
Decision Sciences
Volume 45 Number 3
June 2014

© 2014 Decision Sciences Institute

Capacity Planning and Allocation
for Web-Based Applications

Srimathy Mohan†

Department of Supply Chain Management, W.P. Carey School of Business, Arizona State
University, PO Box 874706, Tempe, AZ 25857-4706, e-mail: Srimathy@asu.edu

Ferdous M. Alam
Supply Chain Business Intelligence, Nestle USA Inc, 800 North Brand Boulevard (5A24),
Glendale, CA 91203, e-mail: Ferdous.Alam@us.nestle.com

John W. Fowler, Mohan Gopalakrishnan, and Antonios Printezis
Department of Supply Chain Management, W.P. Carey School of Business, Arizona State
University, PO Box 874706, Tempe, AZ 25857-4706, e-mail: John.Fowler@asu.edu,
Mohan@asu.edu, Printezis@asu.edu

ABSTRACT

Motivated by the technology division of a financial services firm, we study the problem
of capacity planning and allocation for Web-based applications. The steady growth in
Web traffic has affected the quality of service (QoS) as measured by response time
(RT), for numerous e-businesses. In addition, the lack of understanding of system
interactions and availability of proper planning tools has impeded effective capacity
management. Managers typically make decisions to add server capacity on an ad hoc
basis when systems reach critical response levels. Very often this turns out to be too
late and results in extremely long response times and the system crashes. We present
an analytical model to understand system interactions with the goal of making better
server capacity decisions based on the results. The model studies the relationships and
important interactions between the various components of a Web-based application
using a continuous time Markov chain embedded in a queuing network as the basic
framework. We use several structured aggregation schemes to appropriately represent
a complex system, and demonstrate how the model can be used to quickly predict
system performance, which facilitates effective capacity allocation decision making.
Using simulation as a benchmark, we show that our model produces results within 5%
accuracy at a fraction of the time of simulation, even at high traffic intensities. This
knowledge helps managers quickly analyze the performance of the system and better
plan server capacity to maintain desirable levels of QoS. We also demonstrate how to
utilize a combination of dedicated and shared resources to achieve QoS using fewer
servers. [Submitted: October 21, 2011. Revised: February 26, 2013. Accepted: March
13, 2013.]

†Corresponding author.

535

536 Capacity Planning for Web-Based Applications

Subject Areas: Capacity Planning and Allocation, Markov Decision Pro-
cess, Quality of Service, Queuing Theory, Services, and Web-Based
Applications.

INTRODUCTION

In this article, we address the capacity planning and allocation decision that a
manager of a Web-based application system has to face on a daily basis. Our
study was motivated by the capacity and performance management problem in the
technology division of a Fortune 100 financial services firm. A typical Web-based
application system consists of Web servers, application servers, various external
servers (e.g., databases and mainframe computers), and Web-application logic
that controls the flow and sequence of customer requests through all the elements
of the system. The performance of the system varies significantly based on the
architecture, application logic, and capacity. The application server is central to
any Web-based application as it serves as the traffic controller and controls the flow
of information between the end-user and across the several tiers in the network.

An important decision that a system manager faces is determining and main-
taining the balance between incoming demand for services and application server
configuration. Managers have to maintain sufficient server capacity to guarantee
a desired quality of service (QoS). QoS is measured by response time (RT) or
the time it takes to respond to user requests. As demand increases, QoS deterio-
rates if additional capacity is not added. Due to the high performance expectations
associated with online services, it is important to have the ability to anticipate per-
formance degradation and quickly react to changing conditions in order to ensure
QoS. In the real-world application that we studied, managers added capacity on an
ad hoc basis without clearly understanding the resulting effect on RT. Also, due
to the lack of a clear understanding of the relationship between RT and capacity
levels, it was difficult to anticipate the rate of deterioration in QoS as demand
increased. As a result, the systems would reach near crash situations very rapidly
and capacity additions at that point yielded the desired results very slowly.

In most computers systems, the relationship between server capacity and RT
is nonlinear due to underlying system interactions and the effects get magnified
under high traffic conditions. Capacity planning and allocation requires a thor-
ough understanding of system interactions and performance in order to meet and
maintain satisfactory customer service, and to minimize the operating and capital
costs. It is typically feasible to measure the performance of an existing system for
a given configuration and traffic load. However, it is quite challenging to predict
the performance of new systems in planning stages or even existing systems under
highly varying loads. Due to a lack of good analytical approaches to capturing the
capacity footprint on the application servers, managers relied on knowledge from
past crash situations and tend to overestimate server capacity, thus increasing op-
erating costs. Hence, managers constantly are faced with the conflicting objectives
of meeting customer expectations in terms of QoS and keeping IT costs reasonable
and under control (Almeida & Menascé, 2002b).

Mohan et al. 537

This problem is not unique to the financial services firm that we studied, but
is prevalent in most Web-based applications. The constantly increasing use of the
internet for personal and business activities will only aggravate this problem for
managers of Web-based applications. For example, in the United States, online
shopping between November 1 and December 31 in 2012 increased by 14% com-
pared to the same time in 2010 and resulted in 42.3 billion dollars in sales (Lipsman,
2013). This directly translates to capacity management issues for managers han-
dling the e-commerce applications for these businesses. Another application that
is bound to increase the need for effective server capacity planning and allocation
is electronic health records (EHRs). The American Recovery and Reinvestment
Act of 2009 (ARRA) and the health care bill passed in 2010 in the United States
have provided incentives and mandates for the “meaningful use” of health care
information technology (HIT) in improving the quality and cost effectiveness of
care. This includes the implementation of EHRs and computerized physician order
entry systems as critical building blocks for hospitals to avail themselves of incen-
tives and avoid penalties. This is increasing the growth of electronic traffic in the
Web-based HITs, which will impact storage and server capacities in a significant
manner. Hence, it is critical for managers to understand system behavior and plan
and allocate server capacity based on this understanding.

Application servers are the central element of any Web-based system. Each
application server contains a limited number of channels that can be used by
incoming requests. While customer requests are processed in multiple stages and
routed through the application server, the application server channel serving an
arriving request is typically “locked” and is not available for other arriving requests.
When all channels are being used, the application server is completely busy and
cannot respond to other incoming requests. For example, when a customer accesses
online banking services to check an account balance, the request is first routed
to an application server through a Web server. The application server collects
the username and password information and sends the request to an external
security server to authenticate the user. During authentication, the application
server channel that handles the request is “locked” and cannot be used for other
arriving requests. When authentication approval is received, the application server
sends the account balance request to an external database server. When account
balance information is received, it is sent back to the user and the application
server channel is released. In this example, the first stage processing is completed
at the application server when it collects information from the user. The second
stage consists of two services completed by the security server and the database
server. While the second part of the service is being completed at one or more
external servers, the application server channel that handles that request remains
locked and cannot be used to serve another customer request. We refer to this
as “resource locking.” Resource locking is a very important phenomenon that
significantly complicates the interactions among servers and has to be considered
explicitly during performance analysis and capacity planning.

An increase in electronic traffic leads to higher traffic intensity at the appli-
cation server as well as the external servers. Higher traffic intensity at the external
servers results in application server channels remaining locked longer and even-
tually leads to servers crashing. As a result, service levels start deteriorating and

538 Capacity Planning for Web-Based Applications

potential revenue could be impacted until the problem is fixed. To address this,
Bucholtz and Wright (2001) discuss “hot servers” that could provision capacity on
the fly. These servers contain a selection of critical applications that are loaded and
can be brought online within a very short time. However, Web administrators and
managers still need a model or an approach that can predict system performance
under various loads so as to help find the “right timing” to bring hot servers online.
This research develops an analytical model of a Web-based application system to
measure RTs and to develop insights for performance and capacity management.
The objective is to develop a model that can predict performance quickly enough
that it can be used as a process monitoring tool. The results from the model at
frequent intervals can help identify increasing trends in RTs and signal the need to
bring additional capacity online. The concept is similar to using a quality control
chart to monitor processes and take action when the process tends toward being
out of control. Specifically, we answer the following questions:

• How many application servers are necessary to maintain a predetermined
service quality given a certain traffic load?

• With an increase in demand, when should additional application servers
be installed in order to maintain the same level of service quality?

• What is the impact of resource locking on QoS and required server ca-
pacity? How would capacity requirements change if we ignored resource
locking during the planning stages?

• Given competing applications, where should hot servers be utilized to
maximize QoS?

Answers to these questions will provide managers the information required
to make informed decisions about server capacity additions and allocations. We
use a continuous time Markov chain (CTMC) embedded in a queuing network to
model and analyze the system. The CTMC model captures many of the real-world
characteristics while maintaining prudence, resulting in computational efficiency.
While a simulation model can be used to answer the same questions, these models
take a long time to reach steady state and cannot be used as an aid for close-
to-real-time adaptive capacity management. In this study, we make the following
contributions.

• We have developed an analytical model of the two-tier architecture of
a Web-based application system that includes resource locking directly.
The model aids in performance measurement as well as capacity planning
and allocation.

• Experimentation shows that our model produces results comparable to
simulation at a fraction of the time. Experimentation also helped identify
that the application server is the bottleneck tier when compared to the
external servers.

• Our analyses indicate that ignoring resource locking leads to heavy
overestimation of server requirements. This leads to unused capacity
and tied up capital in real-world applications.

Mohan et al. 539

• Server capacity and QoS can be effectively managed using quantitative
tools that produce quick, reliable results and flexible servers that can be
shared across applications.

The rest of the article is organized as follows. First, we present an overview
of the related literature and identify the gap in the literature addressed by this
research. We next provide a detailed description of our modeling approach. The
following section presents results, validates our model, and discusses the manage-
rial implications. The final section concludes with directions for future research.

LITERATURE REVIEW

There are two classes of studies on performance modeling and capacity planning
for Web services. The first models the Web server performance at a high level and
is useful for identifying performance trade-offs and making higher level server siz-
ing, additions, and allocations. The second class of models captures the low-level
details of the Hypertext Transfer Protocol (HTTP) and Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) protocols and software components. The second
class of studies generally tends to include system interactions to a greater extent
than the first class of models. In this section, we summarize some of the relevant
research in both classes of models and identify the gaps in literature addressed by
our research.

The first class of models (Menascé, 2002; Cao, Anderson, Nyberg, &
Kihl, 2003; Liu, Heo, Sha, & Zhu, 2006) describes Web-based applications as a
single-tier architecture. The Web/application server is modeled as an M/G/1 queue
and all of the downstream processing is combined into the service time of this
queue. Almeida and Menascé (2002a) present a general methodology for capacity
planning for Web services. The authors highlight the fact that capacity planning
techniques rely very heavily on accurate performance prediction. Cao et al. (2003)
use an M/G/1 queuing model with processor sharing service discipline to model a
Web server. They derive closed-form expressions for average RT, throughput time,
and blocking probability, and test their model against an experimental setup. Liu et
al. (2006) also use an M/G/1 processor sharing queue to predict performance, and
use an online adaptive feedback loop that enforces admission control to ensure QoS.

These single-tier architecture models do not entirely capture the effects of
downstream congestion on Web/application server capacity because resource lock-
ing is not addressed in this stream of research. However, the use of a general
distribution to approximate the cumulative service time and processor sharing ser-
vice discipline are important contributions. The second class of models that we
summarize later, attempts to address the concept of resource locking directly and
to address performance modeling and capacity planning at a lower level.

Resource locking is similar to blocking, but is more restrictive. Blocking
of an upstream resource occurs when the downstream queue is full. However, a
resource can be locked even if the downstream queue is empty. Resource locking
occurs when the upstream resource is waiting for a response from a downstream
resource. In the case of multiple upstream servers, they all become blocked simulta-
neously. Onvural (1990), Perros (1994), and Balsamo, Persone, and Onruval (2001)

540 Capacity Planning for Web-Based Applications

present works that study queuing networks with blocking and have proposed exact
solution techniques for very simple and special cases, and several approximate so-
lution techniques for cyclic queuing networks. Approximate analysis for queuing
networks with simultaneous resource possession (entities can hold two resources
simultaneously) has been studied by Jacobson and Lazowska (1982) and Freund
and Bexfield (1983). In both studies, the second or downstream resource is used
only by one class of customers. The models cannot be directly extended to include
secondary subsystems that also receive external customers from other sources.

Layered queuing networks (LQN) and stochastic rendezvous networks
(SRVN) have been used to model software architecture systems with multiple
layers of servers (Woodside, 1989; Woodside, Neilson, Petriu, & Majumdar,
1995; Neilson, Woodside, Petriu, & Majumdar, 1995; Rolia & Sevcik, 1995).
Rolia and Sevcik (1995) have used LQN and have developed the method of layers
(MOL) to estimate the performance of distributed applications. Omari, Franks,
Woodside, and Pan (2005) have developed a solution procedure for LQN with
replicated subsystems to model large client–server systems with several identical
subsystems. Omari, Franks, Woodside, and Pan (2006) extended this methodology
to consider parallel subsystems in the network. However, none of these consider
resource locking.

Reeser and Hariharan (2000, 2002) present an analytical model for Web
server performance evaluation. They do consider resource locking, but the down-
stream resources or external servers receive entities only from the upstream re-
source (application server). Our model allows the downstream resources to process
arrivals from the application servers as well as other sources in the network. Ur-
gaonkar, Pacifici, Shenoy, Spreitzer, and Tantawi (2005) have presented a model
for multilayer internet services. However, the authors acknowledge not modeling
two critical issues that affect performance, namely, multiresource capture at a layer
and resources held simultaneously at multiple layers. The latter is the focus of our
study that we define as “resource locking.” Ramesh and Perros (2000a, 2000b)
have presented a model for distributed software systems that considers client–
server communication. They consider a mix of synchronous (client gets locked)
and asynchronous (client does not get locked) messages when a client commu-
nicates with a downstream server. The authors present a method to estimate RTs
when there are no asynchronous messages. Then they extend their method to ac-
commodate for the asynchronous messages using a service reduction technique.
Comparison with results from equivalent simulation models shows that the method
produces good results (average deviation up to 10%) for traffic intensity up to 70%.
The authors indicate that the accuracy of their method would decrease considerably
at higher traffic intensities. Also, the model presented can only calculate aggregate
RTs for synchronous and asynchronous messages. Moreover, the authors consider
servers of unit capacity and no external entities, and communication between the
servers can occur only if they are located on adjacent layers. Reeser and Hariha-
ran (2000, 2002), 2005, Urgaonkar et al. (2005), and Ramesh and Perros (2000a,
2000b) consider systems with Poisson arrivals, exponential service times, and
first-come, first-serve (FCFS) service discipline.

Mohan, Printezis, and Alam (2009) have proposed a Markovian model for a
very simple Web-based application. They consider a system with one application
server, one external server, and a single service step for arriving entities. Their

Mohan et al. 541

model allows locking entities from the application server (referred to as type-1
entities) and nonlocking entities from other external sources (referred to as type-2
entities) to be processed at the external server. They explain why they used a direct
modeling approach as opposed to standard queuing models. If the application server
was approximated as a G/G/c queuing system, the total service time of entities
would be the sum of the service time in the application server, the waiting time in
the external server queues, and the service time in the external servers. However,
estimating the mean and variance of the waiting time in the external queues is
complicated due to resource locking. They also show that because of resource
locking the waiting time of type-1 and type-2 entities in the external queues are
not identical. Real-world Web-based application systems are significantly more
complex, with several application and external servers, and service consisting of
several steps and therefore, the Mohan et al. (2009) model cannot be used to
evaluate the performance of such systems as is.

In this study, we use the basic model proposed by Mohan et al. (2009) as a
building block for modeling a more complex and realistic Web-based application
system that can estimate RT accurately and quickly for a wide range of traffic in-
tensities and system configurations. Our model is similar to the first class of models
in that we address a higher level performance prediction and capacity planning and
allocation problem. However, we address the important system interactions such as
resource locking, similar to the second class of models. Thus, our research bridges
the gap between the two streams of research in Web-server capacity planning and
management.

MODELING APPROACH

Web-based applications collect user-specific information from multiple sources
and display it back to the end-user. When the end-user requests a particular set
of information, the Web server routes the request to one of the many application
servers in the system. The application server then translates the user request into
transactions and determines the number and sequence of service steps necessary to
process the request. The routing of each request is dependent on the type of request
and also on the processing result of the previous service step. Each service step is
performed by a corresponding external server. When an external server completes
its processing the request is routed back to the application server. The application
server then sends it to the next external server for further processing or back to the
user if service is complete. Figure 1 describes the flow of entities through a typical
Web-based application system.

The system contains Na application servers and Ne external servers. Each
external server performs a unique service that consists of two parts. The first part is
completed at the application server, and the second part at one or more appropriate
external servers. The two parts of the service are represented together as a service
block in Figure 1. During the second part of the service, the application server
channel remains locked. The application server channel that handles an entity
remains locked throughout the entity’s stay in the system. When all service steps
are completed, the locked application server channel is released and the entity
leaves the application server. The external servers receive requests from different
sources. We define arrivals from the application server to an external server as

542 Capacity Planning for Web-Based Applications

Figure 1: Web-based application system and entity flow through the system.

End User

λ1

Application Server Service 1

λ2 [1]

λ1 [Ne]

λ1 [1]

AS-1
μ a [0]

μa [1] ES- 1
me [1]
μe [1]

Web
Server

Service Ne

λ2 [Ne]

μa [Ne] ES- Ne

me [Ne]
μe [Ne]

AS-2
μ a[0]

AS-Na

μ a [0]

Successful

Failed
Λ a

type-1 entities and arrivals from other sources as type-2 entities. The dashed line
in Figure 1 shows the path of a type-1 entity. Entities from every application server
follow similar paths. If service for a type-1 entity fails at an external server, the
entity returns to the application server and further processing may be halted. Next,
we describe the notation used to describe our model.

Notation
Subscripts and indices:

a = application server (subscript)

e = external server (subscript)

s = service (index)

Parameters:

Na(e) = number of application servers (external servers, i.e., unique services)

�a = arrival rate of type-1 entities to the system

λ1 = arrival rate of type-1 entities per application server = �a/Na

SR[s] = success rate of type-1 entities in external server s

λ1[s] = arrival rate of type-1 entities to external server s = SR[s − 1]
× λ1[s − 1]

Mohan et al. 543

μa[0] = service rate of the application server for the initial preprocessing of
type-1 entities

μa[s] = service rate of the application server for the first part of service s

ma = number of parallel channels in each application server

λ2[s] = arrival rate of type-2 entities to external server s

μe[s] = service rate of external server s

me[s] = number of parallel channels in external server s

ρe[s] = traffic intensity of external server s

ρa = traffic intensity of each application server

Performance measures:

Wq1[s] = average time in queue for type-1 entities in external server s

W1[s] = average time in system for type-1 entities in external server s

Wq = average waiting of time of customer requests in application server
queue

W = average RT of customer requests

Model Assumptions

The objective of this article is to develop a model that captures the important char-
acteristics of the underlying real-world application, while providing an efficient
methodology to quickly analyze system performance and make capacity decisions.
In order to achieve this, we make the following assumptions.

Assumption 1: Arrivals of type-1 entities to the system are from a Poisson
process. Arrivals of type-1 entities to each application server are also from a
Poisson process.

Most of the existing research on modeling Web-based applications uses
Poisson arrivals to the system (Menascé, 2002; Reeser & Hariharan, 2002; Ramesh
& Perros, 2000a; Cao et al., 2003; Liu et al., 2006; Mohan et al., 2009). This
provides a good approximation while keeping the model simple. Many Web sites
that use multiple application servers to support their architecture utilize a load
balancer to distribute the load evenly across the servers (Menasce, 2002). Hence,
in steady state, we define the arrival rate of type-1 entities to each application
server as λ1 by dividing the total arrival rate (�a) by the number of application
servers (Na). We can then solve this as a system with a single application server.
However, type-1 entities from the additional Na − 1 application servers affect the
total load on the external servers. To account for this additional load, we combine
the type-1 entities from the remaining Na − 1 application servers with the type-2

544 Capacity Planning for Web-Based Applications

entities arriving at the external server. So, the modified arrival rate of type-2 entities
to the external server is λ2[s] = λ2[s] + (Na − 1) × λ1[s].

Assumption 2: Service times at the application and external servers are expo-
nential and service discipline is FCFS.

The second class of research we described earlier assumes exponential ser-
vice times and FCFS service discipline to keep the analytical models tractable
when addressing complicated system interactions such as resource locking. The
results from these models show a good representation of real-world performance
metrics. A recent research study (Deslauriers, Ecuyer, Pichitlamken, Ingolfsson,
& Avramidis, 2007) on telephone call centers with call blending uses an M/M/n
queue with FCFS service discipline to predict the performance of the call center.
Extensive testing and comparison with real-world data from a call center showed
that the difference between the models and exact simulation was less than 1% for
important performance measures.

Model of a Simple Web-Based Application System

Mohan et al. (2009) present a direct modeling approach to represent a system
similar to a single service block in Figure 1. The system has one application server
and one external server. The external server serves both type-1 entities and type-2
entities at the same rate. Because we only have one external server in the basic
model, the parameters related to the external server do not have the index s. The
authors first consider a system without service in the application server; in other
words, when the application server channel is available, the entities are sent to
the external server immediately. Thus, this model describes a service block in
Figure 1. The state of the system is defined as (i, j), where i and j are the number
of type-1 and type-2 entities in the system. The authors use a two-dimensional
CTMC assuming a uniform splitting rule to determine the transition out of a state
when a service is completed in the external server. Figure 2 shows a portion of the
transition diagram.

The general expression for the steady-state probability of the system being
in state (i, j) is

pi,j = 1

λ2 + λ1 + μe

[
λ2pi,j−1 + λ1pi−1,j + i + 1

i + j + 1
μepi+1,j

+ j + 1

i + j + 1
μepi,j+1

]
, (1)

where μe = Min(me, ie + j)μe is the total service rate of the external server and
ie = Min(ma, i) is the number of type-1 entities in the external server at state
(i, j). The steady-state probabilities of the truncated state space are then estimated
numerically by limiting the number of type-1 and type-2 entities in the system. We
use modified versions of the two-dimensional CTMC and Equation (1) to represent
a service block in Figure 1.

Mohan et al. 545

Figure 2: Transition diagram for a system with application server, one external
server, and no service in the application server.

(i-1, j)

(i, j+1)(i, j)

(i+1, j)

(i, j-1)
λ2

λ2

λ1

λ1

meμe(ie/(j+ie))

meμe(ie/(j+ie))

meμe((j+1)/(j+ie))

meμe(j/(j+ie))

(i-1, j-1)
λ2

λ1

(i+1, j+1)
λ2

λ1

meμe(ie/(j+ie))

meμe((j+1)/(j+ie))

λ1

meμe(j/(j+ie))

(i+1, j-1)
λ2

meμe(ie/(j+ie)) λ1

(i-1, j+1)
λ2

meμe(ie/(j+ie))

meμe(j/(j+ie))

meμe((j+1)/(j+ie))

meμe(ie/(j+ie))

j

i

Extension of Model to Include Multiple External Servers
Case 1: At most one visit to each unique external server

In a typical Web-based application, there are different kinds of external servers
such as authentication servers, servers to hold cached information, mainframe
computers, and servers to customize marketing information. Each type of server
performs a unique service. The application server sends the customer request to
more than one type of external server, depending on the service requested. Thus,
we can represent a type-1 entity’s path through the system as a movement through
a sequence of service blocks. We first model the case where the entity visits each
service block at most once. There are no repetitive visits (i.e., reentrant flows) to
service blocks.

We first approximate each service block with a single load-dependent service-
rate server (LDRS) by considering it to be a closed network for type-1 entities.
Type-2 entities enter and exit external server s directly. Figure 3 shows a repre-
sentative service block. We use the two-dimensional CTMC described earlier to
calculate the throughput for type-1 entities, conditional on the number of type-1

546 Capacity Planning for Web-Based Applications

Figure 3: Service block approximated by an load-dependent service-rate server
(LDRS).

AppSrvr
μa [s]

ExtSrvr s
me[s], μe[s]

ns= 1, 2...ma

Type-2 arrival (λ2 [s])

LDRS[s]
μact [s, ns]

Type-2
departure

Throughput for
type-1 entities,
with n type-1
entities in the
network is
calculated and
assigned to
μact[s, ns]

entities in the network. We assign this throughput as the conditional service rate
for the LDRS, given that there are ns type-1 entities.

Even though our model includes service within the application server, it is
sufficient to use the two-dimensional CTMC because we condition on the number
of type-1 entities in the network. We define the state of the system as (ie, j), where
ie is the number of type-1 entities in the external server and j is the number of type-2
entities in the system. The number of type-1 entities in the application server is then
ns − ie. In state (ie, j) the total service rates of the application server and external
server are, respectively, μa = (ns − ie)μa[s] and μe = Min(ie + j, me[s])μe[s].
The transition diagram of the system is similar to that shown in Figure 2,
with λ1 = μa and λ2 = λ2[s]. The expression for the steady-state probabilities
are

pie,j = 1

λ2[s] + μe + μa

[
λ2[s]pie,j−1 + μapie−1,j + ie + 1

ie + j + 1
μepie+1,j

+ j + 1

ie + j + 1
μepie,j+1

]
. (2)

We solve for the steady-state probabilities numerically, limiting the number
of type-2 entities in the system to ne[s].

The conditional service rate, given ns type-1 entities in block s, is then
calculated as μact[s, ns] = ∑ns

ie=0 pie,j (ns − ie)μa[s]. The conditional service rate
is calculated for each value of ns between 0 and ma (the number of type-1 en-
tities in a service block). This gives us LDRS[s] with service rates μact[s, ns],
which approximates the service block s. Because the service rate of LDRS[s]
cannot be more than the capacity of external server s after serving type-2 enti-
ties (i.e., μact[s, ns] ≤ (μe[s] × me[s] − λ2[s])), we stop calculating the service
rates when we find an ns = n for which μact[s, ns] is close to the maximum ser-
vice rate. For ns > n we assign this maximum service rate to μact[s, ns]. The
procedure is repeated for all service blocks corresponding to each of the Ne

services.

Mohan et al. 547

Case 2: Repeated visits to external servers

We have so far assumed that an arriving entity requires each service at most once
and thus, it needs to visit each external server at most once. In reality however,
many entity types require visiting the same server more than once during the
required processing. We now allow service requests that require more than one
visit to the same external service. We introduce the following additional notation
to characterize systems with re-entrant flow (i.e., with repetitive services).

Nst = the number of service steps (if there is no service repetition,
Nst = Ne)

ROUTE[st, s] = entity service sequence =
{

1 if step st requires service s
0 otherwise

SR[st] = success rate of type-1 entities at service step st =
Ne∑
s=1

ROUTE[st, s] × SR[s]

λ1[st] = arrival rate of type-1 entities to service step st = λ1[st − 1]
×SR[st − 1]

VR[s] = the number of repetitions of service s =
Nst∑

st=1
ROUTE[st, s]

SR[s] = cumulative success rate of type-1 entities in service s =
SR[s]VR[s]

λ1[s] = cumulative arrival rate of type-1 entities to service s =
Nst∑

st=1
ROUTE[st, s] × λ1[st]

We modify the service rates for all LDRS to accommodate service repetitions.
We divide the service rates of LDRS[s] by VR[s] to estimate the aggregated service
rate for VR[s] visits. The service rates for LDRS[0] are set to μact[0, n0] = n0μa[0],
where 1/μa[0] is the initial processing time of entities in the application server. We
then modify these LDRS to replace the service blocks and simplify the represen-
tation of the system as shown in Figure 4. Figure 5 provides a detailed description
of the LDRS algorithm.

Sequential Aggregation Method (SAM)

Next, we use an SAM to combine all the LDRS nodes sequentially and obtain
a single LDRS node that represents the entire network. We use the following
additional notation to describe the SAM.

ALDRS[s] = aggregated LDRS node, after aggregating the first s LDRSs

μagg[s, n] = service rate of the aggregated node in step s with n entities in the
node

ASR[s] = success rate of entities in the aggregated node in step s

548 Capacity Planning for Web-Based Applications

Figure 4: Representation of the system with service blocks replaced by load-
dependent service-rate server (LDRS).

End User

LDRS[Ne]
μact [Ne, nNe]

LDRS[0]
μact [0, n0]λ1

LDRS[2]
μact [2, n2]

LDRS[1]
μact [1, n1]

Failed
Failed

Successful Successful

Figure 5: Algorithm load-dependent service-rate server (LDRS).

[] []

[][]

[] [][]

[]

[] []

[]

[] [][]

In each step of the SAM, we aggregate one LDRS node to the previously
aggregated node. We start with ALDRS[0]with service rate μagg[0, n] = nμa[0]
for n = 1 to ma . We then aggregate LDRS[1] with ALDRS[0] to derive a new
aggregated node ALDRS[1] with estimated service rates, μagg[1, n]. The process
continues until we aggregate all LDRS into a final aggregated node ALDRS[Ne]
with service rate μagg[Ne, n]. Aggregation in step s is performed using the one-
dimensional CTMC illustrated in Figure 6.

Mohan et al. 549

Figure 6: Step s of sequential aggregation—Estimating service rates of aggre-
gated node.

Throughput of
the network with
n entities in it is
estimated and
assigned to
μagg [s, n]

LDRS [s]
μact [s, ie]

ie-10 ie n

μact [s, 1] μact [s, n]

μagg [s-1, n]

ALDRS [s-1]
μagg [s-1, n-ie] ALDRS [s]

μagg [s, n]

For n= 1, 2 ... ma

μagg[s-1, n-ie] μagg[s-1, 1]

ie+1

μagg[s-1, n-(ie+1)]

μact [s, ie+1]

μagg [s-1, n-(ie-1)]

μact [s, ie-1] μact [s, ie+2]

ASR [s-1]

1-ASR [s-1]

μagg [s-1, n-(ie-2)]

μact [s, ie]

Consider a closed queuing network that includes the nodes ALDRS[s − 1]
and LDRS[s]. The state of the system is defined as ie, the number of entities in
node LDRS[s], and the expressions for steady-state probabilities are shown in
Equations (3) and (4):

p1 = 1

μact[s, 1]
μagg[s − 1, n]p0, (3)

pie = 1

μact[s, ie][
(ASR[s − 1] × μagg[s − 1, n − ie + 1] + μact[s, ie − 1])pie−1

+(ASR[s − 1] × μagg[s − 1, n − ie + 2])pie−2

]
for ie = 2, 3, . . . , n. (4)

The value of p0 is calculated from the normalizing equation
∑n

ie=0 pie = 1.
We determine the steady-state probabilities numerically, and calculate the through-
put of the network as μagg[s, n] = ∑n

ie=0 pie × μact[s, ie]. This is the service
rate of the new aggregated node ALDRS[s]. We calculate the service rates
for n = 1, 2, . . . ma and the success rate of entities in the aggregated node as
ASR[s] = ASR[s − 1] × SR[s].

By repeating the above procedure Ne times we combine all services into a
single ALDRS[Ne] with service rate μagg[Ne, n]. We then use the CTMC to model
node ALDRS[Ne] with arrival rate λ1. The state of the system is defined as i, the
number of entities in the system and the probability of the system being in state i

is defined as pi . We then solve for the steady-state probabilities and calculate the
average performance measures.

550 Capacity Planning for Web-Based Applications

Variance Estimation

Initial experimentation indicated that this method produced results very close to
the ones obtained using simulation for traffic intensities of up to 70%. For higher
traffic intensities, the deviation from simulation results increased significantly.
The main reason was an overestimation of the variance of the total service time of
type-1 entities in the final aggregated node. When the variance of the service time
is overestimated, the average waiting time in queue and the average total time in
system are also overestimated. Therefore, in addition to the service rates, we also
need to estimate the variance of the service time for the aggregated node at each
step. The procedure that we use to estimate the variance in each aggregated node
is described later. This method significantly improves the estimation of variance,
but we need to note that it does not entirely eliminate the overestimation. The
following additional parameters, all related to type-1 entities, are used in the
variance estimation procedure:

STa[s] = service time for part of service s in application server; for exponential
service time E [STa[s]] = 1/μa[s]; Var [STa[s]] = (1/μa[s])2

STe[s] = service time for part of service s in external server; for exponential
service time E [STe[s]] = 1/μe[s]; Var [STe[s]] = (1/μe[s])2

RT[s] = total residence time of type-1 entities in service s; E [RT[s]] =
1/μa[s] + W1[s]

ST[s] = total service time of type-1 entities up to service s; ST[s] =
s∑

i=0
RT[i]

VWq1[s] = variance of waiting time in queue of type-1 entities in external server
s

At step s of the SAM, we solve the queuing system with the node ALDRS[s]
and arrival rate λ1 using the one-dimensional CTMC above. The number of entities
in the system, i, defines the state of the system. There are Min(i, ma) entities in
service and the remaining entities wait in queue. We derive the expressions for the
steady-state probabilities using Equations (5) and (6) and solve them numerically
limiting the number of type-1 entities in the application system to na .

p1 = 1

μagg[s, 1]
λ1p0, (5)

pi = 1

μagg[s, Min(i, ma)]

[
(λ1 + μagg[s, Min(i − 1, ma])pi−1 + λ1pi−2

]
for i = 2, 3...na. (6)

The value of p0 is calculated using the normalizing equation
∑na

i=0 pi =
1 and the average total time in service is calculated as E [ST[s]] =∑na

i=0 Min(i, ma) × pi/λ1.

Mohan et al. 551

Figure 7: Step s of sequential aggregation method—Variance estimation.

0 ma ma+1

μagg [s,1] μagg [s,ma] μagg [s,ma] μagg [s,ma]

λ1 λ1 λ1 λ1

ALDRS [s]
μagg [s,n]

λ1

ma-1

μagg [s,ma-1]

ma-1

λ1

μagg [s,ma]

ALDRS [s]
ST [s]

VST [s]

λ1

The total time is the sum of type-1 entities’ service time in ALDRS[s − 1]
and residence time in LDRS[s]. Therefore, the average residence time of entities
in LDRS[s] is estimated as E [RT[s]] = (E [ST[s]] − E [ST[s − 1]]) /VR[s]. The
residence time RT[s] is the sum of the service time inside the application server,
waiting time in external server queue, and the service time in the external server.
Assuming that the components of ST[s] are independent, the mean and variance
of the total service time can be calculated using Equations (7) and (8).

E [ST[s]] = E [ST[s − 1]] + E [STa[s]] + Wq1[s] + E [STe[s]] , (7)

Var [ST[s]] = Var [ST[s − 1]] + Var [STa[s]] + VWq1[s] + Var [STe[s]] . (8)

The only unknown component in Equation (8) is VWq1[s]. From Gross
and Harris (1998), for an M/M/me[s] queue with arrival rate (λ1[s] + λ2[s])
and service rate μe[s], the waiting time in queue distribution is Wq1(t) =
1 − rcp0

c!(1−ρ)e
−(me[s]μe[s]−(λ1[s]+λ2[s]))t . If we assume that the relationship between

the mean and the variance of the waiting time of type-1 entities in the external
server queue is similar to the relationship between the mean and the variance of
an M/M/c queue, it follows that the variance of the waiting time, V Wq1[s], can be
expressed as

VWq1[s] = 2Wq1[s]

me[s]μe[s] − (λ1[s] + λ2[s])
− (Wq1[s])2. (9)

Repeating this procedure Ne times we obtain the final aggregated node
ALDRS[Ne] with mean E [ST [Ne]] and variance of total service time Var [ST [Ne]].
Figure 7 presents the variance estimation at step s of the SAM. Finally, with the es-
timated mean and variance of service time, the final aggregated node is modeled as
an M/G/ma queuing system with arrival rate λ1, expected service time E [ST [Ne]],
and variance of service time Var [ST [Ne]].

Next, we need to evaluate the average waiting time in queue, WQ, and the
average time in system, W , for type-1 entities. If WQE and WQD are, respectively,
the waiting time of entities in queue of an M/M/ma and an M/D/ma queue with the

552 Capacity Planning for Web-Based Applications

Figure 8: Algorithm sequential aggregation method (SAM).

[] []

[

[[

[[[]

]]

]]]

same service rate as the M/G/ma queue, then Boxma, Cohen, and Huffels (1979)
show that

WQD = 0.5WQE

[
1 + (1 − ρ)(ma − 1)(

√
4 + 5ma − 2)

16ρma

]
, (10)

WQ = WQD(1 − COV) + WQE(COV), (11)

W = WQ + E [ST [Ne]] , (12)

where, ρ = λ1/(maμ) is the traffic intensity with μ = 1/E [ST[Ne]], and COV =
Var [ST[Ne]] / (E [ST[Ne]])2 is the squared coefficient of variation (COV).

While, from Gross and Harris (1998), WQE can be evaluated as WQE =
rma

ma !(maμact)(1−ρ)2 p0,

with p0 =
(

ma−1∑
n=0

rn

n!
+

∞∑
n=c

rn

m
n−ma
a ma!

)−1

, μact = 1/ST[Ne], and r = λ1/μact.

Figure 8 presents a step-by-step description of the SAM.

RESULTS AND DISCUSSION

We tested the model extensively and compared the results to the results from equiv-
alent simulation models. The use of simulation as a benchmark for evaluating the
accuracy of complex queuing models is standard practice. Simulation models can
portray the behavior of a real-world system without any modifications or assump-
tions, while even the most complex analytical models make some assumptions in
order to obtain closed-form or approximate solutions. In these cases, a comparison

Mohan et al. 553

with simulation helps us to understand the loss of fidelity in the analytical solu-
tions. If the resulting gap from simulation is acceptable, the analytical model tends
to be more useful because it can produce results much faster than a simulation
model.

We tested our model for a variety of configurations with and without service
repetition. The baseline data that we have used for the experimentation were derived
from the real-world application that motivated our study. We collected data related
to one specific application related to account summary at the financial services
firm we were studying. The application-specific data were the types and number
of services required for different types of requests arriving at the application,
frequently used service routings, types and number of external servers, and service
times at the application and external servers. We collected actual data for a period
of 3 months and determined the distributions for service times. In cases where the
actual service distributions were not Poisson, we assumed them to be Poisson with
the same mean, because our analytical models handle only Poisson distributions for
arrival and service distributions. The service rates for the application and external
servers that we have used in our experimentation (100 per second and 200 per
second for the application servers and 100 per second for external servers) are the
approximate rates at which the two types of application servers dedicated to the
account summary application and the external servers were functioning at during
our data collection phase.

The main parameter that influences RTs is the traffic intensity at the appli-
cation and external servers. Traffic intensity intrinsically captures the capacity of
the servers and the demand. Hence, we used a simple experimental design to vary
the traffic intensity at the application and external servers. Our data reflected the
change in traffic patterns during typical daily operations and we used this as a
guide for varying traffic intensities at the servers in our experimentation. We also
used the information obtained from our contacts at the firm. Spikes in demand do
happen at times, and in order to study the effect of these increases, we allowed
the traffic to increase beyond levels observed normally during the data collection
phase. Specifically, during the 3-month data collection phase, we observed 10 in-
stances when the system completely crashed due to extremely high traffic intensity.
Thirteen percent of the observations occurred when traffic intensity was between
85% and 90%. These were the occasions that significantly affected RTs.

We also present stability analysis results and discuss the computational re-
quirements of our algorithm in comparison to simulation. We define the deviation
in RT of our model from the simulation as follows:

%Deviation = Model RT - Simulation RT

Simulation RT
× 100%.

After establishing the validity of our model, we discuss the use of the model
to develop managerial insights and to aid capacity planning and management.

Evaluation of Model for Systems without Service Repetition

We first compared the performance of our model with simulation for applications
without service repetition. A customer request does not visit an external server
more than once during its processing. We considered four scenarios of different

554 Capacity Planning for Web-Based Applications

Table 1: Parameters for evaluation of model for cases with no repetition of
services.

Parameter for Services

Set Na �a ma μa[0] s μa[s] λ2[s] μe[s] me[s] ρe[s]

1 1 38, 46, 53, 58, 62, 65,
66.5

5 100 1–3 100 200 100 5 44–53%

2 5 200, 235, 265, 285, 300,
310, 315

5 100 1–3 100 500 100 10 70–82%

3 5 250, 300, 330, 350, 365,
375, 380

10 100 1–6 200 500 100 10 75–88%

4 5 150, 180, 205, 225, 235,
240, 245, 247

10 100 1–10 200 600 100 10 75–85%

Figure 9: Deviation in response time between model and simulation—No repeti-
tive services.

-5

0

5

10

15

0.5 0.6 0.7 0.8 0.9 1

Traffic Intensity

%
 D

ev
ia

tio
n Set 1

Set 2
Set 3
Set 4

sizes. Problem sets 1 and 2 require three services, and sets 3 and 4 require six and
ten services, respectively. In all cases, we adjust the arrival rate of type-1 entities
such that the application server traffic intensity varies from 50% to 95%. Table 1
summarizes the various parameters used for the four problem sets. Figure 9 shows
the deviation in total RT between our model and simulation.

The results indicate that the deviation of our model from the simulation stays
below 5% for traffic intensities up to 95%. The deviation in set 2 is higher than in set
1 due to an increase in the number of application servers. Problem sets 3 and 4, with
a larger number of services, have lower deviations than problem sets 1 and 2. As
the number of services increases, the squared COV of the aggregated total service
time becomes smaller, and as a result, the overestimation of variance (during the
sequential aggregation) will have a smaller impact on the overestimation of the total
RT. Even with a large number of services, the overestimation of variance and hence
the deviation of RT becomes magnified at high traffic intensities. Experience from
real-world instances indicates that the nonlinear increase in RT occurs at traffic

Mohan et al. 555

Table 2: Parameters for evaluation of model for systems with repetitive services.

Parameter for Services

Set �a st s μa[s] λ2[s] μe[s] me[s] ρe[s]

5 60, 70, 80, 87, 92, 96,
98

1, 10 1 100 500 50 20 62–70%

2, 8, 12 2 100 500 50 20 68–79%
3, 9, 13 3 100 500 50 20 68–79%
4, 7, 14 4 100 500 50 20 68–79%
5, 11 5 100 500 50 20 62–70%
6, 15 6 100 500 50 20 62–70%

6 60, 70, 78, 85, 88, 90,
91

1, 9 1 200 300 50 12 70–80%

2, 7, 13 2 200 250 50 12 72–87%
3, 8 3 200 350 50 12 78–89%

4, 10, 14 4 200 300 50 12 80–96%
5, 12 5 200 300 50 12 70–80%

6, 11, 15 6 200 250 50 12 72–87%

intensities below 95%. Therefore, the decision to intervene and add capacity or
reroute requests has to happen at traffic intensities below 95% where our model
consistently produces accurate results. Also, utilizing our model as a quality control
tool to monitor for increasing trends in traffic helps managers to adaptively add
capacity and prevent the system from reaching extremely high traffic intensities
and encountering crashes.

Evaluation of Model for Complex Systems with Service Repetitions

We use problem sets 5 and 6 to evaluate the performance of our model for situations
with service repetitions. These sets use the following common parameters: Na =
5, Nst = 15, Ne = 6, μa[0] = 50, ma = 10. Both problem sets have six unique
external services, but the type-1 entities have 15 service steps that have to be
completed. The other system characteristics and parameters are shown in Table 2.
For example, in problem set 5, the entities have to visit external server 1 for the first
and tenth steps of their service, external server 2 for the second, eighth, and tenth
steps, and so on. Figure 10 presents the deviation of our model from simulation.
These results indicate that the deviation of our algorithm remains less than 5% for
traffic intensities up to 90%.

Stability Analysis

We next evaluate the robustness of our model for different configurations and
traffic intensities. We choose set 7 with six service steps and six services (i.e.,
no service repetition) and set 8 with 15 service steps and six services (i.e., with
service repetition). The following parameters are common to both sets: Na = 5,
ma = 10, μa[0] = 50. The load from type-1 entities is adjusted so that the traffic
intensity of application servers varies from 50% to 95%. For each set, we use three

556 Capacity Planning for Web-Based Applications

Figure 10: Deviation in response time between model and simulation—Repetitive
services.

-5

0

5

10

15

0.5 0.6 0.7 0.8 0.9 1

Traffic Intensity

%
 D

ev
ia

tio
n

Set 5
Set 6

Table 3: Loads and parameters used for stability analysis.

Parameters for Services

Set �a μa[s] λ2[s] μe[s] me[s] ρe[s]

7 LEL 130, 160, 185, 200,
212, 220, 222

100 150 50 10 56–74%

MEL 120, 150, 165, 175,
183, 188, 190

100 250 50 10 74–88%

HEL 100, 108, 116, 120,
123, 125

100 350 50 10 90–95%

8 LEL 60, 70, 80, 87, 93, 98,
100

100 300 50 20 48–66%

MEL 60, 70, 80, 87, 92, 96,
98

100 500 50 20 68–80%

HEL 55, 63, 70, 75, 78, 81,
82

100 700 50 20 87–95%

subsets of problems based on the percentage of load on the external servers from
type-2 entities. These are low external load (LEL; 30% of external server capacity
from type-2 entities), medium external load (MEL; 50%), and high external load
(HEL; 70%). Table 3 presents the configurations and the resulting range of traffic
intensities on the external servers.

Figure 11 presents the deviation of our model from simulation.
The results indicate that when the load on the external servers is low to

medium (LEL and MEL) our model produces very good results even at high
application server traffic intensity. The deviation stays below 5% for application
server traffic intensities up to 95%. However, when external server load is high
(HEL) the deviation increases rapidly at around 80% to 85%.

We have experimented with a wide range of configurations and traffic in-
tensity levels and we have generally found that our model produces good results

Mohan et al. 557

Figure 11: Deviation of our model from simulation.

Set 7 Set 8

-5

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1
Traffic Intensity

%
 D

ev
ia

tio
n

LEL
MEL
HEL

-5

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1
Traffic Intensity

%
 D

ev
ia

tio
n

LEL
MEL
HEL

(within 5% error) when external server traffic intensity does not exceed 90% and
the application server traffic intensity is at, or below 95%. Also, the most significant
parameters that influence the deviation are the traffic intensity of the application
and external servers. Our model is not significantly affected by the capacity of the
application servers, the number of external servers, the capacity of the external
servers, or the number of services service steps and service repetition.

Computational Effort

The accuracy of the results produced by our algorithm depends on the values
of na and ne[s] that determine the size of the state space when solving for the
steady-state probabilities. The computation time depends heavily on the choice of
ne[s] that is used for the calculation of the service rates for the LDRS[s]. If we
choose a small value for ne[s] when solving for the steady-state probabilities of a
truncated state space, we lose a large percentage of λ2[s] (arrivals to the external
server) and as a result we overestimate the service rates of the LDRS[s]. Therefore,
to accurately estimate service rates for the LDRS[s] we use values for ne[s] such
that the percentage of lost arrivals, λ2[s], is less than 0.1%. When external server
traffic intensity is high, we need to choose a large value for ne[s], which increases
the computation time.

In order to estimate the computation time required by the simulation model,
we run the simulation long enough to produce stable results; specifically the
simulation is terminated only when the half width of the 90% confidence interval
for the average time in system is approximately 2% of the average. We consider
four problem sets from Table 3 (Set 7-LEL, Set 7-MEL, Set 8-LEL, and Set 8-
MEL) and express the computation time required by our algorithm as a percentage
of the time required by simulation. For problem sets with high HEL, the traffic
intensity at the external server goes over 100% and the external system becomes
unstable, which also affects the application server. We observed results to this
effect in Figure 11 as well. For the HEL scenarios, we obtained results using our
algorithm. Because we did not obtain stable results using simulation, we have
not included the HEL scenarios in the comparison. The results are presented in
Figure 12.

558 Capacity Planning for Web-Based Applications

Figure 12: Computation time comparison between our algorithm and simulation.

0

10

20

30

40

0.5 0.6 0.7 0.8 0.9 1

Traffic Intensity

Co
mp

ut
ati

on
 ti

me
 of

 al
go

rit
hm

(a

s %
 of

 si
mu

lat
io

n t
im

e)

Set 7-LEL
Set 7-MEL
Set 8-LEL
Set 8-MEL

Figure 12 shows that the computation time of our algorithm is consistently
lower than simulation throughout the whole range of traffic intensities for all prob-
lem sets. At high traffic intensities, our algorithm presents a much faster alternative.
In fact, as traffic increases, simulation takes considerably longer to reach steady
state due to the increase in variability of RTs. The responses of simulated congested
queues are known to be difficult to estimate accurately, because both the mean and
the variance of the steady-state output typically become unbounded as the traffic
intensity gets closer to saturation. As a result, simulation models have to be run
longer to maintain accuracy in estimating waiting times and queue lengths. Hence,
the rate of increase in computation time for simulation is much higher than for our
algorithm. Specifically, at 90% traffic intensity, our algorithm would require less
than 10% of the time required by simulation for all the four problem sets considered
here. Even at traffic intensities as low as 50%, our algorithm requires only about
40% of the time taken by simulation. This would be essential in situations where
managers want to use performance prediction and monitoring as a process control
mechanism to effectively add servers to augment capacity in real time. Thus, our
analytical model and solution algorithm provide efficient and reliable alternatives
to simulation for performance measurement and capacity planning.

Effect of Resource Locking

One of the research gaps that we address is the concept of resource locking directly
in a higher level analytical model of Web-based applications to aid performance
measurement and capacity planning. This section looks at the impact of ignoring
resource locking on performance assessment and capacity planning. Although real-
world systems utilize resource locking, most existing models ignore it, and this
section tries to understand the impact of using such models for capacity planning
for the real-world system with resource locking.

We compare the performance of two similar systems, one with and one
without resource locking. We ignore resource locking by analyzing each external

Mohan et al. 559

Table 4: Parameters for problems—Impact of ignoring resource locking.

Set Na Ne ma me λ1 λ2[s] ρe[s]

9 1 2 1 5 9–15 400 82–83%
10 1 3 5 5 38–6.5 200 44–53 %
11 5 6 10 10 250–380 500 75–88 %
12 5 10 10 10 150–247 600 75–85%

Figure 13: Comparison of proposed model and no-locking approximation (NLA)
model.

(a) Deviation of our model from simulation (b) Deviation of NLA model from simulation

-5

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1

Traffic Intensity

%
 D

ev
ia

tio
n

Set 9
Set 10
Set 11
Set 12

-5

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1

Traffic Intensity

%
 D

ev
ia

tio
n

Set 9
Set 10
Set 11
Set 12

server as an M/M/me queue and estimate the mean and variance of the total time
in the external server system. We then estimate the mean and variance of the first
part of the service to determine the total RT for that service. Finally, we add the
service times for all services to estimate the mean and variance of the time taken
to complete all services. We can now model the application server as an M/G/ma

queue to evaluate the average waiting and average RT within the application server.
The queue discipline is first-in, first-out in both models. However, when we ignore
resource locking, entities that return to the application server after processing do
not have a dedicated channel and hence, would have to wait with all other requests.
We refer to this model as the no-locking approximation (NLA) model and compare
the performance estimated by this model with our proposed model. We use RT as
the comparison criterion and calculate the deviation of both the NLA model and
our model from the simulation model. We measure RTs as the duration between the
start of service at the application server and the completion of all external services
and return to customer. We consider four different problem sets (sets 9, 10, 11,
and 12) with different system configurations. The common parameters used for
the problem sets are μa[0] = 100, μa[s] = 100, and μe[s] = 100. Table 4 presents
other parameters and the varying arrival rates and traffic intensities. Figures 13(a)
and (b) present the deviation of our model and the NLA model from simulation.

The results in Figure 13 indicate that for the NLA model the RT is much
higher than our model. The results seem to be counterintuitive at first sight, but do
reflect the underlying situations realistically. When the model considers resource
locking, each arriving customer request gets a dedicated application server channel,

560 Capacity Planning for Web-Based Applications

which is a true reflection of the real system. When the entity returns from an
external server after processing, the application server is ready to process it with
the dedicated server channel. Hence, the RT is a function of only the delays
and processing times at the various external servers. On the other hand, when
we choose to ignore resource locking, there are no dedicated application server
channels. So, when the entities come back to the application server after processing
at the external servers, they do not get a higher priority and are queued with several
other arriving entities. Now, the RT is a function of processing times and delays
at external servers, as well as delays and waits at the application server. At higher
traffic intensities, the problem gets exaggerated more and RTs are very large.

In fact, Figure 13 shows that the error of the NLA model is more than
double the error of our model at higher traffic intensities. This shows that it is
very critical to consider the effect of resource locking at higher traffic intensities.
Choosing to ignore the effects of resource locking in capacity planning will lead
to maintaining a lot more servers than necessary to maintain the desired QoS. This
would eventually result in a lot of unused capacity and tied up capital.

MANAGERIAL IMPLICATIONS

Managers of Web applications strive to maintain high levels of customer service and
satisfaction while minimizing operating expenses through efficient management
of resources. They generally try to keep utilization and system congestion within
a certain range (often at a predetermined RT) in order to minimize the probability
of server failure. Hence it is critical to understand the trade-offs between operating
cost, efficient capacity utilization, RT, and reliability, and use this knowledge
effectively to deliver high-quality and reliable service at a reasonable cost.

Determining Number of Servers to Maintain QoS

An issue constantly faced by managers is determining the number of application
servers needed to maintain a predetermined service quality, given a certain traffic
load. In order to understand this issue, we consider a system with six services and
15 service steps (Ne = 6,Nst = 15) that approximates the complexity of a typical,
real-world, Web-based application. Problem sets 13 and 14 (shown in Table 5) are
considered. Problem set 14 has 10% higher service rates for its external servers,
than set 13. The average RT of the system while varying load and number of
application servers, Na , is presented in Figure 14.

The nonlinear relationship between traffic load and RT is clearly illustrated
in Figure 14. It is important to note that resource locking dramatically increases
this effect and ignoring it would lead to system failures earlier than expected.
Increasing traffic to the application servers also increases the load on the external
servers. As a result, requests from the external servers are further delayed, which
in turn keeps application server resources locked longer, until finally the system
fails. This feedback loop between application and external servers compounds the
problem and is the main cause for the highly nonlinear RTs as traffic intensity
increases. Due to the shape of the RT function, current network delay alone is not a
good performance indicator. Our model can be used to predict the system load for

Mohan et al. 561

Table 5: Parameters for problems in set 13 and set 14.

Route and Parameters for Services

μe[s]

μa[0] ma st s μa[s] λe[s] Set 13 Set 14 me[s]

20 10 1, 6, 10, 13 1 100 450 30 33 25
2, 4, 8 2 100 450 30 33 25

3, 5, 9, 12 3 100 540 30 33 30
7, 11 4 100 375 25 27.5 25

14 5 100 120 20 22 10
15 6 100 120 20 22 10

Figure 14: Response time of entities with increasing load for different values of
Na .

Set 13 Set 14

700
800
900

1000
1100
1200
1300
1400

20 30 40 50 60 70 80 90
Arrival rate of entities to AppSrvr

Re
sp

on
se

 ti
m

e
(m

s) Na=3
Na=4
Na=5
Na=6
Na=7
Na=8

700
800
900

1000
1100
1200
1300
1400

20 30 40 50 60 70 80 90
Arrival rate of entities to AppSrvr

Re
sp

on
se

 ti
m

e
(m

s) Na=3
Na=4
Na=5
Na=6
Na=7
Na=8

which the nonlinear increase in RT will occur. This could give advance warning
about imminent server failures, if no action is taken. With an a priori analysis
like this, the system manager has the ability to react and/or plan in advance, and
connect additional application servers to the system or reroute the requests, in
order to avoid system overloading and failure.

To improve reliability, it is important to assess the traffic intensity the system
will be able to handle with the existing capacity. It is also important to estimate the
capacity requirement for a certain arrival rate. The model presented can be used
for both. For example, for set 14, the results presented in Figure 14 indicate that
if the target RT is below 1000 ms and the peak load is 60 arrivals per second, five
application servers are required. Figure 14 can also be used to determine the load
the system can handle with a given number of application servers.

Determining When to Add Capacity to Maintain QoS

Our model can also be used to estimate when intervention points (e.g., adding
servers to increase capacity) are necessary and provide enough time to react. For
example, if the target RT is below 1000 ms, then Figure 14 indicates that for set 13,
we can serve a load of approximately 33 arrivals per second with three application

562 Capacity Planning for Web-Based Applications

Figure 15: Loads for two systems at different hours of a day.

(a) Actual load (b) Target load for capacity planning

0
10
20
30
40
50
60
70

0 4 8 12 16 20 24

Time (hour)

A
rri

va
l R

at
e

(/s
ec

)

System 1

System 2

10

20

30

40

50

60

70

0 4 8 12 16 20 24

Time (hour)

Ar
riv

al
 R

at
e (

/se
c)

System 1

System 2

Table 6: Service sequence for systems 1 and 2.

ServiceService Step 1 2 3 4 5 6

System 1 1, 10 2, 8, 12 3, 9, 13 4, 7, 14 5, 11 6, 15
System 2 1, 9 2, 7, 13 3, 8 4, 10, 14 5, 12 6, 11, 15

servers. With increasing loads, additional application servers need to be added at
arrival rates of approximately 45, 53, 60, 63, 65, etc. Note that the interval between
intervention points decreases as traffic increases. This is again due to the sharp
nonlinear relationship between the RT and load due to resource locking.

Adaptive Capacity Management Using Hot Servers

One of the uses of our model is to aid managers in adaptive capacity planning and
management. This is especially important in companies with multiple applications.
Each application has its own customers, service requirements for customers, and
load conditions. If these companies have the option of maintaining “hot servers,”
they can allocate a small number of dedicated application servers for each ap-
plication and a pool of shared hot servers for the entire system. The hot servers
can be brought online depending on the demand on the individual application.
We conjecture that the total server requirements will be smaller with this resource
allocation system and illustrate this using the example discussed below.

Let us consider a service company, which has two applications with varying
load conditions as shown in Figure 15(a). For example, system 1 could be demand
for U.S. customers and system 2, demand from overseas customers. The services
that customersrequire and their sequences are presented in Table 6. The application
server capacity is ma = 10 and the parameters for the services are as follows:
μa[0] = 50, μa[s] = 50, μe[s] = 25, me[s] = 40. Both applications have average
daily demand of approximately 40 arrivals per second. However their load peaks
occur at different times. Let us assume that, to ensure good QoS, the target is to
keep the average RT below 1200 ms for both applications. We want to determine
the number of application servers required to maintain the reliability of the system

Mohan et al. 563

Figure 16: Adaptive capacity management with hot servers.

(a) Dedicated servers (5 and 5) (b) Dedicated servers (6 and 4)

(c) Dedicated (4 and 3) and 3 hot servers (d) Dedicated servers (7 and 5)

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24

Time (hour)

Re
sp

on
se

 T
im

e (
m

s)

Sys 1

Sys 2

55

5 5

5

5 5

5 5

5 5

5

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24

Time (hour)

Re
sp

on
se

 T
im

e (
m

s)

Sys 1

Sys 2

44

6 6

4

6 6

4 4

6 6

4

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24

Time (hour)

Re
sp

on
se

 T
im

e (
m

s)

Sys 1

Sys 2

55

7 6

5

4 5

3 4

4 4

5

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24

Time (hour)

Re
sp

on
se

 T
im

e (
m

s)
Sys 1

Sys 2

55

7 7

5

7 7

5 5

7 7

5

at minimum cost. To estimate the capacity needed at different periods of day, we
divide a day into six 4-hour periods with approximate load in each period as shown
in Figure 15(b).

If we have only 10 application servers and we maintain dedicated servers for
each application, we can allocate the servers two ways: (i) allocate five servers to
each application, as both have the same average load over the whole day, or (ii)
allocate six servers to application 1 and four to application 2, as application 1 has
a higher peak load than application 2. Figures 16(a) and (b) present the results for
these two cases. The lower and upper edges of the plot area in Figure 16 show
the number of servers used, at different periods of time, for applications 1 and 2,
respectively. It is clear from the figures that the RT is over 1800 ms for application
1 during some time blocks using the equal allocation, and for application 2 using
the unequal allocation. On the other hand, if we allocate four and three dedicated
servers for applications 1 and 2, respectively, and three hot servers that can be
brought into service as needed, we can meet the target RT with 10 application
servers. Figure 16(c) presents the results for this case. If we have to meet the target
using only dedicated servers, we can see that we need a total of 12 servers from
the results in Figure 16(d).

This example clearly demonstrates the advantage of maintaining flexible
resources. By adopting this scheme for capacity management, a firm can clearly
achieve the desired QoS with a smaller number of servers. However, the loads on
the various applications are not always known exactly in advance. Therefore, in
order to achieve the advantage of using hot servers, firms need the capability to

564 Capacity Planning for Web-Based Applications

evaluate the performance of their applications and react quickly. Our modeling
and solution methodology addresses this need and can provide very reliable results
relatively quickly.

CONCLUSIONS

In this article, we have presented a Markovian model for performance evalua-
tion and adaptive capacity planning of Web-based computer application systems.
Specifically, our model addresses the concept of resource locking directly. We use
RT as the performance metric and measure the deviation of our model from equiv-
alent simulation models. Our model produces excellent results and the deviation
from simulation stays below 5% when external server traffic intensity does not
exceed 90% and the application server traffic intensity is at or below 95%. These
conditions reflect real-world Web application scenarios very well and hence the
value and applicability of our model. Another advantage of our model is that it
produces results much faster than simulation, especially at high traffic intensity
levels. This is particularly important when attempting to quickly assign hot servers
to applications that are reaching crash thresholds. We showed how our model can
be used to determine how many servers are needed as well as when and where they
should be added to maintain target RTs across all applications in a firm.

While the model is quite versatile and useful in answering several managerial
questions, there are a few limitations. The proposed model deals with only one
class of type-1 entities. In Web-based computer application systems, there can be
multiple classes of type-1 entities and the routing can depend on entity classes as
well as on the current state. Extending our model to accommodate multiple classes
of type-1 entities and state-dependent routing is an appealing extension for further
study. Another extension is considering unequal capacities for the various appli-
cation servers. Finally, arriving entities might be assigned to specific application
servers based on certain rules such as least busy server or round robin. While we
are currently comparing the proposed adaptive capacity management method to the
static fixed capacity, it would be interesting to explore other capacity management
options and compare the performance of those methods to the proposed method.
We leave these as directions for future research.

REFERENCES

Almeida, V., & Menascé, D. (2002a). Capacity planning: An essential tool for
managing Web services. IEEE IT Professional, 2(2), 33–38.

Almeida, V., & Menascé, D. (2002b). Capacity planning for Web services: Metrics,
models and methods. Upper Saddle River, NJ: Prentice Hall.

Balsamo, S., Persone, V. D. N., & Onvural, R. (2001). Analysis of queueing
networks with blocking. Boston, MA: Kluwer Academic.

Boxma, O. J., Cohen, J. W., & Huffels, N. (1979). Approximations of mean wait-
ing time in an M/G/s queueing system. Operations Research, 27(6), 1115–
1122.

Mohan et al. 565

Bucholtz, C., & Wright, R. (2001). 20 tools you need to beat the economy, CRN
Magazine, accessed January 29, 2014, available at http://www.crn.com/
news/channel-programs/18823815/20-tools-you-need-to-beat-the-
economy.htm

Cao, J., Andersson, M., Nyberg, C., & Kihl, M. (2003). Web server performance
modeling using an M/G/1/K*PS queue. Proceedings of the 10th International
Conference on Telecommunications, Papeete, Tahiti: IEEE, 1501–1506.

Deslauriers, A., L’Ecuyer, P., Pichitlamken, J., Ingolfsson, A., & Avramidis, A.
(2007). Markov chain models of a telephone call center with call blending.
Computers & Operations Research, 34(6), 1616–1645.

Freund, D. J., & Bexfield, J. N. (1983). A new aggregation approximation procedure
for solving closed queueing networks with simultaneous resource possession.
Journal of the ACM, 25(1), 214–223.

Gross, D., & Harris, C. M. (1998). Fundamentals of queueing theory. New York,
NY: Wiley.

Jacobson, P. A., & Lazowaska, E. D. (1982). Analyzing queueing networks with
simultaneous resource possession. Communications of the ACM, 25(2), 142–
151.

Lipsman, A. (2013). 2012 U.S. online holiday spending grows 14 percent vs. year
ago to $42.3 billion, accessed January 29, 2014, comScore, Inc., available
at http://www.comscore.com/Insights/Press_Releases/2013/1/2012_U.S._
Online_Holiday_Spending_Grows_14_Percent_vs_Year_Ago_to_42.3_
Billion

Liu, X., Heo, J., Sha, L., & Zhu, X. (2006). Adaptive control of multi-tiered Web ap-
plications using queueing predictor. Proceedings of the 10th IEEE/IFIP Net-
work Operations and Management Symposium, Vancouver, Canada: IEEE,
106–114.

Menascé, D. (2002). Trade-offs in designing Web clusters. IEEE Internet comput-
ing, 6(5), 76–80.

Mohan, S., Printezis, A., & Alam, M. F. (2009). A framework for modeling Web-
based applications with resource locking. International Journal of Opera-
tional Research, 6(3), 289–303.

Neilson, J. E., Woodside, C. M., Petriu, D. C., & Majumdar, S. (1995). Soft-
ware bottlenecking in client-server systems and rendezvous networks. IEEE
Transactions on Software Engineering, 21(9), 776–782.

Omari, T., Franks, G., Woodside, M., & Pan, A. (2005). Solving layered queueing
networks of large client server systems with symmetric replication. Proceed-
ings of the 5th International Workshop on Software and Performance, Palma,
Illes Balears, Spain: ACM, 159–166.

Omari, T., Franks, G., Woodside, M., & Pan, A. (2006). Efficient per-
formance models for layered server systems with replicated servers
and parallel behaviour. Journal of Systems and Software, 80(4), 510–
527.

566 Capacity Planning for Web-Based Applications

Onvural, R. O. (1990). Survey of closed queueing networks with blocking. ACM
Computing Surveys, 22(2), 83–121.

Perros, H. G. (1994). Queueing networks with blocking. New York, NY: Oxford
University Press.

Ramesh, S., & Perros, H. G. (2000a). A two-level queueing network model with
blocking and non-blocking messages. Annals of Operations Research, 93(1),
357–372.

Ramesh, S., & Perros, H. G. (2000b). A multi-layer client-server queueing network
model with synchronous and asynchronous messages. IEEE Transactions on
Software Engineering, 26(11), 1086–1100.

Reeser, P., & Hariharan, R. (2000). Analytic model of Web servers in distributed
environments. Proceedings of the 2nd International Workshop on Software
and Performance. Ottawa, Ontario, Canada: ACM, 158–167.

Reeser, P., & Hariharan, R. (2002). An analytic model of Web servers in distributed
computing environments. Telecommunication Systems, 21(2), 283–299.

Rolia, J. A., & Sevcik, K. C. (1995). The method of layers. IEEE Transactions on
Software Engineering, 21(8), 689–700.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., & Tantawi, A. (2005).
An analytical model for multi-tier internet services and its applications.
Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Banff, Alberta, Canada:
ACM, 291–302.

Woodside, C. M. (1989). Throughput calculation of basic stochastic rendezvous
networks. Performance Evaluation, 9(2), 143–160.

Woodside, C. M., Neilson, J. E., Petriu, D. C., & Majumdar, S. (1995). The
stochastic rendezvous network model for performance of synchronous multi-
tasking distributed software. IEEE Transactions on Computers, 44(1), 20–34.

Srimathy Mohan is an associate professor in the Supply Chain Management
department in the W.P. Carey School of Business at Arizona State University. Her
current research interests include patient flow, material flow, and information flow
modeling and optimization. Her research has spanned healthcare, manufacturing,
and financial services domains. Her research has been published in Management
Science, Journal of Supply Chain Management, European Journal of Operational
Research, International Journal of Production Research, and International Journal
of Production Economics. Her teaching interests include business analytics and
operations management.

Ferdous Alam has been working in the Supply Chain Performance Analytics &
Optimization group at Nestle USA, Inc., as a supply chain operations research ana-
lyst, where he is engaged in modeling for master production schedule optimization,
network optimization, transportation forecasting, and other supply chain–related
problems. Prior to joining Nestle, he worked as an operations research analyst at
Aviation Logistics Center (ALC), United States Coast Guard (USCG) at Elizabeth
City, NC, where he was engaged in demand analysis and forecasting, modeling

Mohan et al. 567

and analysis for capacity planning, and resource allocation to support efficient
inventory control and supply chain management for aviation spare parts at ALC,
USCG. He has a PhD in industrial engineering with major in operations research
from Arizona State University, Tempe, AZ. He is very interested in studying and
applying operations research techniques in solving real life problems.

John Fowler is the Motorola Professor and Chair of the Supply Chain Manage-
ment department at Arizona State University (ASU). He is also a professor of
industrial engineering and was previously the program chair for IE at ASU. His
research interests include discrete event simulation, deterministic scheduling, and
multicriteria decision making. He has published over 100 journal articles and over
100 conference papers. He was the Program Chair for the 2008 Industrial Engi-
neering Research Conference, the 2008 Winter Simulation Conference (WSC),
and Co-Program Chair for the 2012 INFORMS National meeting. He is currently
serving as editor-in-chief for a new Institute of Industrial Engineers journal focused
on health care delivery systems entitled IIE Transactions on Healthcare Systems
Engineering. He is also an editor of the Journal of Simulation and an associate
editor for IEEE Transactions on Semiconductor Manufacturing. He is a Fellow
of the Institute of Industrial Engineers (IIE) and currently serves as the IIE Vice
President for Continuing Education, is a former INFORMS Vice President, and is
an SCS representative on the Winter Simulation Conference Board of Directors.

Mohan Gopalakrishnan is an associate professor in the Supply Chain Manage-
ment department in the W.P. Carey School of Business at Arizona State Univer-
sity. His current research interests include health care logistics, humanitarian logis-
tics, and global logistics. Specifically, he is interested in studying the structure and
impact of the fully integrated supply chain organization in healthcare. His research
also covers information flow congestion, implications and capacity management
and location, inventory positioning, and flow issues in humanitarian logistics. He
primarily teaches logistics and operations management courses across the different
undergraduate and graduate platforms and also manages the industry relationships
through capstone course in applied projects.

Antonios Printezis is Supply Chain Management clinical faculty at W. P. Carey
School of Business at Arizona State University (ASU). He received his doctorate
from Case Western Reserve University in operations research and holds a master’s
degree in chemical engineering. Prior to ASU, he taught courses in the department
of Business Statistics, Operations Management, and Technology & Innovation at
the Weatherhead School of Management at Case Western Reserve University and
at Cleveland State University in the Department of Operations Management and
Business Statistics. Prior to joining the academic community he held a quality
control engineer position for PepsiCo. His current projects and research interests
focus on sustainability and supply chain management. He has been teaching and
developing courses for W. P. Carey and the School of Sustainability at ASU
on topics including global supply operations, business and sustainability, and
operations management

This document is a scanned copy of a printed document. No warranty is given about the
accuracy of the copy. Users should refer to the original published version of the material.

