. Not satisfied with the 
limit of six connections, many develop-
ers decided to apply domain sharding, 
which splits site resources across dif-
ferent origins, thereby allowing more 
TCP connections. Recall that an aver-
age page now talks to 15 distinct hosts, 
each of which might use as many as six 
TCP connections.

˲˲ Small files with the same file type 
are often concatenated together, creat-
ing larger bundles to minimize HTTP 
request overhead. In effect, this is a 
form of multiplexing, but it is applied 
at the application layer—for exam-
ple, Cascading Style Sheets (CSS) and  
JavaScript files are combined into larg-
er bundles, small images are merged 
into image sprites, and so on.

˲˲ Some files are inlined directly 
into the HTML document to avoid the 
HTTP request entirely.

For many Web developers all of 
these are matter-of-fact optimiza-
tions—familiar, necessary, and uni-
versally accepted. Each of these work-
arounds, however, also often carries 
many negative implications both for 
the complexity and the performance 
of applications: 

˲˲ Aggressive sharding often causes 
network congestion and is counter-
productive, leading to: additional and 
unnecessary DNS (Domain Name Ser-
vice) lookups and TCP handshakes; 
higher resource load caused by more 
sockets on client, server, and interme-
diaries; more network contention be-
tween parallel streams; and so on. 

˲˲ Concatenation breaks the modu-
larity of application code and has a 
negative impact on caching (for ex-
ample, a common practice is to con-
catenate all JavaScript or CSS files into 
large bundles, which forces download 
and invalidation of the entire bundle 
on a single byte change). Similarly,  
JavaScript and CSS files are parsed and 
executed only when the entire file is 
downloaded, which adds processing 
delays; large image sprites also occupy 
more memory on the client and require 
more resources to decode and process.

they are not sufficient. As an example, 
the global average RTT to google.com, 
which employs all of these techniques, 
was approximately 100 milliseconds in 
2012, and unfortunately this number 
has not budged in the past few years. 

Many existing links are already 
within a small constant factor 
(1.2~1.5) of the speed-of-light limit, 
and while there is still room for im-
provement, especially with respect to 
“last-mile latency,” the relative gains 
are modest. Worse, with the rise of 
mobile networks, the impact of the 
latency bottleneck has only gotten 
worse. While the latest 4G mobile net-
works are specifically targeting low-
latency data delivery, the advertised 
and real-world performance is still 
often measured in hundreds of mil-
liseconds of overhead (see Table 2 for 
advertised latencies in the AT&T core 
radio networks2). 

If you cannot get the performance-
step function needed from improv-
ing the underlying links—if anything, 
with the rise of mobile traffic, there is 
a regression—then you must turn your 
attention to how you construct ap-
plications and tune the performance 
of underlying transport protocols re-
sponsible for their delivery.

Performance Limitations 
of HTTP 1.1
Improving the performance of HTTP 
was one of the key design goals for 

the HTTP 1.1 Working Group, and the 
standard introduced many critical per-
formance enhancements. A few of the 
best known include: 

˲˲ Persistent connections to allow 
connection reuse.

˲˲ Chunked transfer encoding to al-
low response streaming.

˲˲ Request pipelining to allow paral-
lel request processing.

˲˲ Byte serving to allow range-based 
resource requests.

˲˲ Improved and much better speci-
fied caching mechanisms.

Unfortunately, some HTTP 1.1 fea-
tures such as request pipelining have 
effectively failed due to lack of support 
and deployment challenges; while 
some browsers today support pipelin-
ing as an optional feature, few if any 
have it enabled by default. As a result, 
HTTP 1.1 forces strict request queuing 
on the client (Figure 1): the client dis-
patches the request and must wait un-
til the response is returned by the serv-
er, which means a single large transfer 
or a slow dynamic resource can block 
the entire connection. Worse, the 
browser has no way of reliably predict-
ing this behavior and, as result, is of-
ten forced to rely on heuristics to guess 
whether it should wait and attempt to 
reuse the existing connection or open 
another one.

In light of the limitations of HTTP 
1.1, the Web developer community—
always an inventive lot—has created 

Table 1. Global broadband adoption.

Rank Country Average Mbps Year Over Year Change

— Global 3.1 17%

1 South Korea 14.2 –10%

2 Japan 11.7 6.8%

3 Hong Kong 10.9 16%

4 Switzerland 10.1 24%

5 Netherlands 9.9 12%

…

9 United States 8.6 27%

Table 2. Advertised latencies.

LTE HSPA+ HSPA EDGE GPRS

Latency 40–50 ms 100–200 ms 150–400 ms 600–750 ms 600–750 ms
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˲˲ Inlined assets cannot be cached in-
dividually and inflate the parent docu-
ment. A common practice of inlining 
small images also inflates their size by 
more than 30% via base64 encoding 
and breaks request prioritization in the 
browser—typically, images are fetched 
with lower priority by the browser to ac-
celerate page construction.

In short, many of the workarounds 
have serious negative performance 
implications. Web developers should 
not have to worry about concatenating 
files, spiriting images, inlining assets, 
or domain sharding. All of these tech-
niques are stopgap workarounds for 
limitations of the HTTP 1.1 protocol. 
Hence, HTTP 2.0.

HTTP 2.0 Design and 
Technical Goals
Developing a major revision of a pro-
tocol underlying all Web communica-
tion is a nontrivial task requiring a lot 
of careful thought, experimentation, 
and coordination. As such, it is impor-
tant to define a clear technical charter 
and, arguably even more importantly, 
define the boundaries of the project. 
The intent is not to overhaul every de-
tail of the protocol but to make mean-
ingful though incremental progress to 
improve Web performance. 

With that, the HTTPbis Working 
Group charter6 for HTTP 2.0 is scoped 
as follows:

˲˲ Substantially and measurably im-
prove end-user-perceived latency in 
most cases over HTTP 1.1 using TCP.

˲˲ Address the HOL (head-of-line) 
blocking problem in HTTP.

˲˲ Do not require multiple connec-
tions to a server to enable parallelism, 
thus improving its use of TCP, espe-
cially regarding congestion control.

˲˲ Retain the semantics of HTTP 1.1, 
leveraging existing documentation, 
including (but not limited to) HTTP 
methods, status codes, URIs, and 
where appropriate, header fields.

˲˲ Clearly define how HTTP 2.0 inter-
acts with HTTP 1.x, especially in inter-
mediaries.

˲˲ Clearly identify any new extensi-
bility points and policy for their appro-
priate use.

To deliver on these goals HTTP 2.0 
introduces a new layering mechanism 
onto TCP, which addresses the well-
known performance limitations of 

HTTP 1.x. The application semantics 
of HTTP remain untouched, and no 
changes are being made to the core 
concepts such as HTTP methods, sta-
tus codes, URIs, and header fields—
these changes are explicitly out of 
scope. With that in mind, let’s take a 
look “under the hood” of HTTP 2.0.

Request and response multiplex-
ing. At the core of all HTTP 2.0’s per-
formance enhancements is the new 
binary framing layer (see Figure 2), 
which dictates how HTTP messages 
are encapsulated and transferred be-
tween the client and server. HTTP se-
mantics such as verbs, methods, and 
headers are unaffected, but the way 

they are encoded while in transit is 
different.

With HTTP 1.x, if the client wants 
to make multiple parallel requests to 
improve performance, then multiple 
TCP connections are required. This 
behavior is a direct consequence of the 
newline-delimited plaintext HTTP 1.x 
protocol, which ensures only one re-
sponse at a time can be delivered per 
connection—worse, this also results 
in HOL blocking and inefficient use of 
the underlying TCP connection.

The new binary framing layer in 
HTTP 2.0 removes these limitations 
and enables full request and response 
multiplexing. The following HTTP 2.0 

Figure 1. With 56ms RTT, fetching two files takes approximately 228ms, with 80% of that 
time in network latency.

ACK
GET /html

56 ms

SYN ACK28 ms

0 msSYN

84 ms

server processing: 40 ms

HTML response124 ms

GET /css 152 ms

server processing: 20 ms

CSS response200 ms

TCP
56 ms

HTTP
172 ms

180 ms

TCP connection #1, Request #1-2: HTTP + CSS 

close connection 228 ms

Client Server

Figure 2. HTTP 2.0 binary framing.

Network (IP)

Transport (TCP)

Session (TLS)
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Application (HTTP 2.0)
 POST  /upload HTTP/1.1
 Host:  www.example.org
 Content-Type:  application/json
 Content-Length:  15

 {"msg":"hello"}

HEADERS  frame

DATA  frame

HTTP 2.0

HTTP 1.1

Binary Framing
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HTTP 2.0. By itself, this change is en-
tirely unremarkable, since many pro-
tocols below HTTP already implement 
similar mechanisms. This “small” 
change, however, introduces a ripple 
effect of numerous performance ben-
efits across the entire stack of all Web 
technologies, allowing developers to 
do the following:

˲˲ Interleave multiple requests in 
parallel without blocking on any one.

˲˲ Interleave multiple responses in 
parallel without blocking on any one.

˲˲ Use a single connection to deliver 
many requests and responses in paral-
lel.

˲˲ Deliver lower page-load times by 
eliminating unnecessary latency.

˲˲ Remove unnecessary HTTP 1.x 
workarounds from application code.

˲˲ And much more…
Binary framing. HTTP 2.0 uses a 

binary, length-prefixed framing layer, 
which offers more compact repre-
sentation than the newline-delimited 
plaintext HTTP 1.x protocol and is 
both easier and more efficient to pro-
cess. All HTTP 2.0 frames share a com-
mon eight-byte header (see Figure 
4), which contains the length of the 
frame, its type, a bit field for flags, and 
a 31-bit stream identifier.

˲˲ The 16-bit length prefix reveals a 
single frame can carry 216−1 bytes of  
data—~64KB—which excludes the 
8-byte header size.

˲˲ The 8-bit type field determines 
how the rest of the frame is interpret-
ed.

˲˲ The 8-bit flags field allows differ-
ent frame types to define frame-specif-
ic messaging flags. 

˲˲ A 1-bit reserved field is always set 
to 0.

˲˲ The 31-bit stream identifier 
uniquely identifies the HTTP 2.0 
stream.

Given this knowledge of the shared 
HTTP 2.0 frame header, you can write 
a simple parser that can examine any 
HTTP 2.0 bytestream, identify differ-
ent frame types, and report their flags 
and the length of each by examining 
the first eight bytes of every frame. Fur-
ther, because each frame is length pre-
fixed, the parser can skip ahead to the 
beginning of the next frame quickly 
and efficiently. This is a big pevrfor-
mance improvement over HTTP 1.x.

Once the frame type is known, the 

terminology will help in understand-
ing this process: 

˲˲ Stream—a bidirectional flow of 
bytes, or a virtual channel, within a 
connection. Each stream has a rela-
tive priority value and a unique integer 
identifier.

˲˲ Message—a complete sequence of 
frames that maps to a logical message 
such as an HTTP request or a response.

˲˲ Frame—the smallest unit of com-
munication in HTTP 2.0, each contain-
ing a consistent frame header, which 
at minimum identifies the stream to 
which the frame belongs, and carries 
a specific type of data (for example, 
HTTP headers, payload, and so on).

All HTTP 2.0 communication can 
be performed within a single connec-
tion that can carry any number of bi 
directional streams. In turn, each 
stream communicates in messages, 
which consist of one or multiple 
frames, each of which may be inter-
leaved (see Figure 3) and then reas-
sembled via the embedded stream 
identifier in the header of each indi-
vidual frame.

The ability to break down an HTTP 
message into independent frames, 
prioritize and interleave them within a 
shared connection, and then reassem-
ble them on the other end is the sin-
gle most important enhancement of 

Figure 3. Interleaved frames from multiple in-flight HTTP 2.0 streams within a single  
connection.

HTTP 2.0 connection

stream 1
DATA

stream 3
HEADERS

stream 3
DATA

...
stream 1

DATA

stream 5
DATA

Client Server

Figure 4. Common eight-byte frame header.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type Flags

32 R Stream Identifier

... Frame Payload

Figure 6. DATA frame.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type (0) Flags

32 R Stream Identifier

... HTTP Payload

Figure 5. HEADERS frame with stream priority and header payload.

Bit +0..7 +8..15 +16..23 +24..31

0 Length Type (1) Flags

32 R Stream Identifier

64 R Priority

... Header Block
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parser can interpret the remainder of 
the frame. The HTTP 2.0 standard de-
fines the types listed in Table 3.

Full analysis of this taxonomy of 
frames is outside the scope of this ar-
ticle—after all, that is what the spec7 
is for (and it does a great job!). Having 
said that, let’s go just one step further 
and look at the two most common 
workflows: initiating a new stream and 
exchanging application data.

Initiating New HTTP 2.0 Streams
Before any application data can be 
sent, a new stream must be created 
and the appropriate metadata such 
as HTTP headers must be sent. That 
is what the HEADERS frame is for (see 
Figure 5).

Notice that in addition to the com-
mon header, an optional 31-bit stream 
priority has been added. As a result, 
whenever the client initiates a new 
stream, it can signal to the server the 
relative priority of that request, and 
even reprioritize it later by sending an-
other PRIORITY frame.

How do the client and server ne-
gotiate the unique stream IDs? They 
do not. Client-initiated streams have 
even-numbered stream IDs and server-
initiated streams have odd-numbered 
stream IDs. This offset eliminates col-
lisions in stream IDs between the cli-
ent and server.

Finally, the HTTP header key-value 
pairs are encoded via a custom header 
compression algorithm (more on this 
later) to minimize the size of the pay-
load, and they are appended to the end 
of the frame.

Notice the HEADERS frames are 
used to communicate only the meta-
data about each stream. The actual 
application payload is delivered inde-
pendently within the frame payload 
(see Figure 6) that follow them (that is, 
there is a separation between “data” 
and “control” messaging).

The DATA frame is trivial: it is the 
common 8-byte header followed by the 
actual payload. To reduce HOL block-
ing, the HTTP 2.0 standard requires 
that each DATA frame not exceed 214−1 
(16,383) bytes, which means that larg-
er messages have to be broken up into 
smaller chunks. The last message in a 
sequence sets the END_STREAM flag 
to mark the end of data transfer. 

There are a few more implementa-

tion details, but this information is 
enough to build a very basic HTTP 2.0 
parser—emphasis on very basic. Fea-
tures such as stream prioritization, 
server push, header compression, and 
flow control (not yet mentioned) war-
rant a bit more discussion, as they 
are critical to getting the best perfor-
mance out of HTTP 2.0.

Stream prioritization. Once an 
HTTP message can be split into many 
individual frames, the exact order in 
which the frames are interleaved and 
delivered within a connection can be 
optimized to further improve the per-
formance of an application. Hence, the 
optional 31-bit priority value: 0 repre-
sents the highest-priority stream; 231−1 
represents the lowest-priority stream.

Not all resources have equal priority 
when rendering a page in the browser: 
the HTML document is, of course, crit-
ical, as it contains the structure and 
references to other resources; CSS is 
required to create the visual rendering 
tree (you cannot paint pixels until you 
have the style-sheet rules); increasingly, 
 JavaScript is also required to boot-
strap the page; remaining resources 
such as images can be fetched with 
lower priority.

The good news is that all modern 
browsers already perform this sort 
of internal optimization by prioritiz-
ing different resource requests based 
on type of asset, their location on the 
page, and even learned priority from 
previous visits4 (for example, if the ren-
dering was blocked on a certain asset 
in a previous visit, the same asset may 
be prioritized higher in the future).

With the introduction of explicit 
stream prioritization in HTTP 2.0 the 
browser can communicate these in-

ferred priorities to the server to im-
prove performance: the server can 
prioritize stream processing by con-
trolling the allocation of resources 
(CPU, memory, bandwidth); and once 
the response data is available, the serv-
er can prioritize delivery of high-priori-
ty frames to the client. Even better, the 
client is now able to dispatch all of the 
requests as soon as they are discovered 
(that is, eliminate client-side request 
queueing latency) instead of relying 
on request prioritization heuristics in 
light of limited parallelism provided 
by HTTP 1.x. 

Server push. A powerful new feature 
of HTTP 2.0 is the ability of the server 
to send multiple replies for a single cli-
ent request—that is, in addition to the 
response to the original request, the 
server can push additional resources 
to the client without having the client 
explicitly request each one.

Why would such a mechanism be 
needed? A typical Web application 
consists of dozens of resources, all of 
which the client discovers by examin-
ing the document provided by the serv-
er. As a result, why not eliminate the 
extra latency and let the server push 
the associated resources to the cli-
ent ahead of time? The server already 
knows which resources the client will 
require—that is server push.

In fact, while support for server push 
as an HTTP protocol feature is new, 
many Web applications are already 
using it, just under a different name: 
inlining. Whenever the developer in-
lines an asset—CSS, JavaScript, or any 
other asset via a data URI—they are, 
in effect, pushing that resource to the 
client instead of waiting for the client 
to request it. The only difference with 

Table 3. HTTP 2.0 frame types.

DATA used to transport HTTP message bodies

HEADERS used to communicate additional header fields for a stream

PRIORITY used to assign or reassign priority of referenced resource

RST_STREAM used to signal abnormal termination of a stream

SETTINGS used to signal configuration data about how two endpoints may communicate

PUSH_PROMISE used to signal a promise to create a stream and serve referenced resource

PING used to measure the round-trip time and perform "liveness" checks

GOAWAY used to inform the peer to stop creating streams for current connection

WINDOW_UPDATE used to implement flow control on per-stream or per-connection basis

CONTINUATION used to continue a sequence of header block fragments
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the resource allocation is performed 
between multiple streams. To ad-
dress this, HTTP 2.0 provides a simple 
mechanism for stream and connec-
tion flow control:

˲˲ Flow control is hop-by-hop, not 
end-to-end.

˲˲ Flow control is based on window 
update frames: the receiver adver-
tises how many bytes of DATA-frame 
payload it is prepared to receive on a 
stream and for the entire connection.

˲˲ Flow-control window size is up-
dated via a WINDOW_UPDATE frame 
that specifies the stream ID and the 
window increment value.

˲˲ Flow control is directional—the 
receiver may choose to set any window 
size it desires for each stream and for 
the entire connection.

˲˲ Flow control can be disabled by a 
receiver.

As experience with TCP shows, flow 
control is both an art and a science. 
Research on better algorithms and 
implementation improvements are 
continuing to this day. With that in 
mind, HTTP 2.0 does not mandate any 
specific approach. Instead, it simply 
provides the necessary tools to imple-
ment such an algorithm—a great area 
for further research and optimization.

Efficient HTTP 2.0 upgrade and 
discovery. Though there are a lot more 
technical and implementation details, 
this whirlwind tour of HTTP 2.0 has 
covered the highlights: binary fram-
ing, multiplexing, prioritization, serv-
er push, header compression, and flow 
control. Combined, these features 
will deliver significant performance 
improvements on both the client and 
server.

Having said that, there is one more 
minor detail: how does one deploy a 
major revision of the HTTP protocol? 
The switch to HTTP 2.0 cannot happen 
overnight. Millions of servers must be 
updated to use the new binary framing 
protocol, and billions of clients must 
similarly update their browsers and 
networking libraries.

The good news is that most mod-
ern browsers use efficient background 
update mechanisms, which will en-
able HTTP 2.0 support quickly and 
with minimal intervention for a large 
portion of existing users. Despite this, 
some users will be stuck with older 
browsers, and servers and intermedi-

HTTP 2.0 is that this workflow can now 
move out of the application and into 
the HTTP protocol itself, which offers 
important benefits: pushed resources 
can be cached by the client, declined 
by the client, reused across different 
pages, and prioritized by the server.

In effect, server push makes obso-
lete most of the cases where inlining is 
used in HTTP 1.x. 

Header compression. Each HTTP 
transfer carries a set of headers used 
to describe the transferred resource. 
In HTTP 1.x, this metadata is always 
sent as plaintext and typically adds 
anywhere from 500 to 800 bytes of 
overhead per request, and often much 
more if HTTP cookies are required. 
To reduce this overhead and improve 

performance, HTTP 2.0 compresses 
header metadata:8

˲˲ Instead of retransmitting the same 
data on each request and response, 
HTTP 2.0 uses header tables on both 
the client and server to track and store 
previously sent header key-value pairs.

˲˲ Header tables persist for the en-
tire HTTP 2.0 connection and are in-
crementally updated both by the client 
and server.

˲˲ Each new header key-value pair is 
either appended to the existing table 
or replaces a previous value in the ta-
ble.

As a result, both sides of the HTTP 
2.0 connection know which headers 
have been sent, and their previous val-
ues, which allows a new set of headers 
to be coded as a simple difference (see 
Figure 7) from the previous set.

Common key-value pairs that rarely 
change throughout the lifetime of a 
connection (for example, user-agent, 
accept header, and so on), need to 
be transmitted only once. In fact, if 
no headers change between requests 
(for example, a polling request for 
the same resource), then the header-
encoding overhead is zero bytes—all 
headers are automatically inherited 
from the previous request.

Flow control. Multiplexing mul-
tiple streams over the same TCP con-
nection introduces contention for 
shared bandwidth resources. Stream 
priorities can help determine the rela-
tive order of delivery, but priorities 
alone are insufficient to control how 

Figure 7. Differential encoding of HTTP 2.0 headers.
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https:scheme

example.com:host

/new_resource:path

image/jpegaccept

Mozilla/5.0 …user-agent

HEADERS frame  (Stream 1 )

    :method:  GET
    :scheme:  https
         :host: example.com
         :path: /resource
       accept: image/jpeg
user-agent: Mozilla/5.0 ...

HEADERS frame  (Stream 3 )

:path: /new_resource

implicit

implicit

implicit

implicit

implicit

Request #1 Request #2

Figure 8. HTTP Upgrade mechanism.

GET /page HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: HTTP/2.0
HTTP2-Settings: (SETTINGS payload)

HTTP/1.1 200 OK
Content-length: 243
Content-type: text/html

(... HTTP 1.1 response ...)

          (or)

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: HTTP/2.0

(... HTTP 2.0 response ...)
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aries will also have to be updated to 
support HTTP 2.0, which is a much 
longer labor- and capital-intensive 
process.

HTTP 1.x will be around for at least 
another decade, and most servers 
and clients will have to support both 
1.x and 2.0 standards. As a result, an 
HTTP 2.0-capable client must be able 
to discover whether the server—and 
any and all intermediaries—support 
the HTTP 2.0 protocol when initiat-
ing a new HTTP session. There are two 
cases to consider:

˲˲ Initiating a new (secure) HTTPS 
connection via TLS.

˲˲ Initiating a new (unencrypted) 
HTTP connection.

In the case of a secure HTTPS con-
nection, the new ALPN (Application 
Layer Protocol Negotiation9) extension 
to the TLS protocol allows users to 
negotiate HTTP 2.0 support as part of 
the regular TLS handshake: the client 
sends the list of protocols it supports 
(for example, http/2.0); the server se-
lects one of the advertised protocols 
and confirms its choice by sending the 
protocol name back to the client as 
part of the regular TLS handshake.

Establishing an HTTP 2.0 connec-
tion over a regular, nonencrypted 
channel requires a bit more work. Be-
cause both HTTP 1.0 and HTTP 2.0 run 
on the same port (80), in the absence 
of any other information about the 
server’s support for HTTP 2.0, the cli-
ent will have to use the HTTP Upgrade 
mechanism to negotiate the appropri-
ate protocol, as shown in Figure 8.

Using the Upgrade flow, if the server 
does not support HTTP 2.0, then it can 
immediately respond to the request 
with an HTTP 1.1 response. Alterna-
tively, it can confirm the HTTP 2.0 up-
grade by returning the “101 Switching 
Protocols” response in HTTP 1.1 for-
mat, and then immediately switch to 
HTTP 2.0 and return the response us-
ing the new binary framing protocol. 
In either case, no extra round-trips are 
incurred.

Crystal Gazing
Developing a major revision of a pro-
tocol underlying all Web communica-
tion is a nontrivial task requiring a lot 
of careful thought, experimentation, 
and coordination. As such, crystal gaz-
ing for HTTP 2.0 timelines is danger-

ous business—it will be ready when it 
is ready. Having said that, the HTTP 
Working Group is making rapid prog-
ress. Its past and projected milestones 
are as follows:

˲˲ November 2009—SPDY protocol 
announced by Google.

˲˲ March 2012—call for proposals for 
HTTP 2.0.

˲˲ September 2012—first draft of 
HTTP 2.0.

˲˲ July 2013—first implementation 
draft of HTTP 2.0.

˲˲ April 2014—Working Group last 
call for HTTP 2.0.

˲˲ November 2014—submit HTTP 
2.0 to IESG (Internet Engineering 
Steering Group) as a Proposed Stan-
dard.

SPDY was an experimental protocol 
developed at Google and announced 
in mid-2009, which later formed the 
basis of early HTTP 2.0 drafts. Many 
revisions and improvements later, as 
of late 2013, there is now an imple-
mentation draft of the protocol, and 
interoperability work is in full swing—
recent Interop events featured client 
and server implementations from 
Microsoft Open Technologies, Mozil-
la, Google, Akamai, and other con-
tributors. In short, all signs indicate 
the projected schedule is (for once) 
on track: 2014 should be the year for 
HTTP 2.0.

Making the Web (Even) Faster
With HTTP 2.0 deployed far and wide, 
can we kick back and declare victo-
ry? The Web will be fast, right? Well, 
as with any performance optimiza-
tion, the moment one bottleneck is 
removed, the next one is unlocked. 
There is plenty of room for further op-
timization:

˲˲ HTTP 2.0 eliminates HOL block-
ing at the application layer, but it still 
exists at the transport (TCP) layer. Fur-
ther, now that all of the streams can be 
multiplexed over a single connection, 
tuning congestion control, mitigating 
bufferbloat, and all other TCP optimi-
zations become even more critical.

˲˲ TLS is a critical and largely unop-
timized frontier: we need to reduce 
the number of handshake round-trips, 
upgrade outdated clients to get wider 
adoption, and improve client and serv-
er performance in general.

˲˲ HTTP 2.0 opens up a new world of 

research opportunities for optimal im-
plementations of header-compression 
strategies, prioritization, and flow-con-
trol logic both on the client and server, 
as well as the use of server push.

˲˲ All existing Web applications will 
continue to work over HTTP 2.0—the 
servers will have to be upgraded, but 
otherwise the transport switch is trans-
parent. That is not to say, however, that 
existing and new applications cannot 
be tuned to perform better over HTTP 
2.0 by leveraging new functionality 
such as server push, prioritization, and 
so on. Web developers will have to de-
velop new best practices, and revert 
and unlearn the numerous HTTP 1.1 
workarounds they are using today.

In short, there is a lot more work to 
be done. HTTP 2.0 is a significant mile-
stone that will help make the Web fast-
er, but it is not the end of the journey.	

  Related articles  
  on queue.acm.org

Improving Performance on the Internet 

Tom Leighton
http://queue.acm.org/detail.cfm?id=1466449

High-Performance Websites 

Steve Souders
http://queue.acm.org/detail.cfm?id=1466450

How Fast is Your Website? 
Patrick Meenan
http://queue.acm.org/detail.cfm?id=2446236

References
1.	A kamai. State of the Internet, 2013; http://www.

akamai.com/stateoftheinternet/. 
2.	AT &T. Average speeds for AT&T LaptopConnect 

Devices, 2013; http://www.att.com/esupport/article.
jsp?sid=64785&cv=820&_requestid=733221#fbid
=vttq9CyA2iG and http://developer.att.com/home/
develop/referencesandtutorials/whitepapers/
BestPracticesFor3Gand4GAppDevelopment.pdf.

3.	B elshe, M. More bandwidth doesn’t matter (much), 
2010; https://docs.google.com/a/chromium.org/
viewerr?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfG
RldnxneDoxMzcyOWI1N2I4YzI3NzE2. 

4.	G rigorik, I. High-performance networking in Google 
Chrome, 2013; http://www.igvita.com/posa/high-
performance-networking-in-google-chrome/. 

5.	HTT P Archive; http://www.httparchive.org/. 
6.	 IETF HTTPbis Working Group. Charter, 2012; http://

datatracker.ietf.org/doc/charter-ietf-httpbis/.
7.	 IETF HTTPbis Working Group. HTTP 2.0 specifications, 

2013; http://tools.ietf.org/html/draft-ietf-httpbis-http2. 
8.	 IETF HTTPbis Working Group. HPACK-Header 

Compression for HTTP/2.0, 2013; http://tools.ietf.org/
html/draft-ietf-httpbis-header-compression. 

9.	 IETF Network Working Group. Transport Layer 
Security (TLS) Application Layer Protocol Negotiation 
(ALPN) Extension, 2013; http://tools.ietf.org/html/
draft-friedl-tls-applayerprotoneg.

10.	U pson, L. Google I/O 2013 keynote address, 2010; 
http://www.youtube.com/watch?v=9pmPa_KxsAM. 

Ilya Grigorik is a Web performance engineer and 
developer advocate at Google where he works to make 
the Web faster by building and driving adoption of 
performance best practices at Google and beyond.

© 2013 ACM 0001-0782/13/12 $15.00



Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


