World Scientific

Vol. 23, No. 3 (2014) 1450004 (20 pages) W Wordaeanifio core

© World Scientific Publishing Company
DOI: 10.1142/5021884301450004X

International Journal of Cooperative Information Systems \\p

Dynamic Transaction Aware Web Service Selection

Kanchana Rajaram®*, Chitra Babu™® and Arun Adiththan®¥

*Department of Computer Science and Engineering
SSN College of Engineering
Anna University, Chennai — 603110, Tamil Nadu, India

TDepartment of Computer Science
Graduate School and University Center
Clity University of New York (CUNY)

New York, NY 10016, USA
frkanch@ssn. edu.in
Schitra@ssn. edu.in
Yarunadiththan@gmail.com

Received 17 May 2012
Accepted 19 March 2014
Published 20 June 2014

Web service composition, that recursively constructs a composite web service out of the
existing services based on a business workflow has been acknowledged as a promising
approach to meet the user demands, whenever a single service alone cannot fulfil the
needs. In view of frequent failures in the internet environment where the composed ser-
vice is executed, reliability of the composed service must be ensured. The reliability is
determined by the behavioral or transactional properties of component services. The
component services for each activity of the workflow must be selected based on their
behavior so that their execution results in a consistent termination. Service selection
must happen at run-time in order to consider the services available in a service reg-
istry at the time of execution. Towards this need, a dynamic transaction aware web
service selection approach is proposed in this paper. Further, whenever user require-
ments change, a long running transaction must be interrupted and cancelled which is
not addressed by any of the existing works. Hence, service cancellability property is pro-
posed in this paper and incorporated in the dynamic selection approach. The overhead
of the proposed run-time selection approach is assessed and the impact of increased
services on its performance is also measured.

Keywords: Web services; SOA; workflow; transaction; dynamic selection; reliability.

1. Introduction

Service-oriented computing (SOC)! is an emerging paradigm that facilitates a new
generation of software applications that can run over heterogeneous network infras-
tructures. In a dynamic environment, services need to be discovered and bound on
the fly so that, collectively, they can fulfil the intended business goals. Service-
oriented architecture (SOA)? provides an effective approach to build business

fCorresponding author.

1450004-1

http://dx.doi.org/10.1142/S021884301450004X

K. Rajaram, C. Babu & A. Adiththan

applications wherein service interfaces are published and discovered on demand.
Web services are the predominant standard-based way of realizing SOA. Web
services are described using web services description language (WSDL),® an XML-
based language. Service providers publish their services in an XML-based registry
over the Internet using universal description discovery and integration (UDDI)*
and the consumers discover the required service from the registry to consume
the services.

In general, business processes involve collaboration of multiple business organi-
zations. Workflows can be used to model a business process. A workflow consists
of various predefined activities, depending on the way in which the business should
be conducted. Web service composition involves combining services developed by
different organizations offering diverse functionalities with different transactional
behavior, to offer a more complex service. There have been various approaches for
composition of services®% wherein the services are discovered either at design-time
(static) or at run-time (dynamic). If the behavior of the service is ignored while
selecting the services involved in a composition, it may affect the overall behavior
of the composite service resulting in an inconsistent termination. For example, if a
compensatable business process or a composite service is required, each of its com-
ponent services must be compensatable. If every individual service that is composed,
does not exhibit compensatable behavior, the overall composite service cannot be
compensated. Hence, while composing the services, only the services with appro-
priate behavior that will result in a reliable execution of the overall composition,
must be chosen.

The behavioral or transactional properties of component services determine the
reliability of the composed service. If the services are selected and composed stati-
cally, during the execution of services, newer versions of services and services pro-
vided by new service developers that were deployed after the composition, may
not be considered. Moreover, services discovered at design-time may not be avail-
able during the execution of the application. Such static composition is suitable
only when the functional requirements of the component services are completely
known at design-time and do not often vary. However, in business-to-business (B2B)
and business-to-consumer (B2C) application scenarios, users would like to spec-
ify requirements based on the outcome of the previous service execution. More-
over, business policies change frequently depending on business trends and growth.
Hence, services must be discovered dynamically at run-time. Existing works on
dynamic composition of web services” 12 do not address reliable execution of the
composed services. Hence, in this paper, a transaction aware web service selection
approach is proposed that selects web services on the fly, with appropriate trans-
actional properties resulting in a reliable execution of the composed service.

Whenever user requirements or business policies change during the life span
(ranging from one day to one month or more) of a long running service, the
service execution must be cancelled to accommodate the new requirements or to
incorporate the changed policies. Otherwise, execution of the service to completion

1450004-2

Dynamic Transaction Aware Web Service Selection

with the older requirements or policies is no longer meaningful. In case of a
cancelable long running service consumption, the consumer has only the overhead
associated with the compensation of the completed portion of the service. Alterna-
tively, in case of a non-cancelable long running service consumption, the consumer
needs to wait until the completion and has to incur considerably additional overhead
to compensate the entire execution. This is because the successful execution will no
longer be meaningful or useful in the scenario of changed requirements. For example,
let us consider an order processing service that is a composite long running service
(of 2-6 weeks duration) comprising of stock updation and invoice preparation. After
placing an order, if the user preferences change during the invoice preparation, the
order must be immediately cancelled and the completed stock updates should be
rolled back. Suppose the order processing service is not cancelable, the user has to
wait for its completion and then undoing the effect of both the component services.
Thus, selection of a non-cancelable long running service involves a higher over-
head for the consumer. Hence, cancellability of a service enables flexible usage for
the consumers with lesser overhead. In addition, cancellation of a process supports
cancellation recovery which compensates the completed portions of the process.
This motivated us to propose a new transactional property named cancelable to be
considered for long running services.

The rest of the paper is structured as follows. The existing literature related to
the proposed work is discussed in Sec. 2. An illustrative application to support the
motivation for the present work is discussed in Sec. 3. Section 4 illustrates in detail,
the proposed approach along with the experimental analysis of its performance.
Section 5 concludes the paper highlighting the contributions.

2. Existing Work

Recently, web service selection has triggered extensive research efforts. In this sec-
tion, literature related to the technique proposed in this paper is discussed.

2.1. Transaction aware web service selection

Existing works on transaction aware web service selection are based either
on accepted termination state (ATS) model or transactional properties. The
approaches based on the ATS model!® 16 require the specification of ATS, which
is a non-trivial and difficult task, as it is manually specified by the user. More-
over, the set of input ATSs are assumed to be correct and adequate. Inadequacy
of dependencies is addressed by Gaaloul et al.!” by analyzing the workflow logs to
subsequently improve and correct the related recovery mechanisms. However, this
approach is reactive since design gaps are detected only after the execution.
There are a few works on static selection of web services based on transac-
tional properties. A mediator-based approach!® is proposed to gather functionally
similar web services with different transactional properties. This approach resolves
the heterogeneity among the web services. Li et al.!? proposed an approach to

1450004-3

K. Rajaram, C. Babu & A. Adiththan

derive transactional properties of a composite web service from the transactional
properties of its components. Haddad et al.?° proposed an algorithm, namely trans-
actional quality of service (T'QoS), for web service selection based on transactional
as well as quality of service (QoS) properties. TQoS approach satisfies the require-
ment of transactional behavior of composite services first and then applies the QoS
driven selection approach proposed by Zeng et al.?! Our proposed selection algo-
rithm considers only transactional properties, although it can be extended with local
optimization on QoS properties. Our algorithm is influenced by the TQoS approach
proposed by Haddad et al.2° However, in contrast to the TQoS approach that per-
forms only design-time selection of services, the proposed selection algorithm is
dynamic. Moreover, TQoS approach considers only two risk levels or recoverability
levels whereas our selection approach considers finer granularities of recoverability
so as to enable flexible web service selection based on the recovery requirements.
In contrast to all the above works, our proposed selection approach introduces an
additional transactional property, named as cancelable.

2.2. Transactional properties of web services

Bhiri et al.'® proposed a transactional approach to ensure failure atomicity of the
composite web service using ATS model. They considered cancellation dependen-
cies among services. Liu et al.?2 proposed a framework, FACTS, for fault-tolerant
composition of transactional web services. It considered cancelable and compen-
satable behaviors of transactional web services. However, cancelable web services
considered by both the above works, enable only internal cancellation of the service
upon failure of another service running in parallel. Neila et al.2? proposed a trans-
action model for reliable service composition and execution, namely, WS-SAGAS.
However, WS-SAGAS model did not consider cancellation of long running services
due to interruption of a transaction at run-time.

None of the existing literature for web service selection based on transactional
properties consider external interruption of a long running transactions in a busi-
ness application. However, this is important when dealing with frequent changes in
business policies and user requirements. To address this issue, cancelable property
of services has been introduced in the present work to enable cancellation of a long
running service. Cancelable service offers flexibility to the user and minimizes the
overhead in using the service.

3. Motivating Example

The drawbacks of the existing works that motivate the need for dynamic transac-
tion aware web service selection can be better understood through the illustrative
B2B application of vehicle purchase system (VPS). The VPS application involves
business processes that integrate the services provided by multiple governmental
departments such as birth and death registration (BDR) and income tax (IT) and
business organizations such as vehicle dealers, banks, and vehicle manufacturers.

1450004-4

Dynamic Transaction Aware Web Service Selection

In order to avoid visiting multiple vehicle dealer sites to search for a suitable
vehicle, a unified access point in the form of a web portal is provided to improve
the user experience. The complex workflow of VPS involves simple activities as well
as nested workflows. In VPS, the services need to be discovered on the fly based on
the preferences of customers. For example, based on the outcome of enquiries with
multiple vehicle dealers, the user decides a specific dealer and vehicle. The behavior
of the individual services largely determines the reliability of the overall process. For
example, if payment service is not compensatable, the outcome of entire purchase
business process would be inconsistent upon failure of order processing service since,
reimbursement of payment is not possible.

The control flow among the different activities of VPS as depicted in Fig. 1 is
described using workflow patterns®* such as sequence, parallel split, synchroniza-
tion, exclusive choice, and simple merge. The sequence pattern enables a workflow
activity after the completion of another activity (e.g. an order for the vehicle
is placed after obtaining the payment). The parallel split (AND-Split) pattern
describes a point in the workflow process where a single thread of control splits
into multiple threads of control which can be executed in parallel. Synchroniza-
tion pattern (AND-Join) describes a point in a workflow where multiple parallel
activities converge into one single thread of control, thus synchronizing multiple
threads (e.g. enquiring multiple vehicle dealers in parallel, for the availability of the
required model before choosing a specific model). In contrast to parallel routing
patterns, the conditional routing pattern, exclusive choice (XOR-Split) allows only
one selected thread of control to be activated (e.g. after verifying the stock, if the
required vehicle is available, a delivery note is prepared; otherwise, the vehicle is
ordered from the manufacturer). The simple merge (XOR-Join) describes a point
in the workflow where two or more alternative branches come together without
synchronization (e.g. stock is verified either after getting payment for an order or
after receiving new vehicles from the manufacturer).

Details of the vehicle such as make, model, color, and budget along with the per-
sonal details of the customer such as social security number (SSN), name, address,
and permanent account number (PAN) are gathered through a portal interface.

Enquire .
Dealerl S [
A g

Useg [+ {"Order ! Deliver
Req. |1 Payment i_Vehicle ! Vehicle

Enquire .
DealerN -

e”_ x 1] Non-composite task
x| Available Génerate (E; Long-running
2) o e N non-composite task
E'Oi"d'e'f':.‘_é'C(ilIe'éi'l Not i7"} Long-running
Dealer :Manuf.: . Qrder.t Available "7 composite task

Fig. 1. Vehicle purchase system.
1450004-5

K. Rajaram, C. Babu & A. Adiththan

The availability of the vehicle with the specified details is ascertained from dif-
ferent dealers in parallel. The customer then chooses a particular dealer based on
budget, color preferences, etc. SSN and PAN are mandatory for valid citizenship
and sales tax payment. The customer details are verified with the BDR department.
Similarly, PAN is verified with the IT department. If the customer details are found
to be valid and the requested vehicle can be delivered by a specific dealer, payment
is received from the customer. On successful payment, a purchase order is placed
with the vehicle dealer chosen earlier. When the requested vehicle is ready, it is
delivered to the customer.

When an order for a vehicle is received by the dealer, the order processing starts
with receiving payment for the order. The stock is then checked for availability of
the ordered vehicle. If the required vehicle is not available in the stock, it needs
to be obtained from the manufacturer. The orders for the vehicles which are not
available in the stock are accumulated for a day or a week before submitting them
to the respective manufacturer. After receiving the vehicle from the manufacturer,
the dealer updates the stock and generates the corresponding delivery challans. The
vehicles are then delivered by the dealer to customers who have placed the order.

Few instances which emphasize the consideration of transactional properties of
services involved in VPS application are listed below:

e The service corresponding to GetPayment activity should be retriable so as to
restart it upon its failure, since, the vehicle dealer in general is interested in
receiving the payment through different modes such as cheque, credit card, or
cash.

e The service corresponding to the activity OrderVehicle should be cancelable; it is
a long running composite service that may take more than a week to complete;
it must be cancelled by interrupting the transaction involving it, when the user
changes any of the preferences such as color and model, or if the user decides not
to buy the vehicle at all. Otherwise, the vehicle that was ordered earlier is no
longer of interest.

e Whenever the vehicle dealer cannot obtain the ordered vehicle from the manufac-
turer as it has become obsolete, the advance amount received from the customer
must be refunded and hence, payment service should be compensatable.

The proposed approaches in this paper for transaction aware selection of services
are intended to facilitate a reliable service provisioning by the vehicle sellers.

4. Proposed Approach for Transaction Aware
Web Service Selection

An architecture has been proposed in the present work that enables dynamic selec-
tion and composition of web services based on their behavioral properties. The
architecture is presented in the following subsection and the approach is discussed
elaborately in the subsequent subsections.

1450004-6

Dynamic Transaction Aware Web Service Selection

"Administratorl " End User I
(\ Dynamic Dynamic E "
Selection Composition Xecution
Tx-Aware
Planner " I
Tx-WSDL
Middleware
Service Definitions 'WEF Repository

Fig. 2. System architecture.

4.1. System architecture

The architecture of the proposed system is depicted in Fig. 2. It takes two inputs:
a set of business policies and user preferences. A workflow represents a set of busi-
ness processes — simple activities or another nested workflow spanning multiple
organizations and the control flow among them. For example, the workflow of VPS
consists of simple activities such as payment and a nested workflow for order pro-
cessing. The workflow is generated by business administrators as a template and is
stored in the workflow repository. Business policies obtained from administrators
are used to derive the transactional requirements of each activity in the principal
workflow. The functional requirements are specified by the end users. If an activity
is a workflow (say WF1) in itself, then the middleware service Tz-AwarePlanner
determines the required transactional properties of the web services corresponding
to each activity in WF1 based on the transactional requirements of WF1. Based on
these requirements, appropriate web services are discovered by Tz-AwarePlanner
from the service registry at run-time. It must be noted that the web service defini-
tions should be deployed along with their transactional properties,?® using extended
WSDL named as, Tx-WSDL, in the service registry. The service endpoints of suit-
able services that are returned as output are used for invoking the services. When-
ever business policies change during the execution of a long running service, the
execution is cancelled by interrupting its transaction and the dynamic selection and
composition are performed again to accommodate the changes.

4.2. Cancelable web services

The behavioral properties of a given web service (WS) have an impact on other ser-
vices in a composition. The failure of a component service may require retrying the
same service or undoing the effects of a completed component service, so that the

1450004-7

K. Rajaram, C. Babu & A. Adiththan

execution of the composed service terminates in a consistent state. The extended
transaction model?6:27 for multi-database systems, proposed the CPR model com-
prising of three transactional properties namely compensatable (cp), pivot (p), and
retriable (r). A WS is compensatable if, upon its successful completion, its effects
can be semantically undone. A retriable WS can be invoked a finite number of times
in case of an internal failure. A WS is a pivot service, if it cannot be semantically
undone on successful completion; if it fails, it leaves no trace. A pivot WS is neither
compensatable nor retriable.

In general, B2B applications involve composition of several long running pro-
cesses. The user preferences and business policies change very frequently according
to the changing user requirements and business scenarios. Whenever such changes
occur, transactions involving long running services need to be interrupted in order
to incorporate the changes, since the execution of the service to completion with
the earlier preferences or policies is no longer meaningful. The ability to cancel
a service allows more flexibility in varying the preferences and business policies.
Moreover, a cancelable service minimizes the overhead involved in using it since, at
any point of time, it can be cancelled and the execution can be terminated. Hence,
in addition to the properties supported by the CPR model, cancelable (cc) property
has been introduced in this paper, to enable interruption of a transaction. In the
present work, a cancelable web service with cancellation property is proposed as
follows:

Definition 1 (Cancelable WS). A WS is cancelable if it can be cancelled by an
external entity during its execution. Upon cancellation, it leaves no trace.

A cancelable WS enables cancellation recovery, upon its cancellation, by providing
a cancellation logic. In general, execution of long-running transactions alone are
interrupted externally. A long-running transaction is not constrained by the isola-
tion property and it is likely that a certain amount of work would have already
been completed at the time of interruption. If this completed portion is not com-
pensated, the long-running service may not terminate in a consistent state. Hence,
the cancellation logic may not only terminate the cancelled service, but may also
compensate its completed portions. For example, CollectOrder service is a long run-
ning cancelable service whose cancellation cancels its execution and rolls back the
updates for the received orders in the database.

4.3. Deriving transactional properties of web services

A WS may have more than one of the basic transactional properties (cp, p, r, cc).
A successfully completed retriable service that is capable of semantically undoing
its effects, upon failure of another service is compensatable retriable with properties
cpr. Alternatively, a completed retriable service which is incapable of performing
a rollback, is pivot retriable with properties pr. A cancelable service that is also
compensatable can be rolled back after its successful completion and has proper-
ties cpce. Alternatively, a cancelable service which cannot be compensated is pivot

1450004-8

Dynamic Transaction Aware Web Service Selection

cancelable with properties pcc. A cancelable service which is guaranteed to succeed
after a finite number of re-trials (necessitated by internal failures) is cancelable
retriable. Such a cancelable retriable service exhibits cpeer properties, if it is capa-
ble of compensating itself, upon failure of another service, otherwise it is pivot and
has properties pcer. Thus, the set of possible transaction properties for a WS is {p,
pr, ¢p, pce, cpr, peer, cpee, cpeert. A transactional web service (TWS) is a simple
(non-composite) web service with a valid transactional property. The transactional
properties of a TWS describe its behavior. Hence, there can be eight different types
of TWS based on its behavior.

Whenever several web services are composed, it is important to ensure that the
composition is reliable and terminates in a consistent state. While composing TWSs
of known behavior, it must be possible to predict the behavior of the composite
web service (CWS) and check whether the CWS is valid and will result in a reliable
execution. Transactional properties of the component services and the manner in
which they are composed viz. in parallel or in sequence, influence the transactional
properties of a CWS. A CWS with valid transactional properties that lead to a
reliable execution is termed as a transactional composite web service (TCWS). A
TCWS is atomic (a),2? if it cannot be rolled back on successful completion. However,
when one of its components fails or gets cancelled in the middle, all completed
component services are compensated to reach a consistent state. For instance, in
the aforementioned example of a vehicle purchase system, the composite service for
VPS is atomic; after the requested vehicle is delivered to the customer, it cannot
be compensated; when the long running VPS transaction is interrupted during the
execution of its long running component service for order processing, due to changed
user requirements, all the previous component services that have been completed
must be compensated in order to achieve a consistent termination. When n services
S1,5%,...,5, are composed in sequence, the resultant TCWS, is atomic, if one of
the following conditions is satisfied:

Condition 1: All S;,2 < i < n are retriable.

Condition 2: If any S;,2 < ¢ < n is not retriable or is cancelable, all the preceding
services S}, j<i must be compensatable.

When n services are composed in parallel, the resulting TCWS is atomic only
when one of the services say S; is a pivot or a cancelable service and other concurrent
services Sj,j # ¢ are compensatable and retriable. A TCWS is compensatable, if
all of its component services are compensatable. In this paper, two more types of
TCWS based on the cancelable property are proposed as follows:

Definition 2 (Cancelable TCWS). An atomic or a compensatable CWS is
cancelable, if all of its component services are cancelable and will have transactional

properties acc or cpce respectively. Cancellation recovery is enabled by a cancelable
TCWS.

1450004-9

K. Rajaram, C. Babu & A. Adiththan

Definition 3 (Retriable TCWS). An atomic or a compensatable or a cancelable
CWS is retriable, if all of its component services are retriable and will exhibit trans-
actional properties ar, cpr, or accr/cpeer, respectively. A retriable TCWS enables
forward recovery.

For example, at the time of interrupting VPS transaction during the execution
of OrderVehicle service that has transactional properties atomic cancelable, any of
the services in the dealer workflow (say CollectOrder service) may be in execution.
The cancellation logic of OrderVehicle invokes cancellation operation of the service
in execution, CollectOrder and then invokes the compensation operation of the
completed services such as VerifyStock and GetPayment.

The set of possible transactional properties for a TCWS is {a, ar, cp, acc, cpr,
acer, cpee, cpeery. A CWS is non-atomic (@), if it cannot be compensated after its
successful execution and also, its completed component services cannot be undone
after a failure or cancellation of one of the components in the middle. Thus, a
non-atomic CWS is not reliable.

4.4. Transaction aware web service selection

A middleware service Tz-AwarePlanner has been proposed for dynamic web service
selection based on its transactional capabilities. It is essential to ensure that the
composition results in a TCWS, by selecting the component TWSs with appropriate
transactional properties. For simplicity, only two component services S1 and S2
which may be simple or composite have been considered. The component services
of the CWS may be executed sequentially (S1;52) or concurrently (S1[/S2). When
the composition of S1 and S2 results in a TCWS, it has property (ar), if both S1
ad S2 are retriable; the TCWS has property (acc), if both S1 ad S2 are cancelable;
the TCWS has property (cp), if both S1 and S2 are compensatable.

In a sequential composition, if S1 has any of the transactional properties
p/a, or pec/ace, then S2 must have properties pr/ar or cpr to make the TCWS
atomic (a). If S1 has any of the transactional properties pr/ar, or pccr/accr, then
S2 must have transactional properties pr/ar or cpr to make the TCWS atomic
retriable (ar). If S1 is compensatable (cp/cpr/cpcc/cpeer), it results in a TCWS
irrespective of the transactional properties of S2; if S2 is non compensatable
(p/a,pr/ar,pce/ace, peerfacer), then the TCWS is atomic (a/ar/acc/accr); if S2
is also compensatable (cp, cpr, cpce, epcer), then the resulting TCWS will also be
compensatable.

In a parallel composition, if S1 has any of the transactional properties p/a, or
pee/ace, then S2 must be compensatable retriable ¢pr to make the TCWS atomic
(a). If S1 is pivot retriable or atomic retriable pr/ar, then S2 must have trans-
actional properties pr/ar or cpr to make the TCWS atomic retriable (ar). If S1
is cancelable retriable pecr/accr, then S2 must be compensatable retriable cpr to
make the TCWS atomic retriable (ar). If S1 has any of the transactional properties
(cp, epee, epeer), it results in a compensatable TCWS (ep/cpcee/cpr/cpeer) only if

1450004-10

Dynamic Transaction Aware Web Service Selection

S2 is compensatable. If S1 is compensatable retriable (c¢pr), the resulting parallel
composition is a TCWS irrespective of the transactional properties of S2; if S2 has
any of the properties (p/a, pcc/acc), the TCWS is atomic (a); if S2 has properties
pr/ar or pcer/accer, then the TCWS is atomic retriable (ar); the TCWS is com-
pensatable (¢p) or compensatable retriable (c¢pr), if S2 has properties c¢p/cpce or
cpr/cpeer respectively.

The transactional properties of the composite service were derived from the
transactional properties of the component services and formally verified using a set
of theorems.?® These properties are presented in Table 1. This table is useful in two
ways:

(1) To verify whether a specific composition results in a TCWS, when the trans-
actional requirements of its component services are known.

(2) To find out the transactional requirements of the individual component services
of a TCWS whose transactional property is known.

Table 1. Transactional properties of TCWS.

S1 S2 S1;52 S1Is2 S1 S2 S1;52 S1)|S2
p/a p/a a a cp p/a a a
pce/ace a a pce/ace a a
pr/ar a a pr/ar a a
pcer/acer a a pcer/acer a a
cp a a cp cp cp
cpce a a cpce cp cp
cpr a a cpr cp cp
cpcer a a cpcer cp cp
pec/ace p/a a a cpee p/a a a
pce/ace a a pce/ace acc a
pr/ar a a pr/ar a a
pcer /acer a a pcer /acer acc a
cp a a cp cp cp
cpce a a cpce cpcee cpcee
cpr a a cpr cp cp
cpcer a a cpcer cpcee cpce
pr/ar p/a a a cpr p/a a a
pce/ace a a pce/ace a a
pr/ar ar ar pr/ar ar ar
pcer /acer a a pcer /acer ar ar
cp a a cp cp cp
cpce a a cpce cp cp
cpr ar ar cpr cpr cpr
cpcer a a cpcer cpr cpr
pcer/acer p/a a a cpeer p/a a a
pce/ace a a pce/ace acc a
pr/ar ar a pr/ar ar a
pcer /acer a a pcer /acer accr a
cp a a cp cp cp
cpce a a cpce cpcee cpce
cpr ar ar cpr cpr cpr
cpcer a a cpcer cpcecer cpcecer

1450004-11

K. Rajaram, C. Babu & A. Adiththan

An approach is proposed for deriving the transactional requirements of ser-
vices involved in the principal workflow from the business policies specified by the
administrator in Sec. 4.4.1. For a workflow activity that itself represents another
workflow with a given transactional requirement, the transactional requirements
of its component activities must be derived. An algorithm for this is presented in
Sec. 4.4.2.

4.4.1. Extraction of transactional requirements from business policies

For the given workflow activity, all the Tx-WSDL documents of available services
are discovered from the registry. Each of these Tx-WSDL documents is parsed
to extract the transactional capabilities. The transactional requirements extracted
from business policies along with the functional requirements are then matched
with the capabilities of the services to discover a suitable service. Though the busi-
ness policies represent the transactional requirements of some of the services, the
recoverability level plays an important role in selecting a TWS. The recoverability
level describes the degree to which a service may be recovered in case of a failure or
an interruption. In our earlier work,2® TWSs were grouped into different levels of
recoverability based on their recovery cost. The recoverability level and the corre-
sponding transactional properties of a TWS/TCWS are tabulated in an increasing
order of their recovery cost, as shown in Table 2.

If the administrator deems a particular service to be very important, then the
service should be guaranteed to succeed and it should have the property r. Business
policies obtained from the administrator, through a questionnaire and the required
recoverability level, together abstract the transactional requirements or properties.
The business analyst is provided with recoverability options for an activity, depend-
ing on the transactional requirement of the previous activity so that the resultant
composite service after all the matching services are discovered and composed, is at
least atomic. While obtaining the recoverability level for an activity, it is restricted
to only certain options such that any of those choices does not result in a non-atomic
composition. For example, if the transaction property of a service assigned to an
activity is extracted as cp, the service associated with the next sequential activity
can be assigned any possible transactional property to yield a valid TCWS (see
Table 1). Alternatively, for a service assigned to an activity composed in parallel

Table 2. Recoverability levels.

Recoverability level Properties

1 Pivot/atomic (p/a)
Compensatable (cp)

Cancelable (pce/acc)
CompensatableCancelable (cpec)
Retriable (pr/ar)
CompensatableRetriable (cpr)
CancelableRetriable (pcer/acer)
FullyRecoverable (cpccr)

00~ O Ut Wi

1450004-12

Table 3.

Dynamic Transaction Aware Web Service Selection

Valid recoverability levels for deriving a TCWS.

Tx-Property

Recoverability Level of Next Service

Composed in Sequence

Composed in Parallel

p/a 5,6 6

pec/ace 6 6

pr/ar 5,6 5,6

pcer/acer 5,6 5

cp 1,2, 3,4,5,6,7,8 2,4,6,8

cpce 1,2,3,4,5,6,7,8 2,4,6,8

cpr 1,2,3,4,5,6,7,8 1,2,3,4,56,7,8
cpeer 1,2,3,4,5,6,7,8 2,4,6,8

with another activity having compensatable property, assigning p/a, pcc/ace, pr/ar,
or pcer/acer property will result in a non-atomic composition. The non-atomic
compositions shown in Table 1 are not desirable and hence, such unreliable com-
positions are avoided. For each transactional property of a service assigned to a
workflow activity, the possible transactional properties of the service to be assigned
to the subsequent activity are derived from Table 1 and their respective recover-
ability levels are tabulated in Table 3. For example, given a pivot service, the next
sequentially composed service must be either retriable (pr/ar) or compensatable
retriable (cpr) to result in a consistent outcome (see Table 1). The corresponding
recoverability levels from Table 2 are tabulated in Table 3.

4.4.2. Eztracting transactional requirements of component services

Whenever the current workflow contains a component that by itself is a compos-
ite process, it involves another workflow comprising of multiple activities. The
middleware service, Tz-AwarePlanner assigns transactional requirements for the
component activities of the composite workflow, in such a way that the required
transactional property of the composition is satisfied, using Algorithm 4.1. The algo-
rithm takes a workflow, WF and its transaction property, Reqd_TzP as input. In a
WF, the transactional property of any component activity depends on the transac-
tion property of the overall WF and the transactional property of the composition
of all the previous activities. The transactional requirements are assigned from left
to right in sequential patterns and from top to bottom in split patterns. A workflow
of n activities can be visualized as a composition of a composite process involving
n — 1 activities and n** activity as illustrated in Fig. 3. At any point of time,
composition involves two services. Hence, the workflow is structured internally as a
binary tree. In each node of the tree representing a workflow activity, the type of the
activity (Type), its transactional requirement (TzP), and the name of the service to
be selected (sName) are stored. The different types of activity are simple, sequence,
parallel, and composite. The simple activities are non-composite whereas composite
activities are represented by workflows. Activity types such as sequence and paral-
lel represent a sequentially composed process and a concurrently composed process

1450004-13

K. Rajaram, C. Babu & A. Adiththan

Workflow
of n-1 activities

Workflow Activity —
of n-1 activities "

(a) (b)

Fig. 3. Transactional property assignment — Step n. (a) Sequential composition and (b) parallel
composition.

respectively. The Set_Seq (Set_Par) in the algorithm represents a set of properties
that can be assigned to the left composition or activity of WF that is sequentially
(concurrently) composed. The function any(set) returns any one of the transactional
properties from set. Based on the required transactional property of a TCWS, the
members of the Set_Seq and Set_Par are different in accordance with Table 1.

The algorithm processes each activity of the WF and terminates when the trans-
actional property of the WF is assigned. When an activity of a WF is another WF
that is either sequentially or concurrently composed, the algorithm is invoked recur-
sively. For a simple or composite activity, any of the transactional properties from
the respective set is assigned. Based on the transactional property assigned to the
left composition/activity, a suitable property is assigned to the right activity that
would result in the required property for their composition. For each type of trans-
action property, the algorithm has three parts as enumerated below:

(1) Assign transactional property to the left composition/activity of workflow, W.
(2) Assign transactional property to the right activity of W based on step 1.
(3) Assign transactional property to the current workflow, W.

Algorithm 4.1 AssignTxP(WF, Reqd_TxP)

Input WF {Workflow}
Reqd-TxP {Required transactional property of WF}
Output TCWS { WF with transactional properties assigned to all of its activities}
begin
Initialize Set_Seq
Initialize Set_Par
while WF.Type # “simple” AND WF.Type # “composite” AND WF.TxP == NULL do
if WEF' left. Type == “sequence” then
AssignTxP(WF.left, any(Set_Seq))
else if WF left. Type == “parallel” then
AssignTxP(WF left, any(Set_Par))
else if WF'.left. Type == “simple” OR, WF.left.nodeType ==“composite” then
{Assign any property from respective set to the left composition/activity of WF}
if WF.Type == “sequence” then
WPEF .left. TxP « any(Set_Seq)
else if WF.Type == “parallel” then

1450004-14

Dynamic Transaction Aware Web Service Selection

WEF .left. TxP « any(Set_Par)
end if
end if
{Initialize rightTxP based on the property assigned to left composition/activity}
Initialize rightTxP

if WF .right. Type == “paralle]” OR WF .right.Type ==“sequence” then
AssignTxP(WF.right, any (right TxP))
else

{Assign any property from rightTxP to the right activity of WF}
WPEF.right. TxP « any(rightTxP)
end if
WEF.TxP « Reqd.TxP {Assign TzP to WF}
end while
end

Algorithm 4.1 involves traversing all the nodes of the binary tree used to repre-
sent the workflow WF. The workflow activities (say n of them) represent the leaf
nodes of the binary tree. The binary tree which is constructed by the algorithm has
nodes of degree 0 (non-composite services in leaf nodes) or 2 (composite services
composed from two component services) only. Thus, the total number of nodes in
the binary tree is n 4 (n + 1). Hence, the time complexity of the algorithm would
be O(n).

4.5. Performance analysis

In order to evaluate the performance of our selection approach, experiments were
conducted by implementing it on a 2.4 GHz Intel Core2 Duo processor machine
with 4 GB RAM, operating with Ubuntu, using J2EE middleware and Netbeans
IDE. The clients, domain services of different service providers and middleware ser-
vices are deployed in different machines connected through an intranet. In order to
test the heterogeneity among the WS, the services have been created with appli-
cation servers such as Glassfish, Apache Tomcat 6.0, JBoss Application Server 5.1,
database servers like MySQL 5.1, Derby and operating systems like Windows and
Linux. OpenUDDI and NovellUDDI browsers have been used to implement the
service registry. Three experiments were conducted with the following objectives:

(1) To observe the performance of the proposed dynamic selection algorithm by
increasing the service registry size as well as the workflow size.

(2) To find the impact of the transactional property or type of the selected service
on the performance of the proposed selection algorithm.

(3) To compare the proposed run-time selection approach with design-time selec-
tion approach by adapting these approaches in the VPS prototype.

4.5.1. Ezperiment 1

Five arbitrary workflows with 5, 15, 25, 35 and 45 activities were constructed. The
services for the activities of a workflow were selected from the registry at runtime

1450004-15

K. Rajaram, C. Babu & A. Adiththan

Table 4. Performance analysis of selection algorithm.

Number of Services Per Activity — %increase

25 50 100 150 200

Number of activities 5 224 237 244 270 287 28.1
15 243 257 296 307 314 29.2
25 265 292 309 320 351 32.5
35 288 307 321 345 391 35.8
45 310 339 366 410 443 42.9

Y%increase 38.4 43 50.0 51.9 544

Note: Selection time in milliseconds.

according to the proposed approach of transaction-aware selection. The number of
suitable services for each of the activity in the workflow was varied from 25 to 200.
For each of the five workflows, the execution times were measured for 10 sample
executions and the maximum values are shown in Table 4. Our selection algorithm
takes only 0.443s to select the services, for each of the 45 activities of a workflow
from a registry containing 9000 services, with an average of 200 services per activity.
It emerges that for a 72-fold increase in the service registry size (from 125 to 9000),
the selection effort increases merely by a factor of 2 (0.2-0.45s).

From this experiment, it is also observed that, the execution time increases
with the increase in the number of activities of a workflow as well as the number
of available services for selection. Figure 4(a) shows the impact of increasing the
number of available services per activity on execution time taken by the selection
approach. The number of services available for selection varies uniformly from 25
to 200 for each workflow. The execution time increases by 34% on an average, for
an eight-fold increase (700%) in the number of available services per activity from
25 to 200. The impact of increase in the number of activities in a workflow on the
execution time is shown in Fig. 4(b). The number of activities uniformly varies
from 5 to 45, for a given number of services per activity. For instance, with 200
services available for an activity, it is observed that, for a nine fold increase (800%)

200
s ———
35.8% 150
35 [z
2 B
3 3
3 [s25% 3
g e — g 10
£
5 [292%) 3
g I'IE 50
21 — b
5
§
28.1% =
5 25
200 250 300 400 450 500 200 250 300 350 400 450 500

350
Time (in ms) Time (in ms)

(a) (b)

Fig. 4. Impact analysis on selection time. (a) Impact of service registry size and (b) impact of
workflow size.

1450004-16

Dynamic Transaction Aware Web Service Selection

in the number of activities from 5 to 45, the execution time increases only by 54%.
The increase in execution time for a 800% increase in the number of activities is
observed to be 48% on an average.

4.5.2. Ezperiment 2

A workflow with 25 activities was constructed and the performance of the selection
approach that results in a TCWS with the required transactional property among
the possible eight, was analysed. The experiment was carried out by increasing the
number of services for each activity from 25 to 200 with 3 to 25 services per each
transactional property. The experiment was repeated 10 times for each of the eight
properties of TCWS and the average is computed. The computed values are shown
in Table 5. The execution time incurred by the proposed middleware service for
selection, Tz-AwarePlanner ranges from 319 to 349 ms for 200 services per activity.
This clearly demonstrates that the performance of the proposed selection approach
is uniformly the same irrespective of the transactional property of the required
TCWS.

4.5.3. Ezperiment 3

In order to compare dynamic and static selection approaches, both of them were
adapted in VPS prototype and throughput of the application in terms of number of
requests completed per second was measured. For dynamic selection, the workflow
template for the VPS was used. The web services registry has 25 services available
to choose from, for each workflow activity. For design-time selection, instead of
the workflow template, a concrete workflow where all the services were discovered
statically for each of the activities was considered. The databases accessed by each
of the services in VPS contained 10,000 records on an average. The experiment was
performed by varying the number of simultaneous user requests from 25 to 200.
Each execution was repeated ten times and the average values have been used in
plotting the graphs shown in Fig. 5. It can be seen that, the average execution time
of the application is found to be 40% more with dynamic selection as compared

Table 5. Selection time analysis for various types of TCWS.

Number of Services in WS Registry

625 1250 1875 2500 3125 3750 4375 5000

Transactional property a 256 271 275 281 285 290 302 319
cp 265 280 285 296 303 309 319 321
cc 275 283 287 290 297 304 317 323
cpee 268 273 275 280 297 304 317 323
r 271 292 295 300 308 311 321 326

cpr 275 281 288 290 312 327 331 338
ccr 278 273 280 283 311 328 336 344
cpcer 280 284 290 291 314 331 338 349

Note: Selection time in milliseconds.

1450004-17

K. Rajaram, C. Babu & A. Adiththan

80 4
@ 70)
i % 3.5

g IS(atll:. H = Static
3 60 Selection .g 3 Selection
2]
FEL HEE
o s Z5
E 40 =Dynamic 5 8 , | = Dynamic
- Selection g E Selection
s 30 $315
S S
§ 20 £8 1
d 10 - 0.5

0 - 0

25 50 100 200 25 50 100 200

of si Number of Simultaneous Requests
(a) (b)

Fig. 5. Transaction aware dynamic selection versus static selection. (a) Execution effort and (b)
throughput.

to static selection of services. In addition, the average throughput of VPS with
dynamic selection is approximately half of that is associated with static selection of
services. The degradation in performance of VPS with dynamic selection approach
is due to the fact that the selection effort is a part of execution effort in contrast
to the static selection process where the services are selected in design-time itself.

The additional overhead associated with the run-time selection can be justified
due to the advantages offered by this dynamic approach, such as considering the
present state of the services and flexibility for the user to specify preferences based
on the execution of previous services. Further, there is also less increase (34%) in
selection time even with a substantial increase in the number of available services

(700%).

5. Conclusion

In the context of service-oriented B2B applications, transaction aware web service
selection is a prerequisite to achieve reliable execution of compositions. In this work,
a web service selection approach supporting transaction aware WS composition has
been presented. The component services are selected by matching their functional
as well as transactional capabilities with the user’s preferences on functional and
transactional requirements. The present work makes two key contributions. First,
an approach has been proposed for selecting the suitable services at run-time based
on their transactional capabilities. Second, cancelable services have been proposed.
Cancelable property enables external interruption of long running business trans-
actions resulting in reduced overhead.

The run-time selection algorithm has been experimented for the vehicle pur-
chase system prototype and is compared with its static selection counterpart. Since
the runtime selection approach introduces the selection overhead during execu-
tion, the overall performance of the application is decreased by 40% in terms of
execution time and by 50% in terms of throughput. However, even when work-
flow size is increased by 800% and service registry size is increased by 700%, the

1450004-18

Dynamic Transaction Aware Web Service Selection

performance of the proposed selection algorithm decreases only by 54% which has
rather marginal impact on the overall performance of the application. In compar-
ison with the existing static selection approach, the proposed dynamic selection
approach is worthwhile for the advantages and flexibility that it offers.

The proposed dynamic selection approach is suitable for B2B applications where
the user preferences and business policies frequently change, since the user can
cancel the service execution at any point of time as well as user preferences can
be decided based on the outcome of a previous service execution. The dynamic
composition of services selected using the proposed transaction aware selection
approach is guaranteed to result in a reliable execution.

Our algorithm can be easily extended to select services with the best QoS prop-
erties locally, in addition to satisfying the transactional requirements globally.

References

1. M. P. Singh and M. N. Huhns, Service Oriented Computing: Semantics, Processes,
Agents (John Wiley and Sons Ltd., England, UK, 2005).

2. T. Erl, Service Oriented Architecture: Concepts, Technology, and Design (Prentice
Hall PTR, New Jersey, USA, 2005).

3. C. Roberto, M. Jean-Jacques, R. Arthur and W. Sanjiva, Web services description
language (WSDL), Version 1.5. 2007.

4. UDDI. Universal Description Discovery and Integration. 2004. http://www.uddi.
org/pubs/uddi-v3.htm.

5. D. Schahram and S. Wolfgang, A survey on web services composition, Int. J. Web
and Grid Serv. 1(1) (2005) 1-30.

6. J. Rao and X. Su, A survey of automated web service composition methods, in Proc.
Conf. Semantic Web Services and Web Process Composition SWSWPC (Springer-
Verlag, Berlin, Heidelberg, 2004), pp. 43-54.

7. K. Rajesh, K. Ferhat and H. Glitho, A business model for dynamic composition of
telecommunication web services, IEEE Commun. Magazi. 45(7) (2007), 36—43.

8. V. Agarwal, G. Chafle, S. Mittal and B. Srivastava, Understanding approaches for
web service composition and execution, in ACM Conf. COMPUTE 2008 (2008),
pp- 1:1-1:8.

9. F. Mustafa and T. L. McCluskey, Dynamic web service composition, in Int. Conf.
Computer Engineering and Technology (2009), pp. 463-467.

10. P. P. W. Chan and M. R. Lyu, Dynamic web service composition: A new approach
in building reliable web service, in 22nd Int. Conf. Advanced Information Networking
and Applications (2008), pp. 20-25.

11. L. Zeng, A. H. Ngu, B. Benatallah, R. Podorozhny and H. Lei, Dynamic composition
and optimization of web services, Int. J. Distrib. Parallel Databases 24 (2008) 45-72.

12. F. Casati and M. Shan, Dynamic and adaptive composition of e-services, Inform.
Syst. 26(3) (2001) 143-163.

13. S. Bhiri, O. Perrin and C. Godart, Ensuring required failure atomicity of composite
web services, in Proc. 14th Int. Conf. World Wide Web (WWW2005) (2005), pp. 138
147.

14. S. Bhiri, O. Perrin and C. Godart, Transactional patterns for reliable web services
compositions, in ACM Int. Conf. Web Engineering ICWE (2006), pp. 137-144.

1450004-19

K. Rajaram, C. Babu & A. Adiththan

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Montagut, R. Molva and S. T. Golega, Automating the composition of transactional
web services, Int. J. Web Serv. Res. 5(1) (2008) 24-41.

F. Montagut, R. Molva and S. T. Golega, The pervasive workflow: A decentral-
ized workflow system supporting long-running transactions, IEEE Trans. Syst., Man,
Cybernet. Part C 38(3) (2008) 319-333.

W. Gaaloul, K. Gaaloul, S. Bhiri, A. Haller and M. Hauswirth, Log-based transac-
tional workflow mining, Int. J. Distrib. Parallel Databases 25 (2009) 193-240.

P. F. Pires, M. R. F. Benevides and M. Mattoso, Building reliable web services com-
position, Web Databases Web Serv. 2593 (2003) 59-72.

L. Li, C. Liu and J. Wang, Deriving transactional properties of composite web services,
in IEEE Int. Conf. Web Services (ICWS) (2007), pp. 631-638.

J. E. Haddad, M. Manouvrier and M. Rukoz, TQoS: Transactional and QoS-aware
selection algorithm for automatic web service composition, IEEE Trans. Serv. Com-
put. 3 (1) (2010) 73-85.

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-
aware middleware for web services composition, IEEE Trans. Software Eng. 30(5)
(2004) 311-327.

A. Liu, Q. Li, L. Huang and M. Xiao, FACTS: A framework for fault-tolerant compo-
sition of transactional web services, IEEE Trans. Serv. Comput. 3(1) (2010) 46-59.
B. L. Neila, K. Takashi and Y. Haruo, WS-SAGAS: Transaction model for reliable
web-services composition specification and execution, DBSJ Lett. 2(2) (2001) 1-4.
W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski and A. P. Barros,
Workflow patterns, Distrib. Parallel Databases 14 (2003) 5-51.

K. Rajaram, A. Adiththan and C. Babu, Tx-policy: Transactional policies for reli-
able web service composition, in Proc. Int. Conf. Workshop on Emerging Trends in
Technology (2011), pp. 738-743.

S. Mehrotra, R. Rastogi, H. F. Korth and A. Silberschatz, A transaction model for
multidatabase systems, in 12th Int. Conf. Distributed Computing Systems (ICDCS92)
(1992), pp. 56-63.

A. Zhang, M. Nodine, B. Bhargava and O. Bukhres, Ensuring relaxed atomicity
for flexible transactions in multidatabase systems, ACM SIGMOD Record 23 (1994)
67-78.

R. Kanchana and B. Chitra, Reliable compositions using cancelable web services,
ACM SIGSOFT Software Eng. Notes 39(1) (2014) 1-6.

R. Kanchana, B. Chitra and A. Arun, Specification of transactional requirements
for web services using recoverability, Int. J. Inform. Technol. Web Eng. 8(1) (2013)
51-65.

1450004-20

Copyright of International Journal of Cooperative Information Systemsis the property of
World Scientific Publishing Company and its content may not be copied or emailed to
multiple sites or posted to alistserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

