
NMMp: AModel-Driven UMLExtension for the Description

of Navigation Maps for Web Applications

Humberto Cort�es* and Antonio Navarro†

DISIA, Universidad Complutense de Madrid

C/Profesor Jos�e Garc�{a Santesmases, s/n
Madrid 280240, Spain

*hjcortes@estumail.ucm.es
†anavarro@fdi.ucm.es

Received 10 May 2013

Revised 15 August 2013
Accepted 29 January 2014

With the advent of multitier and service-oriented architectures, the presentation tier is more

detached from the rest of the web application than ever. Moreover, complex web applications

can have thousands of linked web pages built using di®erent technologies. As a result, the
description of navigation maps has become more complex in recent years. This paper presents

NMMp, a UML extension that: (i) provides an abstract vision of the navigation structure of the

presentation tier of web applications, independently of architectural details or programming

languages; (ii) can be automatically transformed into UML-WAE class diagrams, which can be
easily integrated with the design of the other tiers of the web application; (iii) encourages the use

of architectural and multitier design patterns; and (iv) has been developed according to OMG

standards, thus facilitating its use with general purpose UML CASE tools in industry.

Keywords: UML pro¯le; meta-object facility; Query/View/Transformation; MDD; Web

engineering.

1. Introduction

The design of user interfaces has become more and more complex in the context

of web applications, with hundreds of web pages linked by thousands of links.

At present, it is not uncommon to have web applications with a mix of static

and dynamic pages. Furthermore, with the integration of di®erent platforms these

dynamic pages can be built using di®erent technologies: J2EE [1], ASPX pages [2],

PHP scripts [3], etc.

The web engineering community has provided navigation maps to deal with the

complexity of the presentation tier of web applications. Navigation maps present a

global view of a web application for an audience [4]. A navigation map describes the

possible sequences of web pages displayed to a user, and is typically part of the

International Journal of Software Engineering

and Knowledge Engineering

Vol. 24, No. 3 (2014) 391–417

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194014500156

391

http://dx.doi.org/10.1142/S0218194014500156


documentation of a web application [5]. At present, many web sites include navi-

gation maps to help users during browsing, which makes their description a key issue

during the development of web applications [6]. Using navigation maps, developers

can obtain a global view of the whole application, which can help them during the

development process. In addition, the presence of navigation maps can help the users

of web sites to ¯nd the information they want much more quickly [7].

At present most web engineering notations provide an integral treatment for the

design of a web application, binding the navigation map structure to the design of

the other tiers. This approach has the advantage of providing an easy way to describe

web applications as a whole, facilitating the generation of running web applications

[8–11].

However, this approach does not take into account the use of well-de¯ned ar-

chitectural design patterns for multitier and SOA architecture, which are widely

used in industry [12–15]. These patterns a®ect the design of every tier and provide

design rules for the de¯nition and interconnection of these tiers.

It seems, therefore, that there are two approaches when designing web applica-

tions: (i) to use a well-known web engineering design notation and, using its speci¯c

CASE tool, generate the web application; and (ii) to use a well-known catalogue of

web architectural patterns and, using a generic CASE tool, generate part of the web

application. In this paper we refer to the ¯rst solution as the notation-based approach

and refer to the second solution as the pattern-based approach.

Looking at the sources of both approaches, it is evident that academy is nearer to

the notation-based approach [8–11, 16], while industry is nearer to the pattern-based

approach [12–15].

However, what is most noticeable in these approaches is their orthogonal devel-

opment. Thus, most notation-based approaches do not mention architectural mul-

titier and SOA patterns. Conversely, multitier and SOA patterns do not take web

engineering notation into account when designing web applications.

We might conceive both approaches at two di®erent levels: notation-based

approaches describe the abstract designs of web applications, while architectural

patterns describe the detailed designs of web applications. However, when web

applications are built at the end, both design and code have to be produced. Con-

sequently: (i) if a notation-based approach is followed, the design is built using a

concrete design notation and no presence of any architectural multitier based on

the SOA pattern is guaranteed; but (ii) if a pattern-based approach is followed, the

most reasonable design notation is UML (most architectural design patterns are

described using UML [12, 14, 15], and these patterns are implemented in the running

application).

Therefore, at the end of the day, although we can consider notation-based and

pattern-based approaches at two di®erent levels, in practice they represent two dif-

ferent philosophies that lead to di®erent developmental processes and applications.

For years, our research group, belonging to academy, has been involved in the

development of design notation for hypermedia and web applications [7, 17, 18]. In

392 H. Cort�es & A. Navarro



addition, in recent years, we have been involved with the design, development and

deployment of the Virtual Campus of the Universidad Complutense de Madrid

[19, 20] an e-learning platform devoted to research and academic tasks at our uni-

versity. As a result of this experience, and notwithstanding our academic origin, we

feel nearer to the pattern-based approach than to the notation-based approach.

Pattern-based design provides a °exible and maintainable approach for the de-

sign of web applications. The division into tiers of a web application allows us to

change one aspect of it (e.g., presentation, logic or integration), minimizing the

e®ects on the other aspects of the application. This maintainability has been tested

in industry for years [12–15], while UML diagrams, drawn with generic CASE tools,

can be used to represent the design of web applications. This element facilitates the

development of design diagrams because UML is a standard notation, often taught

in standard courses [21, 22]. In addition, code maintenance is not linked to any

speci¯c tool.

In any case, we think that the pattern-based approach can take advantage of

speci¯c design notations. In particular, in our opinion, the presentation tier can be a

good tier in which to apply a speci¯c design notation. The presentation tiers of web

applications have thousands of elements (web pages and hyperlinks) that should be

depicted in the most abstract way in order to facilitate their understanding by both

customers and developers. Note that customers cannot validate the usefulness of a

business delegate [12] to hide connection details, but they can and should validate the

navigational structure of the web application. In addition, developers need to know

the interconnections between web pages in a web application in order to implement

them. Therefore, navigation maps are valuable tools for all the stakeholders involved

in the development of web applications.

Following this philosophy, we developed NMM (Navigation Maps Modeling), a

design notation for the description of navigation maps of web applications [7]. This

paper presents NMMp as the evolution of NMM notation in terms of a UML pro¯le

[23] and a set of QVT operational mapping transformations [24] that allow NMMp

abstract diagrams to be automatically transformed into detailed UML Web Appli-

cation Extension (UML-WAE) diagrams [25]. These UML diagrams can be easily

integrated with the design of the other tiers in the web application, using a UML

CASE tool, thus enabling a full model-driven architecture approach.

Therefore, NMMp combines the notation-based and the pattern-based approaches.

Like the notation-based approach, NMMp provides an abstract vision of the navi-

gational structure of the presentation tier of web applications, independently of

architectural details and programming. In line with the pattern-based approach, the

UML-WAE class diagrams automatically generated from the NMMp diagrams use

the presentation tier's design patterns, while other business and integration patterns

can be used in the design of the remaining tiers. In this way, NMMp diagrams are

used as architecture-independent platform-independent models (PIMs) [26], while

the UML WAE diagrams generated are used as architecture-dependent PIMs, which

are easier to translate into platform-speci¯c models (PSMs) [26]. Thus NMMp is

NMMp: A Model-Driven UML Extension 393



envisioned as a complement to plain UML, which has become the de facto standard

for describing the business logic, integration and resource tiers [12, 14, 15].

Because NMMp is a speci¯c notation and also uses and promotes the use of

architectural patterns, it is referred to as a mixed-approach between the notation-

based and pattern-based approaches.

Finally, NMMp has been developed using OMG standards, which facilitates

its use with commercial and open CASE tools in industry. In particular, we have

used the Borland Together CASE tool [27] because of its integrated support for

XMI [28] and QVT operational mappings. The support for XMI and QVT enables

an easy transition from Borland Together to other CASE tools supporting these

standards.

NMMp's predecessor, NMM, was mainly a formal approach that permitted the

de¯nition of browsing semantics [29] for web applications. Thus, NMMmodels can ¯t

reasonably well into the view of hyperdocuments as automata [7, 29]. In this view,

model checking can be used to verify that browsing speci¯cations are met by the

behavior de¯ned by the automaton view of the hyperdocument (the links-automaton).

However: (i) the visual notation attached to the NMM formal de¯nition was not

UML-based and was not related to any other well-known visual notation; (ii) because

it was not based on a proprietary standard, NMM needed a proprietary CASE tool;

and (iii) the transformations to other models had to be performed manually.

Therefore, in practice, and although very well formalized, NMM was not very usable.

NMMp has been designed taking into account its usability, instead of its formal

properties. Thus, whilst in NMMp the most appealing changes seem to be the

changes made in the visual notation, the deepest changes are made in the underlying

formal model.

NMM de¯nes a computing function [7] for an application A as compA:

Anchorc � Input ! Page� AI. The detailed de¯nition of this function is beyond the

scope of this paper, but basically, it takes an anchor able to start a computing process

as well as an input value and returns the target page along with six di®erent sets of

anchors (hidden behind the set AI [7]) that characterize the static and dynamic

anchors always present in this target page or present as a result of the computing

itself. This complex information was necessary to provide formal browsing semantics

for the application. This formal function imposed important restrictions on the visual

diagrams. NMMp, on the other hand, is not so formal and permits the informal

de¯nition of the sets of anchors present in a generated web pages (indeed, there are

almost no restrictions on this aspect). Therefore NMMp diagrams are easily de¯ned

and more intuitive, although they do not have the formal properties that permitted

the de¯nition of NMM browsing semantics. We have given NMM's formal properties

up for NMMp's UML-based characterization, which permits its use in UML CASE

tools and its automatic transition to UML-WAE diagrams using QVT operational

mapping transformations.

Thus, NMMp: (i) introduces some modi¯cations to NMM's underlying model in

order to make it more usable; (ii) develops NMM from a formal-based notation to a

394 H. Cort�es & A. Navarro



UML extension, increasing its applicability; (iii) changes the visual appearance of the

notation; (iv) implements automatic transformations between NMMp and UML

WAE using a commercial CASE tool, thus providing a professional development

environment for industry; and (v) de¯nes notation-based, pattern-based and mixed

approaches for the development of web applications, making NMMp one of the best

representatives of the mixed approach.

In this paper Sec. 2 describes the NMMp pro¯le. Section 3 describes the QVT

operational mapping transformations between NMMp and UML WAE. Section 4

compares NMMp with other approaches and, ¯nally, Sec. 5 presents conclusions and

future work.

2. NMMp Notation

NMMp is described using a UML pro¯le. This section shows both the metamodel of

NMMp and its pro¯le description. NMMp divides the description of navigation maps

into three components: (i) page diagrams, which describe the web pages and their

navigation links; (ii) region diagrams, which describe the regions which make up a

window; and (iii) mixing diagrams, where pages and links in page diagrams are

assigned to regions in region diagrams.

The de¯nition of a speci¯c graphical notation for NMMp according to its meta-

model was considered, instead of the use of a UML pro¯le that extends UML.

However, the UML pro¯le version was chosen because: (i) it allows simpler inte-

gration with other UML diagrams; and (ii) it avoids the need for additional tools that

support the visual aspect of the graphical notation and its integration with a general

purpose CASE tool.

2.1. Page diagrams

In NMMp, as in the case of UML WAE, pages are considered any component that

can be provided by a web server using HTTP requests [25, 30]. In NMMp there are

two types of page, which are represented as stereotyped classes: (i) lasting pages,

which represent static pages (Lasting Page stereotype); and (ii) transient pages,

which represent dynamically generated pages (Transient Page stereotype).

NMMp pages can have anchors. Anchors are navigation devices able to generate

an HTTP request. In NMMp there are three types of anchor, which are represented

as stereotyped classes: (i) retrieval anchors, which permit the retrieval of static pages

(Retrieval Anchor stereotype); (ii) form computing anchors, which represent the

sending of information using forms [31] to computational components that generate

transient pages (Form Computing Anchor stereotype); and (iii) non-form computing

anchors, which represent the invocation of computational components that generate

transient pages (Non Form Computing Anchor stereotype).

NMMp anchors are assigned to NMMp pages using the UML composition rela-

tionship, although they are usually depicted as nested classes of these pages.

NMMp: A Model-Driven UML Extension 395



In NMMp navigation relationships are described as links between anchors and

pages. In NMMp there are two types of link, which are represented as stereotyped

navigated associations: lasting page retrieval (Retrieval Function stereotype); and

(ii) transient page generation by computational devices, e.g. servlets, (Computing

Function stereotype). Figure 1 depicts the MOF metamodel for NMMp page

diagrams.

In order to provide a compact de¯nition of this MOF metamodel, the NMMp

metamodel makes a package merge of UML Core::Constructs [23].

The metamodel de¯ned in Fig. 1 has been represented as a UML pro¯le in order to

extend UML notation. Figure 2 depicts this pro¯le de¯nition using the Borland

Together CASE tool.

Using this pro¯le, NMMp page diagrams can be de¯ned as a UML extension.

Figure 3 depicts an NMMp diagram that describes navigation by the AACV Virtual

Campusa, the latest virtual campus developed by our research group, its design being

an evolution of the UCM Virtual Campus.

Figure 3 depicts a Selector page that gives a user access to his Courses, Login

(after logout), ProfileDetails and Announcements. The page Selector includes

non-form computing anchors (toCourses, closeSession, toProfileDetails and

toAnnouncements) that give access to these pages. The Courses page contains as

many anchors (toCourse), giving access to detailed course information, as the user

Fig. 1. MOF metamodel for NMMp page diagrams. For the sake of conciseness Class and Association

are de¯ned in UML Core::Constructs and merged in the NMMp metamodel.

aAccessible at http://solaris.fdi.ucm.es/ with user demo and key demoKey.

396 H. Cort�es & A. Navarro



Fig. 2. UML pro¯le for NMMp page diagrams as de¯ned in Borland Together.

Fig. 3. NMMp page diagram built with Borland Together. The lasting page Selector has four nested non-

form computing anchors that give access to four transient pages. One of these pages, Courses, has an
unde¯ned number of toCourse anchors which give access to the speci¯c course using the Input attribute of

the computing links userId and courseId, as the ¯gure shows.

NMMp: A Model-Driven UML Extension 397



has courses. As Fig. 3 details, the toCourse anchor includes userId and courseId

input in the computing function that selects the speci¯ed course. Figure 4 depicts a

screenshot of this virtual campus with the pages Selector and Courses.

This is one of the main di®erences between NMM and NMMp. NMM needs a more

complex and formal de¯nition for the anchors de¯ned in a speci¯c page, while NMMp

follows the more informal UML-like notation.

As can be seen in Fig. 3, NMMp page diagrams are abstract diagrams, indepen-

dent of any software architecture and programming language, which depict the pages

and their navigation relationships in the presentation tier of a web application.

2.2. Region diagrams

In NMMp a window can be divided into di®erent regions using a region diagram.

NMMp uses stereotyped classes in order to represent windows and regions. Aggre-

gation relationships between windows and regions are represented using UML

composition relationships.

Figure 5 depicts the MOF metamodel for NMMp region diagrams.

As in the case of page diagrams, in order to provide a compact de¯nition of this

MOF metamodel, the NMMp metamodel makes a package merge of UML Core::

Constructs.

Fig. 4. AACV virtual campus with the Selector page (left) and the user Courses displayed after the
selection of the anchor toCourses, (named Cursos in this ¯gure).

Fig. 5. MOF metamodel for NMMp region and mixing diagrams. For the sake of conciseness Classifier

is de¯ned in UML Core::Constructs and merged in the NMMp metamodel.

398 H. Cort�es & A. Navarro



The metamodel de¯ned in Fig. 5 has been represented as a UML pro¯le in order to

extend UML notation. Figure 6 depicts this pro¯le de¯nition using the Borland

Together CASE tool.

Figure 7 depicts a region diagram that splits the window in two regions: left and

main.

Fig. 6. UML pro¯le for NMMp region diagrams as de¯ned in Borland Together.

Fig. 7. NMMp region diagram describing one window (vc) with two regions (left and main).

NMMp: A Model-Driven UML Extension 399



2.3. Mixing process

In NMMp, page and region diagrams are related in the mixing process. This process

has two components: (i) regions can have assigned default pages; and (ii) anchors,

belonging to pages, can have regions assigned. The ¯rst component identi¯es the

page that a region has to load when its window is loaded. The second component

works as the target attribute of an HTML anchor inside a speci¯c page [31], de¯ning

the frame where a link destination has to be displayed. Note that these are simple

HTML-based semantics, which in NMMp are not restricted to the target/frameset

approach.

Figure 8 shows the enrichment of the diagrams in Figs. 1 and 5 with the elements

needed for the mixing process. In the NMMp pro¯le this mixing process is achieved

using the DefaultPage attribute included in every region (Fig. 6), and the Target

attribute included in every link (Fig. 2).

For example, Fig. 3 depicts how the link that relates the toCourse anchor to the

page Course i has assigned main as a destination region using its attribute Target.

This would depict the page Course i, the destination of the toCourse anchor in the

main region. In Fig. 7 the left region has the Selector page assigned as a value of

its DefaultPage attribute.

3. QVT Transformations

In NMMp QVT operational mapping transformations have been developed in order

to allow NMMp abstract diagrams to be transformed automatically into detailed

UML WAE diagrams.

UML WAE is very useful for depicting the presentation tier of multitier appli-

cations [7, 25]. In UML WAE contents provided by the web server are called pages.

Pages are represented by stereotyped classes. There are di®erent types of page: (i)

static web pages, represented by the stereotype client page; (ii) computational

processes running in the server (e.g. servlets [1]), represented by the stereotype

server page; and (iii) forms, represented by the stereotype form. Navigation rela-

tionships between pages are represented by stereotyped navigated associations.

There are di®erent types of relationship: (i) hyperlinks, represented by the stereotype

link; (ii) data sending between forms and computational processes, represented by

Fig. 8. MOF metamodel for NMMp default page and destination region components. This diagram

enriches the diagrams in Figs. 1 and 5.

400 H. Cort�es & A. Navarro



the stereotype submit; (iii) forwarding of control between computational processes,

represented by the stereotype forward; and (iv) construction of static web pages by

computational processes, represented by the stereotype build.

3.1. Transformation rationale

Following the notation-based approach we have de¯ned NMMp notation for de-

scribing navigation maps for web applications. NMMp diagrams are high-level design

diagrams, very useful to both customers and developers for de¯ning the navigation

structure of a web application. However, NMMp diagrams are very far from the

pattern-based approach, where speci¯c architectural patterns can be de¯ned. Thus,

their translation to UML WAE models, which are closer to architectural patterns, is

very valuable.

NMMp QVT operational mapping transformations are based on NMM trans-

formation rules for automatically translating NMMp diagrams into UML WAE

diagrams, following Model 1 or Model 2 architecture [32]. They are summarized in

Table 1. Because NMM diagrams were not UML-based and the transformations had

to be performed manually, the applicability of NMM was seriously handicapped.

However, in NMMp these rules are implemented as QVT operational mapping

Table 1. Transformation rationale between NMMp and UML WAE for Model 1 and Model 2

architectures.

NMMp element

UML WAE element.

Model 1 UML WAE element. Model 2

lasting page client page client page

transient page client page generated by

server page

client page generated by server page

retrieval anchor ��� ���
non-form computing anchor ��� ���
form computing anchor form page form page
link with source in retrieval

anchor

link between pages link between pages using controller

link with source in non-form

computing anchor

link to a server pageþ
transfersþ hook for
business logic invo-

cation (i.e. façade or

business delegate)

link to output server pages using

controllerþ transfersþ hook for busi-
ness logic invocation (i.e. façade or

business delegate).

link with source in form-
computing anchor

submit to server pageþ
transfersþ hook for

business logic invo-

cation (i.e. façade or

business delegate)

submit to output server pages using
controllerþ transfersþ hook for busi-

ness logic invocation (i.e. façade or

business delegate).

window frameset

region target

aggregation from window to
region

aggregation from frameset to target

default page assignation value assignment to DefaultPage attribute of target

destination region value assignment to Target attribute of corresponding link

NMMp: A Model-Driven UML Extension 401



transformations, enabling automatic transformation and, thus enhancing its appli-

cability to commercial UML CASE tools.

Basically:

— NMMp pages are translated into UML WAE pages.

— NMMp anchors are ignored, because they have no counterpart in UML WAE,

except for form computing anchors, which are translated into form pages.

However, NMMp computing anchors are necessary for the de¯nition of the

computational artifacts involved in their processing.

— Links are translated into navigated association between pages. In Model 1 these

associations are made directly between pages, while in Model 2, these associa-

tions are made via a controller [12]. In addition, computing anchors are related to

business tier devices able to describe business logic invocation. These devices can

be fa�cades and application services [12] for those applications without distributed

business logic, or business delegates [12] for those applications with distributed

business logic, including remote objects or web services. The controller invokes

these components using commands [33], as in the case of the Struts [34] frame-

work. Data is moved between tiers using transfers [12].

— Windows and regions are transformed into framesets and frames.

— Default page assignations are transformed into aggregation relationships be-

tween frames and pages.

— The destination region is transformed into the value assigned to the target at-

tribute of a link.

The following subsections describe the QVT operational mapping transformation

for the rules depicted in Table 1. For the sake of conciseness, only transformations to

Model 2 are included.

3.2. QVT operational mapping transformations

3.2.1. Page diagrams translation

This section describes the QVT Operational Mapping transformations for translat-

ing page diagrams into UML WAE diagrams.

Figure 9 describes the transformation rule for translating NMMp lasting pages

into UML WAE pages. Basically, NMMp lasting pages are translated into UML

WAE client pages.

Figure 10 describes the transformation rule for translating NMMp transient pages

into UML WAE pages. Basically, NMMp transient lasting pages are translated into

UML WAE client pages generated by server pages. In this case, three transforma-

tions are needed.

Figure 11 describes the transformation rule for translatingNMMp retrieval anchors

into UML WAE pages. Basically, NMMp retrieval anchors are translated into UML

WAE connections via the controller. Again, three transformations are needed.

402 H. Cort�es & A. Navarro



Figure 12 is a visual representation of the transformation rule for translating

NMMp computing anchors into UML WAE pages, as depicted in Fig. 13. In this

case, the UML WAE pages are connected via the controller, and the controller

invokes the business façade using commands/actions. In addition, other elements of

the business tier (transfers and applications services) are generated. In this case four

transformations are needed. The ¯rst transformation only applies to form computing

anchors.

3.2.2. Translation of region diagrams

This section describes the QVT Operational Mapping transformations for translat-

ing region diagrams into UML WAE diagrams.

Figure 14 describes the transformation rule for translating windows and regions

into UML WAE pages. Basically, NMMp windows and regions are transformed into

UML WAE framesets and targets. Of course, transformation rules can be provided

for other HTML presentation elements, such as regions built according to the div

tag [31].

3.2.3. Mixing process

Finally, transformations are needed in order to implement the mixing process. Using

these transformations, default pages are assigned to UMLWAE target elements, and

links are assigned to these targets. Figure 15 depicts these transformations.

Fig. 9. Translation for NMMp lasting pages.

NMMp: A Model-Driven UML Extension 403



3.3. Example

Sections 3.1 and 3.2 have introduced and de¯ned QVT transformations for trans-

lating NMMp diagrams into UML diagrams. In this section a simple example is

given.

If we apply the transformations de¯ned in Sec. 3.2 to the NMMp diagram

depicted in Fig. 3, the UML WAE diagram depicted in Fig. 16 is obtained.

Fig. 10. Translation for NMMp transient pages.

404 H. Cort�es & A. Navarro



In this transformation, NMMp pages have been translated into UML WAE

pages, while NMMp computing anchors have been used to create the computational

components of the business tier responsible for their processing. Thus, NMMp

computing anchors hide the actions invoked by the controller, the façade (or

business delegate) responsible for their implementation (using application services)

and the data transfer objects that move data between tiers. For example, the

Courses page in Fig. 3 has been translated into the pages toCourses View, and

Courses, while the toCourse anchor has been translated into the classes toCourse

InputTransfer, toCourse OutputTransfer, toCourseAction, toCourse AS, and

the function toCourse of the façade. Links between anchors and pages in the

NMMp diagram have been translated into links between UML WAE elements using

the Controller.

NMMp retrieval anchor UML WAE pages

«Lasting Page»

P1

«Retrieval Anchor»

a

«Lasting Page»

P2

«Contains»«Contains»

«Retrieval Function»«Retrieval Function»

«Client Page»

P1

«Client Page»

P2

«Server Page»

Controller

«Link»«Link»

«Forward»«Forward»

QVT operational mapping transformations

query uml20::classes::Class::HasBeenConvertedToController() : Boolean
{

if((self.resolve(uml20::classes::Class)->select(class |
class.name = 'Controller'))->any() = true) then
true

else
false

endif
}

mapping uml::together::Model::ToControllerClass() : uml20::classes::Class
{

object
{

name := 'Controller';
stereotypes := OrderedSet{ 'Server Page' };

}
}

mapping uml20::classes::Dependency::ToForwardDependencies(in NMMModel : uml::together::Model) : 
uml20::classes::Dependency

{
init
{

var Supplier := self.supplier.oclAsType(uml20::classes::Class);
result := NMMModel.CreateDependency(Supplier,'Controller', 'Client Page', 'Forward');
}

}

Fig. 11. Translation for NMMp retrieval anchors.

NMMp: A Model-Driven UML Extension 405



As Fig. 16 shows, UML WAE is only applied at the presentation tier. Because a

Model 2 architecture has been chosen, the navigation °ow depicted in the NMMp

diagram in Fig. 3 is made opaque in Fig. 16. In general, the diagram in Fig. 3 is

valuable for both customers and developers, while the diagram in Fig. 16 is valuable

only for developers, who can develop the navigation and computational artifacts

needed to build the web application. It is well worth noting that the NMMp diagram

in Fig. 3 has eleven UML classes (six pages and ¯ve anchors) while the UML WAE

diagram in Fig. 16 has thirty ¯ve classes, demonstrating the semantic power of

NMMp elements.

The diagram in Fig. 16 describes the presentation tier in UML WAE. Because

this diagram and the NMMp diagram in Fig. 3 are UML diagrams, they can be

NMMp computing anchor

UML WAE pages

«Lasting Page»

P1

«Form Computing Anchor»

a

«Transient Page»

P2

«Contains»«Contains»

«Computing Function»«Computing Function»

Fig. 12. Translation for NMMp computing anchors (i). Form computing anchors are graphically depicted,
but the transformation rules a®ect all the types of computing anchors. The translation for non-form

computing anchors is similar but excludes details such as the Form.

406 H. Cort�es & A. Navarro



integrated with other UML diagrams drawn with a general purpose UML CASE

tool (Borland Together in our case). Several multitier patterns are used in

this translation (application controller, transfers, application services) and other

multitier and SOA patterns can be used to describe the remaining tiers in the

application.

In this way, the NMMp approach encourages the use of architectural patterns

for the design of web applications, as industry does, at the same time using navi-

gation maps to increase the abstraction level of the design, as favored by academy.

Thus, a balance between pattern-based and notation-based approaches is achieved in

NMMp.

Fig. 13. Translation for NMMp computing anchors (ii).

NMMp: A Model-Driven UML Extension 407



Finally, Fig. 17 depicts the UML WAE translation for the NMMp region diagram

in Fig. 7.

Regarding the mixing process and the default page assignation, note how in

Fig. 17 the DefaultPage attribute of the target left has the Selector page as

value. Although for the sake of conciseness the destination region assignment

is not depicted in Fig. 16, the value of the Target attribute of the link that

connects the Courses page and the Controller has the value main, as was de¯ned

in Fig. 3.

Fig. 14. Translation for NMMp region diagrams.

408 H. Cort�es & A. Navarro



Fig. 15. Translation for NMMp mixing process.

Fig. 16. UML WAE Model 2 diagram automatically generated from the NMMp page diagram in Fig. 3.

NMMp: A Model-Driven UML Extension 409



4. Related Work

This section analyzes NMMp, comparing it with di®erent design notations. These

notations are grouped in four levels of abstraction:

— Level IV: PSM-based. In this category, design diagrams are platform-speci¯c

models, and they are not derived from platform-independent models (PIMs).

This category includes notations used by tools such as: Oracle ADF [35] and the

web diagrams generated with IBM Rational Software Architect [36]. Note that

IBM Rational Software Architect is a general purpose UML CASE tool. However,

it includes speci¯c design notations for the description of web applications.

— Level III: architecture-dependent PIM-based. In this category PIMs can be de-

¯ned, but these PIMs include speci¯c details of Model 1 or Model 2 architecture.

This category includes notations such as: plain UML [37], and UML WAE [25].

— Level II: PIM-based. In this category architecture-independent PIMs are pro-

vided, but they are translated into architecture-dependent PIM and PSMmodels.

This category includes notations such as: NMMp, OOH4RIA [11], and UWA [9].

Fig. 17. UML WAE diagram automatically generated from the NMMp region diagram in Fig. 7.

410 H. Cort�es & A. Navarro



— Level I: only PIM-based. In this category independent PIMs are provided, but

they are directly translated into code. Therefore, no other PIMs or PSMs are

provided. This category includes notations such as: RUX [16], UWE [10] and

WebML [8].

In Table 2, these notations are analyzed, taking into account ten characteristics:

— Presence of architecture-independent PIMs. This characteristic is very valuable

because it allows an abstract view of the application to be provided, facilitating

user validation [7, 8, 10, 11, 16].

— Presence of additional PIMs and/or PSMs. This characteristic is important

because it provides additional semantics for the abstract PIMs, enhancing the

maintainability of the code by programmers [7, 9, 11].

— Description of other tiers in addition to presentation tier. A multitier web ap-

plication is comprised of several tiers. The more tiers described by an approach,

the more integrated views of the application are provided by the approach, and

the more valuable the approach is considered [8–11].

— Compatibility with explicit use of architectural multitier and SOA patterns. The

use of these patterns enhances the comprehensibility and maintainability of the

applications [12–15]. Therefore, their presence is customary in enterprise appli-

cations that have to be maintained over years.

Table 2. Comparison of NMMp with other approaches.

Abstraction level Approach (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

I. Only PIM-based RUX X û û û X û X û û û
UWE X û X û X X û X X=� û

WebML X û X û X X X=� X X=� û

II. PIM-based NMMp X X X=� X û X X û X X
OOH4RIA X X X X=� X X û X û û

UWA X X X X=� û X û X û û

III. Arch.-dependent

PIM-based

UML WAE û X X=� X û X û û X X
UML û X X X X X=� û û X X

IV. PSM-based IBM RSA û û X X=� X=� X û X û X=�
Oracle ADF û û X X=� X X û X û û

(i) Presence of architecture-independent PIMs.
(ii) Presence of additional PIMS and/or PSMs.

(iii) Description of other tiers in addition to presentation tier.

(iv) Compatibility with explicit use of architectural multitier and SOA patterns.

(v) Description of RIA user interface widgets.
(vi) Description of navigation °ow.

(vii) Hiding of computational artifacts.

(viii) Generation of running application.
(ix) Supported by general purpose UML CASE tool.

(x) Code maintenance independent of speci¯c development environments.

NMMp: A Model-Driven UML Extension 411



— Description of Rich Internet Application (RIA) user interface widgets. RIA user

interface widgets permit enhanced interactions for users. Therefore, they are

increasingly popular among developers and designers [8, 10, 11, 16].

— Description of navigation °ow. Navigation °ow helps customers, designers and

programmers to use, design and build more usable web applications, making it an

important component of design notations [7, 8, 10, 11, 16].

— Hiding of computational artifacts. The explicit presence of computational arti-

facts (e.g. commands of an application controller [12]) hinders the compre-

hensibility of the navigation °ow by customers and designers [7]. Therefore, their

exclusion enhances the comprehensibility of web notations.

— Generation of running application. Some approaches include tools that permit

the generation of the running application, mixing design diagrams and code

components. This gives added value to design diagram validation [8, 10, 11, 35,

36], but links code maintenance to a speci¯c tool.

— Support by a general purpose UML CASE tool. Every notation can build its own

CASE tool. However, the use of a general purpose CASE tool facilitates the use of

the notation, unlinking maintenance of the notation from a particular tool [7, 10].

— Code maintenance independent of speci¯c development environments. The

binding of code maintenance to a speci¯c development environment is a problem,

as it requires the code to be linked to an individual tool [38]. Maintenance of code

built without design diagrams is a very di±cult task [38, 39]. However, the

presence of abstract design diagrams which are more application-oriented than

code-oriented can make both the design and maintenance processes di±cult [40].

Therefore, dependence on a speci¯c tool which provides a direct translation from

abstract PIMs to code should be avoided, if we wish to make code maintenance

independent of particular tools.

Level I approaches are abstract notations that, with the exception of RUX, cover

all the aspects of web applications. However the abstraction of their design diagrams

hinders the direct implementation of these diagrams. Therefore, the approaches in-

clude speci¯c development environments that permit code generation, binding its

maintenance to the generation tool of the development environment. UWE and

WebML can be used with general purpose UML CASE tools but this greatly limits

their capabilities for application generation. In addition, the use of multitier and

SOA architectural patterns is not present in these approaches. Thus, for example, in

WebML, data movement between layers is accomplished using XML elements [41]

instead of transfer objects. Level I approaches are the prime example of notation-

based approaches for the development of web applications.

Level II approaches try to translate abstract PIMs into more speci¯c PIMs and

PSMs. In OOH4RIA the translation to PSMs a®ects only diagrams of the presen-

tation tier. Therefore, navigation diagrams still remain very abstract, being directly

transformed into code. In this way, the maintenance drawbacks of the Level I ap-

proach are still present. In UWA every abstract PIM is translated into a PSM but, as

412 H. Cort�es & A. Navarro



in the case of OOH4RIA, the use of architectural multitier and SOA architectural

patterns is not described or encouraged and is, therefore, not guaranteed in these

approaches (although OOH4RIA mentions some of them in an example). In addition,

both approaches are linked to speci¯c development environments. NMMp PIMs only

describe elements of the presentation tier that are translated into architecture-

speci¯c UML WAE PIM diagrams that include several architectural patterns. These

diagrams can be integrated with plain UML diagrams that describe the design of the

other tiers. In this way, any pattern of business, integration and resource tiers can be

described in UML and integrated with UML WAE diagrams generated from NMMp

notation. In addition, NMMp can be used in a general purpose UML CASE tool with

support for QVT transformations, such as Borland Together. Thus, NMMp tries to

¯nd a tradeo® between notation-based and pattern-based development, which can be

de¯ned as a mixed approach. The main drawback is that NMMp does not include the

description of RIA widgets. They have not been initially included because their

presence forces the presence of more speci¯c web clients, provoking possible com-

patibility problems between browsers, as in the case of other client-based technolo-

gies [12, 14]. However, the inclusion of RIA widgets in NMMp is currently planned.

Finally, in NMMp, code generation is restricted to that provided by the general

purpose UML CASE tool, or the transformations provided by the user, which do not

usually generate running applications.

Level III approaches provide architecture-dependent PIMs. Thus the UML WAE

diagrams lack abstraction [8], becoming very complex for Model 2 applications [7].

However, UMLWAE diagrams can be used in combination with NMMp diagrams to

increase their level of abstraction, at the same time depicting the architectural details

needed by programmers. It is well worth mentioning that, in a multitier design, UML

WAE diagrams are only used for the presentation tier [7]. Plain UML can also be

used to describe the presentation layer but in this case navigation relationships have

to be provided, using component or artifact diagrams [37, 42], which hinders the

integrated view of the design of the web application, represented in terms of physical

elements (i.e. components or artifacts) for the presentation tiers, and logical elements

(i.e. classes) for the remaining tiers. As UML diagrams include architectural multitier

and SOA patterns, the use of plain UML is, nowadays, the best exponent of the

pattern-based development of web applications [12, 14, 15]. As in the case of NMMp,

code generation is restricted to that provided by the general purpose UML CASE

tool, or the transformations provided by the user, which usually do not generate

running applications.

Finally, Level IV approaches are dependent on speci¯c technologies. Thus IBM

RSA provides design diagrams to build J2EE and Struts applications. Oracle ADF

provides a complete visual environment for the building of J2EE applications, using

almost every technology for this platform. However, IBM RSA and Oracle ADF

diagrams are platform-speci¯c, and very tied to J2EE technology. (Note that, as was

previously mentioned, IBM Rational Software Architect is a general purpose UML

CASE tool. However, it includes speci¯c design notations for the description of web

NMMp: A Model-Driven UML Extension 413



applications.) In this sense they are nearer to visual programming environments than

to CASE tools. In addition, the inclusion of multitier and SOA patterns is restricted

to those supported by the tools.

5. Conclusions and Future Work

The design of web applications is a complex issue, as evidenced by the presence of

various notations and other tools for their design and development.

As a general rule there are powerful approaches that cover every aspect of web

applications, using speci¯c abstract design notations. These notations are not code-

oriented, but code is obtained using a speci¯c tool. In this way, application main-

tenance is linked to a speci¯c notation and tool. Normally, no architectural design

patterns are depicted or encouraged in these approaches, which have been called

notation-based in this paper.

On the other hand, there are commercial tools, nearer to visual programming

environments for speci¯c languages, which use visual diagrams to con¯gure the code

for web applications, although in this case the approach is very far from abstract

design notations. In addition, in most cases, application maintenance is linked to a

speci¯c tool, and the application of architectural patterns is subordinated to their

inclusion in the tool.

There are two intermediate approaches. One is based on the use of plain UML and

architectural multitier and SOA patterns for the development of web applications.

This approach has been called pattern-based in this paper. However, plain UML is not

enough to provide a detailed description of the presentation tier of web applications.

The other intermediate approaches use abstract notations, and convert them into

PSMs to facilitate code generation. As the PSMs are de¯ned and code is generated

using open transformations, code maintenance is not linked to any tool. Thus, if the

approach allows the inclusion of architectural multitier and SOA patterns, software

maintenance is enhanced. NMMp falls into this category, which this paper calls the

mixed approach.

Although each approach has its advantages and drawbacks, the NMMp approach

can claim to be a balanced notation for the representation of navigation maps for web

applications.

According to our experience of designing and building web applications, UML is

enough to describe the design of the business, integration and resource tiers of web

applications. Therefore, only a complement for the presentation tier of web appli-

cations is needed. UML WAE could be used, but its design diagrams, although very

valuable for programmers because they include architectural details, can become

very complex for representing the navigation structure of web applications.

NMMp notation is used to complement UML WAE diagrams for representing

navigation maps, abstracting their nature, and making them suitable for validation

by customers. NMMp diagrams are abstract, independent of architectural details or

programming languages, and are thus valuable for both customers and developers. In

414 H. Cort�es & A. Navarro



addition, NMMp diagrams and their UMLWAE translations are intended to be used

in the presentation tier, complementing plain UML diagrams for the other tiers.

Generated UML WAE diagrams include architectural patterns, and plain UML dia-

grams can include the remaining multitier and SOA patterns. This allows an inte-

grated use ofNMMpandUMLnotation, using andpromoting architectural patterns in

every tier. Furthermore, because NMMp is a UML-based notation, the diagrams of all

tiers of web applications can be produced using a general purpose UML CASE tool

with support for XMI and QVT transformations. Finally, the code is obtained using

transformation rules, explicitly de¯ned by the user, or included in a general purpose

CASE tool. Thus, although the generated code is not as complete as that generated by

notation-based tools, it ismoremaintainable, and not tied to a speci¯c notation or tool.

However, NMMp does not have RIA capabilities and it does not provide the

running application, as most notation-based approaches do. RIA capabilities could

be included, as in other design notations, but the client-nature of RIA interfaces has

curbed their inclusion in NMMp up to now. In any case, NMMp notation focuses on

navigation maps, and a combination of RUX and NMMp could be used for a detailed

description of the presentation widgets of RIA applications, as in [43].

Regarding running applications, NMMp considers design diagrams as abstract

representations of code, not as visual representations of code [42, 44]. Therefore, in

the NMMp approach, code can be generated, but not the whole application.

Future work includes the completion of QVT transformations with OCL con-

straints [45] to ensure the syntactic validity of NMMp diagrams, and the inclusion of

RIA widgets in NMMp design primitives. In this connection, the integration of RUX

and NMMp should be analyzed. We are also working on the inclusion of security roles

and permissions attached to pages, in order to include the de¯nition of security

constraints in NMMp. Finally, a mixed approach is currently being applied to gen-

erating additional components in other tiers of web applications. In this work, the

con¯guration of the designs with a wide range of architectural patterns is being

considered.

Acknowledgments

Ministerio de Ciencia e Innovación (project AACV TIN2009-14317-C03-01), and

Universidad Complutense de Madrid (group 921340) have supported this work.

References

1. J. L. Weaver, K. Mukhar and J. P. Crume, Beginning J2EE 1.4: From Novice to Pro-
fessional (Apress. 2004).

2. I. Spaanjaars, Beginning ASP.NET 4 in C# and VB (Wrox, 2010).
3. E. Lecky-Thompson and S. D. Nowicki, Professional PHP (Wrox, 2009).
4. S. M. Abrah�ao, L. Olsina and O. Pastor, Towards the quality evaluation of functional

aspects of operative web applications, in Proc. IWCMQ, 2002.

NMMp: A Model-Driven UML Extension 415



5. M. Han and C. Hofmeister, Separation of navigation routing code in J2EE web appli-
cations, in Proc. ICWE 2005, Sydney, Australia, 2005.

6. A. Navarro, J. L. Sierra, A. Fern�andez-Valmayor and B. Fern�andez-Manjón, Concep-
tualization of navigational maps for web applications, in Proc. MDWE 2005, Sydney,
Australia, 2005.

7. A. Navarro, A. Fern�andez-Valmayor, B. Fern�andez-Manjón and J. L. Sierra, Charac-
terizing navigation maps for web applications with the NMM approach, Science of
Computer Programming 71(1) (2008) 1–16.

8. A. Bozzon, S. Comai, P. Fraternali and G. To®etti, Conceptual modeling and code
generation for rich internet applications, in Proc. ICWE 2006, 2006.

9. D. Distante, P. Pedone, G. Rossi and G. Canfora, Model-driven development of web
applications with UWA, MVC and JavaServer faces, in Proc. ICWE 2007, 2007.

10. N. Koch, A. Kraus, C. Cachero and S. Meli�a, Integration of business processes in web
application models, Journal of Web Engineering 3(1) (2004) 22–49.

11. S. Meli�a, J. Gómez, S. P�erez, and O. Díaz, Architectural and technological variability in
rich internet applications, IEEE Internet Computing 14(3) (2010) 24–32.

12. D. Alur, J. Crupi andD.Malks,Core J2EEPatterns: Best Practices andDesign Strategies.
2nd ed. (Prentice Hall/Sun Microsystems Press, 2003).

13. T. Erl, SOA Design Patterns (Prentice Hall PTR, 2009).
14. M. Fowler,Patterns of Enterprise ApplicationArchitecture (Addison-Wesley Professional,

2002).
15. P. B. Monday, Web Service Patterns: Java Edition (Apress, 2003).
16. M. Linaje, J. C. Preciado and F. S�anchez-Figueroa, Engineering rich internet applica-

tion user interfaces over legacy web models, IEEE Internet Computing 11(6) (2007)
53–59.

17. A. Navarro, B. Fern�andez-Manjón, A. Fern�andez-Valmayor and J. L. Sierra, Formal-
driven conceptualization and prototyping of hypermedia applications, in Proc. FASE
2002, 2002.

18. A. Navarro, A. Fern�andez-Valmayor, B. Fern�andez-Manjón and J. L. Sierra, Concep-
tualization, prototyping and process of hypermedia applications, International Journal of
Software Engineering and Knowledge Engineering 14(6) (2004) 565–602.

19. A. Navarro and A. Fern�andez-Valmayor, Conceptualization of hybrid web sites, Internet
Research 17(2) (2007) 207–228.

20. A. Navarro, J. Cristobal, C. Fern�andez-Chamizo and A. Fern�andez-Valmayor, Archi-
tecture of a multiplatform virtual campus, Software: Practice and Experience 42(10)
(2012) 1229–1246.

21. ACM/IEEE Computer Society, Software Engineering 2004 (http://sites.computer.org/
ccse/, 2004).

22. IEEE Computer Society, Guide to the Software Engineering Body of Knowledge 2004
Version (http://www.computer.org/portal/web/swebok, 2004).

23. OMG, UML Infrastructure Speci¯cation Version 2.3 (http://www.omg.org/spec/UML/
2.3/, 2010).

24. OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.0 (http://
www.omg.org/spec/QVT/1.0/, 2008).

25. J. Conallen, Building Web Applications with UML, 2nd ed. (Addison-Wesley Professional,
2002).

26. OMG, MDA Guide Version 1.0.1 (http://www.omg.org/cgi-bin/doc?omg/03–06–01,
2003).

27. Borland, Together, (http://www.borland.com/us/products/together/, 2013).
28. OMG, XML Metadata Interchange (XMI) (http://www.omg.org/spec/XMI/, 2007).

416 H. Cort�es & A. Navarro



29. P. D. Stotts, R. Furuta and C. Ruiz, Hyperdocuments as automata: Veri¯cation of trace-
based browsing properties by model checking, ACM Transactions on Information Sys-
tems 16 (1998) 1–30.

30. L. Shklar and R. Rosen, Web Application Architecture: Principles, Protocols and Prac-
tices (Wiley, 2009).

31. W3C, HTML 4.01 Speci¯cation (http://www.w3.org/TR/html4/, 1999).
32. S. Brown et al., Professional JSP, 2nd ed. (Wrox, 2001).
33. E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software (Addison-Wesley Professional, 1994).
34. D. Brown, C. M. Davis and S. Stanlinck, Struts 2 in Action (Manning Publications, 2008).
35. Oracle, Application Development Framework (ADF) (http://www.oracle.com/technet-

work/developer-tools/adf/overview/index.html, 2013).
36. IBM, Rational Software Architect (http://www.ibm.com/developerworks/rational/pro-

ducts/rsa/, 2013).
37. J. Arlow and I. Neustadt, UML 2 and the Uni¯ed Process: Practical Object-Oriented

Analysis and Design, 2nd ed. (Addison-Wesley Professional, 2005).
38. R. S. Pressman, Software Engineering: A Practitioner's Approach, 7th ed. (McGraw-Hill,

2009).
39. I. Sommerville, Software Engineering, 9th ed. (Addison-Wesley. 2010).
40. C. Barry and M. Lang, A survey of multimedia and web development techniques and

methodology usage, IEEE Multimedia 8(3) (2001) 52–60.
41. W3C, Extensible Markup Language (XML), 5th ed. (http://www.w3.org/TR/2008/

REC-xml-20081126/, 2008).
42. G. Booch, R. A. Maksimchuck, M. W. Engel and B. J. Young, Object-Oriented Analysis

and Design with Applications, 3rd ed. (Addison-Wesley Professional, 2007).
43. J. C. Preciado, M. Linaje, R. Morales-Chaparro, F. S�anchez-Figueroa, G. Zhang, C.

Kroiss and N. Koch, Designing rich internet applications combining UWE and RUX-
method, in Proc. ICWE 2008, 2008.

44. J. Rumbaugh, I. Jacobson and G. Booch, Uni¯ed Modeling Language Reference Manual
(Addison-Wesley Professional, 2004).

45. OMG, Object Constraint Language, Version 2.2 (http://www.omg.org/spec/OCL/,
2010).

NMMp: A Model-Driven UML Extension 417



Copyright of International Journal of Software Engineering & Knowledge Engineering is the
property of World Scientific Publishing Company and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.


	NMMp: A Model-Driven UML Extension for the Description of Navigation Maps for Web Applications
	1. Introduction
	2. NMMp Notation
	2.1. Page diagrams
	2.2. Region diagrams
	2.3. Mixing process

	3. QVT Transformations
	3.1. Transformation rationale
	3.2. QVT operational mapping transformations
	3.2.1. Page diagrams translation
	3.2.2. Translation of region diagrams
	3.2.3. Mixing process

	3.3. Example

	4. Related Work
	5. Conclusions and Future Work
	Acknowledgments
	References


